Autonomously managed electrical power systems
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1986-01-01
The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.
Results of an electrical power system fault study (CDDF)
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, N. R.; Johnson, Y. B.
1993-01-01
This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.
Development of an automated electrical power subsystem testbed for large spacecraft
NASA Technical Reports Server (NTRS)
Hall, David K.; Lollar, Louis F.
1990-01-01
The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.
Resonant AC power system proof-of-concept test program
NASA Technical Reports Server (NTRS)
Wappes, Loran J.
1986-01-01
Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.
NASA Technical Reports Server (NTRS)
Pajak, J. A.
1981-01-01
A data acquisition software program developed to operate in conjunction with the automated control system of the 25 kW PM Electric Power System Breadboard Test facility is described. The proram provides limited interactive control of the breadboard test while acquiring data and monitoring parameters, allowing unattended continuous operation. The breadboard test facility has two positions for operating separate configurations. The main variable in each test setup is the high voltage Ni-Cd battery.
Microprocessor control and networking for the amps breadboard
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1987-01-01
Future space missions will require more sophisticated power systems, implying higher costs and more extensive crew and ground support involvement. To decrease this human involvement, as well as to protect and most efficiently utilize this important resource, NASA has undertaken major efforts to promote progress in the design and development of autonomously managed power systems. Two areas being actively pursued are autonomous power system (APS) breadboards and knowledge-based expert system (KBES) applications. The former are viewed as a requirement for the timely development of the latter. Not only will they serve as final testbeds for the various KBES applications, but will play a major role in the knowledge engineering phase of their development. The current power system breadboard designs are of a distributed microprocessor nature. The distributed nature, plus the need to connect various external computer capabilities (i.e., conventional host computers and symbolic processors), places major emphasis on effective networking. The communications and networking technologies for the first power system breadboard/test facility are described.
Results of an electrical power system fault study
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, Norma R.; Johnson, Yvette B.
1992-01-01
NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.
Space power system automation approaches at the George C. Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Weeks, D. J.
1987-01-01
This paper discusses the automation approaches employed in various electrical power system breadboards at the Marshall Space Flight Center. Of particular interest is the application of knowledge-based systems to fault management and dynamic payload scheduling. A description of each major breadboard and the automation approach taken for each is given.
Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution
NASA Technical Reports Server (NTRS)
Walls, Bryan
1989-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.
Large autonomous spacecraft electrical power system (LASEPS)
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, Norma R.; Johnson, Yvette B.
1992-01-01
NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.
NASA Technical Reports Server (NTRS)
Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.
1987-01-01
The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.
Intermediate Levels of Autonomy within the SSM/PMAD Breadboard
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, Norma R.; Walls, Bryan
1995-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) bread-board is a test bed for the development of advanced power system control and automation. Software control in the SSM/PMAD breadboard is through co-operating systems, called Autonomous Agents. Agents can be a mixture of algorithmic software and expert systems. The early SSM/PMAD system was envisioned as being completely autonomous. It soon became apparent, though, that there would always be a need for human intervention, at least as long as a human interacts with the system in any way. In a system designed only for autonomous operation, manual intervention meant taking full control of the whole system, and loosing whatever expertise was in the system. Several methods for allowing humans to interact at an appropriate level of control were developed. This paper examines some of these intermediate modes of autonomy. The least humanly intrusive mode is simple monitoring. The ability to modify future behavior by altering a schedule involves high-level interaction. Modification of operating activities comes next. The coarsest mode of control is individual, unplanned operation of individual Power System components. Each of these levels is integrated into the SSM/PMAD breadboard, with support for the user (such as warnings of the consequences of control decisions) at every level.
Breadboard development of a fluid infusion system
NASA Technical Reports Server (NTRS)
Thompson, R. W.
1974-01-01
A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.
ERIC Educational Resources Information Center
Fuller, C. A.
A breadboard model of a laser display system is described in detail and its operating procedure is outlined. The system consists of: a Model 52 argon krypton ion laser and power supply; an optical breadboard comprising a pocket cell light modulator, a galvonmeter beam deflector for vertical scanning, a unique multiple reflection beam steerer for…
Space station automation of common module power management and distribution
NASA Technical Reports Server (NTRS)
Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.
1989-01-01
The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.
Evaluation of high-voltage, high-power, solid-state remote power controllers for amps
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1987-01-01
The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.
Power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.
1974-01-01
A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
Plenoptic Imager for Automated Surface Navigation
NASA Technical Reports Server (NTRS)
Zollar, Byron; Milder, Andrew; Milder, Andrew; Mayo, Michael
2010-01-01
An electro-optical imaging device is capable of autonomously determining the range to objects in a scene without the use of active emitters or multiple apertures. The novel, automated, low-power imaging system is based on a plenoptic camera design that was constructed as a breadboard system. Nanohmics proved feasibility of the concept by designing an optical system for a prototype plenoptic camera, developing simulated plenoptic images and range-calculation algorithms, constructing a breadboard prototype plenoptic camera, and processing images (including range calculations) from the prototype system. The breadboard demonstration included an optical subsystem comprised of a main aperture lens, a mechanical structure that holds an array of micro lenses at the focal distance from the main lens, and a structure that mates a CMOS imaging sensor the correct distance from the micro lenses. The demonstrator also featured embedded electronics for camera readout, and a post-processor executing image-processing algorithms to provide ranging information.
Electromechanical flight control actuator, volume 3
NASA Technical Reports Server (NTRS)
1978-01-01
The design verification tests which were conducted on the electromechanical actuator are described. A description is also given of the power components tests which were conducted to aid in selecting the power transistors for use in the single-channel power electronics breadboard and the results of tests which were conducted on the power electronics breadboard.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (1 of 4) gives a summary of the original AMPS software system configuration, points out some of the problem areas in the original software design that this project is to address, and in the appendix collects all the bimonthly status reports. The purpose of AMPS is to provide a self reliant system to control the generation and distribution of power in the space station. The software in the AMPS breadboard can be divided into three levels: the operating environment software, the protocol software, and the station specific software. This project deals only with the operating environment software and the protocol software. The present station specific software will not change except as necessary to conform to new data formats.
Development Status of a Power Processing Unit for Low Power Ion Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.
2000-01-01
An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.
Resonant AC power system proof-of-concept test program, volume 2, appendix 1
NASA Technical Reports Server (NTRS)
1986-01-01
This report contains two volumes. The main text (Volume 1) summarizes the tests results and gives a detailed discussion of the response of three early, first generation configurations of ac power system IRAD breadboards to the contracted tests imposed on them. It explains photographs, measurements, and data calculations, as well as any observed anomalies or lessons learned. This volume (No 2, Appendix 1, Test Results and Data), published under separate cover, includes all of the data taken on the 1.0 kW single-phase; 5.0 kW three-phase; and 25.0-kW three-phase system breadboards. The format of this data is raw, i.e., it is a direct copy of the data sheets for the test data notebook.
Model-Based Diagnosis in a Power Distribution Test-Bed
NASA Technical Reports Server (NTRS)
Scarl, E.; McCall, K.
1998-01-01
The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
Automating a spacecraft electrical power system using expert systems
NASA Technical Reports Server (NTRS)
Lollar, L. F.
1991-01-01
Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.
Concept for a power system controller for large space electrical power systems
NASA Technical Reports Server (NTRS)
Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.
1981-01-01
The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.
Kilovolt dc solid state remote power controller development
NASA Technical Reports Server (NTRS)
Mitchell, J. T.
1982-01-01
The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.
A high voltage electrical power system for low Earth orbit applications
NASA Technical Reports Server (NTRS)
Lanier, J. R., Jr.; Bush, J. R., Jr.
1984-01-01
The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Myers, Roger M.; Bowers, Glen E.
1996-01-01
A 2.3 kW Breadboard Power Processing Unit (BBPPU) was developed as part of the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) Program. The NSTAR program will deliver an electric propulsion system based on a 30 cm xenon ion thruster to the New Millennium (NM) program for use as the primary propulsion system for the initial NM flight. The final development test for the BBPPU, the Functional Integration Test, was carried out to demonstrate all aspects of BBPPU operation with an Engineering Model Thruster. Test objectives included: (1) demonstration and validation of automated thruster start procedures, (2) demonstration of stable closed loop control of the thruster beam current, (3) successful response and recovery to thruster faults, and (4) successful safing of the system during simulated spacecraft faults. These objectives were met over the specified 80-120 VDC input voltage range and 0.5-2.3 output power capability of the BBPPU. Two minor anomalies were noted in discharge and neutralizer keeper current. These anomalies did not affect the stability of the system and were successfully corrected.
A series-resonant silicon-controlled-rectifier power processor for ion thrusters
NASA Technical Reports Server (NTRS)
Shumaker, H. A.; Biess, J. J.; Goldin, D. S.
1973-01-01
A program to develop a power processing system for ion thrusters is presented. Basic operation of the silicon controlled rectifier series inverter circuitry is examined. The approach for synthesizing such circuits into a system which limits the electrical stress levels on the power source, semiconductor switching elements, and the ion thruster load is described. Experimental results are presented for a 2.5-kW breadboard system designed to operate a 20-cm ion thruster.
Automated Power Systems Management (APSM)
NASA Technical Reports Server (NTRS)
Bridgeforth, A. O.
1981-01-01
A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.
Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration
NASA Technical Reports Server (NTRS)
Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.
1993-01-01
The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.
Power processor for a 20CM ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Schoenfeld, A. D.; Cohen, E.
1973-01-01
A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.
High Power Alternator Test Unit (ATU) Electrical System Test
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.
Development of a Power Electronics Unit for the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.
1994-01-01
A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.; Prokipius, P. R.
1977-01-01
A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Young, R.
1974-01-01
The capability of the basic automated Biowaste Sampling System (ABSS) hardware was extended and improved through the design, fabrication and test of breadboard hardware. A preliminary system design effort established the feasibility of integrating the breadboard concepts into the ABSS.
Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.
2002-01-01
This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).
Camera memory study for large space telescope. [charge coupled devices
NASA Technical Reports Server (NTRS)
Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.
1975-01-01
Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.
ASTP fluid transfer measurement experiment. [using breadboard model
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.
Development of a ninety string solar array simulator
NASA Technical Reports Server (NTRS)
Vasek, Thomas E.; Birchenough, Arthur G.
1991-01-01
A power source was developed to support testing for the Space Station Freedom Power Management and Distribution (PMAD) DC Testbed. The intent was to simulate as closely as possible the steady-state and transient responses of a solar array. Several breadboards and one thermal prototype were built and tested. Responses were successfully verified and improved upon during successive breadboards. The completed 90-string simulator consists of four power MOSFETs, four 25 watt source resistors, and four 250 watt drain source bypass resistors per string, in addition to the control circuitry.
Electromechanical flight control actuator, volume 2
NASA Technical Reports Server (NTRS)
1978-01-01
Schematic diagrams are given for both the four-channel electromechanical actuator and the single-channel power electronics breadboard. Detailed design data is also given on the gears used in the differential gearbox and a copy of the operations manual for the system is included. Performance test results are given for the EMA motor and its current source indicator, the drive control electronics, and the overall system. The power converter waveform test results are also summarized.
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
Considerations in the design of a communication network for an autonomously managed power system
NASA Technical Reports Server (NTRS)
Mckee, J. W.; Whitehead, Norma; Lollar, Louis
1989-01-01
The considerations involved in designing a communication network for an autonomously managed power system intended for use in space vehicles are examined. An overview of the design and implementation of a communication network implemented in a breadboard power system is presented. An assumption that the monitoring and control devices are distributed but physically close leads to the selection of a multidrop cable communication system. The assumption of a high-quality communication cable in which few messages are lost resulted in a simple recovery procedure consisting of a time out and retransmit process.
Microwave power transmitting phased array antenna research project
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1978-01-01
An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.
The CELSS breadboard project: Plant production
NASA Technical Reports Server (NTRS)
Knott, William M.
1990-01-01
NASA's Breadboard Project for the Controlled Ecological Life Support System (CELSS) program is described. The simplified schematic of a CELSS is given. A modular approach is taken to building the CELSS Breadboard. Each module is researched in order to develop a data set for each one prior to its integration into the complete system. The data being obtained from the Biomass Production Module or the Biomass Production Chamber is examined. The other primary modules, food processing and resource recovery or waste management, are discussed briefly. The crew habitat module is not discussed. The primary goal of the Breadboard Project is to scale-up research data to an integrated system capable of supporting one person in order to establish feasibility for the development and operation of a CELSS. Breadboard is NASA's first attempt at developing a large scale CELSS.
Design and demonstration of an advanced data collection/position location system
NASA Technical Reports Server (NTRS)
1977-01-01
The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.
IPACS Electronics: Comments on the Original Design and Current Efforts at Langley Research Center
NASA Technical Reports Server (NTRS)
Gowdey, J. C.
1983-01-01
The development of the integrated power altitude control system (IPACS) is described. The power bridge was fabricated, and all major parts are in hand. The bridge was tested with a 1/4 HP motor for another program. The PWM, Control Logic, and upper bridge driver power supply are breadboarded and are debugged prior to starting testing on a passive load. The Hall sensor circuit for detecting rotor position is in design.
Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2015-01-01
Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop optimized operational schema.
Heat pipe cooling of power processing magnetics
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Chester, M. S.
1979-01-01
A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. The design details are presented along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Development of a multikilowatt ion thruster power processor
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.; Goldin, D. S.; Biess, J. J.
1972-01-01
A feasibility study was made of the application of silicon-controlled, rectifier series, resonant inverter, power conditioning technology to electric propulsion power processing operating from a 200 to 400 Vdc solar array bus. A power system block diagram was generated to meet the electrical requirements of a 20 CM hollow cathode, mercury bombardment, ion engine. The SCR series resonant inverter was developed as a primary means of power switching and conversion, and the analog signal-to-discrete-time-interval converter control system was applied to achieve good regulation. A complete breadboard was designed, fabricated, and tested with a resistive load bank, and critical power processor areas relating to efficiency, weight, and part count were identified.
A programmable power processor for a 25-kW power module
NASA Technical Reports Server (NTRS)
Lanier, R., Jr.; Kapustka, R. E.; Bush, J. R., Jr.
1979-01-01
A discussion of the power processor for an electrical power system for a 25-kW Power Module that could support the Space Shuttle program during the 1980's and 1990's and which could be a stepping stone to future large space power systems is presented. Trades that led to the selection of a microprocessor-controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Efficiency data from a breadboard programmable power processor are presented, and component selection and design considerations are also discussed.
Real-time contingency handling in MAESTRO
NASA Technical Reports Server (NTRS)
Britt, Daniel L.; Geoffroy, Amy L.
1992-01-01
A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.
Bidirectional power converter control electronics
NASA Technical Reports Server (NTRS)
Mildice, J. W.
1987-01-01
The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.
A phased array bread board for future remote sensing applications
NASA Astrophysics Data System (ADS)
Zahn, R. W.; Schmidt, E.
The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Lebron, Ramon C.
1999-01-01
The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.
Biomark/Organic Analysis with Time-of-Flight Mass Spectrometry
NASA Technical Reports Server (NTRS)
Waite, J. Hunter, Jr.
2004-01-01
The concept of a Comprehensive 2-Dimensional Gas Chromatography coupled with Time-of-Flight Mass Spectrometry (GCxGC-TOWS) for the analysis of organic compounds has been proven with commercially available instrumentation (LECO Corp). The performance of a GCxGC instrument has been characterized in various stages using two independent breadboard systems. The GCxGC separation systems, including the thermal modulator, have been miniaturized to the size of a benchtop configuration. One breadboard system employs a Flame Ionization Detector (FID), whereas the second breadboard system employs a Time-of-Fight mass spectrometer (TOFWS) as a detection system.
NASA Technical Reports Server (NTRS)
Green, D. M.
1978-01-01
Software programs are described, one which implements a voltage regulation function, and one which implements a charger function with peak-power tracking of its input. The software, written in modular fashion, is intended as a vehicle for further experimentation with the P-3 system. A control teleprinter allows an operator to make parameter modifications to the control algorithm during experiments. The programs require 3K ROM and 2K ram each. User manuals for each system are included as well as a third program for simple I/O control.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Electric power system test and verification program
NASA Technical Reports Server (NTRS)
Rylicki, Daniel S.; Robinson, Frank, Jr.
1994-01-01
Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.
Space station common module network topology and hardware development
NASA Technical Reports Server (NTRS)
Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.
1990-01-01
Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.
Operational Results From a High Power Alternator Test Bed
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (2 of 4) contains the specification, structured flow charts, and code listing for the protocol. The purpose of an autonomous power system on a spacecraft is to relieve humans from having to continuously monitor and control the generation, storage, and distribution of power in the craft. This implies that algorithms will have been developed to monitor and control the power system. The power system will contain computers on which the algorithms run. There should be one control computer system that makes the high level decisions and sends commands to and receive data from the other distributed computers. This will require a communications network and an efficient protocol by which the computers will communicate. One of the major requirements on the protocol is that it be real time because of the need to control the power elements.
The design of a breadboard cryogenic optical delay line for DARWIN
NASA Astrophysics Data System (ADS)
van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The design of the BB delay line has been completed. Verification testing, including functional testing at 40 K, is planned to start in the 4th quarter of 2004. The current design could also be adapted to the needs of the TPF-I mission.
The design of a breadboard cryogenic optical delay line for DARWIN
NASA Astrophysics Data System (ADS)
van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a future flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The BB delay line will be built in the second half of 2004. The manufacturing and assembly phase is followed by a comprehensive test program, including functional testing at 40 K in 2005. The tests will be carried out by Alcatel Space and SAGEIS-CSO.
A 'breadboard' biomass production chamber for CELSS
NASA Technical Reports Server (NTRS)
Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.
1987-01-01
The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.
Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve
2002-01-01
NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.
Hubble space telescope six-battery test bed
NASA Technical Reports Server (NTRS)
Pajak, J. A.; Bush, J. R., Jr.; Lanier, J. R., Jr.
1990-01-01
A test bed for a large space power system breadboard for the Hubble Space Telescope (HST) was designed and built to test the system under simulated orbital conditions. A discussion of the data acquisition and control subsystems designed to provide for continuous 24 hr per day operation and a general overview of the test bed is presented. The data acquisition and control subsystems provided the necessary monitoring and protection to assure safe shutdown with protection of test articles in case of loss of power or equipment failure over the life of the test (up to 5 years).
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.
1980-01-01
Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
Q-Thruster Breadboard Campaign Project
NASA Technical Reports Server (NTRS)
White, Harold
2014-01-01
Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.
Review of advanced radiator technologies for spacecraft power systems and space thermal control
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Peterson, George P.
1994-01-01
A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.
Milliwatt radioisotope power supply for the PASCAL Mars surface stations
NASA Astrophysics Data System (ADS)
Allen, Daniel T.; Murbach, Marcus S.
2001-02-01
A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .
Hubble Space Telescope electrical power system
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Bush, John R., Jr.
1990-01-01
The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.
Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping
NASA Technical Reports Server (NTRS)
Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.
2012-01-01
A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 2
NASA Technical Reports Server (NTRS)
Andrews, R. E. (Editor)
1972-01-01
The design and development of power conditioning equipment for the thermoelectric outer planet spacecraft program are considered. One major aspect of the program included the design, assembly and test of various breadboard power conditioning elements. Among others these included a quad-redundant shunt regulator, a high voltage traveling wave tube dc-to-dc converter, two-phase gyro inverters and numerous solid state switching circuits. Many of these elements were arranged in a typical subsystem configuration and tests were conducted which demonstrated basic element compatibility. In parallel with the development of the basic power conditioning elements, system studies were continued. The salient features of the selected power subsystem configuration are presented.
Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite
NASA Astrophysics Data System (ADS)
Rockberger, D.; Abramovich, H.
2014-03-01
The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
NASA Technical Reports Server (NTRS)
Brush, A. S.; Phillips, R. L.
1991-01-01
NASA Lewis Research Center and associated contractors have conducted a program to assess the potential requirements for a high-current switch to conceptually design a switch using the best existing technology, and to build and demonstrate a breadboard which meets the requirements. The result is the high current remote bus isolator (HRBI). The HRBI is rated at 180 V dc, 335 A continuous with a 1200 A interrupt rating. It also incorporates remote-control and protective features called for by the Space Station Freedom PMAD dc test bed design. Two breadboard 335 A circuit breakers were built and tested that demonstrate a promising concept of paralleled current-limiting modules. The units incorporated all control and protective features required by advanced aerospace power systems. Component stresses in each unit were determined by design, and are consistent with a life of many thousands of fault operations.
Information management advanced development. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The information management systems designed for the modular space station are discussed. Subjects presented are: (1) communications terminal breadboard configuration, (2) digital data bus breadboard configuration, (3) data processing assembly definition, and (4) computer program (software) assembly definition.
High Performance Power Module for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.
2002-01-01
Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2006-01-01
NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1992-01-01
The LAWS phase 1 and phase 2 studies have been completed on schedule and have led to significant advances in CO2 laser development. The Phase 2 Design Definition Study has shown that a large scanning mirror/high pulse energy laser LAWS Instrument is feasible and within the existing technology. The capability to monitor wind velocities with backscatter ratios of 10(exp 11) m(exp -1) SR(exp -1) is feasible. The weight budget allocated for the baseline LAWS is adequate, and sufficient reserves exist with the potential downsized configuration. With the possible decrease in available power from the baseline of 2.2 kW guideline, power and shot management is critical for the baseline configuration (15 to 20 J). This is particularly true during the 100 day occultation period each year. With the downsized configurations (5 to 7 J), power management is still necessary during the occultation but is primarily limited to shot management over the polar regions. The breadboard effort has produced significant laser advances for a tight 18 month schedule and the minimum budgets available from NASA, Lockheed, and TDS. Using the NASA funds and Lockheed and TDS fixed assets budgets, the breadboard was designed, fabricated, and brought on-line with first laser light within 16 months after ATP. First laser beam was obtained on 21 April 1992 at a 5 J power level. Tests since then have been conducted at sustained, repetitive pulse levels of over 7 J and 20 Hz. This is an increase of over two or three times greater than any system previously developed from this type laser. Increased power levels and additional life tests will be accomplished in the next LAWS phase. The Lockheed LAWS design will operate in the gravity gradient mode on-orbit, and all possible instrument vibration and jitter modes have been considered. Adequate pointing stability and control is state-of-the-art technology for the critical time periods, frequency rates, and control responses required by LAWS. Lockheed recommends a 6-1/2 year phase C/D program for LAWS to provide adequate feedback from the engineering unit and the qualification unit to the final flight unit. Assuming a one year period for LAWS integration to the spacecraft, followed by a six-month period for launch vehicle integration, LAWS could be successfully developed and launched in eight years. Our baseline design or downsized design can be accommodated by either the Atlas 2AS or the Delta launch vehicles. Lockheed's recommendation is that, based on the successful phase 2 design study and breadboard program, a follow-on 18 month extended breadboard testing program and additional system engineering studies, primarily in interfacing with a to be defined platform, be initiated. This should be immediately followed by the phase C/D program, leading to a LAWS launch in late 2001 or early 2002.
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results
NASA Technical Reports Server (NTRS)
Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.
2015-01-01
Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.
Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS
NASA Astrophysics Data System (ADS)
Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.
1996-11-01
The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.
Controlled Ecological Life Support System Breadboard Project - 1988
NASA Technical Reports Server (NTRS)
Knott, W. M.
1989-01-01
The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.
Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant
NASA Technical Reports Server (NTRS)
Loyselle, Patricia; Prokopius, Kevin
2011-01-01
NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components
A programmable power processor for high power space applications
NASA Technical Reports Server (NTRS)
Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.
1982-01-01
A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.
1992-01-01
The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.
NASA Technical Reports Server (NTRS)
1978-01-01
The theoretical background for a coherent demodulator for minimum shift keying signals generated by the advanced data collection/position locating system breadboard is presented along with a discussion of the design concept. Various tests and test results, obtained with the breadboard system described, include evaluation of bit-error rate performance, acquisition time, clock recovery, recycle time, frequency measurement accuracy, and mutual interference.
Fluidically Controlled Cargo Hook
1975-03-01
Final Breadboard Fluidic Circuit IT 6 External Cargo Handling System - Cü-Sk Type Aircraft 18 7 Back Pressure Switch Response Time - Switching...On 20 8 Back Pressure Switch Response Time - Switching Off 21 9 Hook Actuator - Pressure Rise Rate 22 10 Breadboard Fluidic System Component...LINE LENGTH* FT Figure 7« Back. Pressure Switch Response Time - Switching On. ! TABLE k. INTERFACE VALVE SIGNAL TIME
Membrane water deaerator investigation. [fluid filter breadboard model
NASA Technical Reports Server (NTRS)
Elam, J.; Ruder, J.; Strumpf, H.
1974-01-01
The purpose of the membrane water deaerator program was to develop data on a breadboard hollow fiber membrane unit that removes both dissolved and evolved gas from a water transfer system in order to: (1) assure a hard fill of the EVLSS expendable water tank; (2) prevent flow blockage by gas bubbles in circulating systems; and (3) prevent pump cavitation.
ERIC Educational Resources Information Center
Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.
2013-01-01
This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…
Development of a 30-cm ion thruster thermal-vacuum power processor
NASA Technical Reports Server (NTRS)
Herron, B. G.
1976-01-01
The 30-cm Hg electron-bombardment ion thruster presently under development has reached engineering model status and is generally accepted as the prime propulsion thruster module to be used on the earliest solar electric propulsion missions. This paper presents the results of a related program to develop a transistorized 3-kW Thermal-Vacuum Breadboard (TVBB) Power Processor for this thruster. Emphasized in the paper are the implemented electrical and mechanical designs as well as the resultant system performance achieved over a range of test conditions. In addition, design modifications affording improved performance are identified and discussed.
ExoMars Raman Laser Spectrometer scientific required performances check with a Breadboard
NASA Astrophysics Data System (ADS)
Moral, A.; Díaz, E.; Ramos, G.; Rodríguez Prieto, J. A.; Pérez Canora, C.; Díaz, C.; Canchal, R.; Gallego, P.; Santamaría, P.; Colombo, M.
2013-09-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Program, ExoMars mission. For being able to verify the achievement of the scientific objectives of the instrument, a Breadboard campaign was developed, for achieving instrument TRL5. Within the Instrument TRL5 Plan, it was required to every unit to develop its own Unit Breadboard, to check their own TRL5 and then to deliver it to System Team to be integrated and tested for finally checks Instrument performances.
Cornea Optical Topographical Scan System (COTSS)
NASA Technical Reports Server (NTRS)
1986-01-01
The Cornea Optical Topographical Scan System (COTSS) is an instrument designed for use by opthalmologist to aid in performing surgical procedures such as radial keratotomy and to provide quick accurate data to aid in prescribing contact lenses and eyeglasses. A breadboard of the system was built and demonstrated in June of 1984. Additional refinements to the breadboard are needed to meet systems requirements prior to proceeding with prototype development. The present status of the COTSS instrument is given and the areas in which system refinements are required, are defined.
Controlled ecological life support system breadboard project, 1988
NASA Technical Reports Server (NTRS)
Knott, W. M.
1990-01-01
The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.
Video Guidance, Landing, and Imaging system (VGLIS) for space missions
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Flemming, J. C.
1975-01-01
The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported.
Fluid circulating pump operated by same incident solar energy which heats energy collection fluid
NASA Technical Reports Server (NTRS)
Collins, E. R.
1980-01-01
The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.
Regenerative fuel cell systems for space station
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Sheibley, D. W.
1985-01-01
Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.
Breadboard CO2 and humidity control system
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1976-01-01
A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
Heat pipe cooling of power processing magnetics
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Chester, M.
1979-01-01
The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.
Sequential color video to parallel color video converter
NASA Technical Reports Server (NTRS)
1975-01-01
The engineering design, development, breadboard fabrication, test, and delivery of a breadboard field sequential color video to parallel color video converter is described. The converter was designed for use onboard a manned space vehicle to eliminate a flickering TV display picture and to reduce the weight and bulk of previous ground conversion systems.
Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.
2005-01-01
The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.
Remote analysis of planetary soils: X-ray diffractometer development
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1973-01-01
A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.
One-shot multivibrator with complementary metal-oxide-semiconductor components
NASA Technical Reports Server (NTRS)
Oneill, R. W.
1970-01-01
Breadboard model is tuned to produce output pulses from one microsecond up to several seconds in width with up to 95 percent duty cycle, and with lower power consumption than previously existing circuits.
Hollow fiber membrane systems for advanced life support systems
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1976-01-01
The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.
Water quality monitor. [spacecraft potable water
NASA Technical Reports Server (NTRS)
West, S.; Crisos, J.; Baxter, W.
1979-01-01
The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.
Information management system breadboard data acquisition and control system.
NASA Technical Reports Server (NTRS)
Mallary, W. E.
1972-01-01
Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.
Breadboard stellar tracker system test report, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
Complete data from a test program designed to evaluate the performance of a star tracker, a breadboard tracker system, is presented in tabular form. All data presented was normalized to the pixel dimension of 20 micrometers. Data from determination of maximum spatial noise as it applies to the coarse and fine acquisition modes is presented. Pointing accuracy test data, raw pixel data for the track cycle, and data from equipment related tests is also presented.
Object-oriented model-driven control
NASA Technical Reports Server (NTRS)
Drysdale, A.; Mcroberts, M.; Sager, J.; Wheeler, R.
1994-01-01
A monitoring and control subsystem architecture has been developed that capitalizes on the use of modeldriven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbodioxide, and water. It estimates and tracks resorce-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents an approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (3 of 4) contains the specification for the command language for the AMPS system. The volume contains a requirements specification for the operating system and commands and a design specification for the operating system and command. The operating system and commands sits on top of the protocol. The commands are an extension of the present set of AMPS commands in that the commands are more compact, allow multiple sub-commands to be bundled into one command, and have provisions for identifying the sender and the intended receiver. The commands make no change to the actual software that implement the commands.
Performance of a Ka-band transponder breadboard for deep-space applications
NASA Technical Reports Server (NTRS)
Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.
1995-01-01
This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.
Space Station Module Power Management and Distribution System (SSM/PMAD)
NASA Technical Reports Server (NTRS)
Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)
1994-01-01
This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.
Environmental Testing of the NEXT PM1 Ion Engine
NASA Technical Reports Server (NTRS)
Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2008-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.
A gas flow indicator for portable life support systems
NASA Technical Reports Server (NTRS)
Bass, R. L., III; Schroeder, E. C.
1975-01-01
A three-part program was conducted to develop a gas flow indicator (GFI) to monitor ventilation flow in a portable life support system. The first program phase identified concepts which could potentially meet the GFI requirements. In the second phase, a working breadboard GFI, based on the concept of a pressure sensing diaphragm-aneroid assembly connected to a venturi, was constructed and tested. Extensive testing of the breadboard GFI indicated that the design would meet all NASA requirements including eliminating problems experienced with the ventilation flow sensor used in the Apollo program. In the third program phase, an optimized GFI was designed by utilizing test data obtained on the breadboard unit. A prototype unit was constructed using prototype materials and fabrication techniques, and performance tests indicated that the prototype GFI met or exceeded all requirements.
Development of a drive system for a sequential space camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1976-01-01
An electronically commutated dc motor is reported for driving the camera claw and magazine, and a stepper motor is described for driving the shutter with the two motors synchronized electrically. Subsequent tests on the breadboard positively proved the concept, but further development beyond this study should be done. The breadboard testing also established that the electronically commutated motor can control speed over a wide dynamic range, and has a high torque capability for accelerating loads. This performance suggested the possibility of eliminating the clutch from the system while retaining all of the other mechanical features of the DAC, if the requirement for independent shutter speeds and frame rates can be removed. Therefore, as a final step in the study, the breadboard shutter and shutter drive were returned to the original DAC configuration, while retaining the brushless dc motor drive.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (4 of 4) contains the description, structured flow charts, prints of the graphical displays, and source code to generate the displays for the AMPS graphical status system. The function of these displays is to present to the manager of the AMPS system a graphical status display with the hot boxes that allow the manager to get more detailed status on selected portions of the AMPS system. The development of the graphical displays is divided into two processes; the creation of the screen images and storage of them in files on the computer, and the running of the status program which uses the screen images.
Electrochemical air revitalization system optimization investigation
NASA Technical Reports Server (NTRS)
Woods, R. R.; Schubert, F. H.; Hallick, T. M.
1975-01-01
A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.
Micro-Inspector Spacecraft Testbed: Breadboard Subsystem Demonstrations
NASA Astrophysics Data System (ADS)
Mueller, Juergen; Goldberg, Hannah; Alkalai, Leon
2007-01-01
Micro-inspector is a 5-kg inspection platform designed to operate autonomously following operator up-linked command sequences around a host spacecraft to perform safety inspections, anomaly inspections, or imaging of large in-space assemblies as envisioned for future NASA exploration missions. Similarly, such an inspection platform may be adapted to military space missions. Micro-inspector relies on solar power and using celestial sensors for navigation, giving the system large flexibility in the missions and applications it may serve, including those beyond Earth orbit. Micro-Inspector, through its small size and low weight, poses minimal design impacts to the host. Its small size and weight also affords micro-inspector to be disposable, allowing multiple inspectors to be used by a single host for different inspection routines or as emergency back-up. Its low-pressure butane propulsion system combines safety and compactness through liquid propellant storage with an adequate performance of up to 30 m/s for inspection maneuvers around the host. Micro-inspector, since power limited through a body mounted solar array, thus avoiding the complexities of deployable structures, relies on many advanced, ultra-low power micro-technologies, such as a novel microvalve by VACCO Industries in its propulsion system, electrochromic surface modulating heat transfer from the spacecraft using no moving parts, low power dual processor and FPGA-based reconfigurable and SEU mitigating avionics, a low power RF telecom link based on the Mars Micro Transceiver, and micro attitude control sensors, such as commercial micro IMUs and a JPL developed micro sun sensor. Host safety is a key concern, and multiple safety features are employed by micro-inspector to prevent any accidental impact onto the host. Among these is an active, laser-based range-finding collision avoidance system, which constantly monitors the distance to the host and via the micro-inspector's control system maintains a safe distance. Micro-Inspector design, through funding from the NASA Explorations Systems Mission Directorate, has significantly advanced over the past year and is currently at PDR level and beyond. Special emphasis was placed on retiring risk in various subsystem areas through the use of advanced technologies. To this end, a micro-inspector test bed was set up to critically assess the readiness of component technologies and subsystems. Breadboard subsystem demonstrations and system integration were performed to place future design efforts on a solid basis.
Development of a drive system for a sequential space camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1976-01-01
Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.
Breadboard Solid Amine Water Desorbed CO2 Control System
NASA Technical Reports Server (NTRS)
Colling, A. K.; Hultman, M. M.
1980-01-01
A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.
Advanced space engine powerhead breadboard assembly system study
NASA Technical Reports Server (NTRS)
Campbell, R. G.
1978-01-01
The objective of this study was to establish a preliminary design of a Powerhead Breadboard Assembly (PBA) for an 88 964-Newton (20,000-pound) thrust oxygen/hydrogen staged combustion cycle engine for use in orbital transfer vehicle propulsion. Existing turbopump, preburner, and thrust chamber components were integrated with interconnecting ducting, a heat exchanger, and a control system to complete the PBA design. Cycle studies were conducted to define starting transients and steady-state balances for the completed design. Specifications were developed for all valve applications and the conditions required for the control system integration with the facility for system test were defined.
NASA Technical Reports Server (NTRS)
Gibbs, R. S.
1973-01-01
The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Astrophysics Data System (ADS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-11-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.;
1997-01-01
The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.
Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications
NASA Technical Reports Server (NTRS)
1989-01-01
This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.
System for Automated Calibration of Vector Modulators
NASA Technical Reports Server (NTRS)
Lux, James; Boas, Amy; Li, Samuel
2009-01-01
Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.
Design of a modular digital computer system, CDRL no. D001, final design plan
NASA Technical Reports Server (NTRS)
Easton, R. A.
1975-01-01
The engineering breadboard implementation for the CDRL no. D001 modular digital computer system developed during design of the logic system was documented. This effort followed the architecture study completed and documented previously, and was intended to verify the concepts of a fault tolerant, automatically reconfigurable, modular version of the computer system conceived during the architecture study. The system has a microprogrammed 32 bit word length, general register architecture and an instruction set consisting of a subset of the IBM System 360 instruction set plus additional fault tolerance firmware. The following areas were covered: breadboard packaging, central control element, central processing element, memory, input/output processor, and maintenance/status panel and electronics.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
NASA Technical Reports Server (NTRS)
Wolfgang, R.; Natarajan, T.; Day, J.
1987-01-01
A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.
A comprehensive generator-line-infinite-bus micromachine model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, G.W.
For almost twenty years, a miniature three-phase electric power system has been used by students at the University of Manitoba, in several courses and for many student hands on'' projects. It features a realistic natural frequency of about one hertz, a realistic exciter/field time constant of about five seconds, a solid state exciter, many short time constant transducers, a unique synchroscope'', and a storage oscilloscope. On the storage oscilloscope power-versus-phase curves can be observed-something seldom seen by practicing engineers or students in the usual laboratory situation. Advanced students can construct operational amplifier based stabilizers on a bread-board close to themore » regulator which is also on a small bread-broad.« less
Development and performance of pulse-width-modulated static inverter and converter modules
NASA Technical Reports Server (NTRS)
Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.
1971-01-01
Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.
NASA Astrophysics Data System (ADS)
Morgan, I.; Benjamin, J. D.
1985-08-01
Methods of powering devices to which only ac contact can be made and receiving data transmitted back from them are described. Such devices include medical implants which communicate with the external environment via ultrasound or rf links. Two breadboard systems were built to demonstrate the techniques. In both the device is powered by picking up an ac input and rectifying it. A signal voltage detected by the device is encoded as a frequency, transmitted and decoded. In one case this is performed on a separate channel from that used to power the device. In the other only one channel is used for both signals, and data is transmitted by modulating the impedance presented by the device. The resulting modulation of the input signal is picked up by the external circuit and decoded.
Infrared Imagery of Shuttle (IRIS). Task 2. [indium antimonide sensors
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1978-01-01
An opto-electronic breadboard of 10 channels of the IR temperature measuring system was produced as well as a scaled up portion of the tracking system reticle in order to verify Task 1 assumptions. The breadboards and the tests performed on them are described and both raw and reduced data are presented. Tests show that the electronics portion of the imaging system will provide a dc to 10,000 Hz bandwidth that is flat and contributes no more than 0.4% of full-scale uncertainty to the measurement. Conventional packaging is adequate for the transresistance amplifier design. Measurement errors expected from all sources tested are discussed.
Laser metrology and optic active control system for GAIA
NASA Astrophysics Data System (ADS)
D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.
2017-11-01
The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.
Mobile satellite communications technology - A summary of NASA activities
NASA Technical Reports Server (NTRS)
Dutzi, E. J.; Knouse, G. H.
1986-01-01
Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1977-01-01
This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.
Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.
1989-01-01
The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.
Color film preservation system: Breadboard development
NASA Technical Reports Server (NTRS)
1984-01-01
The development of an economically feasible system to prevent and/or substantially reduce the degradation of the color dyes of the retinal reflex images recorded on color slide films is discussed. Three different types of film storage systems were designed, fabricated, and tested. An extruded plastic cylindrical container was pressurized and no observable leakage occurred, indicating that long term storage is possible. An operational breadboard was fabricated. The system offers the capability to determine purging requirements to achieve various levels of oxygen concentration and precise leakage of various container configurations. The system has digitial display of oxygen content of the container, automatic control of the oxygen content as well as of the container to atmosphere pressure differential, and flow rate readout during purging.
A natural-gas fuel processor for a residential fuel cell system
NASA Astrophysics Data System (ADS)
Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.
A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.
ExoMars Raman laser spectrometer breadboard overview
NASA Astrophysics Data System (ADS)
Díaz, E.; Moral, A. G.; Canora, C. P.; Ramos, G.; Barcos, O.; Prieto, J. A. R.; Hutchinson, I. B.; Ingley, R.; Colombo, M.; Canchal, R.; Dávila, B.; Manfredi, J. A. R.; Jiménez, A.; Gallego, P.; Pla, J.; Margoillés, R.; Rull, F.; Sansano, A.; López, G.; Catalá, A.; Tato, C.
2011-10-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powdered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. In response to ESA requirements for delta-PDR to be held in mid 2012, an instrument BB programme has been developed, by RLS Assembly Integration and Verification (AIV) Team to achieve the Technology Readiness level 5 (TRL5), during last 2010 and whole 2011. Currently RLS instrument is being developed pending its CoDR (Conceptual Design Revision) with ESA, in October 2011. It is planned to have a fully operative breadboard, conformed from different unit and sub-units breadboards that would demonstrate the end-to-end performance of the flight representative units by 2011 Q4.
Scene analysis for a breadboard Mars robot functioning in an indoor environment
NASA Technical Reports Server (NTRS)
Levine, M. D.
1973-01-01
The problem is delt with of computer perception in an indoor laboratory environment containing rocks of various sizes. The sensory data processing is required for the NASA/JPL breadboard mobile robot that is a test system for an adaptive variably-autonomous vehicle that will conduct scientific explorations on the surface of Mars. Scene analysis is discussed in terms of object segmentation followed by feature extraction, which results in a representation of the scene in the robot's world model.
NASA Technical Reports Server (NTRS)
Prince, R.; Knott, W.; Buchanan, Paul
1987-01-01
Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
A laboratory breadboard system for dual-arm teleoperation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Kim, W. S.
1990-01-01
The computing architecture of a novel dual-arm teleoperation system is described. The novelty of this system is that: (1) the master arm is not a replica of the slave arm; it is unspecific to any manipulator and can be used for the control of various robot arms with software modifications; and (2) the force feedback to the general purpose master arm is derived from force-torque sensor data originating from the slave hand. The computing architecture of this breadboard system is a fully synchronized pipeline with unique methods for data handling, communication and mathematical transformations. The computing system is modular, thus inherently extendable. The local control loops at both sites operate at 100 Hz rate, and the end-to-end bilateral (force-reflecting) control loop operates at 200 Hz rate, each loop without interpolation. This provides high-fidelity control. This end-to-end system elevates teleoperation to a new level of capabilities via the use of sensors, microprocessors, novel electronics, and real-time graphics displays. A description is given of a graphic simulation system connected to the dual-arm teleoperation breadboard system. High-fidelity graphic simulation of a telerobot (called Phantom Robot) is used for preview and predictive displays for planning and for real-time control under several seconds communication time delay conditions. High fidelity graphic simulation is obtained by using appropriate calibration techniques.
Development Status of the NSTAR Ion Propulsion System Power Processor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.
1995-01-01
A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.
Environmental Testing of the NEXT PM1R Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.
2007-01-01
The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test program and confidence in the engineering solutions available for the remaining findings of the first test program, specifically the particulate contamination, the hardware environmental qualification program can proceed with confidence
Information management advanced development. Volume 3: Digital data bus breadboard
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The design, development, and evaluation of the digital data bus breadboard for the modular space station are discussed. Subjects presented are: (1) requirements summary, (2) parametric data for bus design, (3) redundancy concepts, and (4) data bus breadboard performance and interface requirements.
Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve
2001-01-01
The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.
Test Results of a 200 W Class Hall Thruster
NASA Technical Reports Server (NTRS)
Jacobson, David; Jankovsky, Robert S.
1999-01-01
The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.
NASA Technical Reports Server (NTRS)
Nuckolls, C.; Frank, Mark
1990-01-01
The overall goal of this study was to develop new concepts and technology for the Comet Rendezvous Asteroid Flyby (CRAF), Cassini, and other future deep space missions which maximally conform to the Functional Specification for the NASA X-Band Transponder (NXT), FM513778 (preliminary, revised July 26, 1988). The study is composed of two tasks. The first task was to investigate a new digital signal processing technique which involves the processing of 1-bit samples and has the potential for significant size, mass, power, and electrical performance improvements over conventional analog approaches. The entire X-band receiver tracking loop was simulated on a digital computer using a high-level programming language. Simulations on this 'software breadboard' showed the technique to be well-behaved and a good approximation to its analog predecessor from threshold to strong signal levels in terms of tracking-loop performance, command signal-to-noise ratio and ranging signal-to-noise ratio. The successful completion of this task paves the way for building a hardware breadboard, the recommended next step in confirming this approach is ready for incorporation into flight hardware. The second task in this study was to investigate another technique which provides considerable simplification in the synthesis of the receiver first LO over conventional phase-locked multiplier schemes and in this approach, provides down-conversion for an S-band emergency receive mode without the need of an additional LO. The objective of this study was to develop methodology and models to predict the conversion loss, input RF bandwidth, and output RF bandwidth of a series GaAs FET sampling mixer and to breadboard and test a circuit design suitable for the X and S-band down-conversion applications.
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.
HOLOMEM, optical mass memory investigations, volume 1
NASA Technical Reports Server (NTRS)
Roberts, H. N.
1977-01-01
Research and design activities in support of the development of a 10 to the 12th power-bit holographic read/write optical mass memory (HOLOMEM) with some moving parts for space applications are summarized. The report consists of four sections: (1) a general introduction, which includes a summary of key accomplishments and the principal conclusions of the study; (2) a comprehensive analysis of alternative HOLOMEM system concepts; (3) a discussion of important design and tradeoff considerations related to the fabrication, test, and evaluation of a breadboard holographic recorder/reproducer; and (4) a summary of experimental data generated to define the holographic recording performance of two quasi-commercial photoplastic recording films.
Raman technology for future planetary missions
NASA Astrophysics Data System (ADS)
Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer
2017-11-01
Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.
Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Nagano, Hosei
2008-01-01
Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.
Spacesuit Data Display and Management System
NASA Technical Reports Server (NTRS)
Hall, David G.; Sells, Aaron; Shah, Hemal
2009-01-01
A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.
A HW-SW Co-Designed System for the Lunar Lander Hazard Detection and Avoidance Breadboarding
NASA Astrophysics Data System (ADS)
Palomo, Pedro; Latorre, Antonio; Valle, Carlos; Gomez de Aguero, Sergio; Hagenfeldt, Miguel; Parreira, Baltazar; Lindoso, Almudena; Portela, Marta; Garcia, Mario; San Millan, Enrique; Zharikov, Yuri; Entrena, Luis
2014-08-01
This paper presents the HW-SW co-design approach followed to tackle the design of the Hazard Detection and Avoidance (HDA) system breadboarding for the Lunar Lander ESA mission, undertaken given the fact that novel GNC technologies used to promote autonomous systems demand processing capabilities that current (and forthcoming) space processors are not able to satisfy. The paper shows how the current system design has been performed in a process in which the original HDA functionally validated design has been partitioned between SW (deemed for execution in a microprocessor) and HW algorithms (to be executed in an FPGA), considering the performance requirements and resorting to a deep analysis of the algorithms in view of their adequacy to HW or SW implementation.
Carbon dioxide and water vapor high temperature electrolysis
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Verostko, Charles E.
1989-01-01
The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.
Development of Power Electronics for a 0.2kW-Class Ion Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Patterson, Michael J.; Bowers, Glen E.
1997-01-01
Applications that might benefit from low power ion propulsion systems include Earth-orbit magnetospheric mapping satellite constellations, low Earth-orbit satellites, geosynchronous Earth-orbit satellite north-south stationkeeping, and asteroid orbiters. These spacecraft are likely to have masses on the order of 50 to 500 kg with up to 0.5 kW of electrical power available. A power processing unit for a 0.2 kW-class ion thruster is currently under development for these applications. The first step in this effort is the development and testing of a 0.24 kW beam power supply. The design incorporates a 20 kHz full bridge topology with multiple secondaries connected in series to obtain outputs of up to 1200 V(sub DC). A current-mode control pulse width modulation circuit built using discrete components was selected for this application. An input voltage of 28 +/- 4 V(sub DC) was assumed, since the small spacecraft for which this system is targeted are anticipated to have unregulated low voltage busses. Efficiencies in excess of 91 percent were obtained at maximum output power. The total mass of the breadboard was less than 1.0 kg and the component mass was 0.53 kg. It is anticipated that a complete flight power processor could weigh about 2.0 kg.
Nd:YAG development for spaceborne laser ranging system
NASA Technical Reports Server (NTRS)
Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.
1979-01-01
The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.
NASA Astrophysics Data System (ADS)
Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.
A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.
Command detector SNR estimator and lock status monitor circuitry
NASA Technical Reports Server (NTRS)
Emerson, R. F.
1976-01-01
A breadboard of the command detector signal-to-noise-ratio estimator and lock status monitor was built on a wire-wrap card. The breadboard was integrated with the standard command detector, and its performance was measured. The design, design constraints, and construction of the breadboard are described. The performance is shown to agree with the theoretical model.
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.
1991-01-01
The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.
A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less
Development Status of the NASA 30-cm Ion Thruster and Power Processor
NASA Technical Reports Server (NTRS)
Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.
1994-01-01
Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.
NASA Technical Reports Server (NTRS)
Haskin, Larry A.
2000-01-01
This summary is the final report of work on two-year grant. Our objectives for this project were (1) to demonstrate that Raman spectroscopy is an excellent method for determining mineralogy on the surface of the Moon, Mars, and other planetary bodies; (2) to construct a prototype of a small Raman spectrometer of the kind we suggest could be used on a lander or rover; and (3) to test the ability of that spectrometer to identify minerals and quantify mineral proportions in lunar materials and complex Martian analog materials, and to identify organic matter in planetary surface materials, all under roughly simulated field conditions. These goals have been met. The principal accomplishments of this PIDDP project have been the following: selection for flight; construction of a breadboard Raman probe; throughput confirmation of the breadboard Raman probe; selection of a laser; a breadboard spectrograph based on our PIDDP design; and overall result.
NASA Technical Reports Server (NTRS)
1977-01-01
In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Brannon, M. A.; Garland, J. L.
1990-01-01
Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.
NASA Technical Reports Server (NTRS)
1978-01-01
A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.
Advanced application flight experiment breadboard pulse compression radar altimeter program
NASA Technical Reports Server (NTRS)
1976-01-01
Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.
NASA Technical Reports Server (NTRS)
Strayer, Richard F.
1993-01-01
Biomass processing at the Kennedy Space Center CELSS breadboard project has focused on the evaluation of breadboard-scale enzymatic hydrolysis of wheat residue cellulose (25%, w/w). Five replicate runs of cellulase production by Trichoderma reesei (QM9414) and enzymatic hydrolysis of residue cellulose were completed. Enzymes were produced in 1 0 days (5 L, 25 g (dry weight) residue). Cellulose hydrolysis (12 L, 50 g (dry weight) residue) using these enzymes produced 5.5 to 6.0 g glucose liter(exp -1) in 7 days. Cellulose conversion efficiency was 29%. These processes are feasible technically on a breadboard scale, but would only increase the edible wheat yield 10%.
High Efficiency push-pull class E amplifiers for fusion rocket engines
NASA Astrophysics Data System (ADS)
Gaitan, Gabriel; Ham, Eric; Cohen, S. A.; Swanson, Charles; Chen, Minjie; Brunkhorst, Christopher
2017-10-01
In a Field Reversed Configuration fusion reactor, ions in the plasma are heated by an antenna operating at RF frequencies. This paper presents how push-pull class E amplifiers can be used to efficiently drive this antenna in the MHz range, from 0.5MHz to 4 MHz, while maintaining low harmonic content in the output signal. We offer four different configurations that present a trade-off between efficiency and low harmonic content. The paper presents theoretical values and breadboard results from these configurations, which operate at a power of around 100W. For a practical design, multiple amplifiers would be linked in parallel and would power the RF antenna at around 1MW. These designs provide multiple different options for reactor systems that could be used in a variety of applications, from power plants on the ground to rocket engines in space. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.
Advanced Opto-Electronics (LIDAR and Microsensor Development)
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.
2005-01-01
Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.
Catalytic distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Budininkas, P.; Rasouli, F.
1985-01-01
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.
Functional Testing of the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.
1995-01-01
A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.
Development of a Signal Data Converter for an Airport Visibility Measuring System
DOT National Transportation Integrated Search
1975-08-01
This report briefly describes the evolution of the FAA/NBS Runway Visual Range RVR transmissometer system into a breadboard Airport Visibility Measuring System (ARVIS) which has been laboratory tested and which will undergo field tests at the Nationa...
Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass
NASA Technical Reports Server (NTRS)
Scott, John H.
2014-01-01
The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the mission analysis products originally conceived for FY13.
Antenna system for MSAT mission
NASA Technical Reports Server (NTRS)
Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora
1988-01-01
Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.
Percussive Augmenter of Rotary Drills (PARoD)
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack
2012-01-01
Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.
A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.
1998-01-01
This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.
Life sciences laboratory breadboard simulations for shuttle
NASA Technical Reports Server (NTRS)
Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.
1975-01-01
Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.
Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Haag, Thomas W.
1999-01-01
Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.
An elegant Breadboard of the optical bench for eLISA/NGO
NASA Astrophysics Data System (ADS)
d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis
2017-11-01
The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.
NASA Technical Reports Server (NTRS)
Mysoor, N. R.; Perret, J. D.; Kermode, A. W.
1991-01-01
The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.
A study of digital gyro compensation loops. [data conversion routines and breadboard models
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility is discussed of replacing existing state-of-the-art analog gyro compensation loops with digital computations. This was accomplished by designing appropriate compensation loops for the dry turned TDF gyro, selecting appropriate data conversion and processing techniques and algorithms, and breadboarding the design for laboratory evaluation. A breadboard design was established in which one axis of a Teledyne turned-gimbal TDF gyro was caged digitally while the other was caged using conventional analog electronics. The digital loop was designed analytically to closely resemble the analog loop in performance. The breadboard was subjected to various static and dynamic tests in order to establish the relative stability characteristics and frequency responses of the digital and analog loops. Several variations of the digital loop configuration were evaluated. The results were favorable.
Updated optical read/write memory system components
NASA Technical Reports Server (NTRS)
1973-01-01
The fabrication of an updated block data composer and holographic storage array for a breadboard holographic read/write memory system is described. System considerations such as transform optics and controlled aberration lens design are described along with the block data composer, photoplastic recording materials, and material development.
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
NASA Astrophysics Data System (ADS)
Atkinson, J. E.; Barker, G. G.; Feltham, S. J.; Gabrielson, S.; Lane, P. C.; Matthews, V. J.; Perring, D.; Randall, J. P.; Saunders, J. W.; Tuck, R. A.
1982-05-01
An electrical model klystron amplifier was designed. Its features include a gridded gun, a single stage depressed collector, a rare earth permanent magnet focusing system, an input loop, six rugged tuners and a coaxial line output section incorporating a coaxial-to-waveguide transducer and a pillbox window. At each stage of the design, the thermal and mechanical aspects were investigated and optimized within the framework of the RF specification. Extensive use was made of data from the preliminary design study and from RF measurements on the breadboard model. In an additional study, a comprehensive draft tube specification has been produced. Great emphasis has been laid on a second additional study on space-qualified materials and processes.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
Advanced Receiver For Phase-Shift-Keyed Signals
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.
1992-01-01
ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.
Novel approach for beacon formation through simulated turbulence: initial lab-test results
NASA Astrophysics Data System (ADS)
Khizhnyak, A.; Markov, V.; Tomov, I.; Wu, F.
2010-02-01
In this paper we report the results of the analysis and experimental modeling of the target-in-the-loop (TIL) approach that is used to form a localized beacon for a laser beam propagating through turbulent atmosphere. The analogy between the TIL system and the laser cavity has been used here to simulate the process shaping the laser beacon on a remote image-resolved target with rough surface. The TIL breadboard was integrated and used for laboratory modeling of the proposed approach. This breadboard allowed to simulate the TIL arrangement with a rough-surface target and laser beam propagation through the turbulent atmospheric layer. Here we present the initial results of the performed studies.
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
DIGIMEN, optical mass memory investigations, volume 2
NASA Technical Reports Server (NTRS)
1977-01-01
The DIGIMEM phase of the Optical Mass Memory Investigation Program addressed problems related to the analysis, design, and implementation of a direct digital optical recorder/reproducer. Effort was placed on developing an operational archival mass storage system to support one or more key NASA missions. The primary activity of the DIGIMEM program phase was the design, fabrication, and test and evaluation of a breadboard digital optical recorder/reproducer. Starting with technology and subsystem perfected during the HOLOMEM program phase, a fully operational optical spot recording breadboard that met or exceeded all program goals was evaluated. A thorough evaluation of several high resolution electrophotographic recording films was performed and a preliminary data base management/end user requirements survey was completed.
A volatile organics concentrator for use in monitoring Space Station water quality
NASA Technical Reports Server (NTRS)
Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.
1990-01-01
The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.
Design, development and test of a capillary pump loop heat pipe
NASA Technical Reports Server (NTRS)
Kroliczek, E. J.; Ku, J.; Ollendorf, S.
1984-01-01
The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.
Breadboard stellar tracker system test report
NASA Technical Reports Server (NTRS)
Kollodge, J. C.; Parrish, K. A.
1984-01-01
BASD has, in the past, developed several unique position tracking algorithms for charge transfer device (CTD) sensors. These algorithms provide an interpixel transfer function with the following characteristics: (1) high linearity; (2) simplified track logic; (3) high gain; and (4) high noise rejection. A previous test program using the GE charge injection device (CID) showed that accuracy for BASD's breadboard was limited to approximately 2% of a pixel (1 sigma) whereas analysis and simulation indicated the limit should be less than 0.5% of a pixel, assuming the limit to be detector response and dark current noise. The test program was conducted under NASA contract No. NAS8-34263. The test approach for that program did not provide sufficient data to identify the sources of error and left open the amount of contribution from parameters such as image distribution, geometric distortion and system alignment errors.
NASA Technical Reports Server (NTRS)
1994-01-01
The objective of this contract was the investigation of the potential performance gains that would result from an upgrade of the Space Station Freedom (SSF) Data Management System (DMS) Embedded Data Processor (EDP) '386' design with the Intel Pentium (registered trade-mark of Intel Corp.) '586' microprocessor. The Pentium ('586') is the latest member of the industry standard Intel X86 family of CISC (Complex Instruction Set Computer) microprocessors. This contract was scheduled to run in parallel with an internal IBM Federal Systems Company (FSC) Internal Research and Development (IR&D) task that had the goal to generate a baseline flight design for an upgraded EDP using the Pentium. This final report summarizes the activities performed in support of Contract NAS2-13758. Our plan was to baseline performance analyses and measurements on the latest state-of-the-art commercially available Pentium processor, representative of the proposed space station design, and then phase to an IBM capital funded breadboard version of the flight design (if available from IR&D and Space Station work) for additional evaluation of results. Unfortunately, the phase-over to the flight design breadboard did not take place, since the IBM Data Management System (DMS) for the Space Station Freedom was terminated by NASA before the referenced capital funded EDP breadboard could be completed. The baseline performance analyses and measurements, however, were successfully completed, as planned, on the commercial Pentium hardware. The results of those analyses, evaluations, and measurements are presented in this final report.
The 5-kW arcjet power electronics
NASA Technical Reports Server (NTRS)
Gruber, R. P.; Gott, R. W.; Haag, T. W.
1989-01-01
The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.
Shuttle S-band high gain switched beam breadboard antennas
NASA Technical Reports Server (NTRS)
Mullaney, J. J.
1985-01-01
The final fabrication and assembly of the S-band five-element, eight-beam breadboard antennas developed for the Space Shuttle program are described. Data summary sheets from component and final assembly testing are presented.
Solid state Ku-band spacecraft transmitters
NASA Technical Reports Server (NTRS)
Wisseman, W. R.; Tserng, H. Q.; Coleman, D. J.; Doerbeck, F. H.
1977-01-01
A transmitter is considered that consists of GaAs IMPATT and Read diodes operating in a microstrip circuit environment to provide amplification with a minimum of 63 db small signal gain and a minimum compressed gain at 5 W output of 57 db. Reported are Schottky-Read diode design and fabrication, microstrip and circulator optimization, preamplifier development, power amplifier development, dc-to-dc converter design, and integration of the breadboard transmitter modules. A four-stage power amplifier in cascade with a three-stage preamplifier had an overall gain of 56.5 db at 13.5 GHz with a power output of 4.5 W. A single-stage Read amplifier delivered 5.9 W with 4 db gain at 22% efficiency.
Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
NASA Astrophysics Data System (ADS)
Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith
The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.
Hubble Space Telescope nickel-hydrogen battery testing: An update
NASA Technical Reports Server (NTRS)
Whitt, Thomas H.; Brewer, Jeffrey C.
1995-01-01
The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.
Optical Multiple Access Network (OMAN) for advanced processing satellite applications
NASA Technical Reports Server (NTRS)
Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.
1991-01-01
An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.
The Ma_Miss instrument performance, I: Analysis of rocks powders by Martian VNIR spectrometer
NASA Astrophysics Data System (ADS)
De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca
2014-10-01
The ExoMars/Ma_Miss instrument is a miniaturized spectrometer that will observe the Martian subsoil in the visible and near infrared range (VNIR, 0.4-2.2 μm) with high spatial resolution, 120 μm. It will be integrated in the Drilling system of the Pasteur Rover of the ExoMars 2018 mission, and will acquire reflectance spectra of the borehole wall performed by the Drill, at various depths down to 2 m. The laboratory breadboard instrument consists of the main subsystems: illumination system, optical fibres for illumination and signal collection, and optical elements for light focusing. It has been interfaced with a commercial spectrometer, the FieldSpec Pro©. The primary aim of this work is to compare the VNIR measurements and spectral parameters derived from the spectra acquired with the Ma_Miss breadboard and with a second laboratory setup. Reflectance spectra have been acquired on a set of six rock powder samples representative of Martian soil. Nine different grain size ranges of each sample have been measured with the breadboard and five spectral parameters were used to explore the Ma_Miss spectra. Those data were compared with spectra acquired by the FieldSpec Pro® coupled with a goniometer. The analyses of these spectral parameters evidence the correlation between the VNIR continuum slope and the grain size, and the correlation between the reflectance and the grain size; both the parameters tend to decrease as the grain size increases. The trends observed with Ma_Miss breadboard for NIR and VNIR slopes and for the reflectance are clearly consistent with the trends observed with the spectro-goniometer setup, although small differences are seen that can be explained with the different viewing geometries of the two instruments. Ma_Miss proves to have great capabilities for extracting spectroscopic information to constrain the mineralogy and some physical parameters of the analysed material.
Plasma contactor development for Space Station
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy
1993-01-01
Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.
Plasma contactor development for Space Station
NASA Astrophysics Data System (ADS)
Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy
1993-12-01
Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.
Percussive Augmenter of Rotary Drills (PARoD)
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack
2013-01-01
Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.
Spacecraft solid state power distribution switch
NASA Technical Reports Server (NTRS)
Praver, G. A.; Theisinger, P. C.
1986-01-01
As a spacecraft performs its mission, various loads are connected to the spacecraft power bus in response to commands from an on board computer, a function called power distribution. For the Mariner Mark II set of planetary missions, the power bus is 30 volts dc and when loads are connected or disconnected, both the bus and power return side must be switched. In addition, the power distribution function must be immune to single point failures and, when power is first applied, all switches must be in a known state. Traditionally, these requirements have been met by electromechanical latching relays. This paper describes a solid state switch which not only satisfies the requirements but incorporates several additional features including soft turn on, programmable current trip point with noise immunity, instantaneous current limiting, and direct telemetry of load currents and switch status. A breadboard of the design has been constructed and some initial test results are included.
Zou, Weiyao; Burns, Stephen A.
2012-01-01
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462
NASA Technical Reports Server (NTRS)
Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.
Zou, Weiyao; Burns, Stephen A
2012-03-20
A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America
Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder
NASA Astrophysics Data System (ADS)
Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.
2017-11-01
PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.
EMC Enhanced Constant ’Z’ Modulator.
1984-06-01
TUTHILL, Colonel, USAF Chief, Relilability & Compatibility Division FOR THE COMMANDER: JOHN A. RITZ Acting Chief, Plans Office 0 * - If your address...supply bypasses. 3.2.6 System Testing Breadboard system tests resulted in the replacement of the HP5082-3340 shunt mounted PIN diodes due to a carrer life
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1994-01-01
Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.
Information management system study results. Volume 2: IMS study results appendixes
NASA Technical Reports Server (NTRS)
1971-01-01
Computer systems program specifications are presented for the modular space station information management system. These are the computer program contract end item, data bus system, data bus breadboard, and display interface adapter specifications. The performance, design, tests, and qualification requirements are established for the implementation of the information management system. For Vol. 1, see N72-19972.
Intermediate water recovery system
NASA Technical Reports Server (NTRS)
Deckman, G.; Anderson, A. R. (Editor)
1973-01-01
A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.
Continuously Regenerable Freeze-Out CO2 Control Technology
NASA Technical Reports Server (NTRS)
Fricker, John; Dyer, Chris; Myers, Jeff; Patten, Rich; Paul, Heather
2007-01-01
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA s planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber (Cryo Scrubber) for a closed loop cryogenic PLSS was developed, designed, and tested, and a conceptual design suitable for a PLSS was developed based on the results of the breadboard testing. The Cryo Scrubber freezes CO2 and other trace contaminants out of expired vent loop gas using cooling available from a liquid oxygen (LOX) based PLSS. The device is continuously regenerable, with solid CO2 being removed from the cold freeze-out surfaces, sublimated, and vented overboard. Duration is limited only by the supply of LOX stored in the PLSS. Simplicity, reliability, and operability are universally important criteria for critical hardware on long duration Lunar or Mars missions. The Cryo Scrubber has no moving parts, requires no additional consumables, and uses no electrical power, contributing to its simplicity and reliability. It is easy to use; no operator action is required to prepare, use, or shut down the Cryo Scrubber, and it does not require charging or regeneration. The versatility of the concept allows for operation on earth, the moon, and Mars, and in microgravity.
NASA Astrophysics Data System (ADS)
Slatter, Rolf; Goffin, Benoit
2014-08-01
The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.
NASA's PEM Fuel Cell Power Plant Development Program for Space Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2008-01-01
A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.
NASA Technical Reports Server (NTRS)
Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael
1993-01-01
This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.
NASA Astrophysics Data System (ADS)
Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael
1993-12-01
This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.
Concealed weapons detection using electromagnetic resonances
NASA Astrophysics Data System (ADS)
Hunt, Allen R.; Hogg, R. Douglas; Foreman, William
1998-12-01
Concealed weapons pose a significant threat to both law enforcement and security agency personnel. The uncontrolled environments associated with peacekeeping and the move toward relaxation of concealed weapons laws here in the U.S. provide a strong motivation for developing weapons detection technologies which are noninvasive and can function noncooperatively. Existing weapons detection systems are primarily oriented to detecting metal and require the cooperation of the person being searched. The new generation of detectors under development that focuses primarily on imaging methods, faces problems associated with privacy issues. There remains a need for a weapons detector which is portable, detects weapons remotely, avoids the issues associated with privacy rights, can tell the difference between car keys and a knife, and is affordable enough that one can be issued to every peacekeeper and law enforcement officer. AKELA is developing a concealed weapons detector that uses wideband radar techniques to excite natural electromagnetic resonances that characterize the size, shape, and material composition of an object. Neural network processing is used to classify the difference between weapons and nuisance objects. We have constructed both time and frequency domain test systems and used them to gather experimental data on a variety of armed and unarmed individuals. These experiments have been performed in an environment similar to the operational environment. Preliminary results from these experiments show that it is possible to detect a weapon being carried by an individual from a distance of 10 to 15 feet, and to detect a weapon being concealed behind the back. The power required is about 100 milliwatts. A breadboard system is being fabricated and will be used by AKELA and our law enforcement partner to gather data in operationally realistic situations. While a laptop computer will control the breadboard system, the wideband radar electronics will fit in a box the size of a CD ROM drive of a computer.
Development of a rotating gravity gradiometer for earth orbit applications (AAFE)
NASA Technical Reports Server (NTRS)
Forward, R. L.; Bell, C. C.; Lahue, P. M.; Mallove, E. F.; Rouse, D. W.
1973-01-01
Some preliminary mission studies are described along with the design, fabrication, and test of a breadboard model of an earth orbital, rotating gravity gradiometer with a design goal of 10 to the minus 11th power/sec sq (0.01 EU) in a 35-sec integration time. The proposed mission uses a Scout vehicle to launch one (or two orthogonally oriented) spin-stabilized satellites into a 330-km circular polar orbit some 20 days before an equinox. During the short orbital lifetime, the experiment would obtain two complete maps of the gravity gradient field with a resolution approaching 270 km (degree 75). The breadboard model of the gradiometer demonstrated a combined thermal and electronic noise threshold of 0.015 EU per data channel. The design changes needed to reduce the noise to less than 0.01 EU were identified. Variations of the sensor output signal with temperature were experimentally determined and a suitable method of temperature compensation was developed and tested. Other possible error sources, such as sensor interaction with satellite dynamics and magnetic fields, were studied analytically and shown to be small.
Knowledge-based imaging-sensor fusion system
NASA Technical Reports Server (NTRS)
Westrom, George
1989-01-01
An imaging system which applies knowledge-based technology to supervise and control both sensor hardware and computation in the imaging system is described. It includes the development of an imaging system breadboard which brings together into one system work that we and others have pursued for LaRC for several years. The goal is to combine Digital Signal Processing (DSP) with Knowledge-Based Processing and also include Neural Net processing. The system is considered a smart camera. Imagine that there is a microgravity experiment on-board Space Station Freedom with a high frame rate, high resolution camera. All the data cannot possibly be acquired from a laboratory on Earth. In fact, only a small fraction of the data will be received. Again, imagine being responsible for some experiments on Mars with the Mars Rover: the data rate is a few kilobits per second for data from several sensors and instruments. Would it not be preferable to have a smart system which would have some human knowledge and yet follow some instructions and attempt to make the best use of the limited bandwidth for transmission. The system concept, current status of the breadboard system and some recent experiments at the Mars-like Amboy Lava Fields in California are discussed.
Seth, Charu; Suravarapu, Sankarrao; Reber, David; Hong, Wenjing; Wandlowski, Thomas; Lafolet, Frédéric; Broekmann, Peter
2017-01-01
Controlling charge flow in single molecule circuits with multiple electrical contacts and conductance pathways is a much sought after goal in molecular electronics. In this joint experimental and theoretical study, we advance the possibility of creating single molecule breadboard circuits through an analysis of the conductance of a bis-terpyridine based molecule (TP1). The TP1 molecule can adopt multiple conformations through relative rotations of 7 aromatic rings and can attach to electrodes in 61 possible single and multi-terminal configurations through 6 pyridyl groups. Despite this complexity, we show that it is possible to extract well defined conductance features for the TP1 breadboard and assign them rigorously to the underlying constituent circuits. Mechanically controllable break-junction (MCBJ) experiments on the TP1 molecular breadboard show an unprecedented 4 conductance states spanning a range 10 –2 G 0 to 10 –7 G 0. Quantitative theoretical examination of the conductance of TP1 reveals that combinations of 5 types of single terminal 2–5 ring subcircuits are accessed as a function of electrode separation to produce the distinct conductance steps observed in the MCBJ experiments. We estimate the absolute conductance for each single terminal subcircuit and its percentage contribution to the 4 experimentally observed conductance states. We also provide a detailed analysis of the role of quantum interference and thermal fluctuations in modulating conductance within the subcircuits of the TP1 molecular breadboard. Finally, we discuss the possible development of molecular circuit theory and experimental advances necessary for mapping conductance through complex single molecular breadboard circuits in terms of their constituent subcircuits. PMID:28451287
1994-01-01
is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a
NASA's next generation all-digital deep space network breadboard receiver
NASA Technical Reports Server (NTRS)
Hinedi, Sami
1993-01-01
This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.
The ExoMars Sample Preparation and Distribution System
NASA Astrophysics Data System (ADS)
Schulte, Wolfgang; Hofmann, Peter; Baglioni, Pietro; Richter, Lutz; Redlich, . Daniel; Notarnicola, Marco; Durrant, Stephen
2012-07-01
The Sample Preparation and Distribution System (SPDS) is a key element of the ESA ExoMars Rover. It is a set of complex mechanisms designed to receive Mars soil samples acquired from the subsurface with a drill, to crush them and to distribute the obtained soil powder to the scientific instruments of the `Pasteur Payload', in the Rover Analytical Laboratory (ALD). In particular, the SPDS consists of: (1) a Core Sample Handling System (CSHS), including a Core Sample Transportation Mechanism (CSTM) and a Blank Sample Dispenser; (2) a Crushing Station (CS); (3) a Powder Sample Dosing and Distribution System (PSDDS); and (4) a Powder Sample Handling System (PSHS) which is a carousel carrying pyrolysis ovens, a re-fillable sample container and a tool to flatten the powder sample surface. Kayser-Threde has developed, undercontract with the ExoMars prime contractor Thales Alenia Space Italy, breadboards and an engineering model of the SPDS mechanisms. Tests of individual mechanisms, namely the CSTM, CS and PSDDS were conducted both in laboratory ambient conditions and in a simulated Mars environment, using dedicated facilities. The SPDS functionalities and performances were measured and evaluated. In the course of 2011 the SPDS Dosing Station (part of the PSDDS) was also tested in simulated Mars gravity conditions during a parabolic flight campaign. By the time of the conference, an elegant breadboard of the Powder Sample Handling System will have been built and tested. The next step, planned by mid of 2012, will be a complete end-to-end test of the sample handling and processing chain, combining all four SPDS mechanisms. The possibility to verify interface and operational aspects between the SPDS and the ALD scientific instruments using the available instruments breadboards with the end-to-end set-up is currently being evaluated. This paper illustrates the most recent design status of the SPDS mechanisms, summarizes the test results and highlights future development activities, including potential involvement of the ExoMars science experiments.
Research study of pressure instrumentation
NASA Technical Reports Server (NTRS)
Hoogenboom, L.; Hull-Allen, G.
1984-01-01
To obtain a more vibration resistant pressure sensor for use on the Space Shuttle Main Engine, a proximity probe based, diaphragm type pressure sensor breadboard was developed. A fiber optic proximity probe was selected as the sensor. In combination with existing electronics, a thermal stability evaluation of the entire probe system was made. Based upon the results, a breadboard design of the pressure sensor and electronics was made and fabricated. A brief series of functional experiments was made with the breadboard to calibrate, thermally compensate, and linearize its response. In these experiments, the performance obtained in the temperature range of -320 F (liquid N2) to +200 F was comparable to that of the strain gage based sensor presently in use on the engine. In tests at NASA-Marshall Space Flight Center (MSFC), after some time at or near liquid nitrogen temperatures, the sensor output varied over the entire output range. These large spurious signals were attributed to condensation of air in the sensing gap. In the next phase of development of this sensor, an evaluation of fabrication techniques toward greater thermal and mechanical stability of the fiber probe assembly must be made. In addition to this, a positive optics to metal seal must be developed to withstand the pressure that would result from a diaphragm failure.
NASA Technical Reports Server (NTRS)
Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.
2005-01-01
Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.
Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration
NASA Technical Reports Server (NTRS)
Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam
2013-01-01
A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin
Demonstrator study for micro-ranging-laser device
NASA Astrophysics Data System (ADS)
Henkel, Hartmut; Bernhardt, Bodo; Pereira do Carmo, J.
2017-11-01
Within ESA's Innovation Triangle Initiative (ITI) a demonstrator breadboard for a micro-ranging-laser device "MYLRAD" has been developed. Its working principle is the measurement of the round-trip delay time of a laser beam as a phase shift. The demonstrator consists of the laser diode (30 mW, square wave AM), optics, APD detector, narrowband preamplifier, limiter, and a phase digitiser based on a novel noise-shaping synchroniser (NSS) circuit; this works without ADCs and can be built from rad-hard components for space. The system timing and the digitiser algorithm are performed by an FPGA. The demonstrator has been tested at ranges from 1 m to 30 m. With a static non-cooperative target an RMS noise of 1 mm at a result rate of 60 Hz was reached. The demonstrator needs less than 2.5 W power.
NASA Technical Reports Server (NTRS)
Connelly, Joseph A.; Ohl, Raymond G.; Mink, Ronald G.; Mentzell, J. Eric; Saha, Timo T.; Tveekrem, June L.; Hylan, Jason E.; Sparr, Leroy M.; Chambers, V. John; Hagopian, John G.
2003-01-01
The Infrared Multi-Object Spectrometer (IRMOS) is a facility instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low- to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view using a commercial Micro Electro-Mechanical Systems (MEMS) Digital Micro-mirror Device (DMD) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and the ambient and cryogenic imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve to venfy alignment, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides further verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides spectral lines at 546.1 nm and 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard test results validate this prediction. We conclude with an instrument performance prediction for first light.
NASA Technical Reports Server (NTRS)
Porter, F. J., Jr.
1972-01-01
Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.
2018-04-01
In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.
Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem
NASA Technical Reports Server (NTRS)
Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.
2011-01-01
A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.
Advanced Technology Development for Stirling Convertors
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2004-01-01
A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.
NASA Technical Reports Server (NTRS)
1974-01-01
Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.
Direct Drive Hall Thruster System Development
NASA Technical Reports Server (NTRS)
Hoskins, W. Andrew; Homiak, Daniel; Cassady, R. Joseph; Kerslake, Tom; Peterson, Todd; Ferguson, Dale; Snyder, Dave; Mikellides, Ioannis; Jongeward, Gary; Schneider, Todd
2003-01-01
The sta:us of development of a Direct Drive Ha!! Thruster System is presented. 13 the first part. a s:udy of the impacts to spacecraft systems and mass benefits of a direct-drive architecture is reviewed. The study initially examines four cases of SPT-100 and BPT-4000 Hall thrusters used for north-south station keeping on an EXPRESS-like geosynchronous spacecraft and for primary propulsion for a Deep Space- 1 based science spacecraft. The study is also extended the impact of direct drive on orbit raising for higher power geosynchronous spacecraft and on other deep space missions as a function of power and delta velocity. The major system considerations for accommodating a direct drive Hall thruster are discussed, including array regulation, system grounding, distribution of power to the spacecraft bus, and interactions between current-voltage characteristics for the arrays and thrusters. The mass benefit analysis shows that, for the initial cases, up to 42 kg of dry mass savings is attributable directly to changes in the propulsion hardware. When projected mass impacts of operating the arrays and the electric power system at 300V are included, up to 63 kg is saved for the four initial cases. Adoption of high voltage lithium ion battery technology is projected to further improve these savings. Orbit raising of higher powered geosynchronous spacecraft, is the mission for which direct drive provides the most benefit, allowing higher efficiency electric orbit raising to be accomplished in a limited period of time, as well as nearly eliminating significant power processing heat rejection mass. The total increase in useful payload to orbit ranges up to 278 kg for a 25 kW spacecraft, launched from an Atlas IIA. For deep space missions, direct drive is found to be most applicable to higher power missions with delta velocities up to several km/s , typical of several Discovery-class missions. In the second part, the status of development of direct drive propulsion power electronics is presented. The core of this hardware is the heater-keeper-magnet supply being qualified for the BPT-4000 by Aerojet. A breadboard propulsion power unit is in fabrication and is scheduled for delivery late in 2003.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.
One way Doppler extractor. Volume 1: Vernier technique
NASA Technical Reports Server (NTRS)
Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.
1974-01-01
A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.
VISTA: A μ-Thermogravimeter for Investigation of Volatile Compounds in Planetary Environments.
Palomba, Ernesto; Longobardo, Andrea; Dirri, Fabrizio; Zampetti, Emiliano; Biondi, David; Saggin, Bortolino; Bearzotti, Andrea; Macagnano, Antonella
2016-06-01
This paper presents the VISTA (Volatile In Situ Thermogravimetry Analyser) instrument, conceived to perform planetary in-situ measurements. VISTA can detect and quantify the presence of volatile compounds of astrobiological interest, such as water and organics, in planetary samples. These measurements can be particularly relevant when performed on primitive asteroids or comets, or on targets of potential astrobiological interest such as Mars or Jupiter's satellite Europa. VISTA is based on a micro-thermogravimetry technique, widely used in different environments to study absorption and sublimation processes. The instrument core is a piezoelectric crystal microbalance, whose frequency variations are affected by variations of the mass of the deposited sample, due to chemical processes such as sublimation, condensation or absorption/desorption. The low mass (i.e. 40 g), the low volume (less than 10 cm(3)) and the low power (less than 1 W) required makes this kind of instrument very suitable for space missions. This paper discusses the planetary applications of VISTA, and shows the calibration operations performed on the breadboard, as well as the performance tests which demonstrate the capability of the breadboard to characterize volatile compounds of planetary interests.
The DARWIN breadboard cryogenic optical delay line
NASA Astrophysics Data System (ADS)
van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.
2017-11-01
TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.
Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit
1996-01-01
A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.
[Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].
Guo, S S; Ai, W D
2001-04-01
The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.
The space optical clocks project
NASA Astrophysics Data System (ADS)
Schiller, S.; Tino, G. M.; Lemonde, P.; Sterr, U.; Lisdat, Ch.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C.
2017-11-01
The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of fundamental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007- 10), funded partially by ESA and DLR, included the implementation of several optical lattice clock systems using Strontium and Ytterbium as atomic species and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and have been validated. This included demonstration of laser-cooling and magneto-optical trapping of Sr atoms in a compact breadboard apparatus and demonstration of a transportable clock laser with 1 Hz linewidth. With two laboratory Sr lattice clock systems a number of fundamental results were obtained, such as observing atomic resonances with linewidths as low as 3 Hz, non-destructive detection of atom excitation, determination of decoherence effects and reaching a frequency instability of 1×10-16.
NASA Astrophysics Data System (ADS)
Tanner, Meghan; Henson, Gabriel; Senevirathne, Indrajith
Advent of cost-effective solid-state sensors has spurred an immense interest in microcontrollers, in particular Arduino microcontrollers. These include serious engineering and physical science applications due to their versatility and robustness. An Arduino microcontroller coupled with a commercially available sensor has been used to methodically measure, record, and explore low currents, low voltages, and corresponding dissipated power towards assessing secondary physical properties in a select set of engineered systems. System was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino software while the bootloader was used to upload the code. High-side measurement INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. A collection of measurements was obtained via the sensor and was compared with measurements from standardized devices to assess reliability and uncertainty. Some sensors were modified/hacked to improve the sensitivity of the measurements.
Development of a rotary power transformer and inverter drive for spacecraft
NASA Technical Reports Server (NTRS)
Mclyman, W. T.; Bridgeforth, A. O.
1983-01-01
Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.
A lightweight electronically commutated dc motor for electric passenger vehicles
NASA Technical Reports Server (NTRS)
Echolds, E. F.; Walla, P. S.
1982-01-01
A functional model breadboard converter and a rare-earth-cobalt, permanent magnet motor; as well as an engineering model converter and PM motor suitable for vehicle installations were developed and tested. The converter and motor achieved an 88% peak efficiency, a maximum output of 26 kW at 26,000 rpm, and a continuous rating of 15 kW. The system also generated power to the source during braking, with a demonstrated peak power available at the converter terminals of approximately 26 kW at 88% efficiency. Major conclusions include: (1) the SAE J227a(D) driving cycle efficiency for the converter/motor is 86% to 88% when energy available for recovery at the converter terminals is included; (2) the converter initial cost is approximately five times that of the permanent magnet motor, but can be reduced by means of LSI logic and integrated liquid cooled semiconductor packages; and (3) an electronically commutated motor with a liquid cooled converter will operate reliably without service or maintenance for the life of a passenger vehicle.
A lightweight electronically commutated dc motor for electric passenger vehicles
NASA Astrophysics Data System (ADS)
Echolds, E. F.; Walla, P. S.
1982-09-01
A functional model breadboard converter and a rare-earth-cobalt, permanent magnet motor; as well as an engineering model converter and PM motor suitable for vehicle installations were developed and tested. The converter and motor achieved an 88% peak efficiency, a maximum output of 26 kW at 26,000 rpm, and a continuous rating of 15 kW. The system also generated power to the source during braking, with a demonstrated peak power available at the converter terminals of approximately 26 kW at 88% efficiency. Major conclusions include: (1) the SAE J227a(D) driving cycle efficiency for the converter/motor is 86% to 88% when energy available for recovery at the converter terminals is included; (2) the converter initial cost is approximately five times that of the permanent magnet motor, but can be reduced by means of LSI logic and integrated liquid cooled semiconductor packages; and (3) an electronically commutated motor with a liquid cooled converter will operate reliably without service or maintenance for the life of a passenger vehicle.
ELSA- The European Levitated Spherical Actruator
NASA Astrophysics Data System (ADS)
Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.
2014-08-01
The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.
Development of a breadboard design of a high-performance, high-reliability switching regulator
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1975-01-01
A comparison of two potential conversion methods, the series inverter and the inductive energy transfer (IET) conversion technique, is presented. The investigations showed that a characteristic of the series inverter circuit (high equalizing current values in each half cycle) could not be accomplished with available components, and the investigations continued with the IET circuit only. An IET circuit system was built with the use of computer-aided design in a 2, 4, and 8 stage configuration, and these stages were staggered 180, 90, and 45 degrees, respectively. All stages were pulsewidth modulated to regulate over an input voltage range from 200 to 400 volts dc at a regulated output voltage of 56 volts. The output power capability was 100 to 500 watts for the 2 and 8 stage configuration and 50 to 250 watts for the 4 stage configuration. Equal control of up to eight 45 degree staggered stages was accomplished through the use of a digital-to-analog control circuit. Equal power sharing of all stages was achieved through a new technique using an inductively coupled balancing circuit. Conclusions are listed.
Microstrip reflectarray antenna for the SCANSCAT radar application
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
This publication presents an antenna system that has been proposed as one of the candidates for the SCANSCAT (Scanned Scatterometer) radar application. It is the mechanically steered planar microstrip reflectarray. Due to its thin, lightweight structure, the antenna's mechanical rotation will impose minimum angular momentum for the spacecraft. Since no power-dividing circuitry is needed for its many radiating microstrip patches, this electrically large array antenna demonstrates excellent power efficiency. In addition, this fairly new antenna concept can provide many significant advantages over a conventional parabolic reflector. The basic formulation for the radiation fields of the microstrip reflectarray is presented. This formulation is based on the array theory augmented by the Uniform Geometrical Theory of Diffraction (UTD). A computer code for analyzing the microstrip reflectarray's performances, such as far-field patterns, efficiency, etc., is also listed in this report. It is proposed here that a breadboard unit of this microstrip reflectarray should be constructed and tested in the future to validate the calculated performance. The antenna concept presented here can also be applied in many other types of radars where a large array antenna is needed.
Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter
NASA Technical Reports Server (NTRS)
Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.
2008-01-01
A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.
Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.
2008-01-01
A compact instrument called the MWR (microwave radiometer) is under development at JPL for Juno, the next NASA new frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. as part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.
Progress on the PT-1 Prototype Plasmoid Thruster
NASA Technical Reports Server (NTRS)
Eskridge, Richard H.; Martin, Adam K.
2007-01-01
The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.
Capacitance discharge system for ignition of Single Bridge Apollo Standard Initiators (SBASI)
NASA Technical Reports Server (NTRS)
Ward, R. D.
1974-01-01
The design support data developed during the single bridge Apollo standard initiator (SBASI) program are presented. A circuit was designed and bread-board tested to verify operational capabilities of the circuit. Test data, design criteria, weight, and reliability trade-off considerations, and final design recommendations are reported.
NASA Astrophysics Data System (ADS)
Carta, R.; Filippetto, D.; Lavagna, M.; Mailland, F.; Falkner, P.; Larranaga, J.
2015-12-01
The paper provides recent updates about the ESA study: Sample Canister Capture Mechanism Design and Breadboard developed under the Mars Robotic Exploration Preparation (MREP) program. The study is part of a set of feasibility studies aimed at identifying, analysing and developing technology concepts enabling the future international Mars Sample Return (MSR) mission. The MSR is a challenging mission with the purpose of sending a Lander to Mars, acquire samples from its surface/subsurface and bring them back to Earth for further, more in depth, analyses. In particular, the technology object of the Study is relevant to the Capture Mechanism that, mounted on the Orbiter, is in charge of capturing and securing the Sample Canister, or Orbiting Sample, accommodating the Martian soil samples, previously delivered in Martian orbit by the Mars Ascent Vehicle. An elegant breadboard of such a device was implemented and qualified under an ESA contract primed by OHB-CGS S.p.A. and supported by Politecnico di Milano, Department of Aerospace Science and Technology: in particular, functional tests were conducted at PoliMi-DAST and thermal and mechanical test campaigns occurred at Serms s.r.l. facility. The effectiveness of the breadboard design was demonstrated and the obtained results, together with the design challenges, issues and adopted solutions are critically presented in the paper. The breadboard was also tested on a parabolic flight to raise its Technology Readiness Level to 6; the microgravity experiment design, adopted solutions and results are presented as well in the paper.
GRAHAM NELSON AND ANDREW HANKS WITH BREADBOARD ENGINE PROJECT CO
2016-09-14
Graham Nelson, right, and Andrew Hanks examine a combustion chamber developed by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, for an additively manufactured demonstration breadboard engine project. Nelson is project manager and Hanks is test lead for the project, in which engineers are designing components from scratch to be made entirely by 3-D printing.
NASA Technical Reports Server (NTRS)
Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc
2014-01-01
In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.
UTC Power/Delphi SECA CBS Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, Michael; Kerr, Rich
2013-04-04
The subject report summarizes the results of solid oxide fuel cell development conducted by UTC Power in conjunction with Delphi Automotive Systems under a cost-share program with from October 2008 through March of 2013. Over that period Delphi Automotive Systems developed a nearly four times larger area solid oxide fuel cell stack capable of operating on pre-reformed natural gas and simulated coal gas with durability demonstrated to 5,000 hours and projected to exceed 10,000 hours. The new stack design was scaled to 40-cell stacks with power output in excess of 6.25kW. Delphi also made significant strides in improving the manufacturability,more » yield and production cost of these solid oxide fuel cells over the course of the program. Concurrently, UTC Power developed a conceptual design for a 120 MW Integrated Gasification Fuel Cell (IGFC) operating on coal syngas with as high as 57% Higher Heating Value (HHV) efficiency as a measure of the feasibility of the technology. Subsequently a 400 kW on-site system preliminary design with 55% Lower Heating Value (LHV) efficiency operating on natural gas was down-selected from eighteen candidate designs. That design was used as the basis for a 25kW breadboard power plant incorporating four Delphi cell stacks that was tested on natural gas before the program was discontinued due to the sale of UTC Power in early 2013. Though the program was cut short of the endurance target of 3,000 hours, many aspects of the technology were proven including: large-area, repeatable cell manufacture, cell stack operation on simulated coal gas and natural gas and integrated power plant operation on natural gas. The potential of the technology for high efficiency stationary electric power generation is clear. Acceptable production costs, durability, and reliability in real world environments are the remaining challenges to commercialization.« less
Lightweight multiple output converter development
NASA Technical Reports Server (NTRS)
Kisch, J. J.; Martinelli, R. M.
1978-01-01
A high frequency, multiple output power conditioner was developed and breadboarded using an eight-stage capacitor diode voltage multiplier to provide +1200 Vdc, and a three-stage for -350 Vdc. In addition, two rectifier bridges were capacitively coupled to the eight-stage multiplier to obtain 0.5 and 0.65 a dc constant current outputs referenced to +1200 Vdc. Total power was 120 watts, with an overall efficiency of 85 percent at the 80 kHz operating frequency. All outputs were regulated to three percent or better, with complete short circuit protection. The power conditioner component weight and efficiency were compared to the equivalent four outputs of the 10 kHz conditioner for the 8 cm ion engine. Weight reduction for the four outputs was 557 grams; extrapolated in the same ratio to all nine outputs, it would be 1100 to 1400 grams.
Performance of a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Jacobson, David T.
1995-01-01
Performance measurements were obtained and life-limiting mechanisms were identified on a laboratory-model arcjet thruster designed to operate at a nominal power level of 300 W. The design employed a supersonic-arc-attachment concept and was operated from 200 to 400 W on hydrogen/nitrogen mixtures in ratios simulating fully decomposed hydrazine and ammonia. Power was provided by breadboard power processor. Performance was found to be a strong function of propellant flow rate. Anode losses were essentially constant for the range of mass flow rates tested. It is believed that the performance is dominated by viscous effects. Significantly improved performance was noted with simulated ammonia operation. At 300 W the specific impulse on simulated ammonia was 410 s with an efficiency of 0.34, while simulated hydrazine provided 370 s specific impulse at an efficiency of 0.27.
Testing Evaluation of the Electrochemical Organic Content Analyzer
NASA Technical Reports Server (NTRS)
Davenport, R. J.
1979-01-01
The breadboard electrochemical organic content analyzer was evalauted for aerospace applications. An awareness of the disadvantages of expendables in some systems resulted in an effort to investigate ways of reducing the consumption of the analyzer's electrolyte from the rate of 5.17 kg/30 days. It was found that the electrochemical organic content analyzer can result in an organic monitor in the water quality monitor having a range of 0.1 to 100 mg/1 total organic carbon for a large number of common organic solutes. In a flight version it is anticipated the analyzer would occupy .0002 cu m, weigh 1.4 kg, and require 10 W or less of power. With the optimum method of injecting electrolyte into the sample (saturation of the sample with a salt) it would expend only 0.04 kg of electrolyte during 30 days of continuous operation.
Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine
NASA Technical Reports Server (NTRS)
Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.
2016-01-01
The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.
Progress in Life Marker Chip Technology for Detection of Life on Mars
NASA Astrophysics Data System (ADS)
Sims, M. R.; Cullen, D. C.; Laan, E.; Borst, G.; Prak, A.; Richter, L.; Gaubert, F.; Steele, A.; Parnell, J.; Sephton, M.
2007-12-01
Detection of Life on Mars will rely on detection of biomarkers, physical or chemical structures that can be associated with Life. As a possible payload for the ESA ExoMars rover mission planned in 2013 and other future missions a Life Marker Chip instrument is being developed. This instrument uses immuno-assay techniques to detect the relevant biomarkers. This paper describes the typical targets it will search for, its operating principle and the status of development. 63 biomarker targets have been identified and assays have been developed for a limited subset. Assay development includes use of recombinant DNA techniques to generate the molecular receptors (antibodies). This type of instrument has applications in terrestrial research e.g. sub-glacial lakes as well as planetary exploration. Breadboard demonstrators have been built of the assay system and key components of the micro-fluidics. Results from these breadboards will be presented, along with plans for future development.
Space Station module Power Management And Distribution (PMAD) system
NASA Technical Reports Server (NTRS)
Walls, Bryan
1990-01-01
This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface without requiring all of the power hardware to be operational. The functionality of the AI systems will continue to be advanced, including incipient failure detection. Ada conversion will begin with the lowest level processor (LLP) code. Then selected pieces of the higher level functionality will be recorded in Ada and, where possible, moved to the LLP level. Validation and verification will be done on the Ada code, and will complete sometimes after completion of the Ada conversion.
Alignment and Performance of the Infrared Multi-Object Spectrometer
NASA Technical Reports Server (NTRS)
Connelly, Joseph A.; Ohl, Raymond G.; Mentzell, J. Eric; Madison, Timothy J.; Hylan, Jason E.; Mink, Ronald G.; Saha, Timo T.; Tveekrem, June L.; Sparr, Leroy M.; Chambers, V. John;
2004-01-01
The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nanometers, a blackbody source provides a line at 1550 nanometers, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.
Breadboard stellar tracker system test report, volume 1
NASA Technical Reports Server (NTRS)
Kollodge, J. C.; Hubbard, M. W.; Jain, S.; Schons, C. A.
1981-01-01
The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it.
Technology Readiness of the NEXT Ion Propulsion System
NASA Technical Reports Server (NTRS)
Benson, Scott W.; Patterson, Michael J.
2008-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.
NASA Astrophysics Data System (ADS)
van den Dool, T. C.; Kamphues, F.; Gielesen, W.; Dorrepaal, M.; Doelman, N.; Loix, N.; Verschueren, J. P.; Kooijman, P. P.; Visser, M.; Velsink, G.; Fleury, K.
2005-08-01
TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is representative of a future flight mechanism, with all used materials and processes being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings are used for guiding. They provide frictionless and wear free operation with zero-hysteresis. The manufacturing, assembly and acceptance testing have been completed and are reported in this paper. The verification program, including functional testing at 40 K, will start in the final quarter of 2005.
Demonstration of spectral calibration for stellar interferometry
NASA Technical Reports Server (NTRS)
Demers, Richard T.; An, Xin; Tang, Hong; Rud, Mayer; Wayne, Leonard; Kissil, Andrew; Kwack, Eug-Yun
2006-01-01
A breadboard is under development to demonstrate the calibration of spectral errors in microarcsecond stellar interferometers. Analysis shows that thermally and mechanically stable hardware in addition to careful optical design can reduce the wavelength dependent error to tens of nanometers. Calibration of the hardware can further reduce the error to the level of picometers. The results of thermal, mechanical and optical analysis supporting the breadboard design will be shown.
An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments
NASA Technical Reports Server (NTRS)
Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.
1993-01-01
By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.
Throttling capability of a 30 kW class ammonia arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1991-01-01
The throttling capabilities of a 30 kW class ammonia arcjet and its compatibility with a breadboard power conditioning unit (PCU) were tested in two series of tests. The first series was performed to determine the performance and operating characteristics of the arcjet and the PCU over a range of power levels and propellant flow rates. The power levels for the tests were nominally between 10 and 30 kW, with some operation below 10 kW at the lower flow rates. The ammonia flow rates varied between 0.16 and 0.35 g/s. The second series of tests was an extensive investigation of operation below 12 kW using three cathode spacings. The ammonia flow rates were between 0.115 and 0.335 g/s. Operation of the arcjet from 1.5 kW up to the 30 kW design point was demonstrated with the PCU.
Anti-ship missile tracking with a chirped amplitude modulation ladar
NASA Astrophysics Data System (ADS)
Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.
2004-09-01
Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.
Testing and modelling of the SVOM MXT narrow field lobster-eye telescope
NASA Astrophysics Data System (ADS)
Feldman, Charlotte; Pearson, James; Willingale, Richard; Sykes, John; Drumm, Paul; Houghton, Paul; Bicknell, Chris; Osborne, Julian; Martindale, Adrian; O'Brien, Paul; Fairbend, Ray; Schyns, Emile; Petit, Sylvain; Roudot, Romain; Mercier, Karine; Le Duigou, Jean-Michel; Gotz, Diego
2017-08-01
The Space-based multi-band astronomical Variable Objects Monitor (SVOM) is a French-Chinese space mission to be launched in 2021 with the goal of studying gamma-ray bursts, the most powerful stellar explosions in the Universe. The Microchannel X-ray Telescope (MXT) on-board SVOM, is an X-ray focusing telescope with a detector-limited field of view of ˜1 square° , working in the 0.2-10 keV energy band. The MXT is a narrow-field-optimised lobster eye telescope, designed to promptly detect and accurately locate gamma-ray bursts afterglows. The breadboard MXT optic comprises of an array of square pore micro pore optics (MPOs) which are slumped to a spherical radius of 2 m giving a focal length of 1 m and an intrinsic field of view of ˜6° . We present details of the baseline design and results from the ongoing X-ray tests of the breadboard and structural thermal model MPOs performed at the University of Leicester and at Panter. In addition, we present details of modelling and analysis which reveals the factors that limit the angular resolution, characteristics of the point spread function and the efficiency and collecting area of the currently available MPOs.
Passive millimeter-wave imaging
NASA Technical Reports Server (NTRS)
Young, Stephen K.; Davidheiser, Roger A.; Hauss, Bruce; Lee, Paul S. C.; Mussetto, Michael; Shoucri, Merit M.; Yujiri, Larry
1993-01-01
Millimeter-wave hardware systems are being developed. Our approach begins with identifying and defining the applications. System requirements are then specified based on mission needs using our end-to-end performance model. The model was benchmarked against existing data bases and, where data is deficient, it is acquired via field measurements. The derived system requirements are then validated with the appropriate field measurements using our imaging testbeds and hardware breadboards. The result is a final system that satisfies all the requirements of the target mission.
NASA Technical Reports Server (NTRS)
Berdahl, M.
1980-01-01
The use of a self pulsed laser system for accurately describing the surface shape of large space deployed antenna structures was evaluated. Tests with a breadboard system verified functional operation with short time resolution on the order of .2 mm, nonambiguous ranging, and a maximum range capability on the order of 150 m. The projected capability of the system is resolution of less than .1 mm over a reasonable time period and a range extension to over 300 m.
THE APPLICATION AND IMPLEMENTATION OF DEACON TYPE SYSTEMS.
management information system deriving from a project concerning development of techniques for computing with a computer in essentially unconstrained English. Deacon-type systems respond to instructions and queries concerning the subject matter of their data by appropriately manipulating and organizing the data internally. The clues that guide the organizing activity are the syntactic rules of the language and their semantic transformations. Three examples of Deacon systems are given. The ’Deacon Breadboard Summary’ of F. B. Thompson (RM 64TMP-9)
Silicon-controlled-rectifier square-wave inverter with protection against commutation failure
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1971-01-01
The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.
Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture
NASA Technical Reports Server (NTRS)
1983-01-01
A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.
High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors
NASA Technical Reports Server (NTRS)
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Wessling, Francis C.
2000-01-01
The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass, volume, and possibly even time. Through the experimental and numerical results obtained, the power requirements and thermal response time of the breadboard furnace are quantified.
Gas spectroscopy system with 245 GHz transmitter and receiver in SiGe BiCMOS
NASA Astrophysics Data System (ADS)
Schmalz, Klaus; Rothbart, Nick; Borngräber, Johannes; Yilmaz, Selahattin Berk; Kissinger, Dietmar; Hübers, Heinz-Wilhelm
2017-02-01
The implementation of an integrated mm-wave transmitter (TX) and receiver (RX) in SiGe BiCMOS or CMOS technology offers a path towards a compact and low-cost system for gas spectroscopy. Previously, we have demonstrated TXs and RXs for spectroscopy at 238 -252 GHz and 495 - 497 GHz using external phase-locked loops (PLLs) with signal generators for the reference frequency ramps. Here, we present a more compact system by using two external fractional-N PLLs allowing frequency ramps for the TX and RX, and for TX with superimposed frequency shift keying (FSK) or reference frequency modulation realized by a direct digital synthesizer (DDS) or an arbitrary waveform generator. The 1.9 m folded gas absorption cell, the vacuum pumps, as well as the TX and RX are placed on a portable breadboard with dimensions of 75 cm x 45 cm. The system performance is evaluated by high-resolution absorption spectra of gaseous methanol at 13 Pa for 241 - 242 GHz. The 2f (second harmonic) content of the absorption spectrum of the methanol was obtained by detecting the IF power of RX using a diode power sensor connected to a lock-in amplifier. The reference frequency modulation reveals a higher SNR (signal-noise-ratio) of 98 within 32 s acquisition compared to 66 for FSK. The setup allows for jumping to preselected frequency regions according to the spectral signature thus reducing the acquisition time by up to one order of magnitude.
Optimized tracking of RF carriers with phase noise, including Pioneer 10 results
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.
1987-01-01
The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.
A membrane-based subsystem for water-vapor recovery from plant-growth chambers
NASA Technical Reports Server (NTRS)
Ray, R. J.
1992-01-01
Bioregenerative systems--life-support systems to regenerate oxygen, food, and water--are the key to establishing man's permanent presence in space. NASA is investigating the use of plant-growth chambers (PGC's) for space missions and for bases on the moon and Mars. PGC's serve several important purposes, including the following: (1) oxygen and food production; (2) carbon-dioxide removal; and (3) water purification and reuse. The key to the successful development of PGC's is a system to recover and reuse the water vapor that is transpired by the leaves of the growing plants. In this program we propose to develop a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in the PGC. This system has characteristics that make it ideally suited to use in space: (1) minimal power requirements; (2) small volume and mass; (3) simplicity; (4) reliability; and (5) versatility. In Phase 1 we will do the following: (1) develop an accurate, predictive model of our temperature- and humidity-control system, based on parametric tests of membrane modules; and (2) use this model to design systems for selected PGC's. In Phase 2, we will seek to design, fabricate, test, and deliver a breadboard unit to NASA for testing on a PGC.
1998-12-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
A communication protocol for mobile satellite systems affected by rain attenuation
NASA Technical Reports Server (NTRS)
Lay, Norman; Dessouky, Khaled
1992-01-01
A communication protocol is described that has been developed as part of a K/Ka-band mobile terminal breadboard system to be demonstrated through NASA's Advanced Communications Technology Satellite (ACTS) in 1993. The protocol is aimed at providing the means for enhancing link availability and continuity by supporting real-time data rate selection and changes during rain events. Particular attention is given to the system architecture; types of links, connections, and packets; the protocol procedures; and design rationales.
A soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Agronin, Michael L.; Jandura, Louise
1990-01-01
Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.
Progress in Development of a Miniature Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Gibson, A. S.; Hunt, R.; Charles, I.; Duband, L.; Crook, M. R.; Orlowska, A. H.; Bradshaw, T. W.; Linder, M.
2004-06-01
A pulse tube cryocooler is under development for high-reliability spacecraft applications. Recent developments in the assembly and verification of a Miniature Pulse Tube Cooler (MPTC) are presented, including the latest data from the test program. Details of advances related to the compressor, pulse tube and electronics are discussed. The pulse tube cooler achieves high efficiency, optimised through an extensive process of breadboard testing and analysis and is now approaching a more mature Engineering Model (EM) status. A representative pulse tube cold finger has been verified with respect to design changes incorporated following the breadboard test phase. Mass, heat lift and parasitic losses have been improved. A mechanical system mass of 3.1 kg has been achieved. Cold finger tests have demonstrated the ability of the pulse tube to lift 1.5 W at 80 K and to reach <50 K for a PV-work of 25 W. The useful range of operation for the cooler extends below 60 K, where test results indicate 600 mW of heat lift capability.
BIOLAB experiment development status 2005
NASA Astrophysics Data System (ADS)
Brinckmann, Enno; Manieri, Pierfilippo
2005-08-01
BIOLAB, ESA's major facility for biological Space research on the International Space Station (ISS), will accommodate the first two batches of experiments after its launch with the "Columbus" Laboratory (spring 2007). Seven experiments have been selected for development: three of the first batch have concluded Phase A/B with the testing of the breadboards, in which the main functions of the scientific studies can be simulated and defined for further inputs to the final design of the experiment hardware. The biological specimens of the first batch are scorpions, plant seedlings, bacteria suspensions and cell cultures of mammalian and invertebrate origin. The experiment protocols request demanding resources ranging from life support for the entire mission (90 days) to skilled crew operations and transport/storage in deep freezers. Even more sophisticated experiments are in preparation for the second batch, dealing with various cell culture systems. This presentation gives an overview about the experiment development status, whilst the science background and breadboard test results will be presented by the respective experiment teams.
NASA Astrophysics Data System (ADS)
Mrigakshi, Alankrita; Hajdas, Wojtek; Marcinkowski, Radoslaw; Xiao, Hualin; Goncalves, Patricia; Pinto, Marco; Pinto, Costa; Marques, Arlindo; Meier, Dirk
2016-04-01
The RADEM instrument will serve as the radiation monitor for the JUICE spacecraft. It will characterize the highly dynamic radiation environment of the Jovian system by measuring the energy spectra of energetic electrons and protons up to 40 MeV and 250 MeV, respectively. It will also determine the directionality of 0.3-10 MeV electrons. Further goals include the detection of heavy ions, and the determination of the corresponding LET spectra and dose rates. Here, the tests of the Electron and Proton Telescopes, and the Directionality Detector of the RADEM Bread-Board model are described. The objective of these tests is to validate RADEM design and physical concept applied therein. The tests were performed at various irradiation facilities at the Paul Scherrer Institute (PSI) where energy ranges relevant for space applications can be covered (electrons: ≤100 MeV and protons: ≤230 MeV). The measured values are also compared with GEANT4 Monte-Carlo Simulation results.
A PC based time domain reflectometer for space station cable fault isolation
NASA Technical Reports Server (NTRS)
Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken
1994-01-01
Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).
Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger
NASA Technical Reports Server (NTRS)
Desjardins, L. F.; Hooper, J.
1973-01-01
System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.
NASA Technical Reports Server (NTRS)
Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.
1978-01-01
An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.
KAPAO Prime: Design and Simulation
NASA Astrophysics Data System (ADS)
McGonigle, Lorcan
2012-11-01
KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration from Pomona College's telescope atop Table Mountain. We present here, the final optical system, referred to as Prime, designed in Zemax Optical Design Software. Prime is characterized by diffraction limited imaging over the full 73'' field of view of our Andor Camera at f/33 as well as for our NIR Xenics camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of the Andor camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to l/10 surface irregularity. Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75 F; when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of ``Prime'' in Q1 2013.
An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard
NASA Astrophysics Data System (ADS)
Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.
2017-11-01
This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.
Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann
2005-01-01
Abstract. As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NFL4 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (MLHP) thermal management system design suitable for future small spacecraft. The proposed MLHP thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The miniature loop heat pipe was supplied by the Jet Propulsion Laboratory (PL), while the variable emittance technology were supplied by Johns Hopkins University Applied Physics Laboratory and Sensortex, Inc. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.
Condensate Recycling in Closed Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.
1994-01-01
Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.
An optical profilometer for spatial characterization of three-dimensional surfaces
NASA Technical Reports Server (NTRS)
Kelly, W. L., IV; Burcher, E. E.; Skolaut, M. W., Jr.
1977-01-01
The design concept and system operation of an optical profilometer are discussed, and a preliminary evaluation of a breadboard system is presented to demonstrate the feasibility of the optical profilometer technique. Measurement results are presented for several test surfaces; and to illustrate a typical application, results are shown for a cleft palate cast used by dental surgeons. Finally, recommendations are made for future development of the optical profilometer technique for specific engineering or scientific applications.
Laser Transmitter Aims At Laser Beacon
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1993-01-01
Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.
NASA Astrophysics Data System (ADS)
Wu, Chi; Keo, Sam A.; Yao, X. S.; Turner, Tasha E.; Davis, Lawrence J.; Young, Martin G.; Maleki, Lute; Forouhar, Siamak
1998-08-01
The microwave optoelectronic oscillator (OEO) has been demonstrated on a breadboard. The future trend is to integrate the whole OEO on a chip, which requires the development of high power and high efficiency integrated photonic components. In this paper, we will present the design and fabrication of an integrated semiconductor laser/modulator using the identical active layer approach on InGaAsP/InP material. The best devices have threshold currents of 50-mA at room temperature for CW operation. The device length is approximately 3-mm, resulting in a mode spacing of 14 GHz. For only 5-dBm microwave power applied to the modulator section, modulation response with 30 dB resonate enhancement has been observed. This work shows the promise for an on-chip integrated OEO.
NASA Technical Reports Server (NTRS)
Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland
1994-01-01
A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.
Active Vibration Reduction of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0 mm, 3.75 mm, and 4.5 mm. Overall, the transmitted force was reduced to 2% of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under one watt. The test results will be used to guide future balancer designs.
Active Vibration Reduction of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0, 3.75, and 4.5 mm. Overall, the transmitted force was reduced to 2 percent of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under 1 watt. The test results will be used to guide future balancer designs.
Multi-Wavelength Laser Transmitter for the Two-Step Laser Time-of-Flight Mass Spectrometer
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Li, Steven X.; Fahey, Molly E.; Grubisic, Andrej; Farcy, Benjamin J.; Uckert, Kyle; Li, Xiang; Getty, Stephanie
2017-01-01
Missions to diverse Outer Solar System bodies will require investigations that can detect a wide range of organics in complex mixtures, determine the structure of selected molecules, and provide powerful insights into their origin and evolution. Previous studies from remote spectroscopy of the Outer Solar System showed a diverse population of macromolecular species that are likely to include aromatic and conjugated hydrocarbons with varying degrees of methylation and nitrile incorporation. In situ exploration of Titan's upper atmosphere via mass and plasma spectrometry has revealed a complex mixture of organics. Similar material is expected on the Ice Giants, their moons, and other Outer Solar System bodies, where it may subsequently be deposited onto surface ices. It is evident that the detection of organics on other planetary surfaces provides insight into the chemical and geological evolution of a Solar System body of interest and can inform our understanding of its potential habitability. We have developed a prototype two-step laser desorption/ionization time-of-flight mass spectrometer (L2MS) instrument by exploiting the resonance-enhanced desorption of analyte. We have successfully demonstrated the ability of the L2MS to detect hydrocarbons in organically-doped analog minerals, including cryogenic Ocean World-relevant ices and mixtures. The L2MS instrument operates by generating a neutral plume of desorbed analyte with an IR desorption laser pulse, followed at a delay by a ultraviolet (UV) laser pulse, ionizing the plume. Desorption of the analyte, including trace organic species, may be enhanced by selecting the wavelength of the IR desorption laser to coincide with IR absorption features associated with vibration transitions of minerals or organic functional groups. In this effort, a preliminary laser developed for the instrument uses a breadboard mid-infrared (MIR) desorption laser operating at a discrete 3.475 µm wavelength, and a breadboard UV ionization laser operating at a wavelength of 266 nm. The MIR wavelength was selected to overlap the C-H stretch vibrational transition of certain aromatic hydrocarbons, and the UV wavelength provides additional selectivity to aromatic species via UV resonance-enhanced multiphoton ionization effects. The use of distinct laser wavelengths allows efficient coupling to the vibrational and electronic spectra of the analyte in independent desorption and ionization steps, mitigating excess energy that can lead to fragmentation during the ionization process and leading to selectivity that can aid in data interpretation.
Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department
NASA Technical Reports Server (NTRS)
Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1972-01-01
The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Evaluation of a high response electrohydraulic digital control valve
NASA Technical Reports Server (NTRS)
Anderson, R. L.
1973-01-01
The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.
Wind Evaluation Breadboard electronics and software
NASA Astrophysics Data System (ADS)
Núñez, Miguel; Reyes, Marcos; Viera, Teodora; Zuluaga, Pablo
2008-07-01
WEB, the Wind Evaluation Breadboard, is an Extremely Large Telescope Primary Mirror simulator, developed with the aim of quantifying the ability of a segmented primary mirror to cope with wind disturbances. This instrument supported by the European Community (Framework Programme 6, ELT Design Study), is developed by ESO, IAC, MEDIA-ALTRAN, JUPASA and FOGALE. The WEB is a bench of about 20 tons and 7 meter diameter emulating a segmented primary mirror and its cell, with 7 hexagonal segments simulators, including electromechanical support systems. In this paper we present the WEB central control electronics and the software development which has to interface with: position actuators, auxiliary slave actuators, edge sensors, azimuth ring, elevation actuator, meteorological station and air balloons enclosure. The set of subsystems to control is a reduced version of a real telescope segmented primary mirror control system with high real time performance but emphasizing on development time efficiency and flexibility, because WEB is a test bench. The paper includes a detailed description of hardware and software, paying special attention to real time performance. The Hardware is composed of three computers and the Software architecture has been divided in three intercommunicated applications and they have been implemented using Labview over Windows XP and Pharlap ETS real time operating system. The edge sensors and position actuators close loop has a sampling and commanding frequency of 1KHz.
NASA Astrophysics Data System (ADS)
Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.
2012-11-01
A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.
First results of the wind evaluation breadboard for ELT primary mirror design
NASA Astrophysics Data System (ADS)
Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel
2010-07-01
The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.
NASA Astrophysics Data System (ADS)
Lousberg, G. P.; Lemagne, F.; Gloesener, P.; Flebus, C.; Rougelot, S.; Coatantiec, C.; Harnisch, B.
2017-11-01
In the framework of the Fluorescence Explorer (FLEX) phase A/B1 study, an elegant breadboard (EBB) of an imaging spectrometer is designed, manufactured and aligned by AMOS, with Airbus Defence&Space as the prime Contractor of the study. The FLEX mission is one of the two candidates of the 8th Earth Explorer mission. The main constituting instrument of the FLEX mission is an imaging spectrometer observing vegetation fluorescence and reflectance with a high- and a low-resolution channels in the 500 nm -780 nm band. As part of the system feasibility study of the mission, a breadboard of the high-resolution channel of the instrument is designed and manufactured with a high representativeness of a future flight concept. The high-resolution channel is referred to as FIMAS (Fluorescence IMAging Spectrometer). The main purpose of the EBB is to demonstrate (1) the manufacturability of the instrument and (2) the compliance of the optical performances with respect to the science requirements (including spatial and spectral resolution and stray-light).
Design and performance of the KSC Biomass Production Chamber
NASA Technical Reports Server (NTRS)
Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.
1987-01-01
NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.
Ultraviolet Communication for Medical Applications
2012-06-01
battlefield casualty care. UVC Plasma-shells were fabricated and tested as optical emitter components in the solar blind 200-280 nm UVC region, and were... solar -blind (SB) UVC region (200–280 nm). IST’s proprietary UVC-emitting Plasma-shells are successfully demonstrated in a breadboard system. At this...enclosure and removable filter. Single-crystal solar blind filters provide exceptional rejection but are extremely expensive, ruling out the Ofil filters SB
NASA Astrophysics Data System (ADS)
Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.
2014-12-01
CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations. Retrieval of particulate matter concentration is presented in companion poster by K. Moore.
Breadboard activities for advanced protein crystal growth
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Banish, Michael
1993-01-01
The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.
NASA Technical Reports Server (NTRS)
1975-01-01
A program was conducted which included the design of a set of simplified simulation tasks, design of apparatus and breadboard TV equipment for task performance, and the implementation of a number of simulation tests. Performance measurements were made under controlled conditions and the results analyzed to permit evaluation of the relative merits (effectivity) of various TV systems. Burden factors were subsequently generated for each TV system to permit tradeoff evaluation of system characteristics against performance. For the general remote operation mission, the 2-view system is recommended. This system is characterized and the corresponding equipment specifications were generated.
Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Kaya, Tarik; Baker, Charles; Ku, Jentung
2000-01-01
In this paper, experimental work performed on a breadboard Loop Heat Pipe (LHP) is presented. The test article was built by DCI for the Geoscience Laser Altimeter System (GLAS) instrument on the ICESat spacecraft. The thermal system requirements of GLAS have shown that ammonia cannot be used as the working fluid in this LHP because GLAS radiators could cool to well below the freezing point of ammonia. As a result, propylene was proposed as an alternative LHP working fluid since it has a lower freezing point than ammonia. Both working fluids were tested in the same LHP following a similar test plan in ambient conditions. The thermal performance characteristics of ammonia and propylene LHP's were then compared. In general, the propylene LHP required slightly less startup superheat 5nd less control heater power than the ammonia LHP, The thermal conductance values for the propylene LHP were also lower than the ammonia LHP. Later, the propylene LHP was tested in a thermal vacuum chamber. These tests demonstrated that propylene could meet the GLAS thermal design requirements. Design guidelines were proposed for the next flight-like Development Model (DM) LHP for thermal control of the GLAS instrument.
Microgravity Manufacturing Via Fused Deposition
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Griffin, M. R.
2003-01-01
Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.
Digital image profilers for detecting faint sources which have bright companions, phase 2
NASA Technical Reports Server (NTRS)
Morris, Elena; Flint, Graham
1991-01-01
A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.
Trace Gas Analyzer (TGA) program
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.
Portable oxygen subsystem. [design analysis and performance tests
NASA Technical Reports Server (NTRS)
1975-01-01
The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Field, Christopher T.; Sun, Xiaoli
1996-01-01
We report here the design and the performance measurements of the breadboard receiver of the Geoscience Laser Altimeter System (GLAS). The measured ranging accuracy was better than 2 cm and 10 cm for 5 ns and 30 ns wide received laser pulses under the expected received signal level, which agreed well with the theoretical analysis. The measured receiver sensitivity or the link margin was also consistent with the theory. The effects of the waveform digitizer sample rate and resolution were also measured.
IVTS-CEV (Interactive Video Tape System-Combat Engineer Vehicle) Gunnery Trainer.
1981-07-01
video game technology developed for and marketed in consumer video games. The IVTS/CEV is a conceptual/breadboard-level classroom interactive training system designed to train Combat Engineer Vehicle (CEV) gunners in target acquisition and engagement with the main gun. The concept demonstration consists of two units: a gunner station and a display module. The gunner station has optics and gun controls replicating those of the CEV gunner station. The display module contains a standard large-screen color video monitor and a video tape player. The gunner’s sight
NASA Technical Reports Server (NTRS)
1992-01-01
The objective of phase 1 of the LAWS study was to define and perform a preliminary design for the Laser Atmospheric Wind Sounder (LAWS) instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System and subsystem configurations were then developed for the chosen concept. The concept and subsequent configurations were to be compatible with two prospective platforms--the Japanese Polar Orbiting Platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, we chose a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron solid state system. The choice of the CO2 approach over solid-state reflects the advanced state of development of CO2 lasers, its maturity in ground-based systems and the eased subsystem requirements associated with the longer wavelength. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. Our approach throughout the configuration design was to take a systems perspective and trade requirements between subsystems, wherever possible, to arrive at configurations which made maximum use of existing, proven technology or relatively straightforward extensions to existing technology to reduce risk and cost. At the conclusion of Phase 1 we arrived at a configuration for LAWS which meets the performance requirements, yet which is less complex than previous designs of space-based wind sensors (e.g. Windsat), employs lightweight technologies to meet its weight goals (less than 800kg) and sufficiently flexible to offer various operational scenarios with power requirements from about 2 kW to 3 kW. The Phase 1 Final Report was released in March 1990. The 21-month Phase 2 began in October 1990. The requirement to accommodate LAWS as an attached payload on Space Station Freedom was deleted and the orbit altitude for the Japanese polar orbiting platform was changed from 824 km to 705 km. The power allocated to LAWS was reduced to 2.2 kW from 3 kW. Subsequently the availability of a Japanese Polar Orbiting Platform was called into question and LAWS accommodation studies were continued using a conceptual, ATLAS-launched platform supplied by MSFC. In March 1991 a modification to the original contracts was funded to provide a LAWS laser breadboard which could demonstrate all the performance requirements of the LAWS laser. Also funded as part of the same contract extension was a lifetest demonstration using an existing laser at STI. The breadboard extension was an eighteen month effort and the period of performance was therefore extended to September 30, 1992.
Micro-XRF for In Situ Geological Exploration of Other Planets
NASA Technical Reports Server (NTRS)
Wade, Lawrence A.; Hodyss, Robert P.; Allwood, Abigail C.; Gao, Ning; Kozaczek, Kris
2013-01-01
In situ analysis of rock chemistry is a fundamental tool for exploration of planets. To meet this need, a high-spatial-resolution micro x-ray fluorescence (Micro-XRF) instrument was developed that is capable of determining the elemental composition of rocks (elements Na U) with 100 microns spatial resolution, thus providing insight to the composition of features as small as sand grains and individual laminae. The resulting excitation beam is of sufficient intensity that high signal-to-noise punctual spectra are acquired in seconds to a few minutes using an Amptek Silicon Drift Detector (SDD). The instrument features a tightly focused x-ray tube and HVPS developed by Moxtek that provides up to 200 micro-A at 10 to 50 keV, with a custom polycapillary optic developed by XOS Inc. and integrated into a breadboard Micro-XRF (see figure). The total mass of the complete breadboard instrument is 2.76 kg, including mounting hardware, mounting plate, camera, laser, etc. A flight version of this instrument would require less than 5W nominal power and 1.5 kg mass. The instrument includes an Amptek SDD that draws 2.5 W and has a resolution of 135 to 155 eV FWHM at 5.9 keV. It weighs 180 g, including the preamplifier, digital pulse processor, multichannel analyzer, detector and preamp power supplies, and packaging. Rock samples are positioned relative to the instrument by a three-axis arm whose position is controlled by closed-loop translators (mimicking the robotic arm of a rover). The distance from the source to the detector is calculated from the position of a focused laser beam on the sample as imaged by the camera. The instrument enables quick scans of major elements in only 1 second, and rapid acquisition (30 s) of data with excellent signal-to-noise and energy resolution for trace element analysis
The software system development for the TAMU real-time fan beam scatterometer data processors
NASA Technical Reports Server (NTRS)
Clark, B. V.; Jean, B. R.
1980-01-01
A software package was designed and written to process in real-time any one quadrature channel pair of radar scatterometer signals form the NASA L- or C-Band radar scatterometer systems. The software was successfully tested in the C-Band processor breadboard hardware using recorded radar and NERDAS (NASA Earth Resources Data Annotation System) signals as the input data sources. The processor development program and the overall processor theory of operation and design are described. The real-time processor software system is documented and the results of the laboratory software tests, and recommendations for the efficient application of the data processing capabilities are presented.
Acoustic levitator for structure measurements on low temperature liquid droplets.
Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J
2009-08-01
A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.
Acoustic levitator for structure measurements on low temperature liquid droplets
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Rey, C. A.; Neuefeind, J.; Benmore, C. J.
2009-08-01
A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 °C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ˜22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.
Breadboard RL10-11B low thrust operating mode
NASA Technical Reports Server (NTRS)
Kmiec, Thomas D.; Galler, Donald E.
1987-01-01
Cryogenic space engines require a cooling process to condition engine hardware to operating temperature before start. This can be accomplished most efficiently by burning propellants that would otherwise be dumped overboard after cooling the engine. The resultant low thrust operating modes are called Tank Head Idle and Pumped Idle. During February 1984, Pratt & Whitney conducted a series of tests demonstrating operation of the RL10 rocket engines at low thrust levels using a previously untried hydrogen/oxygen heat exchanger. The initial testing of the RL10-11B Breadboard Low Thrust Engine is described. The testing demonstrated operation at both tank head idle and pumped idle modes.
Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only
NASA Technical Reports Server (NTRS)
Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.
1994-01-01
By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.
Progress in Acoustic Transmission of Power through Walls
NASA Technical Reports Server (NTRS)
Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu
2008-01-01
A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.
Proposed Array-based Deep Space Network for NASA
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.
2007-01-01
The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.
Thematic mapper critical elements breadboard program
NASA Technical Reports Server (NTRS)
Dale, C. H., Jr.; Engel, J. L.; Harney, E. D.
1976-01-01
A 40.6 cm bidirectional scan mirror assembly, a scan line corrector and a silicon photodiode array with integral preamplifier input stages were designed, fabricated, and tested to demonstrate performance consistent with requirements of the Hughes thematic mapper system. The measured performance met or exceeded the original design goals in all cases with the qualification that well defined and well understood deficiencies in the design of the photodiode array package will require the prescribed corrections before flight use.
Long-life 3-axis satellite attitude sensing, phase 1
NASA Technical Reports Server (NTRS)
Arild, Tor
1987-01-01
The purpose was to investigate the feasibility of new, moderate-cost, high reliability navigation sensors for high-altitude satellites, using stellar sources to obviate the use of gyroscopic devices. The primary investigation focused on the need for developing a star tracker model to replace an old star tracker which is still needed for current probe and satellite programs. One innovative element of the proposed star tracker was the design, development, and testing of technology components related to a phase scrambler plate. The purpose of the phase scrambler plate is to convert the impulse response of the optical system from a point image to a uniformly bright, square, angularly large, in-focus image of the star source. A collimated star source was built and tested. A breadboard star tracker with an 8 x 8 degree field of view was designed and built. It was tested in normal quad-cell mode (without the phase scrambler plate) and with the phase scrambler plate. Although the phase scrambler plate was crudely made, the performance of the star tracker breadboard was greatly improved using the phase scrambler plate, instead of system defocus. If further developed, the phase scrambler plate may be added as a low-cost retroconversion to any objective lens to greatly improve quad-cell or CCD array tracking; applications include star trackers, laser metrology, laser machining optics, and surveying instrumentation.
NASA Astrophysics Data System (ADS)
Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao
2017-11-01
The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
Application of acoustic surface wave technology to shuttle radar
NASA Technical Reports Server (NTRS)
1975-01-01
The application of surface acoustic wave (SAW) signal processing devices in the space shuttle was explored. In order to demonstrate the functions which a SAW device might perform, a breadboard pulse compression filter (PCF) module was assembled. The PCF permits a pulse radar to operate with a large duty cycle and low peak power, a regime favorable to the use of solid state RF sources. The transducer design, strong coupling compensation, circuit model analysis, fabrication limitations, and performance evaluation of a PCF are described. The nominal value of the compression ratio is 100:1 with 10-MHz bandwidth centered at 60 MHz and 10-microsecond dispersive delay. The PCF incorporates dispersive interdigital transducers and a piezoelectric lithium niobate substrate.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
Low-stress soldering technique used to assemble an optical system for aerospace missions
NASA Astrophysics Data System (ADS)
Ribes-Pleguezuelo, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.
2017-09-01
A high-precision opto-mechanical breadboard for a lens mount has been assembled by means of a laserbased soldering process called Solderjet Bumping; which thanks to its localized and minimized input of thermal energy, is well suited for the joining of optical components made of fragile and brittle materials such as glasses. An optical element made of a silica lens and a titanium barrel has been studied to replicate the lens mounts of the afocal beam expander used in the LIDAR instrument (ATLID) of the ESA EarthCare Mission, whose aim is to monitor molecular and particle-based back-scattering in order to analyze atmosphere composition. Finally, a beam expander optical element breadboard with a silica lens and a titanium barrel was assembled using the Solderjet Bumping technology with Sn96.5Ag3Cu0.5 SAC305 alloy resulting in a low residual stress (<1 MPa) on the joining areas, a low light-depolarization (<0.2 %) and low distortion (wave-front error measurement < 5 nm rms) on the assemblies. The devices also successfully passed humidity, thermal-vacuum, vibration, and shock tests with conditions similar to the ones expected for the ESA EarthCare mission and without altering their optical performances.
MEMS deformable mirror for wavefront correction of large telescopes
NASA Astrophysics Data System (ADS)
Manhart, Sigmund; Vdovin, Gleb; Collings, Neil; Sodnik, Zoran; Nikolov, Susanne; Hupfer, Werner
2017-11-01
A 50 mm diameter membrane mirror was designed and manufactured at TU Delft. It is made from bulk silicon by micromachining - a technology primarily used for micro-electromechanical systems (MEMS). The mirror unit is equipped with 39 actuator electrodes and can be electrostatically deformed to correct wavefront errors in optical imaging systems. Performance tests on the deformable mirror were carried out at Astrium GmbH using a breadboard setup with a wavefront sensor and a closed-loop control system. It was found that the deformable membrane mirror is well suited for correction of low order wavefront errors as they must be expected in lightweighted space telescopes.
Performance and reliability of the NASA biomass production chamber
NASA Technical Reports Server (NTRS)
Fortson, R. E.; Sager, J. C.; Chetirkin, P. V.
1994-01-01
The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of CELSS, are discussed.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Process material management in the Space Station environment
NASA Technical Reports Server (NTRS)
Perry, J. L.; Humphries, W. R.
1988-01-01
The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.
NASA Technical Reports Server (NTRS)
Bortner, M. H.; Dick, R.; Goldstein, H. W.; Grenda, R. N.; Levy, G. M.
1973-01-01
The breadboard model of the correlation interferometer for the Carbon Monoxide Pollution Experiment has been designed, fabricated, and tested. Laboratory, long-path, and atmospheric tests which were performed show the technique to be a feasible method for obtaining a global carbon monoxide map and a vertical carbon monoxide profile and similar information is readily obtainable for methane as well. In addition, the technique is readily applicable to other trace gases by minor instrumental changes. As shown by the results and the conclusions, it has been determined that CO and CH4 data can be obtained with an accuracy of 10% using this technique on the spectral region around 2.3 microns.
Design, fabrication, test and delivery of a K-band antenna breadboard model
NASA Technical Reports Server (NTRS)
1974-01-01
The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.
Design and analysis report for the RL10-2B breadboard low thrust engine
NASA Technical Reports Server (NTRS)
Brown, J. R.; Foust, R. R.; Galler, D. E.; Kanic, P. G.; Kmiec, T. D.; Limerick, C. D.; Peckham, R. J.; Swartwout, T.
1984-01-01
The breadboard low thrust RL10-2B engine is described. A summary of the analysis and design effort to define the multimode thrust concept applicable to the requirements for the upper stage vehicles is provided. Baseline requirements were established for operation of the RL10-2B engine under the following conditions: (1) tank head idle at low propellant tank pressures without vehicle propellant conditioning or settling thrust; (2) pumped idle at a ten percent thrust level for low G deployment and/or vehicle tank pressurization; and (3) full thrust (15,000 lb.). Several variations of the engine configuration were investigated and results of the analyses are included.
NASA Astrophysics Data System (ADS)
Kauffeld, Michael; Mulroy, William; McLinden, Mark; Didion, David
1990-02-01
As part of the Department of Energy/Oak Ridge National Laboratory Building Equipment Research program, the National Institute of Standards and Technology constructed an experimental, easily reconfigurable, water-to-water, breadboard heat pump apparatus in order to compare pure R22 to nonazeotropic refrigerant mixtures. Performance of the heat pump charged with a range of compositions of the binary mixtures R22/RI14 and R13/R12 were compared to R22. The advantage claimed for mixtures in this application is improved thermodynamic efficiency as a result of gliding refrigerant temperatures in the evaporator and condenser in low lift, high glide applications typical of air conditioning.
Spread spectrum communication link using surface wave devices
NASA Technical Reports Server (NTRS)
Hunsinger, B. J.; Fugit, B. B.
1971-01-01
A fast lock-up, 8-MHz bandwidth 8,000 bit per second data rate spread spectrum communication link breadboard is described that is implemented using surface wave devices as the primary signal generators and signal processing elements. It uses surface wave tapped delay lines in the transmitter to generate the signals and in the receiver to detect them. The breadboard provides a measured processing gain for Gaussian noise of 31.5 dB which is within one dB of the theoretical optimum. This development demonstrates that spread spectrum receivers implemented with surface wave devices have sensitivities and complexities comparable to those of serial correlation receivers, but synchronization search times which are two to three orders of magnitude smaller.
IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
Exploratory Development on an Electronic Safing and Arming Device for Ordnance Fuzing
1983-02-01
to the bridges. Two units were subjected to MIL-STD-331, Test 101, Jolt. The EBMs were placed in the S & A cavity of an M739 fuze body for this test...of the program was to explore a concept for a safe, reliable, general purpose, low cost, electronic, A ’ zsafing and arming ( S & A ) system for use in...breadboard model hardware of the electronic S & A device. The electronic S & A devicu consists of an explosive barrier moduls (EBM) explosive train
Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990
1989-10-01
Electronics Assemble and Test A90-125 Guided-Wave TeO2 Optical Devices A90-126 Acceleration Sensing Module for Munition Safety Systems A90-127 Electromagnetic...package containing all drawings and process information, complete operating manuals. A90-125 Guided-Wave TeO2 Optical Devices OBJECTIVE: This exploratory...bandwidth and efficiency of these devices. PHASE I: Phase one would consist of the design of several breadboard TeO2 AO devices each having TBWP of
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex
2011-01-01
Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1996-01-01
This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.
NASA Technical Reports Server (NTRS)
1975-01-01
A detailed description of a video system for controlling space shuttle payloads and experiments is presented in the preliminary design review and critical design review, first and second engineering design reports respectively, and in the final report submitted jointly with the design package. The material contained in the four subsequent sections of the package contains system descriptions, design data, and specifications for the recommended 2-view system. Section 2 contains diagrams relating to the simulation test configuration of the 2-view system. Section 3 contains descriptions and drawings of the deliverable breadboard equipment. A description of the recommended system is contained in Section 4 with equipment specifications in Section 5.
NASA Astrophysics Data System (ADS)
Lindeboom, Ralph E. F.; Lamaze, Brigitte; Clauwaert, Peter; Christiaens, Marlies E. R.; Rabaey, Korneel; Vlaeminck, Siegfried; Vanoppen, Marjolein; Demey, Dries; Farinas, Bernabé Alonso; Coessens, Wout; De Paepe, Jolien; Dotremont, Chris; Beckers, Herman; Verliefde, Arne
2016-07-01
One of the major challenges for long-term manned Space missions is the requirement of a regenerative life support system. Average water consumption in Western Countries is >100 L d-1. Even when minimizing the amount of water available per astronauts to 13 L d-1, a mission of 6 crew members requires almost 30 ton of fresh water supplies per year. Note that the International Space Station (ISS) weighs approximately 400 ton. Therefore the development of an efficient water recovery system is essential to future Space exploration. The ISS currently uses a Vapor Compression Distillation (VCD) unit following the addition of chromic and sulphuric acid for the microbial stabilization of urine (Carter, Tobias et al. 2012), yielding a water recovery percentage of only 70% due to scaling control. Additionally, Vapor Compression Distillation of 1.5 L urine cap 1 d-1 has a significantly higher power demand with 6.5 W cap-1 compared to a combination of electrodialysis (ED) and reverse osmosis (RO) with 1.9 and 0.6 W cap-1 respectively (Udert and Wächter 2012). A Water Treatment Unit Breadboard (WTUB) has been developed which combines a physicochemical and biological treatment. The aim was to recover 90% of the water in urine, condensate and shower water produced by one crew member and this life support testbed facility was inspired by the MELiSSA loop concept, ESA's Life Support System. Our experimental results showed that: 1) using a crystallisation reactor prior to the nitrification reduced scaling risks by Ca2+- and Mg2+ removal 2) the stabilization of urine diluted with condensate resulted in the biological conversion of 99% of Total Kjeldahl nitrogen into nitrate in the biological nitrification reactor 3) salinity and nitrate produced could be removed by 60-80% by electrodialysis, 4) shower water contaminated with skin microbiota and Neutrogena soap ® could be mixed with electrodialysis diluate and filtered directly over a ceramic nanofiltration at 93% water recovery and 5) the RO membrane could reduce final conductivity < 200µS cm-1 at 78% water recovery. Because the RO concentrate could be used to dilute the incoming urine, the maximum total water recovery reached 88%. These findings indicate that this integrated bio-physico-chemical urine treatment can enhance operational feasibility of the nanofiltration/reverse osmosis filtration steps and opens opportunities for effective hygiene water recovery.
Two color holographic interferometry for microgravity application
NASA Technical Reports Server (NTRS)
Trolinger, James D.
1993-01-01
Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.
KAPAO Prime: Design and Simulation
NASA Astrophysics Data System (ADS)
McGonigle, Lorcan; Choi, P. I.; Severson, S. A.; Spjut, E.
2013-01-01
KAPAO (KAPAO A Pomona Adaptive Optics instrument) is a dual-band natural guide star adaptive optics system designed to measure and remove atmospheric aberration over UV-NIR wavelengths from Pomona College’s telescope atop Table Mountain. We present here, the final optical system, KAPAO Prime, designed in Zemax Optical Design Software that uses custom off-axis paraboloid mirrors (OAPs) to manipulate light appropriately for a Shack-Hartman wavefront sensor, deformable mirror, and science cameras. KAPAO Prime is characterized by diffraction limited imaging over the full 81” field of view of our optical camera at f/33 as well as over the smaller field of view of our NIR camera at f/50. In Zemax, tolerances of 1% on OAP focal length and off-axis distance were shown to contribute an additional 4 nm of wavefront error (98% confidence) over the field of view of our optical camera; the contribution from surface irregularity was determined analytically to be 40nm for OAPs specified to λ/10 surface irregularity (632.8nm). Modeling of the temperature deformation of the breadboard in SolidWorks revealed 70 micron contractions along the edges of the board for a decrease of 75°F when applied to OAP positions such displacements from the optimal layout are predicted to contribute an additional 20 nanometers of wavefront error. Flexure modeling of the breadboard due to gravity is on-going. We hope to begin alignment and testing of KAPAO Prime in Q1 2013.
Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network
NASA Technical Reports Server (NTRS)
Navarro, Robert
2006-01-01
The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..
A breadboard of optically-pumped atomic-beam frequency standard for space applications
NASA Astrophysics Data System (ADS)
Berthoud, P.; Ruffieux, R.; Affolderbach, C.; Thomann, P.
2004-06-01
Observatoire de Neuchâtel (ON) has recently started breadboarding activities for an Optically-pumped Space Cesium-beam Atomic Resonator in the frame of an ESA-ARTES 5 project. The goal is to demonstrate a frequency stability approaching σy = 1×10-12 τ-1/2 with the simplest optical scheme (a single optical frequency for both the atomic pumping and detection processes). This development constitutes a fundamental step in the general effort to reduce the mass of the on-board clocks, while keeping or even improving its performances. It will take advantage of previous activities at ON in the late '80 and of the latest progresses in the field of tunable and narrow-band laser diodes.
Performance and reliability of the NASA Biomass Production Chamber
NASA Technical Reports Server (NTRS)
Sager, J. C.; Chetirkin, P. V.
1994-01-01
The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.
Optical read/write memory system components
NASA Technical Reports Server (NTRS)
Kozma, A.
1972-01-01
The optical components of a breadboard holographic read/write memory system have been fabricated and the parameters specified of the major system components: (1) a laser system; (2) an x-y beam deflector; (3) a block data composer; (4) the read/write memory material; (5) an output detector array; and (6) the electronics to drive, synchronize, and control all system components. The objectives of the investigation were divided into three concurrent phases: (1) to supply and fabricate the major components according to the previously established specifications; (2) to prepare computer programs to simulate the entire holographic memory system so that a designer can balance the requirements on the various components; and (3) to conduct a development program to optimize the combined recording and reconstruction process of the high density holographic memory system.
Performance Enhancement Of A Low Cost Multimode Fiber Optic Rotation Sensor
NASA Astrophysics Data System (ADS)
Fredricks, Ronald J.; Johnson, Dean R.
1989-02-01
Several fiber optic Sagnac interferometers employing multimode fiber of both high and ffedimiNrrumbers and simple LED light sources, have been designed and built by the authors over the past two years. New results showing improved performance fran that reported at the August '87 SPIE are given in this paper. The ratios of maximum unambiguous rate signal to random 3a drift signal are now in the range 50-150 a performance enhancement of between 4 and 10. We have found that a step index ring rather than a grajled Index one is necess for good driftperformance and that best results are obtained when all the other ring elements (PZT coary il and I/O slitter are also fabricated fram step index fiber. The 3a drifts in our 200 meter 10 cm diameter breadboards, in particular, are around 1°/sec. Using high V number fiber (100 pm/0.29 NA) no static mode mixers are required to desensitize this relatively short sense coil fram environmental pertubations. With unambiguous maxi rum rates on the order of ±200°/sec using simple detection of the MT fundamental signal the performance of these breadboard systems is now as good or better than many law cost "Coriolis" type rate sensors on the market.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-08-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.
Laser transmitter for Lidar In-Space Technology Experiment
NASA Technical Reports Server (NTRS)
Chang, John; Cimolino, Marc; Petros, Mulugeta
1991-01-01
The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.
Vision-based guidance for an automated roving vehicle
NASA Technical Reports Server (NTRS)
Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.
1978-01-01
A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.
The development of a non-cryogenic nitrogen/oxygen supply system
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
Development of the hydrazine/water electrolysis process in a manned spacecraft to provide metabolic oxygen and both oxygen and nitrogen for cabin leakage makeup was studied. Electrode development efforts were directed to stability, achieved with catalyst additives and improved processing techniques, and a higher hydrazine conversion efficiency, achieved by reducing catalyst loading on the cathodes. Extensive testing of the one-man breadboard N2/02 system provided complete characterization of cabin atmosphere control aspects. A detailed design of a prototype modular N2/02 unit was conducted. The contact heat exchanger which is an integral component of this design was fabricated and sucessfully design-verification tested.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
Low-cost optical data acquisition system for blade vibration measurement
NASA Technical Reports Server (NTRS)
Posta, Stephen J.
1988-01-01
A low cost optical data acquisition system was designed to measure deflection of vibrating rotor blade tips. The basic principle of the new design is to record raw data, which is a set of blade arrival times, in memory and to perform all processing by software following a run. This approach yields a simple and inexpensive system with the least possible hardware. Functional elements of the system were breadboarded and operated satisfactorily during rotor simulations on the bench, and during a data collection run with a two-bladed rotor in the Lewis Research Center Spin Rig. Software was written to demonstrate the sorting and processing of data stored in the system control computer, after retrieval from the data acquisition system. The demonstration produced an accurate graphical display of deflection versus time.
Surface accuracy measurement sensor test on a 50-meter antenna surface model
NASA Technical Reports Server (NTRS)
Spiers, R. B.; Burcher, E. E.; Stump, C. W.; Saunders, C. G.; Brooks, G. F.
1984-01-01
The Surface Accuracy Measurement Sensor (SAMS) is a telescope with a focal plane photo electric detector that senses the lateral position of light source targets in its field of view. After extensive laboratory testing the engineering breadboard sensor system was installed and tested on a 30 degree segment of a 50-meter diameter, mesh surface, antenna model. Test results correlated well with the laboratory tests and indicated accuracies of approximately 0.59 arc seconds at 21 meters range. Test results are presented and recommendations given for sensor improvements.
Internal voltage control of hydrogen-oxygen fuel cells: Feasibility study
NASA Technical Reports Server (NTRS)
Prokopius, P. R.
1975-01-01
An experimental study was conducted to assess the feasibility of internal voltage regulation of fuel cell systems. Two methods were tested. In one, reactant partial pressure was used as the voltage control parameter and in the other reactant total pressure was used for control. Both techniques were breadboarded and tested on a single alkaline-electrolyte fuel cell. Both methods were found to be possible forms of regulation, however, of the two the total pressure technique would be more efficient, simpler to apply and would provide better transient characteristics.
Gamma ray spectroscopy with Arduino UNO
NASA Astrophysics Data System (ADS)
Lavelle, C. M.
2018-05-01
We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.
Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System
NASA Technical Reports Server (NTRS)
Veyo, S.E.
1997-01-01
This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military specification JP-8 and DF-2 removing the sulfur and reforming these liquid fuels to a methane rich gaseous fuel. Results of this program are documented in a companion report titled 'Final Report-Solid Oxide Fuel Cell/ Logistic Fuels Processor 27 kWe Power System'.
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1992-01-01
Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.
NASA Technical Reports Server (NTRS)
Muller, Matthew S.; Bauer, Clarence F.
1994-01-01
Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.
Laser Doppler technology applied to atmospheric environmental operating problems
NASA Technical Reports Server (NTRS)
Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.
1976-01-01
Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.
Development of a multiplexed bypass control system for aerospace batteries
NASA Technical Reports Server (NTRS)
Frank, H. A.
1977-01-01
A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.
Laser/lidar analysis and testing
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1994-01-01
Section 1 of this report details development of a model of the output pulse frequency spectrum of a pulsed transversely excited (TE) CO2 laser. In order to limit the computation time required, the model was designed around a generic laser pulse shape model. The use of such a procedure allows many possible laser configurations to be examined. The output pulse shape is combined with the calculated frequency chirp to produce the electric field of the output pulse which is then computationally mixed with a local oscillator field to produce the heterodyne beat signal that would fall on a detector. The power spectral density of this heterodyne signal is then calculated. Section 2 reports on a visit to the LAWS laser contractors to measure the performance of the laser breadboards. The intention was to acquire data using a digital oscilloscope so that it could be analyzed. Section 3 reports on a model developed to assess the power requirements of a 5J LAWS instrument on a Spot MKII platform in a polar orbit. The performance was assessed for three different latitude dependent sampling strategies.
Information management system study results. Volume 1: IMS study results
NASA Technical Reports Server (NTRS)
1971-01-01
The information management system (IMS) special emphasis task was performed as an adjunct to the modular space station study, with the objective of providing extended depth of analysis and design in selected key areas of the information management system. Specific objectives included: (1) in-depth studies of IMS requirements and design approaches; (2) design and fabricate breadboard hardware for demonstration and verification of design concepts; (3) provide a technological base to identify potential design problems and influence long range planning (4) develop hardware and techniques to permit long duration, low cost, manned space operations; (5) support SR&T areas where techniques or equipment are considered inadequate; and (6) permit an overall understanding of the IMS as an integrated component of the space station.
Regenerable Air Purification System for Gas-Phase Contaminant Control
NASA Technical Reports Server (NTRS)
Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)
2000-01-01
A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.
Two-color holography concept (T-CHI)
NASA Technical Reports Server (NTRS)
Vikram, C. S.; Caulfield, H. J.; Workman, G. L.; Trolinger, J. D.; Wood, C. P.; Clark, R. L.; Kathman, A. D.; Ruggiero, R. M.
1990-01-01
The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated.
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.
2003-01-01
The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.
NASA Technical Reports Server (NTRS)
Pepe, J. T.
1972-01-01
A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.
Two-dimensional photon-counting detector arrays based on microchannel array plates
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1975-01-01
The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.
Hormonal regulation of wheat growth during hydroponic culture
NASA Technical Reports Server (NTRS)
Wetherell, Donald
1988-01-01
Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.
Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission
NASA Astrophysics Data System (ADS)
Suzuki, Toshiyuki; Aoki, Takuya; Ogasawara, Toshio; Fujita, Kazuhisa
2017-07-01
In this study, the concept of a nonablative lightweight thermal protection system (NALT) were proposed for a Mars exploration mission currently under investigation in Japan. The NALT consists of a carbon/carbon (C/C) composite skin, insulator tiles, and a honeycomb sandwich panel. Basic thermal characteristics of the NALT were obtained by conducting heating tests in high-enthalpy facilities. Thermal conductivity values of the insulator tiles as well as the emissivity values of the C/C skin were measured to develop a numerical analysis code for predicting NALT's thermal performance in flight environments. Finally, a breadboard model of a 600-mm diameter NALT aeroshell was developed and qualified through vibration and thermal vacuum tests.
Advanced technology development for image gathering, coding, and processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1990-01-01
Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.
Noiseless coding for the magnetometer
NASA Technical Reports Server (NTRS)
Rice, Robert F.; Lee, Jun-Ji
1987-01-01
Future unmanned space missions will continue to seek a full understanding of magnetic fields throughout the solar system. Severely constrained data rates during certain portions of these missions could limit the possible science return. This publication investigates the application of universal noiseless coding techniques to more efficiently represent magnetometer data without any loss in data integrity. Performance results indicated that compression factors of 2:1 to 6:1 can be expected. Feasibility for general deep space application was demonstrated by implementing a microprocessor breadboard coder/decoder using the Intel 8086 processor. The Comet Rendezvous Asteroid Flyby mission will incorporate these techniques in a buffer feedback, rate-controlled configuration. The characteristics of this system are discussed.
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Cusick, Robert J.
1988-01-01
The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.
Novel large deployable antenna backing structure concepts for foldable reflectors
NASA Astrophysics Data System (ADS)
Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.
2013-12-01
This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.
Advanced very high resolution radiometer
NASA Technical Reports Server (NTRS)
1978-01-01
The program covered the design, construction, and test of a Breadboard Model, Engineering Model, Protoflight Model, Mechanical/Structural Model, and a Life Test Model. Special bench test and calibration equipment was also developed for use on the program. Initially, the instrument was to operate from a 906 n.mi. orbit and be thermally isolated from the spacecraft. The Breadboard Model and the Mechanical/Structural Model were designed and built to these requirements. The spacecraft altitude was changed to 450 n.mi., IFOVs and spectral characteristics were modified, and spacecraft interfaces were changed. The final spacecraft design provided a temperature-controlled Instrument Mounting Platform (IMP) to carry the AVHRR and other instruments. The design of the AVHRR was modified to these new requirements and the modifications were incorporated in the Engineering Model. The Protoflight Model and the Flight Models conform to this design.
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Mueller, Robert O.
1991-01-01
This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.
Micro-Detection System for Determination of the Biotic or Abiotic Origin of Amino Acids
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Betts, Bruce (Technical Monitor)
2002-01-01
The research involved the development of a breadboard version of a spacecraft based system for the detection of amino acid chirality (handedness) on solar system bodies. The design concept has three distinct components: a sublimation chamber for the release of amino acids from an acquired sample; a microchip based capillary electrophoresis (CE) chip for the separation of amino acids and their enantiomers; and a fluorescent based detection system. In addition, we have investigated the use of a microfluidics system for the extraction of amino acids in samples in which sublimation has proven to be problematic. This is a joint project carried out at the Scripps Institution of Oceanography (SIO), University of California at San Diego; the Jet Propulsion Laboratory (JPL), Pasadena; and the Department of Chemistry, University of California, Berkeley.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
NASA Technical Reports Server (NTRS)
1972-01-01
Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.
Engineering verification of the biomass production chamber
NASA Technical Reports Server (NTRS)
Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.
1992-01-01
The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.
Apollo experience report: Command and service module communications subsystem
NASA Technical Reports Server (NTRS)
Lattier, E. E., Jr.
1974-01-01
The development of spacecraft communications hardware from design to operation is described. Programs, requirements, specifications, and design approaches for a variety of functions (such as voice, telemetry, television, and antennas) are reviewed. Equipment environmental problems such as vibration, extreme temperature variation, and zero gravity are discussed. A review of the development of managerial techniques used in refining the roles of prime and subcontractors is included. The hardware test program is described in detail as it progressed from breadboard design to manned flight system evaluations. Finally, a series of actions is recommended to managers of similar projects to facilitate administration.
Expert systems for automated maintenance of a Mars oxygen production system
NASA Astrophysics Data System (ADS)
Huang, Jen-Kuang; Ho, Ming-Tsang; Ash, Robert L.
1992-08-01
Application of expert system concepts to a breadboard Mars oxygen processor unit have been studied and tested. The research was directed toward developing the methodology required to enable autonomous operation and control of these simple chemical processors at Mars. Failure detection and isolation was the key area of concern, and schemes using forward chaining, backward chaining, knowledge-based expert systems, and rule-based expert systems were examined. Tests and simulations were conducted that investigated self-health checkout, emergency shutdown, and fault detection, in addition to normal control activities. A dynamic system model was developed using the Bond-Graph technique. The dynamic model agreed well with tests involving sudden reductions in throughput. However, nonlinear effects were observed during tests that incorporated step function increases in flow variables. Computer simulations and experiments have demonstrated the feasibility of expert systems utilizing rule-based diagnosis and decision-making algorithms.
A Compact, Soft-Switching DC-DC Converter for Electric Propulsion
NASA Technical Reports Server (NTRS)
Button, Robert; Redilla, Jack; Ayyanar, Raja
2003-01-01
A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.
Compact Microwave Mercury Ion Clock for Space Applications
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tu, Meirong; Chung, Sang K.; MacNeal, Paul
2007-01-01
We review progress in developing a small Hg ion clock for space operation based on breadboard ion-clock physics package where Hg ions are shuttled between a quadrupole and a 16-pole rf trap. With this architecture we have demonstrated short-term stability approx.1-2x10(exp -13) at 1 second, averaging to 10-15 at 1 day. This development shows that H-maser quality stabilities can be produced in a small clock package, comparable in size to an ultra-stable quartz oscillator required or holding 1-2x10(exp -13) at 1 second. We have completed an ion clock physics package designed to withstand vibration of launch and are currently building a approx. 1 kg engineering model for test. We also discuss frequency steering software algorithms that simultaneously measure ion signal size and lamp light output, useful for long term operation and self-optimization of microwave power and return engineering data.
Phase-lock-loop application for fiber optic receiver
NASA Astrophysics Data System (ADS)
Ruggles, Stephen L.; Wills, Robert W.
1991-02-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
Environmental control system transducer development study
NASA Technical Reports Server (NTRS)
Brudnicki, M. J.
1973-01-01
A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.
Phase-lock-loop application for fiber optic receiver
NASA Technical Reports Server (NTRS)
Ruggles, Stephen L.; Wills, Robert W.
1991-01-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
Propulsion/flight control integration technology (PROFIT) design analysis status
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The propulsion flight control integration technology (PROFIT) program was designed to develop a flying testbed dedicated to controls research. The preliminary design, analysis, and feasibility studies conducted in support of the PROFIT program are reported. The PROFIT system was built around existing IPCS hardware. In order to achieve the desired system flexibility and capability, additional interfaces between the IPCS hardware and F-15 systems were required. The requirements for additions and modifications to the existing hardware were defined. Those interfaces involving the more significant changes were studied. The DCU memory expansion to 32K with flight qualified hardware was completed on a brassboard basis. The uplink interface breadboard and a brassboard of the central computer interface were also tested. Two preliminary designs and corresponding program plans are presented.
High speed bus technology development
NASA Astrophysics Data System (ADS)
Modrow, Marlan B.; Hatfield, Donald W.
1989-09-01
The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.
The 12 GHz mixer/local oscillator and parametric amplifier. [considering all solid state circuitry
NASA Technical Reports Server (NTRS)
Dickens, L. E.
1976-01-01
The results of the initial implementation of the proposed design, the design modifications, and limitations are presented. Also included are data on component parts of the breadboard amplifier and the converter.
Analog Ranging Modem Code Processor and Generator
DOT National Transportation Integrated Search
1974-05-01
The report details technical development efforts to implement an analog ranging modem using recently developed linear integrated circuits where possible. The breadboard hardware is capable of acquiring frequency and phase of a weak signal in a high n...
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Stirling cryocooler test results and design model verification
NASA Astrophysics Data System (ADS)
Shimko, Martin A.; Stacy, W. D.; McCormick, John A.
A long-life Stirling cycle cryocooler being developed for spaceborne applications is described. The results from tests on a preliminary breadboard version of the cryocooler used to demonstrate the feasibility of the technology and to validate the generator design code used in its development are presented. This machine achieved a cold-end temperature of 65 K while carrying a 1/2-W cooling load. The basic machine is a double-acting, flexure-bearing, split Stirling design with linear electromagnetic drives for the expander and compressors. Flat metal diaphragms replace pistons for sweeping and sealing the machine working volumes. The double-acting expander couples to a laminar-channel counterflow recuperative heat exchanger for regeneration. The PC-compatible design code developed for this design approach calculates regenerator loss, including heat transfer irreversibilities, pressure drop, and axial conduction in the regenerator walls. The code accurately predicted cooler performance and assisted in diagnosing breadboard machine flaws during shakedown and development testing.
Controlled ecological life-support system - Use of plants for human life-support in space
NASA Technical Reports Server (NTRS)
Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.
1992-01-01
Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Mathason, Brian; Storm, Mark
2017-08-01
Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.
Flight Model of the `Flying Laptop' OBC and Reconfiguration Unit
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Stratton, Sam; Butz, Pius; Cook, Barry; Walker, Paul; Uryu, Alexander; Lengowski, Michael; Roser, Hans-Peter
2012-08-01
As already published in papers at the DASIA conferences 2010 in Budapest [1] and 2011 in Malta [2], the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques, onboard software design and onboard computer components. The satellite has a launch mass of approx. 120kg. One of the main challenges was the development of an ultra compact and performing onboard computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based onboard software (OBSW) and CCSDS standard based ground/space communication. The developed architecture is based on 4 main elements (see [1, 2] and Figure 3) which are developed in cooperation with industrial partners:• the OBC core board based on the LEON3 FT architecture,• an I/O Board for all OBC digital interfaces to S/C equipment,• a CCSDS TC/TM decoder/encoder board,• reconfiguration unit being embedded in the satellite power control and distribution unit PCDU.In the meantime the EM / Breadboard units of the computer have been tested intensively including first HW/SW integration tests in a Satellite Testbench (see Figure 2). The FM HW elements from the co-authoring suppliers are under assembly in Stuttgart.
Recent progress in MEMS technology development for military applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Burgett, Sherrie J.
2001-08-01
The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.
Instrument pre-development activities for FLEX
NASA Astrophysics Data System (ADS)
Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.
2017-09-01
The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.
Mars aqueous chemistry experiment
NASA Technical Reports Server (NTRS)
Clark, Benton C.; Mason, Larry W.
1993-01-01
The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.
Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Finger, B. W.; Alazraki, M. P.
1997-01-01
The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.
Mars aqueous chemistry experiment
NASA Astrophysics Data System (ADS)
Clark, Benton C.; Mason, Larry W.
1993-06-01
The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.
Report on Cosmic Dust Capture Research and Development for the Exobiology Program
NASA Technical Reports Server (NTRS)
Nishioka, Kenji
1997-01-01
Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.
Nulling Stabilization in the Presence of Perturbation
NASA Astrophysics Data System (ADS)
Houairi, K.; Cassaing, F.; Le Duigou, J. M.; Barillot, M.; Coudé du Foresto, V.; Hénault, F.; Jacquinod, S.; Ollivier, M.; Reess, J.-M.; Sorrente, B.
2007-07-01
Nulling interferometry is one of the most promising methods to study habitable extrasolar systems. In this context, several projects have been proposed such as ALADDIN on ground or DARWIN and PEGASE in space. A first step towards these missions will be performed with a laboratory breadboard, named PERSEE, built by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS. Its main goals are the demonstration of a polychromatic null with a 10-4 rejection rate and a 10-5 stability despite the introduction of realistic perturbations, the study of the interfaces with the formation-flying spacecrafts and the joint operation of the cophasing system with the nuller. The broadboard integration should end in 2009, then PERSEE will be open to proposals from the scientific community.
Study of a High Voltage Ion Engine Power Supply
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.; Mayer, Eric
1996-01-01
A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.
DOE LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Cull, R. C.; Forestieri, A. F.
1978-01-01
The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.
Electrolyser and fuel cells, key elements for energy and life support
NASA Astrophysics Data System (ADS)
Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim
Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated experience gained from testing will be presented, complemented by an outlook on next development steps preparatory to the application of electrolyser and fuel cell technology in human and robotic exploration building blocks.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.
Submillimeter Planetary Atmospheric Chemistry Exploration Sounder
NASA Technical Reports Server (NTRS)
Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain
2013-01-01
Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.
NASA Technical Reports Server (NTRS)
Peterson, Thomas M.
2001-01-01
The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.
Adhesive Bonding for Optical Metrology Systems in Space Applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2015-05-01
Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.
What can in situ ion chromatography offer for Mars exploration?
Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C
2014-07-01
The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.
Design parameters for toroidal and bobbin magnetics. [conversion from English to metric units
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1974-01-01
The adoption by NASA of the metric system for dimensioning to replace long-used English units imposes a requirement on the U.S. transformer designer to convert from the familiar units to the less familiar metric equivalents. Material is presented to assist in that transition in the field of transformer design and fabrication. The conversion data makes it possible for the designer to obtain a fast and close approximation of significant parameters such as size, weight, and temperature rise. Nomographs are included to provide a close approximation for breadboarding purposes. For greater convenience, derivations of some of the parameters are also presented.
The Italian Optical Telecommunications Payload: Breadboard Results
NASA Astrophysics Data System (ADS)
Bonino, L.; Caramia, M.; Catalano, V.; Ferrero, V.; Mata Calvo, R.
2008-08-01
The interest in satellite optical communication link has grown in the last years driven by the increasing demand in data downlink for scientific, planetary exploration and earth observation missions; in addition particular interest is also demonstrated by military market. In this context, the Italian Space Agency (ASI) is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. The Paper intends to present the overall program plan and it is particularly focused on the activities performed during the Phase A2, relevant to stratospheric mission design and test campaign with an open field demonstrator of free space communications.
Impact-Actuated Digging Tool for Lunar Excavation
NASA Technical Reports Server (NTRS)
Wilson, Jak; Chu, Philip; Craft, Jack; Zacny, Kris; Santoro, Chris
2013-01-01
NASA s plans for a lunar outpost require extensive excavation. The Lunar Surface Systems Project Office projects that thousands of tons of lunar soil will need to be moved. Conventional excavators dig through soil by brute force, and depend upon their substantial weight to react to the forces generated. This approach will not be feasible on the Moon for two reasons: (1) gravity is 1/6th that on Earth, which means that a kg on the Moon will supply 1/6 the down force that it does on Earth, and (2) transportation costs (at the time of this reporting) of $50K to $100K per kg make massive excavators economically unattractive. A percussive excavation system was developed for use in vacuum or nearvacuum environments. It reduces the down force needed for excavation by an order of magnitude by using percussion to assist in soil penetration and digging. The novelty of this excavator is that it incorporates a percussive mechanism suited to sustained operation in a vacuum environment. A percussive digger breadboard was designed, built, and successfully tested under both ambient and vacuum conditions. The breadboard was run in vacuum to more than 2..times the lifetime of the Apollo Lunar Surface Drill, throughout which the mechanism performed and held up well. The percussive digger was demonstrated to reduce the force necessary for digging in lunar soil simulant by an order of magnitude, providing reductions as high as 45:1. This is an enabling technology for lunar site preparation and ISRU (In Situ Resource Utilization) mining activities. At transportation costs of $50K to $100K per kg, reducing digging forces by an order of magnitude translates into billions of dollars saved by not launching heavier systems to accomplish excavation tasks necessary to the establishment of a lunar outpost. Applications on the lunar surface include excavation for habitats, construction of roads, landing pads, berms, foundations, habitat shielding, and ISRU.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.
1992-01-01
The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.
The Digital Data Acquisition System for the Russian VLBI Network of New Generation
NASA Technical Reports Server (NTRS)
Fedotov, Leonid; Nosov, Eugeny; Grenkov, Sergey; Marshalov, Dmitry
2010-01-01
The system consists of several identical channels of 1024 MHz bandwidth each. In each channel, the RF band is frequency-translated to the intermediate frequency range 1 - 2 GHz. Each channel consists of two parts: the digitizer and Mark 5C recorder. The digitizer is placed on the antenna close to the corresponding Low-Noise Amplifier output and consists of the analog frequency converter, ADC, and a device for digital processing of the signals using FPGA. In the digitizer the subdigitization on frequency of 2048 MHz is used. For producing narrow-band channels and to interface with existing data acquisition systems, the polyphase filtering with FPGA can be used. Digital signals are re-quantized to 2-bits in the FPGA and are transferred to an input of Mark 5C through a fiber line. The breadboard model of the digitizer is being tested, and the data acquisition system is being designed.
Phased-array-fed antenna configuration study, volume 2
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.
1983-01-01
Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.
Miss-distance indicator for tank main guns
NASA Astrophysics Data System (ADS)
Bornstein, Jonathan A.; Hillis, David B.
1996-06-01
Tank main gun systems must possess extremely high levels of accuracy to perform successfully in battle. Under some circumstances, the first round fired in an engagement may miss the intended target, and it becomes necessary to rapidly correct fire. A breadboard automatic miss-distance indicator system was previously developed to assist in this process. The system, which would be mounted on a 'wingman' tank, consists of a charged-coupled device (CCD) camera and computer-based image-processing system, coupled with a separate infrared sensor to detect muzzle flash. For the system to be successfully employed with current generation tanks, it must be reliable, be relatively low cost, and respond rapidly maintaining current firing rates. Recently, the original indicator system was developed further in an effort to assist in achieving these goals. Efforts have focused primarily upon enhanced image-processing algorithms, both to improve system reliability and to reduce processing requirements. Intelligent application of newly refined trajectory models has permitted examination of reduced areas of interest and enhanced rejection of false alarms, significantly improving system performance.
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.
Experimental and simulation study results of an Adaptive Video Guidance System /AVGS/
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Knickerbocker, R. L.
1975-01-01
Studies relating to stellar-body exploration programs have pointed out the need for an adaptive guidance scheme capable of providing automatic real-time guidance and site selection capability. For the case of a planetary lander, without such guidance, targeting is limited to what are believed to be generally benign areas in order to ensure a reasonable landing-success probability. Typically, the Mars Viking Lander will be jeopardized by obstacles exceeding 22 centimers in diameter. The benefits of on-board navigation and real-time selection of a landing site and obstacle avoidance have been demonstrated by the Apollo lunar landings, in which man performed the surface sensing and steering functions. Therefore, an Adaptive Video Guidance System (AVGS) has been developed, bread-boarded, and flown on a six-degree-of-freedom simulator.
The precision segmented reflectors: Moderate mission figure control subsystem
NASA Technical Reports Server (NTRS)
Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.
1991-01-01
A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.
Advanced very high resolution radiometer
NASA Technical Reports Server (NTRS)
1976-01-01
The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.
The development of an electrochemical technique for in situ calibrating of combustible gas detectors
NASA Technical Reports Server (NTRS)
Shumar, J. W.; Lantz, J. B.; Schubert, F. H.
1976-01-01
A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.
NASA Technical Reports Server (NTRS)
Sullivan, R.
1988-01-01
The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.
VNIR spectroscopy of Mars Analogues with the ExoMars-Ma_Miss instrument .
NASA Astrophysics Data System (ADS)
De Angelis, S.; De Sanctis, M. C.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Capria, M. T.; Federico, C.; Boccaccini, A.; Capaccioni, F.; Giardino, M.; Cerroni, P.; Palomba, E.; Piccioni, G.
The ExoMars 2018 mission will investigate the Martian surface environment with the aim of searching for eventual present or past signs of life, and to obtain a characterization of Martian soil and subsoil. The investigation of the near-surface environment and of the shallow subsurface with complementary techniques, will provide insights on the chemical and mineralogical composition, material grain size, the litotypes, the stratigraphy: these information will help us to understand the geologic processes that characterized the history of the Martian crust. The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument \\citep{coradini01} is a miniaturized visible and near-infrared spectrometer, integrated in the ExoMars Pasteur Rover Drill: it will acquire spectra of the borehole wall performed by the Drill, down to a depth up to two meters. Spectroscopic tests have been performed with the laboratory model (breadboard) on spectral targets and rock samples; furtherly, an activity of VNIR reflectance spectroscopy of Mars analogues has been begun with the breadboard to build a spectral library.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Suspending DNA origami between four gold nanodots
Morales, Piero; Wang, Liqian; Krissanaprasit, Abhichart; ...
2015-11-17
Here, connecting DNA nanostructures to metallic nanostructures at specific positions is a relatively rarely addressed issue in nanotechnology. [1-5] It is of high importance for application of the origami structures as breadboards for molecular electronics and nanosensing arrays since the metallic nanostructures may potentially serve as electrodes.
NASA Technical Reports Server (NTRS)
Schulz, J. R.; Anselmi, R. T.
1976-01-01
The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.
NASA Technical Reports Server (NTRS)
Gerrish, Harold; Schmidt, George R. (Technical Monitor)
2000-01-01
The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.
NASA Astrophysics Data System (ADS)
Zhou, Ling; Wang, Chunhua; Zhang, Xin; Yao, Wei
By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter b. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.
Propellant Mass Gauging: Database of Vehicle Applications and Research and Development Studies
NASA Technical Reports Server (NTRS)
Dodge, Franklin T.
2008-01-01
Gauging the mass of propellants in a tank in low gravity is not a straightforward task because of the uncertainty of the liquid configuration in the tank and the possibility of there being more than one ullage bubble. Several concepts for such a low-gravity gauging system have been proposed, and breadboard or flight-like versions have been tested in normal gravity or even in low gravity, but at present, a flight-proven reliable gauging system is not available. NASA desired a database of the gauging techniques used in current and past vehicles during ascent or under settled conditions, and during short coasting (unpowered) periods, for both cryogenic and storable propellants. Past and current research and development efforts on gauging systems that are believed to be applicable in low-gravity conditions were also desired. This report documents the results of that survey.
Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven
2006-11-01
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less
CVT/PCS phase 1 integrated testing
NASA Technical Reports Server (NTRS)
Mcbrayer, R. O.; Steadman, J. D.
1973-01-01
Five breadboard experiments representing three Sortie Lab experiment disciplines were installed in a payload carrier simulator. A description of the experiments and the payload carrier simulator was provided. An assessment of the experiment interface with the simulator and an assessment of the simulator experiment support systems were presented. The results indicate that a hardware integrator for each experiment is essential; a crew chief, or mission specialist, for systems management and experimenter liaison is a vital function; a payload specialist is a practical concept for experiment integration and operation; an integration fixture for a complex experiment is required to efficiently integrate the experiment and carrier; simultaneous experiment utilization of simulator systems caused unexpected problems in meeting individual experiment requirements; experimenter traffic inside the dual-floor simulator did not hamper experiment operations; and the requirement for zero-g operation will provide a significant design challenge for some experiments.
Design and breadboarding activities of the second-generation Global imager (SGLI) on GCOM-C
NASA Astrophysics Data System (ADS)
Okamura, Yoshihiko; Tanaka, Kazuhiro; Amano, Takahiro; Hiramatsu, Masaru; Shiratama, Koichi
2017-11-01
The Global Change Observation Mission (GCOM) is the next generation earth observation project of Japan Aerospace Exploration Agency (JAXA). GCOM concept will take over the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of global climate change. The GCOM observing system consists of two series of medium size satellites: GCOM-W (Water) and GCOM-C (Climate). The Second-generation Global Imager (SGLI) on GCOM-C is a multi-band imaging radiometer with 19 spectral bands in the wavelength range of near-UV to thermal infrared. SGLI will provide high-accuracy measurements of Ocean, Atmosphere, Land and Cryosphere. These data will be utilized for studies to understand the global climate change, especially human activity influence on earth environments. SGLI is a suite of two radiometers called Visible and Near Infrared Radiometer (VNR) and Infrared Scanner (IRS). VNR is a pushbroom-type radiometer with 13 spectral bands in 380nm to 865nm range. While having quite wide swath (1150km), instantaneous field of view (IFOV) of most bands is set to 250m comparing to GLI's 1km requirement. Unique observation function of the VNR is along-track +/-45deg tilting and polarization observation for 670nm and 865nm bands mainly to improve aerosol retrieval accuracy. IRS is a wiskbroom-type infrared radiometer that has 6 bands in 1μm to 12μm range. Swath and IFOV are 1400km and 250m to 1km, respectively. This paper describes design and breadboarding activities of the SGLI instrument.
Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research
NASA Technical Reports Server (NTRS)
Monaco, Lisa
2003-01-01
Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.
Piezoelectric actuators for active optics
NASA Astrophysics Data System (ADS)
Le Letty, R.; Barillot, F.; Fabbro, H.; Guay, Ph.; Cadiergues, L.
2017-11-01
Piezoelectric actuators find their first applications in active space optics. The purpose of this paper is to describe the state of the art and some applications. Piezo actuators display attractive features for space applications, such as precise positioning, unlubricated, non magnetic and compact features, and low power consumption. However, piezo mechanisms cannot be considered separately from their driving and control electronic. Piezo actuators, such as Amplified Piezo Actuators or Parallel Pre-stressed Actuators, initially designed under CNES contracts, shall find their first space flight applications in optics on the PHARAO Laser bench: • fine pointing of the laser beams, • laser cavity tuning. Breadboard mechanisms based on piezo actuators have also been tested for refocusing purposes. Other applications includes the improvement of the CCD resolution through an oversampling technique, such as in the SOHO/LASCO instrument, fast optical shutter operation, optical filter in combination with a Fabry - Perot interferometer, such as in future LIDAR for earth observation. The first applications shall be described and an overview of the future potential applications shall be given.
Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology
NASA Technical Reports Server (NTRS)
Bjorklund, Roy A.
1983-01-01
An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.
Development of optical systems. [holographic technique for monitoring crystal growth
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1995-01-01
Several key aspects of multi-color holography and laser speckle technique to study holographic reconstructions are considered in the report. Holographic fringe contrast in two-color holography in the presence of a fluid cell in the object beam is discussed in detail. A specific example of triglycine sulfate crystal growth is also considered. A breadboard design using fiber optics and diode lasers for three-color holography for fluid experiments is presented. A possible role of multi-color holography in various new applications is summarized. Finally, the use of a a laser speckle technique is demonstrated for the study of holographic reconstructions. The demonstration is performed using a Spacelab 3 hologram.
MA_MISS and terrestrial analogues for Mars
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; De Angelis, S.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Boccaccini, A.; Battistelli, E.; Mugnolo, R.; MA MISS Team
2012-09-01
The MA_MISS instrument (Mars Multispectral Imager for Subsurface Studies) is a VIS-NIR spectrometer devoted to study the Martian subsoil within the ExoMars mission. This miniaturized spectrometer is integrated in drilling system of the ExoMars Pasteur Rover, and will investigate the Martian subsoil down to 2 m, in the spectral range 0.4 - 2.2 μm [1,2]. It will provide important information regarding the composition and mineralogy of the Martian subsoil, whose materials are expected to be less altered by erosion and other exogenous processes than surface rocks. With a view to doing laboratory spectroscopic measurements with the instrument breadboard, we performed preliminary laboratory measurements on Mars analogues using a spectrophotometer coupled with a goniometer.
Holographic Alignment Breadboard
1982-05-01
collimating lens adjustments (Figure 4). Focutsing error can be deleted by adjusting the collimating lens group along its optical axis. A lateral adjustment...approximately equal through a suitable choice of the ’ : ouvoomo u IASEI # IEXPANDE~.R q mm WI I Tllrr NEUIM FigreIS.HOABOptem PLheATic ’rltNCOLLIMATIN LOS1 q U
Bridge Circuits: One Topic in the Modular Course in Electronics Instrumentation.
ERIC Educational Resources Information Center
Aldridge, Bill G.; Stringer, Gene A.
This learning module is intended to illustrate the functioning and uses of bridge circuits. The discussion and laboratory procedures suggested in the module presume familiarity with basic concepts of electronics such as voltage, current, resistance, capacitance, inductance, phase, and knowledge of such skills as breadboarding circuits from…
NASA Astrophysics Data System (ADS)
Nijkerk, David; van Venrooy, Bart; Van Doorn, Peter; Henselmans, Rens; Draaisma, Folkert; Hoogstrate, André
2017-11-01
In this paper, we discuss the two-mirror pushbroom telescope for TROPOMI. Using freeform optics, it has unprecedented resolution. The complete cycle of freeform optical design, analysis, manufacturing, metrology and functional test on a breadboard setup is described, focusing on the specific complexities concerning freeforms. The TROPOMI flight telescope will be manufactured in summer 2012.
The development and testing of a regenerable CO2 and humidity control system for Shuttle
NASA Technical Reports Server (NTRS)
Boehm, A. M.
1977-01-01
A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.
Integration and Utilization of Nuclear Systems on the Moon and Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon
2006-01-20
Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less
Microbolometer characterization with the electronics prototype of the IRCAM for the JEM-EUSO mission
NASA Astrophysics Data System (ADS)
Martín, Yolanda; Joven, Enrique; Reyes, Marcos; Licandro, Javier; Maroto, Oscar; Díez-Merino, Laura; Tomas, Albert; Carbonell, Jordi; Morales de los Ríos, J. A.; del Peral, Luis; Rodríguez-Frías, M. D.
2014-08-01
JEM-EUSO is a space observatory that will be attached to the Japanese module of the International Space Station (ISS) to observe the UV photon tracks produced by Ultra High Energy Cosmic Rays (UHECR) interacting with atmospheric nuclei. The observatory comprises an Atmospheric Monitoring System (AMS) to gather data about the status of the atmosphere, including an infrared camera (IRCAM) for cloud coverage and cloud top height detection. This paper describes the design and characterization tests of IRCAM, which is the responsibility of the Spanish JEM-EUSO Consortium. The core of IRCAM is a 640x480 microbolometer array, the ULIS 04171, sensitive to radiation in the range 7 to 14 microns. The microbolometer array has been tested using the Front End Electronics Prototype (FEEP). This custom designed electronics corresponds to the Breadboard Model, a design built to verify the camera requirements in the laboratory. The FEEP controls the configuration of the microbolometer, digitizes the detector output, sends data to the Instrument Control Unit (ICU), and controls the microbolometer temperature to a 10 mK stability. Furthermore, the FEEP allows IRCAM to preprocess images by the addition of a powerful FPGA. This prototype has been characterized in the laboratories of Instituto de Astrofisica de Canarias (IAC). Main results, including detector response as a function of the scene temperature, NETD and Non-Uniformity Correction (NUC) are shown. Results about thermal resolution meet the system requirements with a NETD lower than 1K including the narrow band filters which allow us to retrieve the clouds temperature using stereovision algorithms.
SEDHI: a new generation of detection electronics for earth observation satellites
NASA Astrophysics Data System (ADS)
Dantes, Didier; Neveu, Claude; Biffi, Jean-Marc; Devilliers, Christophe; Andre, Serge
2017-11-01
Future earth observation optical systems will be more and more demanding in terms of ground sampling distance, swath width, number of spectral bands, duty cycle. Existing architectures of focal planes and video processing electronics are hardly compatible with these new requirements: electronic functions are split in several units, and video processing is limited to frequencies around 5 MHz in order to fulfil the radiometric requirements expected for high performance image quality systems. This frequency limitation induces a high number of video chains operated in parallel to process the huge amount of pixels at focal plane output, and leads to unacceptable mass and power consumption budgets. Furthermore, splitting the detection electronics functions into several units (at least one for the focal plane and proximity electronics, and one for the video processing functions) does not optimise the production costs : specific development efforts must be performed on critical analogue electronics at each equipment level and operations of assembly, integration and tests are duplicated at equipment and subsystem levels. Alcatel Space Industries has proposed to CNES a new concept of highly integrated detection electronics (SEDHI), and is developing for CNES a breadboard which will allow to confirm its potentialities. This paper presents the trade-off study which have been performed before selection of this new concept and summarises the main advantages and drawbacks of each possible architecture. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies : ASIC for phase shift of detector clocks, ASIC for video processing, hybrids, microchip module... The adaptability to a large amount of missions and optical instruments is also discussed.
NASA Astrophysics Data System (ADS)
Leijtens, Johan; Vliegenthart, Willem; Lampridis, Dimitris; Vacanti, Giuseppe; Monna, Bert; Bechthum, Elbert; Hagenaars, Koen; van der Heide, Erik; Kruijff, Michiel; van Breukelen, Eddie; LeMair, Anita
2017-11-01
In the frame of the Dutch Prequalification for ESA Programs(PEP), as part of the efforts to design an integrated optical attitude control subsytem (IOPACS), a consortium of TNO and several SME's in the Netherlands have been working on a novel type of startracker called MABS (Multiple Aperture Baffled Startracker). The system comprises a single cast metal housing with four reflective optical telescopes which use only structural internal baffling. Inherent to the design are a very high stability and excellent co-alignment between the apertures, a significant decrease in system size and low recurring production cost. The concept is a radical change from more common multiple startracker setups. The presentation will concentrate on the validity of the concept, the predicted performance and benefits for space applications, the produced breadboard and measured performances as well as the costing aspects.
Cost analysis of oxygen recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1973-01-01
The design and development of equipment for flight use in earth-orbital programs, when optimally approached cost effectively, proceed through the following logical progression: (1) bench testing of breadboard designs, (2) the fabrication and evaluation of prototype equipment, (3) redesign to meet flight-imposed requirements, and (4) qualification and testing of a flight-ready system. Each of these steps is intended to produce the basic design information necessary to progress to the next step. The cost of each step is normally substantially less than that of the following step. An evaluation of the cost elements involved in each of the steps and their impact on total program cost are presented. Cost analyses of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystem, Sabatier and Bosch, and two water electrolysis subsystems, the solid polymer electrolyte and the circulating KOH electrolyte are described.
Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4
NASA Technical Reports Server (NTRS)
Curran, Dan; Lueck, Dale E.
1995-01-01
Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.
NASA Technical Reports Server (NTRS)
Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong
2015-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. This report describes the research and development effort for this prototype integrated UWB tracking and CO2 sensing system. The remainder of the report is organized as follows. In Section II, the TOA tracking methodology is introduced and the 3D tracking algorithm is derived. The simulation results are discussed in Section III. In Section VI, prototype system design and field tests are discussed. Some concluding remarks and future works are presented in Section V.
Development Of The Drexler Optical-Card Reader/Writer System
NASA Astrophysics Data System (ADS)
Pierce, Gerald A.
1988-06-01
An optical-card reader/writer optical and electronic breadboard system, developed by SRI International under contract to Drexler Technology, is described. The optical card, which is the same size as a credit card, can contain more than 2 megabytes of digital user data, which may also include preformatted tracking information and preformatted data. The data layout on the card is similar to that on a floppy disk, with each track containing a header and clocking information. The design of this optical reader/writer system for optical cards is explained. Design of the optical card system entails a number of unique issues: To accommodate both laser-recorded and mass-duplicated information, the system must be compatible with preencoded information, which implies a larger-than-normal spot size (5 gm) and a detection system that can read both types of optical patterns. Cost-reduction considerations led to selection of a birefringent protection layer, which dictated a nonstandard optical system. The non-polarization-sensitive optics use an off-axis approach to detection. An LED illumination system makes it possible to read multiple tracks.
Teaching Discrete and Programmable Logic Design Techniques Using a Single Laboratory Board
ERIC Educational Resources Information Center
Debiec, P.; Byczuk, M.
2011-01-01
Programmable logic devices (PLDs) are used at many universities in introductory digital logic laboratories, where kits containing a single high-capacity PLD replace "standard" sets containing breadboards, wires, and small- or medium-scale integration (SSI/MSI) chips. From the pedagogical point of view, two problems arise in these…
COSPAS/SARSAT 406-MHz emergency beacon digital controller
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1988-01-01
The digital control portion of a low-cost 406-MHz COSPAS/SARSAT emergency beacon has been designed and breadboarded at the NASA Lewis Research Center. This report discusses the requirements and design tradeoffs of the digital controller and describes the hardware and software design, which is available only to United States citizens and companies.
A Curriculum Package for Implementing Instruction in Electricity Fundamentals/House Wiring.
ERIC Educational Resources Information Center
Murphy, Brian P.
This curriculum guide is designed for instructors of secondary industrial arts, vocational, and apprenticeship programs. The material is presented in two sections. Section I provides step-by-step instructions on how to present basic electrical circuit concepts with the use of a simply-made breadboard. Included in this section is the following…
Superconducting Meissner Effect Bearings for Cryogenic Turbomachines
1991-02-27
mnft turboexpanders used in spaceborne cryocoolers for surveillance sensors. A bearingi breadboard was designed, fabricated, and tested to a... Turboexpander ................................ 8 4.4 Task 7 - Report and Manage ................................... 10 5 SUMMARY AND CONCLUSIONS...fabrication techniques. These studies were performed for a I watt, 10 K cryocooler, where gas bearings for the coldest turboexpander were replaced with
Design and development of a brushless, direct drive solar array reorientation system
NASA Technical Reports Server (NTRS)
Jessee, R. D.
1972-01-01
This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1994-01-01
Several key aspects of multi-color holography and some non-conventional ways to study the holographic reconstructions are considered. The error analysis of three-color holography is considered in detail with particular example of a typical triglycine sulfate crystal growth situation. For the numerical analysis of the fringe patterns, a new algorithm is introduced with experimental verification using sugar-water solution. The role of the phase difference among component holograms is also critically considered with examples of several two- and three-color situations. The status of experimentation on two-color holography and fabrication of a small breadboard system is also reported. Finally, some successful demonstrations of unconventional ways to study holographic reconstructions are described. These methods are deflectometry and confocal optical processing using some Spacelab III holograms.
Multiplexer/demultiplexer flexibility enhancement program
NASA Technical Reports Server (NTRS)
1978-01-01
This final report summarizes the accomplishments of the NASA/JSC MDM Flexibility Enhancement Program, Contract NAS9-15359 as carried out by Sperry Flight Systems from April through December 1977. Included are discussions of major statement of work tasks and the results, conclusions and recommended actions. All tasks called out in the amended SOW were carried out. Significant development tasks which were completed included the following: (1) Development, breadboard and test of a Pulse Output 28-volt Module. (2) Development and test of a 32-channel DC Analog Input (DCIN) Differential Module. (3) Development and test of a sequence memory module using an M2708 EPROM which can be programmed in the unit. (4) Development and test of a radiator top cover for a radiation-cooled Flexible MDM.
METIS: the visible and UV coronagraph for solar orbiter
NASA Astrophysics Data System (ADS)
Romoli, M.; Landini, F.; Antonucci, E.; Andretta, V.; Berlicki, A.; Fineschi, S.; Moses, J. D.; Naletto, G.; Nicolosi, P.; Nicolini, G.; Spadaro, D.; Teriaca, L.; Baccani, C.; Focardi, M.; Pancrazzi, M.; Pucci, S.; Abbo, L.; Bemporad, A.; Capobianco, G.; Massone, G.; Telloni, D.; Magli, E.; Da Deppo, V.; Frassetto, F.; Pelizzo, M. G.; Poletto, L.; Uslenghi, M.; Vives, S.; Malvezzi, M.
2017-11-01
METIS coronagraph is designed to observe the solar corona with an annular field of view from 1.5 to 2.9 degrees in the visible broadband (580-640 nm) and in the UV HI Lyman-alpha, during the Sun close approaching and high latitude tilting orbit of Solar Orbiter. The big challenge for a coronagraph is the stray light rejection. In this paper after a description of the present METIS optical design, the stray light rejection design is presented in detail together with METIS off-pointing strategies throughout the mission. Data shown in this paper derive from the optimization of the optical design performed with Zemax ray tracing and from laboratory breadboards of the occultation system and of the polarimeter.
Design, development and manufacture of a breadboard radio frequency mass gauging system
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.
Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.
2000-01-01
Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.
Calibration strategy for the COROT photometry
NASA Astrophysics Data System (ADS)
Buey, J.-T.; Auvergne, M.; Lapeyrere, V.; Boumier, P.
2004-01-01
Like Eddington, the COROT photometer will measure very small fluctutions on a large signal: the amplitudes of planetary transits and solar-like oscillations are expressed in ppm (parts per million). For such an instrument, specific calibration has to be done during the different phases of the development of the instrument and of all the subsystems. Two main things have to be taken into account: - the calibration during the study phase; - the calibration of the sub-systems and building of numerical models. The first item allows us to clearly understand all the perturbations (internal and external) and to identify their relative impacts on the expected signal (by numerical models including expected values of perturbations and sensitivity of the instrument). Methods and a schedule for the calibration process can also be introduced, in good agreement with the development plan of the instrument. The second item is more related to the measurement of the sensitivity of the instrument and all its sub-systems. As the instrument is designed to be as stable as possible, we have to mix measurements (with larger fluctuations of parameters than expected) and numerical models. Some typical reasons for that are: - there are many parameters to introduce in the measurements and results from some models (bread-board for example) may be extrapolated to the flight model; - larger fluctuations than expected are used (to measure precisely the sensitivity) and numerical models give the real value of noise with the expected fluctuations. - Characteristics of sub-systems may be measured and models used to give the sensitivity of the whole system built with them, as end-to-end measurements may be impossible (time, budget, physical limitations). Also, house-keeping measurements have to be set up on the critical parts of the sub-systems: measurements on thermal probes, power supply, pointing, etc. All these house-keeping data are used during ground calibration and during the flight, so that correct correlation between signal and house-keeping can be achieved.