Science.gov

Sample records for power system voltage

  1. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  2. Probabilistic voltage security for large scale power systems

    NASA Astrophysics Data System (ADS)

    Poshtan, Majid

    2000-10-01

    Stability is one of the most important problems in power system operation and control. Voltage instability is one type of power system instability that occurs when the system operates close to its limits. Progressive voltage instability, which is also referred to as Voltage Collapse, results in loss of voltage at certain nodes (buses) in the system. Voltage collapse, a slowly occurring phenomena leading to loss of voltage at specific parts of an electric utility, has been observed in the USA, Europe, Japan, Canada, and other places in the world during the past decade. Voltage collapse typically occurs on power systems which are heavily loaded, faulted and/or have reactive power shortages. There are several power system's parameter changes known to contribute to voltage collapse. The most important contributors to voltage instability are: increasing load, generators or SVC reaching reactive power limits, action of tap-changing transformers, line tripping, and generator outages. The differences between voltage collapse and lack of classical transient stability is that in voltage collapse we focus on loads and voltage magnitudes whereas in classical transient stability the focus is on generators' dynamics and voltage angles. Also voltage collapse often includes longer time scale dynamics and includes the effects of continuous changes such as load increases in addition to discrete events such as line outages. Two conventional methods to analyze voltage collapse are P-V and V-Q curves, and modal analyses. Both methods are deterministic and do not encounter any probability for the contingencies causing the voltage collapse. The purpose of this investigation is to identify probabilistic indices to assess the steady-state voltage stability by considering random failures and their dependency in a large-scale power system. The research mainly continues the previous research completed at Tulane University by Dr. J. Bian and Professor P. Rastgoufard and will complement it by

  3. Complete low power controller for high voltage power systems

    SciTech Connect

    Sumner, R.; Blanar, G.

    1997-12-31

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components.

  4. Local Dynamic Reactive Power for Correction of System Voltage Problems

    SciTech Connect

    Kueck, John D; Rizy, D Tom; Li, Fangxing; Xu, Yan; Li, Huijuan; Adhikari, Sarina; Irminger, Philip

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  5. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  6. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  7. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  8. Optimal Placement of Unified Power Flow Controllers to Improve Dynamic Voltage Stability Using Power System Variable Based Voltage Stability Indices

    PubMed Central

    Albatsh, Fadi M.; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M. A.

    2015-01-01

    This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches. PMID:25874560

  9. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices.

    PubMed

    Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A

    2015-01-01

    This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.

  10. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  11. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  12. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  13. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    NASA Astrophysics Data System (ADS)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  14. Statistical Evaluation of Voltage Variation of Power Distribution System with Clustered Home-Cogeneration Systems

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo

    This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.

  15. Basic Characteristics of New Developed Higher-Voltage Direct-Current Power-Feeding Prototype System

    NASA Astrophysics Data System (ADS)

    Babasaki, Tadatoshi; Tanaka, Toshimitsu; Tanaka, Toru; Nozaki, Yousuke; Aoki, Tadahito; Kurokawa, Fujio

    High efficiency power feeding systems are effective solutions for reducing the ICT power consumption with reducing power consumption of the ICT equipment and cooling systems. A higher voltage direct current (HVDC) power feeding system prototype was produced. This system is composed of a rectifier equipment, power distribution unit, batteries, and the ICT equipment. The configuration is similar to a -48V DC power supply system. The output of the rectifier equipment is 100kW, and the output voltage is 401.4V. This paper present the configuration of the HVDC power feeding system and discuss its basic characteristics in the prototype system.

  16. Effect of semiconductor-controlled voltage injection by UPFC and ULTC on power system stability

    NASA Astrophysics Data System (ADS)

    Alavian Mehr, Alireza

    Commercial availability of various power semiconductor switches indicates proliferation of power electronic based apparatus in utility power systems. Furthermore, existing power system apparatus, e.g. mechanical phase shifters and mechanical tap changing transformers, will be retrofitted to utilize higher switching speed of semiconductor switches. A group of these apparatus, i.e., unified power flow controller (UPFC), static phase shifter (SPS), under-load tap-changing (ULTC) transformer and static series capacitor (SSC), perform their respective functions by means of injecting series controlled voltages in power systems. This thesis demonstrates that fast series voltage injection, for dynamic power flow regulation, can result in voltage dynamics and even voltage instability. This indicates that fast voltage injection by means of power electronic based apparatus can couple voltage stability and angle stability phenomena. To investigate this coupling phenomena, the voltage dependency of the load must be adequately represented in the load model. The reported studies in this work are based on representing the load by a combination of static and dynamic loads. This thesis primarily investigates impacts of UPFC and semiconductor-controlled ULTC on voltage stability and angle stability phenomena. An eigen analysis approach is used for the studies. The eigen analysis results are validated by digital time-domain simulations using a transient stability software. Both the eigen analysis and the transient stability software tools are tailored to account for angle and voltage stability phenomena.

  17. Generator Voltage Building-up Field Test for 500kV Transformer Energization for Black-start Power System

    NASA Astrophysics Data System (ADS)

    Izena, Atsushi; Kihara, Hidemi; Shimojo, Toshikazu; Hirayama, Kaiichirou; Furukawa, Nobuhiko

    Considering the risk of blackout, Kyushu electric power company has studied about power system restoration at blackout start. Power system at blackout start is so small that over voltage which does not rise in normal power system is able to rise, because of transient phenomena and saturation of transformer which are caused by voltage application. Power system transformers should be applied its voltage as low as possible, ideally from zero, to prevent over-voltage problem. This paper reports field test results of voltage application by a voltage building-up procedure to a 500kV-1000MVA power system transformer through a transmission line.

  18. Cooperative Voltage Control Method by Power Factor Control of PV Systems and LRT

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shoji; Kanemoto, Noriaki; Taoka, Hisao; Matsuki, Junya; Hayashi, Yasuhiro

    Recently, the number of system interconnection of the renewable energy sources (RES) such as the photovoltaic generation (PV) and wind power generation is increasing drastically, and there is in danger of changing the voltages in a distribution system by the precipitous output variation of RESs. In this study, the authors propose one voltage control method of the distribution system by the power factor control of plural PV systems in consideration of cooperation with the load ratio control transformer (LRT) of laggard control response installed beforehand in the distribution system. In the proposed method, the slow voltage variation is controlled by LRT, and the steep voltage variation uncontrollable by LRT is controlled by plural PV systems, as a result, all the node voltages are controllable within the proper limits. In order to verify the validity of the proposed method, the numerical calculations are carried out by using an analytical model of distribution system which interconnected PV systems.

  19. High-voltage power supply system for detecting equipment of DSS experiment at JINR Nuclotron

    NASA Astrophysics Data System (ADS)

    Piyadin, S. M.; Ladygin, V. P.; Pilyar, A. V.; Reznikov, S. G.; Janek, M.

    2017-01-01

    The eight-channel high-voltage power supply system based on using the Wenzel Elektronik N1130 module is described. The characteristics of 8DAC-12 and 8ADC-14 types control modules of CAMAC standard designed for high-voltage systems are presented. This system was successfully used to provide the power supply of scintillation detectors in the experiments on the study of the structure of light nuclei at JINR Nuclotron.

  20. A high voltage electrical power system for low Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Bush, J. R., Jr.

    1984-01-01

    The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

  1. Coordinated Voltage Control of Transformer Taps on account of Hierarchical Structure in Power System

    NASA Astrophysics Data System (ADS)

    Nakachi, Yoshiki; Kato, Satoshi; Ukai, Hiroyuki

    Participation of distributed generators (DG), such as wind turbines, co-generation system etc., is natural trend from ecological point of view and will increase more and more. The outputs of these DGs mainly depend on weather condition but don't correspond to the changes of electrical load demand necessarily. On the other hand, due to the deregulation of electric power market, the power flow in power system will uncertainly vary with several power transactions. Thus, complex power flow by DGs or transactions will cause the voltage deviation. It will be difficult to sustain the voltage quality by using the conventional voltage/reactive power control in near future. In this paper, in order to avoid such a voltage deviation and to decrease the frequency of transformer tap actions, the coordinated voltage control scheme of transformer taps on account of hierarchical structure in power system is proposed. In the proposed scheme, integral of voltage deviation at each layer bus is applied to decide the timing of each transformer tap action. It is confirmed by some numerical simulations that the proposed scheme is able to respond to every conditions on voltage deviation.

  2. Common station system for voltage and reactive power regulation at the Mosenergo TETs-27 heating and electric power plant

    SciTech Connect

    Krasnova, M. E.

    2009-05-15

    The system for common station regulation of the voltage and reactive power at the Mosenergo TETs-27 heating and electric power plant is described briefly. Features of the algorithms for this system, which uses programs and instrumentation from the automatic control system for the electrical equipment in the 450 MW power generation unit No. 3, are examined.

  3. Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control

    NASA Astrophysics Data System (ADS)

    Omole, Adedamola

    Photovoltaic (PV) DGs can be optimized to provide reactive power support to the grid, although this feature is currently rarely utilized as most DG systems are designed to operate with unity power factor and supply real power only to the grid. In this work, the voltage stability of a power system embedded with PV DG is examined in the context of the high reactive power requirement after a voltage sag or fault. A real-time dynamic multi-function power controller that enables renewable source PV DGs to provide the reactive power support necessary to maintain the voltage stability of the microgrid, and consequently, the wider power system is proposed. The loadability limit necessary to maintain the voltage stability of an interconnected microgrid is determined by using bifurcation analysis to test for the singularity of the network Jacobian and load differential equations with and without the contribution of the DG. The maximum and minimum real and reactive power support permissible from the DG is obtained from the loadability limit and used as the limiting factors in controlling the real and reactive power contribution from the PV source. The designed controller regulates the voltage output based on instantaneous power theory at the point-of-common coupling (PCC) while the reactive power supply is controlled by means of the power factor and reactive current droop method. The control method is implemented in a modified IEEE 13-bus test feeder system using PSCADRTM power system analysis software and is applied to the model of a Tampa ElectricRTM PV installation at Lowry Park Zoo in Tampa, FL. This dissertation accomplishes the systematic analysis of the voltage impact of a PV DG-embedded power distribution system. The method employed in this work bases the contribution of the PV resource on the voltage stability margins of the microgrid rather than the commonly used loss-of-load probability (LOLP) and effective load-carrying capability (ELCC) measures. The results of

  4. Insulation Requirements of High-Voltage Power Systems in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Qureshi, A. Haq; Dayton, James A., Jr.

    1995-01-01

    The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.

  5. Feasibility Implementation of Voltage-Current Waveform Telemetry System in Power Delivery System

    NASA Astrophysics Data System (ADS)

    Furukawa, Tatsuya; Akagi, Keita; Fukumoto, Hisao; Itoh, Hideaki; Wakuya, Hiroshi; Hirata, Kenji; Ohchi, Masashi

    The electric power is indispensable for modern life. However, there is a problem of harmonic disturbance when the harmonic power runs into electronic devices. To overcome the problem and realize a stable supply of the electric power is an important issue. In this study, we have developed a voltage-current waveform telemetry system for the remote measurement of the harmonics in the power delivery lines. The system consists of sensors, preamplifiers, a single board computer, and power collectors. Improvements are made on all of these components except the sensors. The power collector is a coil that can be placed around the same power line that we measure. We have designed the power collector by a finite element method(FEM) so that it can provide enough electricity for the computer to work properly. Thus, no other power source such as a battery except the secondary rechargeable battery for the recovery is necessary at the measurement place. The preamplifier in the new system is a single-supply differential amplifier circuit, and the single board computer has an inexpensive SH-3 CPU. Through experiments, we have confirmed that the power collector can provide sufficient electricity and that the new system can successfully measure the waveforms and the harmonics in power delivery systems.

  6. Voltage correction power flow

    SciTech Connect

    Rajicic, D.; Ackovski, R.; Taleski, R. . Dept. of Electrical Engineering)

    1994-04-01

    A method for power flow solution of weakly meshed distribution and transmission networks is presented. It is based on oriented ordering of network elements. That allows an efficient construction of the loop impedance matrix and rational organization of the processes such as: power summation (backward sweep), current summation (backward sweep) and node voltage calculation (forward sweep). The first step of the algorithm is calculation of node voltages on the radial part of the network. The second step is calculation of the breakpoint currents. Then, the procedure continues with the first step, which is preceded by voltage correction. It is illustrated that using voltage correction approach, the iterative process of weakly meshed network voltage calculation is faster and more reliable.

  7. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  8. The voltage profile improvement using static var compensator (SVC) in power system transmission

    NASA Astrophysics Data System (ADS)

    Ramdan, G. M.; Mulyadi, Y.; Hasbullah

    2016-04-01

    In transmission system named ‘Subsistem Bandung Selatan dan New Ujungberung’ there are the voltage drop which relatively high and the voltage profile at the receiving ends below 0.95 p.u. Therefore, this research proposed a method to improve the voltage profile in the transmission system using one of Flexible Alternating Current Transmission System (FACTS) technology which is Static Var Compensator (SVC) and ‘Subsistem Bandung Selatan and New Ujungberung’ as the object. This research aims to get the voltage profile in ‘Subsistem Bandung Selatan dan New Ujungberung’ before and after connected to SVC and to set optimal location and rating of SVC to maintain the voltage profile at the system that has desire range (0.95 p.u - 1.05 p.u). To get the result in accordance with these objects, Newton -Raphson power flow solution is applied to the system. The result of Newton- Raphson power flow solution of the system shows the voltage profile before connecting to SVC are averagely 140.95 kV or 0.94 p.u while after connecting to SVC are 145.28 kV or 0.97 p.u. The SVC installation is connected to ‘Bandung Utara I’ as the weakest bus, and the SVC rating is -250 Mvar to 300 Mvar.

  9. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment receiving power from ungrounded delta systems. 77.703 Section 77.703 Mineral Resources MINE SAFETY... stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by...

  10. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment receiving power from ungrounded delta systems. 77.703 Section 77.703 Mineral Resources MINE SAFETY... stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by...

  11. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment receiving power from ungrounded delta systems. 77.703 Section 77.703 Mineral Resources MINE SAFETY... stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by...

  12. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment receiving power from ungrounded delta systems. 77.703 Section 77.703 Mineral Resources MINE SAFETY... stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by...

  13. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  14. Fast voltage stability assessment and reinforcement in an interconnected power system

    NASA Astrophysics Data System (ADS)

    Hsiao, Wen-Ta

    1998-12-01

    It is believed that voltage stability analysis will be more difficult due to the full utilization of transmission systems and the growth of inter-utility power transfer. An online voltage stability analyzing system which can be incorporated into the EMS to deal with the threats of suddenly arising voltage collapses is presented. Operating margin prediction, voltage stability assessment and reinforcement are three major functions. Two predicting methods are proposed to calculate the operating margin according to current operating condition and the anticipative system state. A fast risk indicator based on the saddle-node bifurcation theory is designed to predict the proximity of a system to voltage collapse. A novel CPF method which can trace the power flow solution path through the nose point without notorious numerical difficulties is presented. Speed is the advantage of former method, while accuracy is the important feature of latter one. Voltage stability assessment is required to predict steady-state conditions of a system following a large number of anticipated transmission branch or generator outages. An efficient and simple method based on voltage sensitivity changing rates is proposed for quickly identify the weak buses in a large-scale system. An effective contingency selection function relying on search algorithms built into power flow solutions is designed to filter out most of harmless contingencies for system operators who are working with rapidly changing load/generation patterns and a wide variety of operating conditions. A contingency evaluation function having the ability to deal with real-time numerous contingencies in a very short period of time is utilized to find high-severity contingencies. Var compensation and load shedding are two remedial measures of reinforcement function. Suitable var compensation scheme has three contributions: extending operating margin to avoid voltage collapses, fully utilizing the transmission infrastructure to earn

  15. Assessing Short-Term Voltage Stability of Electric Power Systems by a Hierarchical Intelligent System.

    PubMed

    Xu, Yan; Zhang, Rui; Zhao, Junhua; Dong, Zhao Yang; Wang, Dianhui; Yang, Hongming; Wong, Kit Po

    2016-08-01

    In the smart grid paradigm, growing integration of large-scale intermittent renewable energies has introduced significant uncertainties to the operations of an electric power system. This makes real-time dynamic security assessment (DSA) a necessity to enable enhanced situational-awareness against the risk of blackouts. Conventional DSA methods are mainly based on the time-domain simulation, which are insufficiently fast and knowledge-poor. In recent years, the intelligent system (IS) strategy has been identified as a promising approach to facilitate real-time DSA. While previous works mainly concentrate on the rotor angle stability, this paper focuses on another yet increasingly important dynamic insecurity phenomenon-the short-term voltage instability, which involves fast and complex load dynamics. The problem is modeled as a classification subproblem for transient voltage collapse and a prediction subproblem for unacceptable dynamic voltage deviation. A hierarchical IS is developed to address the two subproblems sequentially. The IS is based on ensemble learning of random-weights neural networks and is implemented in an offline training, a real-time application, and an online updating pattern. The simulation results on the New England 39-bus system verify its superiority in both learning speed and accuracy over some state-of-the-art learning algorithms.

  16. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  17. USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS

    SciTech Connect

    Makhmalbaf, Atefe; Augenbroe , Godfried

    2015-12-09

    Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the power performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the

  18. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  19. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  20. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  1. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  2. Voltage Regulators for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  3. Performance potential of low-voltage power MOSFET's in liquid-nitrogen-cooled power systems

    NASA Astrophysics Data System (ADS)

    Shenai, Krishna

    1991-04-01

    The performance potential of a power MOSFET in cryogenic power electronic systems is discussed. Based on a simple analysis and the measured performance of scaled silicided 30-V power MOSFETs, it is shown that an order of magnitude improvement in on-state resistance can be achieved by cooling to liquid-nitrogen temperature. This performance improvement results in an order of magnitude improvement in optimum power conversion frequency for a given die size, a factor of 2 reduction in die size at a given conversion frequency, and a factor of 3 reduction in total power loss for switched-mode power converters operated at 77 K.

  4. Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2003-01-01

    This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.

  5. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  6. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect

    PubMed Central

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems. PMID:27832098

  7. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  8. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  9. A sensitivity approach to the sizing of insulated power cables in low and medium voltage electrical power distribution systems

    SciTech Connect

    Hiranandani, A.K.

    1989-07-01

    The sizing of insulated power cables for use in electrical power distribution systems is based on definite engineering criteria. Cable or conductor size for a given current loading (ampacity) is the cross-sectional area or size of the current carrying portion of the cable, namely the conductor expressed in AWG (American Wire Gauge) or KCM (Kilocircular mils). The most commonly used voltage classes for electrical power distribution in raceways and cable trays are: (a) Low Voltage-600 volts and below. (b) Medium-Voltage-over 600 volts. The paper develops cable sizing criteria using sensitivity techniques. High sensitivity parameters that influence cable size can be determined in each voltage class and design criteria formulated; to apply to both a.c. and d.c. systems. Copper and aluminum conductors with thermosetting (EPR or XLPE) or thermoplastic insulations are compared for use in the above systems with regard to their electrical characteristics only. It must be realized that cost might also play an important role in the selection of conductor material. It is assumed that the cables under consideration meet the mechanical requirements for installation.

  10. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  11. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment receiving power from ungrounded delta systems. 75.704 Section 75.704 Mineral Resources MINE SAFETY... power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by methods approved by an authorized representative...

  12. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment receiving power from ungrounded delta systems. 75.704 Section 75.704 Mineral Resources MINE SAFETY... power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by methods approved by an authorized representative...

  13. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment receiving power from ungrounded delta systems. 75.704 Section 75.704 Mineral Resources MINE SAFETY... power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by methods approved by an authorized representative...

  14. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment receiving power from ungrounded delta systems. 75.704 Section 75.704 Mineral Resources MINE SAFETY... power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by methods approved by an authorized representative...

  15. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment receiving power from ungrounded delta systems. 75.704 Section 75.704 Mineral Resources MINE SAFETY... power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving power from ungrounded delta systems shall be grounded by methods approved by an authorized representative...

  16. Distributed diagnostic system for tokamaks high-voltage power supply section

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Juszczyk, B.; Zienkiewicz, P.

    2015-09-01

    This paper describes recently developed system for diagnostics of high-voltage power supply section of tokamaks'. Such system is necessary for real-time monitoring of high-voltage power supply section with ability to perform automatic and fast decisions related to protection system. The system is distributed, allowing data acquisition of components installed away from the systems' controller. Remote communication is based on fiber links. Main processing units are FPGA circuits. The system can pass-through analog and digital signals from local to remote or remote to local locations. In the main FPGA unit, independent user developed algorithms can be implemented. The system structure is based on the uTCA standard. The micro TCA crate controller is implemented as PC unit in AMC standard. Communication is based on gigabit transceivers providing low-latency of data transmission. The system is working with specialized diagnostics and control software. The graphical user interface is provided for the end user. Several tests were made in term of data latency, proper signal transmission and system control.

  17. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation.

    PubMed

    Koofigar, Hamid Reza

    2016-01-01

    The problem of maximum power point tracking (MPPT) in photovoltaic (PV) systems, despite the model uncertainties and the variations in environmental circumstances, is addressed. Introducing a mathematical description, an adaptive sliding mode control (ASMC) algorithm is first developed. Unlike many previous investigations, the output voltage is not required to be sensed and the upper bound of system uncertainties and the variations of irradiance and temperature are not required to be known. Estimating the output voltage by an update law, an adaptive-based H∞ tracking algorithm is then developed for the case the perturbations are energy-bounded. The stability analysis is presented for the proposed tracking control schemes, based on the Lyapunov stability theorem. From a comparison viewpoint, some numerical and experimental studies are also presented and discussed.

  18. Assessment of research directions for high-voltage direct-current power systems. Final report

    SciTech Connect

    Long, W F

    1982-09-01

    High voltage direct current (HVDC) power transmission continues to be an emerging technology nearly thirty years after its introduction into modern power systems. To date its use has been restricted to either specialized applications having identifiable economic advantages (e.g., breakeven distance) or, rarely, applications where decoupling is needed. Only recently have the operational advantages (e.g., power modulation) of HVDC been realized on operating systems. A research project whose objective was to identify hardware developments and, where appropriate, system applications which can exemplify cost and operational advantages of integrated ac/dc power systems is discussed. The three principal tasks undertaken were: assessment of equipment developments; quantification of operational advantages; and interaction with system planners. Interest in HVDC power transmission has increased markedly over the past several years, and many new systems are now being investigated. The dissemination of information about HVDC, including specifically the symposium undertaken for Task 3, is a critical factor in fostering an understanding of this important adjunct to ac power transmission.

  19. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  20. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  1. A Decentralized Multivariable Robust Adaptive Voltage and Speed Regulator for Large-Scale Power Systems

    NASA Astrophysics Data System (ADS)

    Okou, Francis A.; Akhrif, Ouassima; Dessaint, Louis A.; Bouchard, Derrick

    2013-05-01

    This papter introduces a decentralized multivariable robust adaptive voltage and frequency regulator to ensure the stability of large-scale interconnnected generators. Interconnection parameters (i.e. load, line and transormer parameters) are assumed to be unknown. The proposed design approach requires the reformulation of conventiaonal power system models into a multivariable model with generator terminal voltages as state variables, and excitation and turbine valve inputs as control signals. This model, while suitable for the application of modern control methods, introduces problems with regards to current design techniques for large-scale systems. Interconnection terms, which are treated as perturbations, do not meet the common matching condition assumption. A new adaptive method for a certain class of large-scale systems is therefore introduces that does not require the matching condition. The proposed controller consists of nonlinear inputs that cancel some nonlinearities of the model. Auxiliary controls with linear and nonlinear components are used to stabilize the system. They compensate unknown parametes of the model by updating both the nonlinear component gains and excitation parameters. The adaptation algorithms involve the sigma-modification approach for auxiliary control gains, and the projection approach for excitation parameters to prevent estimation drift. The computation of the matrix-gain of the controller linear component requires the resolution of an algebraic Riccati equation and helps to solve the perturbation-mismatching problem. A realistic power system is used to assess the proposed controller performance. The results show that both stability and transient performance are considerably improved following a severe contingency.

  2. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  3. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.703 Grounding frames of... high-voltage equipment receiving power from ungrounded delta systems shall be grounded by...

  4. Load-Following Voltage Controller Design for a Static Space Nuclear Power System

    SciTech Connect

    Parlos, Alexander G.; Onbasioglou, Fetiye O.; Metzger, John D.

    2000-10-15

    The reliability of static space nuclear power systems (SNPSs) could be improved through the use of backup devices in addition to shunt regulators, as currently proposed for load following. Shunt regulator failure leading to reactor shutdown is possible, as is the possible need to deliver somewhat higher power level to the load than originally expected. A backup system is proposed in SNPSs to eliminate the possibility of a single-point failure in the shunt regulators and to increase the overall system power delivery capability despite changing mission needs and component characteristics. The objective of this paper is to demonstrate the feasibility of such a backup device for voltage regulation in static SNPSs that is capable of overcoming system variations resulting from operation at different power levels. A dynamic compensator is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery method. The resulting compensators are gain scheduled using the SNPS electric power as the scheduling variable, resulting in a nonlinear compensator. The performance of the gain-scheduled compensator is investigated extensively using an SNPS simulator. The simulations demonstrate the effects of the fuel temperature reactivity coefficient variations on the load-following capabilities of the SNPS. Robustness analysis results demonstrate that the proposed controller exhibits significant operational flexibility, and it can be considered for long-term space mission requiring significant levels of autonomy.

  5. Leveraging the LEDA high voltage power supply systems for the LANSCE refurbishment project

    SciTech Connect

    Bradley Iii, Joseph Thomas; Rees, Daniel E; Roybal, William T; Young, Karen A

    2008-01-01

    The LANSCE Refurbishment Project (LANSCE-R) will revitalize the LANSCE accelerator infrastructure. Much of the equipment has been in use for over 39 years and is approaching the end of its design lifetime. As obsolescence issues make like-for-like replacements increasingly more expensive, modern systems with lower costs become a reasonable alternative. As part of the LANSCE-R project, four of the seven HV power supplies for the 805 MHz RF klystrons will be replaced. The present and future requirements for these power supplies influence the selection of replacement options. Details of the HV power supply replacement requirements and the different replacement options will be discussed. One option is to use four 95 kV, 21 A DC power supplies originally installed nearby as part of the Low Energy Demonstration Accelerator (LEDA) project. Significant material and labor cost savings can be achieved by leaving these supplies installed where they are and building a HV transport system to bring high voltage power from the existing LEDA facility to the LANSCE facility. The different replacement options will be compared based on material and labor costs as offset by long-term energy savings.

  6. Voltage profile program for the Kennedy Space Center electric power distribution system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  7. Improved Energy Management System for Low-Voltage, Low-Power Energy Harvesting Sources

    NASA Astrophysics Data System (ADS)

    Newell, D.; Duffy, M.

    2016-11-01

    This paper focuses on improving the energy conversion process for low-voltage energy harvester powered wireless sensors by optimising the conversion stages for pulsed sensor operation. The proposed circuit has been designed to operate efficiently with both a low-voltage low-power energy harvester source and a low-power pulsed load. This ensures that continuous conversion losses are kept to a minimum and power is only delivered to the sensor when required. This has shown an increase in energy delivered to a sensor of up to 10% versus that of the best existing solution.

  8. Field testing, modelling and analysis of ferroresonance in a high-voltage power system

    NASA Astrophysics Data System (ADS)

    Jacobson, David Allan Nils

    2000-11-01

    Catastrophic equipment failures continue to occur today due to ferroresonance even though this phenomenon has been extensively studied over the past ninety years. This thesis is concerned with the tasks of defining where ferroresonance problems can exist in a high voltage power system, of determining methods for displaying safety margins between nonferroresonant and ferroresonant operating regions and improving upon existing ferroresonance simulation techniques. Several different ferroresonant circuits have been modelled and compared with field measurements taken on the Manitoba Hydro 230-kV power system or compared with laboratory measurements including: a de-energized transformer connected to the grading capacitance of an open circuit breaker, a transformer-terminated doublecircuit transmission line and a coupling capacitor voltage transformer. In a high voltage power system, the most prevalent ferroresonance circuit occurs between a de-energized transformer and the grading capacitor of an open circuit breaker. Experimental work has shown that losses in a practical transformer are much larger during ferroresonance oscillation modes than predicted by conventional modelling techniques. A simple switched eddy-current loss resistor is found able to model the losses during subharmonic and fundamental frequency ferroresonance in a laboratory transformer. A major contribution of this work is a new method of visualizing the margin between nonferroresonant and ferroresonant states in a transformer/grading capacitor circuit has been developed. A general set of averaged equations is derived that permit the analysis of an nth order polynomial approximation of the magnetization curve. The location of the saddle points and slope of the stable manifold through the saddle points can be determined for a particular transformer under study. The Limacon of Pascal is found to be a good approximation to the geometric shape of the basin of attraction of the period-1 ferroresonant

  9. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  10. Working group report on advanced high-voltage high-power and energy-storage space systems

    NASA Technical Reports Server (NTRS)

    Cohen, H. A.; Cooke, D. L.; Evans, R. W.; Hastings, D.; Jongeward, G.; Laframboise, J. G.; Mahaffey, D.; Mcintyre, B.; Pfizer, K. A.; Purvis, C.

    1986-01-01

    Space systems in the future will probably include high-voltage, high-power energy-storage and -production systems. Two such technologies are high-voltage ac and dc systems and high-power electrodynamic tethers. The working group identified several plasma interaction phenomena that will occur in the operation of these power systems. The working group felt that building an understanding of these critical interaction issues meant that several gaps in our knowledge had to be filled, and that certain aspects of dc power systems have become fairly well understood. Examples of these current collection are in quiescent plasmas and snap over effects. However, high-voltage dc and almost all ac phenomena are, at best, inadequately understood. In addition, there is major uncertainty in the knowledge of coupling between plasmas and large scale current flows in space plasmas. These gaps in the knowledge are addressed.

  11. Effect of Distributed Photovoltaic Generation on the Voltage Magnitude in a Self-Contained Power Supply System

    NASA Astrophysics Data System (ADS)

    Lukutin, B. V.; Shandarova, E. B.; Makarova, A. F.; Shvartsman, I. B.

    2016-04-01

    A promising way to increase the technical and economic characteristics of standalone power supply systems is to incorporate renewable energy installations in their structure. This saves fuel and extends the operational life of diesel power stations. The most common option is a hybrid system with photovoltaic power stations incorporated into the local network of the diesel power station. This paper deals with the dependence of the deflection voltage and power losses in the electric power transmission line on the graphs of electrical loads, the parameters of elements of the power supply system, connection points and the capacity of distributed photovoltaic power stations. Research has been carried out on the common low-voltage power supply systems of the radial type (0.4 kV) with an installed capacity of up to 100 kW. The studies have been conducted by simulating the operating modes of hybrid power systems of various configurations. As a result of these studies recommendations to reduce losses and voltage variations in the network by selecting the power and photovoltaic power connection points have been put forward.

  12. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  13. Voltage collapse in complex power grids.

    PubMed

    Simpson-Porco, John W; Dörfler, Florian; Bullo, Francesco

    2016-02-18

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins.

  14. Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study.

    PubMed

    Tavana, Mohammad Reza; Khooban, Mohammad-Hassan; Niknam, Taher

    2017-01-01

    Static synchronous compensator (STATCOM) provides the means to improve quality and reliability of a power system as it has the functional capability to handle dynamic disturbances, such as transient stability and power oscillation damping as well as to providing voltage regulation. In this paper, a robust adaptive PI-based optimal fuzzy control strategy is proposed to control a STATCOM used in distribution systems. The proposed intelligent strategy is based on a combination of a new General Type-II Fuzzy Logic (GT2FL) with a simple heuristic algorithm named Teaching Learning Based Optimization (TLBO) Algorithm. The proposed framework optimally tunes parameters of a Proportional-Integral (PI) controller which, similar to most of other researchers regarding control of STATCOM, are in charge of controlling the device. The proposed controller guaranties robustness and stability against uncertainties caused by external disturbances or ever-changing nature of the power systems. The TLBO optimizes the parameters of the controller as well as the input and output membership functions. To validate the efficiency of the proposed controller, the obtained simulation results are compared with those of the two most recent researches applied in this field, namely, conventional Proportional Integral (PI) controller and Optimal Fuzzy PI (OFPI) controller. Results demonstrate the successfulness and effectiveness of the proposed online-TLBO General Type-2 Fuzzy PI (OGT2FPI) controller and its superiority over conventional approaches.

  15. Improved Programmable High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Rutberg, Arthur

    1994-01-01

    Improved dc-to-dc converter functions as programmable high-voltage power supply with low-power-dissipation voltage regulator on high-voltage side. Design of power supply overcomes deficiencies of older designs. Voltage regulation with low power dissipation provided on high-voltage side.

  16. Photovoltaic Impact Assessment of Smart Inverter Volt-VAR Control on Distribution System Conservation Voltage Reduction and Power Quality

    SciTech Connect

    Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta; Baggu, Murali; Nguyen, Andu; Walinga, Sarah; McCarty, Michael; Bell, Frances

    2016-12-01

    This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology to implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.

  17. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  18. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  19. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  1. High voltage power transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    Design considerations, fabrication procedures, and methods of evaluation for high-voltage power-transistor development are discussed. Technique improvements such as controlling the electric field at the surface and perserving lifetimes in the collector region which have advanced the state of the art in high-voltage transistors are discussed. These improvements can be applied directly to the development of 1200 volt, 200 ampere transistors.

  2. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  3. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOEpatents

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  4. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  5. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  6. AN ASSESSMENT OF HIGH-VOLTAGE DC ELECTRICAL POWER IN AIRCRAFT ELECTRICAL SYSTEMS.

    DTIC Science & Technology

    If the presently installed three-phase ac transmission system on aircraft were replaced by a higher voltage dc ( HVDC ) transmission using a ground...from one- to two-thirds of the total electrical system weight. HVDC may have some disadvantages such as higher short-circuit currents, some increase in

  7. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2016-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.

  8. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  9. Voltage scheduling for low power/energy

    NASA Astrophysics Data System (ADS)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned

  10. Low-voltage and low-power circuit design for mixed analog/digital systems in portable equipment

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Akira

    1994-04-01

    This paper describes low-voltage and low-power (LV/LP) circuit design for both analog LSI's and digital LSI's which are used in mixed analog/digital systems in portable equipment. We review some LV/LP circuits used in digital LSI's, such as general logic gate, DSP, and DRAM, and others used in analog LSI's, such as operational amplifiers, video-signal processing circuits, A/D and D/A converters, filters, and RF circuits, along with a wide range of items used in recently developed LSI's. Since analog circuits have fundamental difficulties for reducing the operating voltage and the power consumption, in spite of recent progress in LV/LP circuit techniques, these difficulties will be a major issue for decreasing the total power consumption of some mixed analog/digital systems used in portable equipment.

  11. Nonlinear contingency analysis methodologies for determining transfer capability of large-scale power systems with voltage collapse constraints

    NASA Astrophysics Data System (ADS)

    Chatterjee, Renuka Gonella

    2000-10-01

    Reliable delivery of electric power is a major concern in both regulated and deregulated energy markets. Power transfers are limited due to voltage limit violations, thermal limits on transmission lines and instability. Voltage collapse is a catastrophic instability leading to cascaded tripping of network and generation equipment eventually causing blackouts. Most importantly, contingencies can trigger voltage collapse. The traditional tool for determining the distance to collapse is the repeated power flow technique. Power flow takes about 3 minutes for a case with over 18,000 buses. On an average it takes about 10 power flow solutions to determine the distance to collapse requiring 30 minutes of computation time. An attractive alternative is continuation, which takes approximately 15 minutes to compute the entire trajectory and the exact distance to collapse. Using a continuation method to compute the distance to collapse for 1336 contingencies would take about 14 days. Thus faster methods of contingency analysis for voltage collapse are required for planning and operating studies. Three new methodologies, lambda/MVA sensitivity, Nonlinear sensitivity and the 2n+1 method are presented for fast and accurate voltage collapse contingency analysis. Linear sensitivity techniques with admittance parameterization give poor distance to collapse predictions for large admittance branches. A new lambda/MVA sensitivity technique with branch MVA parameterization was developed to correct this error. The lambda/MVA algorithm can estimate 6689 single branch outage contingency bifurcation points of a 3493 bus power system with less than 3% relative error, except for two branches within 7%, in less than 4 minutes on a Pentium Pro 180 MHz PC. To facilitate analysis of multi-terminal branch outages and generator contingencies, the Nonlinear sensitivity method was developed. This method can rank 1336 multi-terminal contingencies of a 18,000 bus case with a speedup of 112 compared to

  12. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  13. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  14. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  15. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  16. Control voltage and power fluctuations when connecting wind farms

    SciTech Connect

    Berinde, Ioan Bălan, Horia Oros, Teodora Susana

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  17. Study of static reactive power compensators for high-voltage power systems. Final report, May 12, 1981

    SciTech Connect

    Byerly, R.T.; Bennon, R.J.; Taylor, E.R. Jr.; Poznaniak, D.T.

    1981-05-12

    A general study of the application of static VAR compensators (SVC's) to high-voltage transmission systems has been performed. Considerable emphasis has been placed on improvements to synchronous stability, and it is shown that SVC's can provide significant benefits in terms of damping for unstable modes of oscillation and increases in transient stability limits. This report includes descriptions of static VAR compensators, technical and economic comparisons of different compensators, compensator models for system studies, comprehensive study procedures, study results for two small-scale systems, and guidelines for SVC application.

  18. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  19. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    NASA Astrophysics Data System (ADS)

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  20. Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system

    NASA Astrophysics Data System (ADS)

    Chen, L.; Tang, Y. J.; Shi, J.; Chen, N.; Song, M.; Cheng, S. J.; Hu, Y.; Chen, X. S.

    2009-10-01

    We have proposed a voltage compensation type active superconducting fault current limiter (SFCL). In this paper, the influence of the SFCL on the transient stability of power system is investigated. For the typical one-machine infinite-bus system, the power-angle characteristics of generator with SFCL are studied in different working conditions, and the transient physical process is analyzed. Using MATLAB SIMULINK, the power-angle swing curves are simulated under different current-limiting modes, fault types and fault clearance times. The results show that the proposed SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time under mode 1, compared with mode 2 and mode 3 having few effects on enhancing the transient stability.

  1. Application of voltage oriented control technique in a fully renewable, wind powered, autonomous system with storage capabilities

    NASA Astrophysics Data System (ADS)

    Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.

    2017-02-01

    The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.

  2. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  3. Solid State Remote Power Controllers for high voltage DC distribution systems

    NASA Technical Reports Server (NTRS)

    Billings, W. W.; Sundberg, G. R.

    1977-01-01

    Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.

  4. Charging a Battery-Powered Device with a Fiber-Optically Connected Photonic Power System for Achieving High-Voltage Isolation

    SciTech Connect

    Lizon, David C; Gioria, Jack G; Dale, Gregory E; Snyder, Hans R

    2008-01-01

    This paper describes the development and testing of a system to provide isolated power to the cathode-subsystem electronics of an x-ray tube. These components are located at the cathode potential of several hundred kilovolts, requiring a supply of power isolated from this high voltage. In this design a fiber-optically connected photonic power system (PPS) is used to recharge a lithium-ion battery pack, which will subsequently supply power to the cathode-subsystem electronics. The suitability of the commercially available JDSU PPS for this application is evaluated. The output of the ppe converter is characterized. The technical aspects of its use for charging a variety of Li-Ion batteries are discussed. Battery charge protection requirements and safety concerns are also addressed.

  5. Analysis of System Wide Distortion in an Integrated Power System Utilizing a High Voltage DC Bus and Silicon Carbide Power Devices

    DTIC Science & Technology

    2007-06-01

    concentrated on the power supplied to a propulsion motor driven by an inverter with simulated silicon carbide switches. Theoretically, silicon ... carbide switches have the advantage of being able to withstand a very large blocking voltage and carry very large forward currents. Silicon carbide switches...are also very efficient due to their quick rise and fall times. Since silicon carbide switches can withstand high voltage differentials and switch

  6. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  7. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  8. Feasibility of AN Ecrh System for Jet:. High Voltage Power Supplies Requirements and Proposed Structure

    NASA Astrophysics Data System (ADS)

    Braune, H.; Giruzzi, G.; Hay, J.; Khilar, P.; Lennholm, M.; Moreira, L.; Parkin, A.; Vadgama, A.

    2011-02-01

    The future JET programme, after the installation of the ITER-like wall, will be mainly focused on the consolidation of the physics basis of the three main ITER scenarios. These scenarios will make substantial use of Electron Cyclotron (EC) waves, for heating as well as for control of both the MHD activity and the current density profile. Therefore, a programme for preparation, validation and optimization of the ITER scenarios in present tokamaks would strongly benefit from an ECRH/ECCD system. A study has been conducted to evaluate the feasibility of installing an ECRH system on the JET tokamak. An important intention of the study was to investigate the feasibility to utilise some unused conventional NBI - power supplies for the ECRH project.

  9. Reactive power management and voltage control in deregulated power markets

    NASA Astrophysics Data System (ADS)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  10. LHCb calorimeters high voltage system

    NASA Astrophysics Data System (ADS)

    Gilitsky, Yu.; Golutvin, A.; Konoplyannikov, A.; Lefrancois, J.; Perret, P.; Schopper, A.; Soldatov, M.; Yakimchuk, V.

    2007-02-01

    The calorimeter system in LHCb aims to identify electrons, photons and hadrons. All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600-00-M64 for Scintillator-Pad/Preshower detectors. The calorimeter high voltage (HV) system is based on a Cockroft Walton (CW) voltage converter and a control board connected to the Experiment Control System (ECS) by serial bus. The base of each photomultiplier tube (PMT) is built with a high voltage converter and constructed on an individual printed circuit board, using compact surface mount components. The base is attached directly to the PMT. There are no HV cables in the system. A Field Programmable Gate Array (FPGA) is used on the control board as an interface between the ECS and the 200 control channels. The FPGA includes also additional functionalities allowing automated monitoring and ramp up of the high voltage values. This paper describes the HV system architecture, some technical details of the electronics implementation and summarizes the system performance. This safe and low power consumption HV electronic system for the photomultiplier tubes can be used for various biomedical apparatus too.

  11. High-voltage sheaths and charge neutralization in space power systems

    NASA Technical Reports Server (NTRS)

    Satyanarayana, P.; Chang, Chia-Lie; Drobot, Adam; Papadopoulos, Dennis

    1991-01-01

    The authors examine the electrodynamics of charged platforms in the ionosphere with a variety of analytical and numerical models. These models have been specifically designed to study the tethered satellite system (TSS-1) due to be launched in early 1992. One of the objectives of TSS-1 is to determine the potential of tethers for electrical power generation from orbital motion across the earth's magnetic field. The author identifies and explores important aspects of the interaction between the ambient ionospheric plasma and moving charged orbital platforms: (1) the formation of energetic particles in the wake of a nominally neutral satellite, (2) transient current collection by a highly charged platform, (3) the current closure paths in the ionosphere between multiple polarized platforms, and (4) the conditions for rapid neutralization by enhanced plasma formation in the presence of effluent gases.

  12. Design and performance of high voltage power supply with crowbar protection for 3-Φ high power rf amplifier system of cyclotron

    NASA Astrophysics Data System (ADS)

    Thakur, S. K.

    2016-07-01

    The superconducting cyclotron at VECC consists of three rf cavities separated at 120° and each cavity is fed power from an individual rf amplifier, based on a tetrode tube, in the frequency range of 9-27 MHz. All the three tetrode tubes are powered by individual power supplies for their biasing which are fabricated and commissioned with the rf system of the cyclotron. The dc power to the anodes of all three tubes is fed from a high voltage power supply rated at 20 kV dc, 22 A along with suitable interlocks and crowbar protection. The tubes are protected by a single ignitron based crowbar system against an internal arc fault by diverting the stored energy very fast, minimizing the deposited amount of energy at load and allowing the fault to clear. The performance and protective capability of the crowbar system is demonstrated by using wire survivability test. The design criteria of anode power supply along with the crowbar protection system, in-house development, testing and performance is presented in this paper.

  13. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  14. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  15. A modular approach to modeling an isolated power system on a finite voltage bus using a differential algebraic equation solving routine

    NASA Astrophysics Data System (ADS)

    Kipps, Mark R.

    1994-03-01

    The modeling of power systems has been primarily driven by the commercial power utility industry. These models usually involve the assumption that system bus voltage and frequency are constant. However, in applications such as shipboard power systems this infinite bus assumption is not valid. This thesis investigates the modeling of a synchronous generator and various loads in a modular fashion on a finite bus. The simulation presented allows the interconnection of multiple state-space models via a bus voltage model. The major difficulty encountered in building a model which computes bus voltage at each time step is that bus voltage is a function of current and current derivative terms. Bus voltage is also an input to the state equations which produce the current and current derivatives. This creates an algebraic loop which is a form of implicit differential equation. A routine has been developed by Linda Petzold of Lawrence Livermore Laboratory for solving these types of equations. The routine, called Differential Algebraic System Solver (DASSL), has been implemented in a pre-release version of the software Advanced Continuous Simulation Language (ACSL) and has been made available to the Naval Postgraduate School on a trial basis. An isolated power system is modeled using this software and the DASSL routine. The system response to several dynamic situations is studied and the results are presented.

  16. Electrical system architecture having high voltage bus

    DOEpatents

    Hoff, Brian Douglas [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  17. Low-Power, Low-Voltage Electroosmotic Actuator for an Implantable Micropumping System Intended for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Getpreecharsawas, Jirachai

    An electroosmotic (EO) actuator offers a low-power, low-voltage alternative in a diaphragm-based periodic displacement micropump intended for an implantable drug delivery system. The actuator utilizes an electroosmosis mechanism to transport liquid across a membrane to deflect the pumping diaphragms in a reciprocating manner. In the study, the membrane made of porous nanocrystalline silicon (pnc-Si) tens of nanometers in thickness was used as the promising EO generator with low power consumption and small package size. This ultrathin membrane provides the opportunity for electrode integration such that the very high electric field can be generated across the membrane with the applied potential under 1 volt for low flow rate applications like drug delivery. Due to such a low applied voltage, the challenge, however, imposes on the capability of generating the pumping pressure high enough to deflect the pumping diaphragms and overcome the back pressure normally encountered in the biological tissue and organ. This research identified the cause of weak pumping pressure that the electric field inside the orifice-like nanopores of the ultrathin membrane is weaker than conventional theory would predict. It no longer scales uniformly with the thickness of membrane, but with the pore length-to-diameter aspect ratio for each nanopore. To enhance the pumping performance, the pnc-Si membrane was coated with an ultrathin Nafion film. As a result, the induced concentration difference across the Nafion film generates the osmotic pressure against the back pressure allowing the EO actuator to maintain the target pumping flow rate under 1 volt.

  18. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  19. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  20. Living and Working Safely Around High-Voltage Power Lines.

    SciTech Connect

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  1. The LMF triaxial MITL voltage adder system

    SciTech Connect

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-12-31

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed.

  2. Totem pole drive decks for the high-voltage, pulsed-power modulator for a large-scale plasma source ion implantation system

    SciTech Connect

    Gribble, R.J.; Reass, W.A.

    1993-07-01

    Plasma source ion implantation (PSII) is an industrially-relevant technique to change the surface composition of materials, thereby improving the mechanical, chemical, electrical, or optical properties. Pre-manufactured parts are immersed in a plasma and are pulsed with a high voltage source that accelerates the ions to the surface, where they become implanted, modifying the surface characteristics. The high voltage applied to the ``workpiece`` is supplied by a high-voltage, pulsed-power modulator capable of operating to 120 kV, with an output pulse width to 20 uS at a repetition rate of up to 2 kHz. Output currents of up to 60 A, and average powers of 225 kW (6.6 MW peak) will be the ultimate capability. Initial system start-up will be limited by a 60 kV, 1 A charging power supply. This paper describes the totem pole drive decks, the ``on`` deck and ``off`` deck, used as a pre-driver to the main high voltage switch tubes which applies power to the workpiece. The pulse length and frequency are externally controlled and then fiber-optically coupled to the modulator totem pole drive decks. The circuitry of the planar triode drivers will be presented in addition to experimental results.

  3. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  4. Improvement of low speed induction generator performances and reducing the power of excitation and voltage control system

    SciTech Connect

    Budisan, N.; Hentea, T.; Mahil, S.; Madescu, G.

    1996-12-31

    In this paper we present the results of our investigations concerning the utilization of induction generators at very low speed. It is shown that, by proper design, it is possible to obtain high efficiency and high power factor values. The optimized induction generators require lower reactive power resulting in lower size and price of the excitation control system. 4 refs., 2 figs.

  5. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  6. Modified DSTATCOM Topology with Reduced DC Link Voltage for Reactive and Harmonic Power Compensation of Unbalanced Nonlinear Load in Distribution System

    NASA Astrophysics Data System (ADS)

    Geddada, Nagesh; Karanki, Srinivas B.; Mishra, Mahesh K.

    2014-06-01

    This paper proposes a modified four-leg distribution static compensator (DSTATCOM) topology for compensation of unbalanced and nonlinear loads in three-phase four-wire distribution system. DSTATCOM, connected in parallel to the load, supplies reactive and harmonic powers demanded by unbalanced nonlinear loads. In this proposed topology, the voltage source inverter (VSI) of DSTATCOM is connected to point of common coupling (point of interconnection of source, load, DSTATCOM) through interface inductor and series capacitance, unlike the conventional topology which consists of interface inductor alone. Load compensation with a lower value of input DC link voltage of VSI is possible in this modified topology compared to conventional topology. A comparative study on modified and conventional topologies in terms of voltage rating of inverter power switches, switching losses in VSI and power rating of input DC capacitor of VSI is presented. The detailed design aspects of DC link capacitor and interface series capacitor are also presented. The reference filter currents are generated using instantaneous symmetrical component theory and are tracked using hysteresis current control technique. A detailed simulation study is carried out, to compare the compensation performances of conventional, modified topologies using PSCAD simulator and experimental studies are done to validate the simulation results.

  7. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  8. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.

  9. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  10. Geomagnetic storm of 29-31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Antti; Lindahl, Sture; Viljanen, Ari; Pirjola, Risto

    2005-08-01

    On 30 October 2003, an ongoing geomagnetic superstorm knocked down a part of the high-voltage power transmission system in southern Sweden. The blackout lasted for an hour and left about 50,000 customers without electricity. The incident was probably the most severe geomagnetically induced current (GIC) failure observed since the well-known March 1989 Québec blackout. The "three-phase" storm produced exceptionally large geomagnetic activity at the Fennoscandian auroral region. Although the diversity of the GIC drivers is addressed in the study, the problems in operating the Swedish system during the storm are attributed geophysically to substorms, storm sudden commencement, and enhanced ionospheric convection, all of which created large and complex geoelectric fields capable of driving large GIC. On the basis of the basic twofold nature of the failure-related geoelectric field characteristics, a semideterministic approach for forecasting GIC-related geomagnetic activity in which average overall activity is supplemented with statistical estimations of the amplitudes of GIC fluctuations is suggested. The study revealed that the primary mode of GIC-related failures in the Swedish high-voltage power transmission system were via harmonic distortions produced by GIC combined with too sensitive operation of the protective relays. The outage in Malmö on 30 October 2003 was caused by a combination of an abnormal switching state of the system and tripping of a low-set residual overcurrent relay that had a high sensitivity for the third harmonic of the fundamental frequency.

  11. 49 CFR 236.551 - Power supply voltage; requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Power supply voltage; requirement. 236.551 Section 236.551 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... supply voltage; requirement. The voltage of power supply shall be maintained within 10 percent of...

  12. Power conditioning unit for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  13. High-Voltage, Low-Power BNC Feedthrough Terminator

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  14. NASCAP modelling of high-voltage power system interactions with space charged-particle environments. [particle impact on solar satellite surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Mandell, M. J.

    1979-01-01

    The NASA Charging Analyzer Program (NASCAP), an engineering tool capable of analyzing the impact of the charged particle environment on spacecraft surfaces and systems, is described. NASCAP is a quasi-static computational program which analyzes the charging of a 3-dimensional complex body as a function of time and system-generated voltages for given space environmental conditions. The material properties of the surfaces are taken into account; the surface potentials, low energy sheath, potential distribution in space and particle trajectories are calculated. An application of NASCAP to a simple space solar power station consisting of two 6 m by 18 m solar array wings surrounding a central body is presented. Each solar array wing is considered to be divided into three regions operating at 2000 volts. Results of NASCAP analysis of the system for a normal environment and a moderate geomagnetic substorm environment are discussed.

  15. Application of Newton's optimal power flow in voltage/reactive power control

    SciTech Connect

    Bjelogrlic, M.; Babic, B.S. ); Calovic, M.S. ); Ristanovic, P. )

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  16. Calculation of Settings for the Control Systems of Insulation in Power Distribution Grids with Voltage of 6 or 10 kV in Conditions of Uncertainty

    NASA Astrophysics Data System (ADS)

    Sidorov, Aleksandr I.; Medvedeva, Yulia V.; Khanzhina, Olga A.

    2016-10-01

    The article deals with the calculation of setpoints for control systems insulation installed in all power distribution networks with voltage of 6 or 10 kV. It is shown that on the basis of fuzzy sets, the calculation of setpoints may be carried out even in the face of uncertainty. The efficiency of the system insulation monitoring based on measuring parameters of the electric network is largely determined by proper selection of the setpoint, i.e. the value of the insulation resistance of the network relative to the earth, in which it is necessary to disable a particular part of the network where a further reduction of the insulation resistance is unacceptable.

  17. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  18. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  19. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  20. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    NASA Astrophysics Data System (ADS)

    Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.

  1. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1983-01-01

    A power factor type motor controller in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. The present invention adds to the three-phase system of pending application Ser. No. 199,765, filed Oct. 23, 1980, means for modifying the operation of the system for a motor start-up interval of 5 to 30 seconds. The modification is that of providing via ramp generator 174 an initial ramp-like signal which replaces a constant power factor signal supplied by potentiometer 70. The ramp-like signal is applied to terminal 40 where it is summed with an operating power factor signal from phase detectors 32, 34, and 36 to thereby obtain a control signal for ultimately controlling SCR devices 12, 14, and 16 to effect a gradual turn-on of motor 10. The significant difference of the present invention over prior art is that the SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone. The added signal, the operating power factor signal, enables the production of a control signal which effectively eliminates a prior problem with many motor starting circuits, which is that of accompanying motor instabilities.

  2. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  3. Medium power voltage multipliers with a large number of stages

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T.; Myers, I. T.

    1978-01-01

    Voltage multiplier techniques are extended at medium power levels to larger multiplication ratios. A series of dc-dc converters were built, with from 20 to 45 stages and with power levels up to 100 watts. Maximum output voltages were about 10,000 volts.

  4. 46 CFR 111.79-13 - Different voltages and power types.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Different voltages and power types. 111.79-13 Section 111.79-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-13 Different voltages and power types....

  5. 46 CFR 111.79-13 - Different voltages and power types.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Different voltages and power types. 111.79-13 Section 111.79-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-13 Different voltages and power types....

  6. 46 CFR 111.79-13 - Different voltages and power types.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Different voltages and power types. 111.79-13 Section 111.79-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-13 Different voltages and power types....

  7. 46 CFR 111.79-13 - Different voltages and power types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Different voltages and power types. 111.79-13 Section 111.79-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-13 Different voltages and power types....

  8. 46 CFR 111.79-13 - Different voltages and power types.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Different voltages and power types. 111.79-13 Section 111.79-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-13 Different voltages and power types....

  9. Load insensitive electrical device. [power converters for supplying direct current at one voltage from a source at another voltage

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C. (Inventor)

    1974-01-01

    A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

  10. Design and Construction of Low Cost High Voltage dc Power Supply for Constant Power Operation

    NASA Astrophysics Data System (ADS)

    Kumar, N. S.; Jayasankar, V.

    2013-06-01

    Pulsed load applications like laser based systems need high voltage dc power supplies with better regulation characteristics. This paper presents the design, construction and testing of dc power supply with 1 kV output at 300 W power level. The designed converter has half bridge switched mode power supply (SMPS) configuration with 20 kHz switching. The paper covers the design of half bridge inverter, closed loop control, High frequency transformer and other related electronics. The designed power supply incorporates a low cost OPAMP based feedback controller which is designed using small signal modelling of the converter. The designed converter was constructed and found to work satisfactorily as per the specifications.

  11. Voltage control on a train system

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2004-01-20

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  12. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  13. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    NASA Astrophysics Data System (ADS)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  14. Development of an Analysis System for Low Voltage Distribution System

    NASA Astrophysics Data System (ADS)

    Matsuda, Katsuhiro; Wada, Masaru; Hirano, Shinichiro; Hirai, Yoshihiro; Tsuboe, Yasuhiro; Watanabe, Masahiro; Furukawa, Toshiyuki

    In recent years, distributed resources such as photovoltaic power generation system or wind-turbine generator system are increased, therefore the distributed resources which connect to distribution networks are increased gradually. Under the situation there are several problems such as expansion of the voltage fluctuation, increase of the short circuit current, increase of harmonics phenomenon which we have to consider, and the problems make us difficult to examine the effect of interconnection and to design the distribution system. However, analysis support system to evaluate the influence to connect distributed resources to low voltage distribution system has not developed. Therefore We have developed the analysis system for low voltage for low voltage distribution systems. We can evaluate the influence of distributed resources accurately, examine the interconnection and design the configuration of distribution networks by using the analysis system. In this paper, the concept of the analysis system, the load flow method for unbalanced V-connection 3-phase 4-line distribution system and the calculation method for the connectable capacity of distributed resources. Outline of the man/machine interface and examples of calculation results for sample network are also described.

  15. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  16. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  17. Voltage regulator dissipates minimal power and functions as a voltage divider

    NASA Technical Reports Server (NTRS)

    Hester, H. B.

    1971-01-01

    Regulator requires minimum amount of power for voltage division and it is not required continuously. The only power loss, except for regulating purposes, is that needed to provide for imbalances in load current requirements. For balanced loads, only leakage current flows through regulating transistors.

  18. Topologically protected loop flows in high voltage AC power grids

    NASA Astrophysics Data System (ADS)

    Coletta, T.; Delabays, R.; Adagideli, I.; Jacquod, Ph

    2016-10-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids.

  19. TROPIX power system architecture

    NASA Astrophysics Data System (ADS)

    Manner, David B.; Hickman, J. Mark

    1995-09-01

    This document contains results obtained in the process of performing a power system definition study of the TROPIX power management and distribution system (PMAD). Requirements derived from the PMADs interaction with other spacecraft systems are discussed first. Since the design is dependent on the performance of the photovoltaics, there is a comprehensive discussion of the appropriate models for cells and arrays. A trade study of the array operating voltage and its effect on array bus mass is also presented. A system architecture is developed which makes use of a combination of high efficiency switching power convertors and analog regulators. Mass and volume estimates are presented for all subsystems.

  20. Low-power low-voltage superior-order curvature corrected voltage reference

    NASA Astrophysics Data System (ADS)

    Popa, Cosmin

    2010-06-01

    A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.

  1. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  2. Hybrid electric vehicle power management system

    SciTech Connect

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  3. PMU-Aided Voltage Security Assessment for a Wind Power Plant: Preprint

    SciTech Connect

    Jiang, H.; Zhang, Y. C.; Zhang, J. J.; Muljadi, E.

    2015-04-08

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant’s point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  4. PMU-Aided Voltage Security Assessment for a Wind Power Plant

    SciTech Connect

    Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Muljadi, Eduard

    2015-10-05

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant's point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  5. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  6. New High Voltage Ceramic Capacitors for Power Electronics

    NASA Astrophysics Data System (ADS)

    Laville, H.; Fabre, M.

    2014-08-01

    This paper presents the characteristics and performances of a new range of high voltage ceramic capacitors manufactured using a new ceramic material. This dielectric allows to get under working voltage the same capacitance values than using an X7R material with the advantage compared to X7R of a very low dissipation factor (less than 5.10-4). What makes these capacitors to be ideally suited for power applications where heat dissipation may be detrimental for performances and reliability.

  7. Sensitivity-based reactive power control for voltage profile improvement

    SciTech Connect

    Exposito, A.G.; Ramos, J.L.M. . Dept. of Electrical Engineering); Macias, J.L.R. ); Salinas, Y.C.

    1993-08-01

    This paper presents a procedure for dispatching reactive power when voltage deviations are not acceptable. The proposed method, intended for real-time use, determines which control variables are actually effective for solving voltage violations. Efficiency is measured according to sensitivities, current voltage profile and reserve margin of control variables. The selected control variables are rescheduled in proportion to their efficiency coefficients. State-of-the-art sparsity techniques are used to speed-up computation of sensitivities. An example is included to show effectiveness of the method.

  8. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  9. IEEE 342 Node Low Voltage Networked Test System

    SciTech Connect

    Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian

    2014-07-31

    The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how they evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.

  10. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    SciTech Connect

    Brown, Jason; Bernstein, Robert; White, II, Gregory Von; Glover, Steven F.; Neely, Jason C.; Pena, Gary; Williamson, Kenneth Martin; Zutavern, Fred J.; Gelbard, Fred

    2015-03-01

    and industrial literature was performed to identify : 1) findings regarding the degradation mechanisms of submerged cabling and 2) condition monitoring methods that may prove useful in predict ing the remaining lifetime of submerged medium voltage p ower cables . The re search was conducted by a multi - disciplinary team , and s ources includ ed official NRC reports, n ational l aboratory reports , IEEE standards, conference and journal proceedings , magazine articles , PhD dissertations , and discussions with experts . The purpose of this work was to establish the current state - of - the - art in material degradation modeling and cable condition monitoring techniques and to identify research gaps . Subsequently, future areas of focus are recommended to address these research gaps and thus strengthen the efficacy of the NRC's developing cable condition monitoring program . Results of this literature review and details of the test ing recommendations are presented in this report . FOREWORD To ensure the safe, re liable, and cost - effective long - term operation of nuclear power plants, many systems, structures, and components must be continuously evaluated. The Nuclear Regulatory Commission (NRC) has identified that cables in submerged environments are of concern, particularly as plants are seeking license renewal. To date, there is a lack of consensus on aging and degradation mechanisms even though the area of submerged cables has been extensively studied. Consequently, the ability to make lifetime predictions for submerged cable does not yet exist. The NRC has engaged Sandia National Laboratories (SNL) to lead a coordinated effort to help elucidate the aging and degradation of cables in submerged environments by collaborating with cable manufacturers, utilities, universities, and other government agencies. A team of SNL experts was assembled from the laboratories including electrical condition monitoring, mat erial science, polymer degradation, plasma physics

  11. A Novel 800mV Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Jun; Kwack, Kae Dal

    In this paper, a novel 800mV beta-multiplier reference current source circuit is presented. In order to cope with the narrow input common-mode range of the Opamp in the reference circuit, the resistive voltage divider was employed. High gain Opamp was designed to compensate for the intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18µm CMOS process with nominal Vth of 420mV and -450mV for n-MOS and p-MOS transistor, respectively. The total power consumption including Opamp is less than 50µW.

  12. A new dynamic voltage restorer with separating active and reactive power circuit design

    NASA Astrophysics Data System (ADS)

    Pai, Fu-Sheng

    2015-05-01

    Conventional dynamic voltage restorers (DVRs) install parallel battery and capacitor sets at the DC bus to supply the required power for voltage sag compensation. However, the reactive power output of a DVR may increase the ripple voltage at the inner DC bus, possibly resulting in a higher operating temperature of the battery and thus decreased battery life. This paper proposes a DVR system that uses a cascade power module to effectively compensate voltage sag. By separating the active and reactive compensation powers, the proposed DVR provides a lower ripple DC link for extending battery life and offers a flexible way to design the capacitor bank. To confirm the effectiveness of the proposed design, theoretical analysis and experimental validation were conducted under various scenarios. Test results confirm the feasibility and practicality of the proposed method.

  13. Characteristics of pulsed power generator by versatile inductive voltage adder

    NASA Astrophysics Data System (ADS)

    Yatsui, Kiyoshi; Shimiya, Kouichi; Masugata, Katsumi; Shigeta, Masao; Shibata, Kazuhiko

    2005-10-01

    A pulsed power generator by inductive voltage adder, versatile inductive voltage adder (VIVA-I), which features a high average potential gradient (2.5 MV/m), was designed and is currently in operation,. It was designed to produce an output pulse of 4 MV/60 ns by adding 2 MV pulses in two-stages of induction cells, where amorphous cores are installed. As a pulse forming line, we used a Blumlein line with the switching reversed, where cores are automatically biased due to the presence of prepulse. Good reproducibility was obtained even in the absence of the reset pulse. Within [similar]40% of full charge voltage, pulsed power characteristics of Marx generator, pulse forming line (PFL), transmission line (TL), and induction cells were tested for three types of loads; open-circuit, dummy load of liquid (CuSO4) resistor, and electron beam diode. In the open-circuit test, [similar]2.0 MV of output voltage was obtained with good reproducibility. Dependences of output voltage on diode impedances were evaluated by using various dummy loads, and the results were found as expected. An electron-beam diode was operated successfully, and [similar]18 kA of beam current was obtained at the diode voltage of [similar]1 MV.

  14. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  15. Voltage Regulator Chip: Power Supplies on a Chip

    SciTech Connect

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is finding ways to save real estate on a computer's motherboard that could be used for other critical functions. Every computer processor today contains a voltage regulator that automatically maintains a constant level of electricity entering the device. These regulators contain bulky components and take up about 30% of a computer's motherboard. CPES at Virginia Tech is developing a voltage regulator that uses semiconductors made of gallium nitride on silicon (GaN-on-Si) and high-frequency soft magnetic material. These materials are integrated on a small, 3D chip that can handle the same amount of power as traditional voltage regulators at 1/10 the size and with improved efficiency. The small size also frees up to 90% of the motherboard space occupied by current voltage regulators.

  16. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  17. Solar Powered Refrigeration System

    NASA Astrophysics Data System (ADS)

    Ewert, Michael K.; Bergeron, David J., III

    2002-09-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  18. Power System Reliability Assessment by Analysing Voltage Dips on the Blue Horizon Bay 22KV Overhead Line in the Nelson Mandela Bay Municipality

    NASA Astrophysics Data System (ADS)

    Lamour, B. G.; Harris, R. T.; Roberts, A. G.

    2010-06-01

    Power system reliability problems are very difficult to solve because the power systems are complex and geographically widely distributed and influenced by numerous unexpected events. It is therefore imperative to employ the most efficient optimization methods in solving the problems relating to reliability of the power system. This paper presents a reliability analysis and study of the power interruptions resulting from severe power outages in the Nelson Mandela Bay Municipality (NMBM), South Africa and includes an overview of the important factors influencing reliability, and methods to improve the reliability. The Blue Horizon Bay 22 kV overhead line, supplying a 6.6 kV residential sector has been selected. It has been established that 70% of the outages, recorded at the source, originate on this feeder.

  19. Improving Power Quality in Low-Voltage Networks Containing Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Mazumder, Sumit; Ghosh, Arindam; Zare, Firuz

    2013-05-01

    Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.

  20. Maintenance of photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Hall, M. R.

    1984-08-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Dept. of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  1. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  2. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    SciTech Connect

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  3. A nonlinear optimization approach for UPFC power flow control and voltage security

    NASA Astrophysics Data System (ADS)

    Kalyani, Radha Padma

    This dissertation provides a nonlinear optimization algorithm for the long term control of Unified Power Flow Controller (UPFC) to remove overloads and voltage violations by optimized control of power flows and voltages in the power network. It provides a control strategy for finding the long term control settings of one or more UPFCs by considering all the possible settings and all the (N-1) topologies of a power network. Also, a simple evolutionary algorithm (EA) has been proposed for the placement of more than one UPFC in large power systems. In this publication dissertation, Paper 1 proposes the algorithm and provides the mathematical and empirical evidence. Paper 2 focuses on comparing the proposed algorithm with Linear Programming (LP) based corrective method proposed in literature recently and mitigating cascading failures in larger power systems. EA for placement along with preliminary results of the nonlinear optimization is given in Paper 3.

  4. Power System Harmonic Elimination to Improve Power Quality

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-06-01

    An improvised RLC interface filter for a Dynamic Voltage Restorer (DVR) is proposed. The RLC filter is connected in the front end between the IGBT based Voltage Source Inverter (VSI) and the injection transformer and is able to eliminate voltage harmonics in the system and also switching harmonics generated from VSI. The voltage at the sensitive load end is pure sinusoidal. In this method, the DVR produced Pulse Width Modulation (PWM) voltage with voltage harmonic canceling the voltage harmonic generated from the supply main. The VSI handles harmonic power. The low order switching harmonics generated by the IGBT based VSI is suppressed. The DVR has greater voltage injection capability. Good dynamic and transient results recorded and Total Harmonic Distortion (THD) at the sensitive load end is minimized. The voltage at the sensitive load is sinusoidal and at 1.0 pu. PSCAD/EMTDC is used to validate the performance of the interface filter and the DVR. Simulated results are presented.

  5. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  6. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  7. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  8. Hybrid zero-voltage switching (ZVS) control for power inverters

    DOEpatents

    Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa

    2016-11-01

    A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.

  9. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply.

    PubMed

    Ma, Zhan-Wen; Su, Xiao-Dong; Lu, Xiao-Long; Wei, Zhen; Wang, Jun-Run; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling; Yao, Ze-En

    2016-08-01

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  10. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply

    NASA Astrophysics Data System (ADS)

    Ma, Zhan-Wen; Su, Xiao-Dong; Lu, Xiao-Long; Wei, Zhen; Wang, Jun-Run; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling; Yao, Ze-En

    2016-08-01

    A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.

  11. Lightning Overvoltage on Low-Voltage Distribution System

    NASA Astrophysics Data System (ADS)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  12. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  13. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  14. Energy efficient low power shared-memory Fast Fourier Transform (FFT) processor with dynamic voltage scaling

    NASA Astrophysics Data System (ADS)

    Fitrio, D.; Singh, J.; Stojcevski, A.

    2005-12-01

    Reduction of power dissipations in CMOS circuits needs to be addressed for portable battery devices. Selection of appropriate transistor library to minimise leakage current, implementation of low power design architectures, power management implementation, and the choice of chip packaging, all have impact on power dissipation and are important considerations in design and implementation of integrated circuits for low power applications. Energy-efficient architecture is highly desirable for battery operated systems, which operates in a wide variation of operating scenarios. Energy-efficient design aims to reconfigure its own architectures to scale down energy consumption depending upon the throughput and quality requirement. An energy efficient system should be able to decide its minimum power requirements by dynamically scaling its own operating frequency, supply voltage or the threshold voltage according to a variety of operating scenarios. The increasing product demand for application specific integrated circuit or processor for independent portable devices has influenced designers to implement dedicated processors with ultra low power requirements. One of these dedicated processors is a Fast Fourier Transform (FFT) processor, which is widely used in signal processing for numerous applications such as, wireless telecommunication and biomedical applications where the demand for extended battery life is extremely high. This paper presents the design and performance analysis of a low power shared memory FFT processor incorporating dynamic voltage scaling. Dynamic voltage scaling enables power supply scaling into various supply voltage levels. The concept behind the proposed solution is that if the speed of the main logic core can be adjusted according to input load or amount of processor's computation "just enough" to meet the requirement. The design was implemented using 0.12 μm ST-Microelectronic 6-metal layer CMOS dual- process technology in Cadence Analogue

  15. The design and development of a high voltage power supply

    NASA Technical Reports Server (NTRS)

    Ting, R.

    1974-01-01

    A high voltage circuit system was redesigned, breadboarded, and tested to meet revised specification requirements. Circuit component subassemblies are described and include the firing unit, regulator, dc to dc converter, and output and trigger circuits. Design changes, tests, and equipment fabrication are outlined chronologically by month. A list of design specifications is included.

  16. Hybrid Voltage-Multipliers Based Switching Power Converters

    NASA Astrophysics Data System (ADS)

    Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias

    2011-08-01

    This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.

  17. Hydraulic coupling for generating electrical power inside a high-voltage accelerator terminal

    NASA Astrophysics Data System (ADS)

    Sumbar, Edmund; Vermeulen, F. E.; Lawson, R. P. W.

    1985-04-01

    A hydraulic apparatus used to generate electrical power inside a 280-kV ion accelerator terminal is described. In this system, pressurized hydraulic oil flows through insulating hoses, transferring fluid power between ground and the high-voltage terminal. A maximum of 750 W was generated with the present equipment. Leakage current along the hydraulic-fluid lines was recorded as a function of time for an applied voltage of 280 kV. This current initially rose at an average rate of about 8 μA/min, reaching a maximum of about 760 μA within 2 h. Beyond 2 h, leakage current slowly decreased with time.

  18. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    PubMed

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  19. Multifunctional Voltage Source Inverter for Renewable Energy Integration and Power Quality Conditioning

    PubMed Central

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity. PMID:25177725

  20. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  1. Buried Oxide Densification for Low Power, Low Voltage CMOS Applications

    NASA Technical Reports Server (NTRS)

    Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.

    1998-01-01

    Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.

  2. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  3. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  4. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  5. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  6. An extremely low power voltage reference with high PSRR for power-aware ASICs

    NASA Astrophysics Data System (ADS)

    Jihai, Duan; Dongyu, Deng; Weilin, Xu; Baolin, Wei

    2015-09-01

    An extremely low power voltage reference without resistors is presented for power-aware ASICs. In order to reduce the power dissipation, an Oguey current reference source is used to reduce the static current; a cascode current mirror is used to increase the power supply rejection ratio (PSRR) and reduce the line sensitivity of the circuit. The voltage reference is fabricated in SMIC 0.18-μm CMOS process. The measured results for the voltage reference demonstrate that the temperature coefficient of the voltage is 66 ppm/°C in a range from 25 to 100 °C. The line sensitivity is 0.9% in a supply voltage range of 1.8 to 3.3 V, and PSRR is -49 dB at 100 Hz. The power dissipation is 200 nW. The chip area is 0.01 mm2. The circuit can be used as an elementary circuit block for power-aware ASICs. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  7. On the reliability of voltage and power as input parameters for the characterization of high power ultrasound applications

    NASA Astrophysics Data System (ADS)

    Haller, Julian; Wilkens, Volker

    2012-11-01

    For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.

  8. Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Li, Wenlong; Ching, T. W.

    2015-05-01

    This paper presents a new idea of wireless power transfer (WPT) and fault diagnosis (FD) of high-voltage power line via robotic bird. The key is to present the conceptual robotic bird with WPT coupling coil for detecting and capturing the energy from the high-voltage power line. If the power line works in normal condition, the robotic bird is able to stand on the power line and extract energy from it. If fault occurs on the power line, the corresponding magnetic field distribution will become different from that in the normal situation. By analyzing the magnetic field distribution of the power line, the WPT to the robotic bird and the FD by the robotic bird are performed and verified.

  9. High average power solid state laser power conditioning system

    SciTech Connect

    Steinkraus, R.F.

    1987-03-03

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers.

  10. 49 CFR 236.551 - Power supply voltage; requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.551 Power... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE...

  11. 49 CFR 236.551 - Power supply voltage; requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.551 Power... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE...

  12. 49 CFR 236.551 - Power supply voltage; requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.551 Power... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE...

  13. 49 CFR 236.551 - Power supply voltage; requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.551 Power... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE...

  14. Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault

    SciTech Connect

    Kim, Jinho; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2016-11-01

    This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allows DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.

  15. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  16. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    SciTech Connect

    Murty, B.V.

    2000-03-21

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  17. TOPEX/Poseidon electrical power system -- Performance

    SciTech Connect

    Sherwood, R.; Deligiannis, F.

    1996-12-31

    This paper shows that the power system performance (batteries, solar array, power regulator) on-board the TOPEX/Poseidon satellite has met or exceeded pre-launch predictions, and has successfully managed the performance of NiCd batteries which had shown anomalous performance on other missions such as UARS and GRO. The battery performance is addressed through the following parameters: end-of-discharge voltage, peak charge current, charge to discharge ratio, and voltage differential. The solar array performance discussion includes voltage, current and power. There is also a discussion of the power regulator efficiency and the satellite load power history.

  18. Power conditioning using dynamic voltage restorers under different voltage sag types.

    PubMed

    Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A

    2016-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.

  19. Power conditioning using dynamic voltage restorers under different voltage sag types

    PubMed Central

    Saeed, Ahmed M.; Abdel Aleem, Shady H.E.; Ibrahim, Ahmed M.; Balci, Murat E.; El-Zahab, Essam E.A.

    2015-01-01

    Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type. PMID:26843975

  20. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  1. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  2. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  3. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  4. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  5. Modal Voltage Stability Analysis of Multi-infeed HVDC System Considering its Control Systems

    NASA Astrophysics Data System (ADS)

    Wu, Guohong; Minakawa, Tamotsu; Hayashi, Toshiyuki

    This work presents a method for investigating the voltage stability of multi-infeed HVDC systems, which is based on the eigenvalue decomposition technique known as modal analysis. In this method, the eigenvalue of linearized steady-state system power-voltage equations are computed to evaluate the long-term voltage stability. The contributions of this work to modal analysis method are control systems of HVDC system, such as an Automatic Power Regulator (APR) and an Automatic (DC) Current Regulator (ACR) on its rectifier side and a changeover between an Automatic (DC) Voltage Regulator (AVR) and an Automatic extinction advance angle Regulator (AγR) modes on its inverter side, were taken into account, and the formularization for modal analysis considering not only these control systems of HVDC system but also generator and load characteristics was fulfilled and presented in this paper. The application results from an AC/DC model power system with dual HVDC systems verified the efficiency of the proposed method and quantitatively illustrated the influence of control systems of HVDC system on AC/DC system long-term voltage stability.

  6. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  7. Direct current uninterruptible power supply method and system

    DOEpatents

    Sinha, Gautam

    2003-12-02

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  8. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  9. Optical power source control system

    NASA Astrophysics Data System (ADS)

    Husbands, C. R.

    1984-05-01

    An optical power source control system having a four port optical coupler, an optical receiver and associated comparator circuits operably connected to the optical transmission line connecting the source to an output connector. When the output connector is mated with another connector, the receiver senses the optical energy reflected from the glass/air and air/glass interfaces of the connectors and provides an appropriate signal. This signal is sufficiently high when compared to a threshold voltage level to permit the power source to operate. When the output connector is in the unmated condition the reflected optical power from the air/glass interface is no longer present and therefore the signal from the receiver falls below the threshold voltage level. With this reduced signal level, power flow to the optical source is removed or reduced thereby controlling the operation of the optical power source.

  10. High voltage requirements and issues for the 1990's. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.; Faymon, K. A.

    1984-01-01

    The development of high-power high-voltage space systems will require advances in power generation and processing. The systems must be reliable, adaptable, and durable for space mission success. The issues, which must be resolved in order to produce a high power system, are weight and volume reduction of components and modules and the creation of a reliable high repetition pulse power processor. Capacitor energy density must be increased by twice the present capacity and packaging must be reduced by a factor of 10 to 20 times. The packaging must also protect the system from interaction with the natural space environment and the induced environment, produced from spacecraft systems and environment interaction.

  11. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  12. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  13. High Power/High Voltage Rechargeable Batteries Open New Opportunities for Space Missions

    NASA Astrophysics Data System (ADS)

    Borthomieu, Y.; Brochard, P.; Lagattu, B.; Netchev, K.

    2008-09-01

    Scientific missions probes, new generation of launchers and satellites are increasingly requesting high power (permanent or pulses). The introduction of a range of rechargeable cells capable of delivering up and receiving high current addresses these needs and opens new horizons for future space missions power supply.Moreover, high power is often linked to high voltage and such need becomes more and more common for space & defence applications. The aim of the high voltage is to carry reasonable current in the harness of the electrical systems.This paper presents Saft answers to these demands, for existing launchers and also for in development ones, as well as for other markets with similar needs, such as military equipment or underwater vehicles.

  14. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    PubMed

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  15. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms

    NASA Astrophysics Data System (ADS)

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  16. High-Voltage and High-Power Multi-Power Source

    DTIC Science & Technology

    2001-10-01

    Inner core temperature theory, 150 experiment CD 100 so I i i 1 2 3 4 5 6 7 8 time (microseconds) Figure 5 Voltage generated by exploding wire action ... theory vs experiment) Further theoretical considerations relating to the modelling of the complete multi-pulse power source are presented in Section

  17. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    PubMed

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  18. Voltage Regulation and Line Loss Minimization of Loop Distribution Systems Using UPFC

    NASA Astrophysics Data System (ADS)

    Sayed, Mahmoud A.; Takeshita, Takaharu

    This paper presents a new method for achieving line loss minimization and voltage regulation in the loop distribution systems, simultaneously. First, mathematical analysis of the line loss minimum conditions in the loop distribution systems is presented. Then, load voltage regulation is applied in the loop distribution system under line loss minimum condition. Reference angle of the desired load voltage is the main factor that can be used to minimize total line loss during load voltage control. In order to achieve these two objectives simultaneously, the UPFC (unified power flow controller), a typical FACTS (flexible AC transmission systems) device, that is capable of instantaneous control of transmission and distribution power flow, is used. Also, the UPFC control scheme to regulate the load voltage under line loss minimization is presented. The effectiveness of the proposed control scheme has been verified experimentally using laboratory prototype in a 200V, 6kVA system.

  19. Voltage regulator for battery power source. [using a bipolar transistor

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1979-01-01

    A bipolar transistor in series with the battery as the control element also in series with a zener diode and a resistor is used to maintain a predetermined voltage until the battery voltage decays to very nearly the predetermined voltage. A field effect transistor between the base of the bipolar transistor and a junction between the zener diode and resistor regulates base current of the bipolar transistor, thereby regulating the conductivity of the bipolar transistor for control of the output voltage.

  20. Dual-voltage power supply has increased efficiency

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1966-01-01

    Simple circuit provides two different dc output voltages from an ac source. It employs a full-wave rectifier connected to two passive branches from which the separate dc voltages are taken. The outputs have low ripple and good voltage regulation.

  1. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  2. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  3. Pegasus power system facility upgrades

    NASA Astrophysics Data System (ADS)

    Lewicki, B. T.; Kujak-Ford, B. A.; Winz, G. R.

    2008-11-01

    Two key Pegasus systems have been recently upgraded: the Ohmic-transformer IGCT bridge control system, and the plasma-gun injector power system. The Ohmic control system contains two new microprocessor controlled components to provide an interface between the PWM controller and the IGCT bridges. An interface board conditions the command signals from the PWM controller. A splitter/combiner board routes the conditioned PWM commands to an array of IGCT bridges and interprets IGCT bridge status. This system allows for any PWM controller to safely control IGCT bridges. Future developments will include a transition to a polyphasic bridge control. This will allow for 3 to 4 times the present pulse length and provide a much higher switching frequency. The plasma gun injector system now includes active current feedback control on gun bias current via PWM buck type power supplies. Near term goals include a doubling or tripling of the applied bias voltage. Future arc bias system power supplies may include a simpler boost type system which will allow access to even higher voltages using existing low voltage energy storage systems.

  4. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  5. Advanced Energy Conversion System Using Sinusoidal Voltage Tracking Buck-Boost Converter Cascaded Polarity Changing Inverter

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil A.

    2011-06-01

    This paper presents an advanced power converter employs a sinusoidal voltage absolute value tracking buck-boost DC-DC converter in the first power processing stage and a polarity changing full-bridge inverter in the second stage. The proposed power conversion system has the capability of delivering sinusoidal output and input current with unity power factor and good output voltage regulation. Consequently, the complete voltage regulator system, which is mainly suitable for new energy generation systems as well as energy storage systems, can be constructed compactly and inexpensively without DC link electrolytic capacitor. Also, the paper presents an auxiliary passive resonant circuit for soft switching operation. Simulation results using PSIM software are presented to verify the operation principles and feasibility of the proposed power conversion system.

  6. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  7. Power management and control for space systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Myers, I. T.; Terdan, F. F.; Stevens, N. J.

    1978-01-01

    Power management and control technology for the large, high-power spacecraft of the 1980's is discussed. Systems weight optimization that indicate a need for higher bus voltages are shown. Environmental interactions that are practical limits for the maximum potential on exposed surfaces are shown. A dual-voltage system is proposed that would provide the weight savings of a high-voltage distribution system and take into account the potential environmental interactions. The technology development of new components and circuits is also discussed.

  8. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  9. Time-varying system identification of high voltage switches of a power substation with slide-window least-squares parameter estimations

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Ren, Wei-Xin; Chen, Gen-Da

    2013-06-01

    This paper is aimed at identifying the time-varying parameters and ultimate behavior of high voltage switch structures based on a series of full-scale shake table tests with harmonic excitations. Each structure involves a mechanical device for switch-on and switch-off, a friction-based switch, and three porcelain pillars. To identify the structural properties over time, a novel slide-window least-squares estimation method is developed. Each time-varying parameter is firstly approximately expressed by a simple polynomial or exponential function with time in a short slide-window. The time-invariant coefficients of the polynomial or exponential function are then estimated using a least-squares method. Finally, the time-varying parameters can be simply calculated from the estimated polynomial or exponential function. The proposed method is validated by simulated one- and two-story buildings with three kinds of time-varying parameters (stiffness varying abruptly, gradually, and periodically) under earthquake excitations. The application of the proposed method to the tested switch structures demonstrated that the time-varying fundamental frequency of the structures decreased from 7.5 to 6.5 Hz near resonance, which is consistent with the shake table test observations under an excitation of 1.27 and 2.54 mm in stroke. During the shake table tests, all switch structures failed at the bottom of the mechanical device under cyclic loading.

  10. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  11. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  12. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  13. Solar-Powered Refrigeration System

    NASA Astrophysics Data System (ADS)

    Ewert, Michael K.; Bergeron, David J., III

    2002-10-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  15. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  16. The physics of power systems operation

    NASA Astrophysics Data System (ADS)

    Ohler, C.

    2015-08-01

    The article explains the operation of power systems from the point of view of physics. Physicists imagine things, rather than in terms of impedances and circuits, in terms of fields and energy conversions. The account is concrete and simple. The use of alternating current entails the issue of reactive power. Reactive power consists of energy that oscillates between electrical and magnetic fields, it flows on top of the active power which carries the useful energy. The control of active and reactive power is essential for the power system's reliable operation. The frequency of a power system is the same everywhere. The stability of the frequency indicates that generation and demand of active power are equal, a decline in frequency indicates a lack of generation relative to the demand. Adapting the electrical power injected into the system is the way of frequency control. Because of the parasitic inductances and capacitances of overhead lines, cables, and transformers, the voltage at different locations of the power system depends on the load. The voltage is regulated by the combined action of generator excitation, transformer tap changers and series compensation in order to provide consumers with a stable voltage supply. The integration of solar cells and wind turbines into the power system poses some challenges. But the power system is able to accommodate large amounts of fluctuating renewable power generation if the right complementary measures are taken.

  17. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  18. Transmission Power Control using Small-Capacity UPFC under Output Voltage Saturation

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Takeshita, Takaharu; Fujita, Hideki

    This paper presents a fast transmission power control scheme using a UPFC (Unified Power Flow Controller) under the output voltage saturation. For practical use of the UPFC, the fast and stable power response and the reduced power converter capacity are desired. The authors propose the fast and stable control scheme under the output voltage saturation of the reduced capacity UPFC. The effectiveness of the proposed control algorithm of the UPFC has been verified by experiments.

  19. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  20. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  1. Large space system - Charged particle environment interaction technology. [effects on high voltage solar array performance

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large high-voltage space power systems proposed for future applications in both low earth orbit and geosynchronous altitudes must operate in the space charged-particle environment with possible interactions between this environment and the high-voltage surfaces. The paper reviews the ground experimental work to provide indicators for the interactions that could exist in the space power system. A preliminary analytical model of a large space power system is constructed using the existing NASA Charging Analyzer Program, and its performance in geosynchronous orbit is evaluated. The analytical results are used to illustrate the regions where detrimental interactions could exist and to establish areas where future technology is required.

  2. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  3. CMOS device and interconnect technology enhancements for low power/low voltage applications

    NASA Astrophysics Data System (ADS)

    Vasudev, P. K.

    1996-04-01

    This paper reviews current advances and future directions in the development of scaled CMOS device technologies on bulk and SOI substrates, and multilevel interconnect architectures for application to low power/low voltage ULSI. Although traditional device scaling (as per the SIA roadmap) calls for the concomitant reduction in device sizes and power supplies driven by DRAM technology generations, the achievement of ultra-low power dissipation (at Vdd ≈ 1 V or less) and high speed performance (for battery operated portable systems) will accelerate scaling and drive several new engineered structures, such as vertically modulated channel doping profiles, ultra-shallow source/drain junctions and ultra-thin SOI devices that are tailored for low voltages. In addition, the development of novel low temperature processing schemes, such as Damascene, will be accelerated for integrating low K dielectrics with Al or Cu metallizations for multilevel interconnect architectures that are designed for low power. The successful incorporation of these technologies into portable electronics systems of the coming decade will require meeting the timing, manufacturability, cost and performance goals, in concert with the SIA roadmap.

  4. Direct current power delivery system and method

    DOEpatents

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  5. Intelligent energy harvesting scheme for microbial fuel cells: Maximum power point tracking and voltage overshoot avoidance

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do

    2017-02-01

    Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.

  6. Power electronic solutions for interfacing offshore wind turbine generators to medium voltage DC collection grids

    NASA Astrophysics Data System (ADS)

    Daniel, Michael T.

    Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing

  7. Utility-Side Voltage and PQ Control with Inverter-based Photovoltaic Systems

    SciTech Connect

    Adhikari, Sarina; Xu, Yan; Li, Fangxing; Li, Huijuan; Kueck, John D; Snyder, Isabelle B; Barker, Thomas J.; Hite, Ronald

    2011-01-01

    Distributed energy resources (DER) are small generators located close to the load centers. The DERs that are integrated to the grid with the power electronic converter interfaces are capable of providing nonactive power in addition to active power. Hence, they are capable of regulating the voltages of the weak buses in the distribution systems. This paper discusses the voltage control capability of photovoltaic (PV) systems as compared to the traditional capacitor banks. The simulation results prove the effectiveness of dynamic voltage control capability of inverter-based PV. With the proper control algorithm, the active and nonactive power from the DERs like battery banks or solar photovoltaic can be controlled independently. This paper also presents the scenario of controlling the active and nonactive power from the PV array to track and supply the local load.

  8. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  9. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  10. Control Strategy of a Parallel System Using Both Matrix Converter and Voltage Type Inverter

    NASA Astrophysics Data System (ADS)

    Itoh, Jun-Ichi; Tamura, Hiroshi

    This paper proposes a control strategy for a matrix converter and voltage type inverter in a parallel system that does not require of interconnection reactors. The proposed control strategy is to divide the operation time between a matrix converter and a voltage type inverter. The operation time of each converter is divided in every carrier cycle. As a result, interconnection reactors are not required and the sinusoidal input current waveform of a matrix converter can be obtained. The total output voltage of the proposed system and the output power division ratio for a matrix converter and a voltage type inverter are controlled by the time division ratio of each converter. Furthermore, the voltage error resulting from the operation of time division control was analyzed and compensated. The availability of the proposed system and the validity of the proposed control method are confirmed by experimental results.

  11. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  12. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  13. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  14. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  15. Nanosatellite Power System Considerations

    NASA Technical Reports Server (NTRS)

    Robyn, M.; Thaller, L.; Scott, D.

    1995-01-01

    The capability to build complex electronic functions into compact packages is opening the path to miniature satellites on the order of 1 kg mass, 10 cm across, packed with the computing processors, motion controllers, measurement sensors, and communications hardware necessary for operation. Power generation will be from short strings of silicon or gallium arsenide-based solar photovoltaic cells with the array power maximized by a peak power tracker (PPT). Energy storage will utilize a low voltage battery with nickel cadmium or lithium ion cells as the most likely selections for rechargeables and lithium (MnO2-Li) primary batteries for one shot short missions.

  16. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  17. Smart Power Supply for Battery-Powered Systems

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  18. Beamlet pulsed-power system

    SciTech Connect

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  19. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  20. An Integrated Wireless Power Management and Data Telemetry IC for High-Compliance-Voltage Electrical Stimulation Applications.

    PubMed

    Zhao, Jianming; Yao, Lei; Xue, Rui-Feng; Li, Peng; Je, Minkyu; Xu, Yong Ping

    2016-02-01

    This paper describes a 13.56-MHz wireless power recovery system with bidirectional data link for high-compliance-voltage neural/muscle stimulator. The power recovery circuit includes a 2-stage rectifier, 2 LDOs and a high voltage charge pump to provide 3 DC outputs: 1.8 V, 3.3 V and 20 V for the stimulator. A 2-stage time division based rectifier is proposed to provide 3 DC outputs simultaneously. It improves the power efficiency without introducing any impact on the forward data recovery. The 20 V output is generated by a modified low ripple charge pump that reduces the ripple voltage by 40%. The power management system shows 49% peak power efficiency. The data link includes a clock and data recovery (CDR) circuit and a load shift keying (LSK) modulator for bidirectional data telemetry. The forward and backward data rates of the data telemetry are 61.5 kbps and 33.3 kbps, respectively. In addition, a power monitor circuit for closed-loop power control is implemented. The whole system has been fabricated in a 24 V HV LDMOS option 1.8 μ m CMOS process, occupying a core area of around 3.5 mm (2).

  1. Synchronized voltage contrast display analysis system

    NASA Astrophysics Data System (ADS)

    Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C.

    1982-11-01

    An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.

  2. Space Station power system issues

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite.

  3. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  4. Design considerations for large space electric power systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.

    1983-01-01

    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.

  5. Autonomous Decentralized Voltage Profile Control of Super Distributed Energy System using Multi-agent Technology

    NASA Astrophysics Data System (ADS)

    Tsuji, Takao; Hara, Ryoichi; Oyama, Tsutomu; Yasuda, Keiichiro

    A super distributed energy system is a future energy system in which the large part of its demand is fed by a huge number of distributed generators. At one time some nodes in the super distributed energy system behave as load, however, at other times they behave as generator - the characteristic of each node depends on the customers' decision. In such situation, it is very difficult to regulate voltage profile over the system due to the complexity of power flows. This paper proposes a novel control method of distributed generators that can achieve the autonomous decentralized voltage profile regulation by using multi-agent technology. The proposed multi-agent system employs two types of agent; a control agent and a mobile agent. Control agents generate or consume reactive power to regulate the voltage profile of neighboring nodes and mobile agents transmit the information necessary for VQ-control among the control agents. The proposed control method is tested through numerical simulations.

  6. Interface circuit with adjustable bias voltage enabling maximum power point tracking of capacitive energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2016-12-01

    The operation analysis of a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage is carried out in this paper. Two configurations determined by the open or closed states of an electronic switch are examined. The increase of the voltage across a biasing capacitor, occurring when the switch is open, is proved theoretically and experimentally. With the decrease of this biasing voltage which occurs naturally when the switch is closed due to imperfections of the circuit, the bias voltage can be maintained close to a target value by appropriate ON and OFF control of the switch. As the energy converted by the variable capacitor on each cycle depends on the bias voltage, this energy can be therefore accurately controlled. This feature opens up promising perspectives for optimization the power harvested by electrostatic devices. Simulation results with and without electromechanical coupling effect are presented. In experimental tests, a simple switch control enabling to stabilize the bias voltage is described.

  7. A Pulsed Power Supply with Sag Compensation using Controlled Gradational Voltage

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Yamada, Masaki; Tashiro, Shojirou; Iwata, Akihiko

    A pulsed power supply with sag compensation using controlled gradational voltage to increase the flatness of output waveforms has been developed.The sag compensation circuit consists of compensation units connected in series. Each compensation unit consists of capacitances, diodes, and semiconductor switches. The capacitances of each unit are charged with different voltages by 2n (V0, 2V0, 4V0, ···). The compensation voltages, which has 2n-1 steps, is generated by switching the semiconductor switches of each unit in a binary sequence. Using this method, compensation voltage waveforms up to 6.2kV with 31 steps can be obtained with 5 compensation units. The sag compensation circuit has been adapted to a direct switch type pulsed power supply, which generates 7kV pulsed voltage with a pulse width of 700μs, thus realizing sag compensation.

  8. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  9. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  10. High voltage, high power operation of the plasma erosion opening switch

    SciTech Connect

    Neri, J.M.; Boller, J.R.; Ottinger, P.F.; Weber, B.V.; Young, F.C.

    1987-04-07

    A Plasma Erosion Opening Switch (PEOS) is used as the opening switch for a vacuum inductive storage system driven by a 1.8-MV, 1.6-TW pulsed power generator. A 135-nH vacuum inductor is current charged to approx.750 kA in 50 ns through the closed PEOS which then opens in <10 ns into an inverse ion diode load. Electrical diagnostics and nuclear activations from ions accelerated in the diode yield a peak load voltage (4.25 MV) and peak load power (2.8 TW) that are 2.4 and 1.8 times greater than ideal matched load values for the same generator pulse.

  11. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  12. Ultra high voltage MOS controlled 4H-SiC power switching devices

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.

    2015-08-01

    Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 mΩ cm2 at 25 °C, which increased to 570 mΩ cm2 at 150 °C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.

  13. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  14. Design, Control, and Modeling of a New Voltage Source Converter for HVDC System

    NASA Astrophysics Data System (ADS)

    Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya

    2013-05-01

    Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.

  15. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  16. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    PubMed

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology.

  17. Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas

    2007-01-01

    A proposed multiloop power supply would generate a potential as high as 1.25 kV with rise and fall times <100 s. This power supply would, moreover, be programmable to generate output potentials from 20 to 1,250 V and would be capable of supplying a current of at least 300 A at 1,250 V. This power supply is intended to be a means of electronic shuttering of a microchannel plate that would be used to intensify the output of a charge-coupled-device imager to obtain exposure times as short as 1 ms. The basic design of this power supply could also be adapted to other applications in which high voltages and high slew rates are needed. At the time of reporting the information for this article, there was no commercially available power supply capable of satisfying the stated combination of voltage, rise-time, and fall-time requirements. The power supply would include a preregulator that would be used to program a voltage 1/30 of the desired output voltage. By means of a circuit that would include a pulse-width modulator (PWM), two voltage doublers, and a transformer having two primary and two secondary windings, the preregulator output voltage would be amplified by a factor of 30. A resistor would limit the current by controlling a drive voltage applied to field-effect transistors (FETs) during turn-on of the PWM. Two feedback loops would be used to regulate the high output voltage. A pulse transformer would be used to turn on four FETs to short-circuit output capacitors when the outputs of the PWM were disabled. Application of a 0-to-5-V square to a PWM shut-down pin would cause a 20-to-1,250-V square wave to appear at the output.

  18. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  19. Cogeneration power systems

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1978-01-01

    Cogeneration is defined as the combination of electrical generation and process heat for more efficient use of fuel. Comparisons of energy utilization in conventional electric power plants and cogeneration electric power plants are presented. Characteristics of various cogeneration systems are also presented. Systems are analyzed for use in utility systems and industrial systems. Economic and cost analysis are reviewed.

  20. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  1. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  2. Skylab high voltage electrical/electronic systems corona assessment.

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1973-01-01

    Six significant design parameters which must be considered in the corona assessment include the operating voltage, radio frequency power, the 'pressure times spacing' relation, operating temperature, gases and contaminants in the environment, and configuration and field gradients. An equipment and experiments survey is presented, giving attention to corona-free equipment and equipment requiring detailed investigations.

  3. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  4. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    PubMed

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  5. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    PubMed Central

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374

  6. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  7. Effects of voltage control in utility interactive dispersed storage and generation systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Das, R.

    1983-01-01

    When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. The effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator is examined. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power. Operation with a constant slightly lagging factor is shown to have some advantages.

  8. Effects of voltage control in utility interactive dispersed storage and generation systems

    SciTech Connect

    Kirkham, H.; Das, R.

    1983-03-15

    When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. This report examines the effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power.

  9. Various power quality challenges and solution techniques using FACTS technology for power system

    NASA Astrophysics Data System (ADS)

    Soni, J. Sandeep; Jangalwa, N. K.; Gupta, R.; Palwalia, D. K.

    2016-03-01

    This paper presents a comprehensive review on the various power quality problems and various solution techniques using FACTS in Power system. The term "Power Quality" is a broad concept and its meaning is taken different by different peoples. It is associated with electrical transmission, distribution and utilization systems those are having experience of any Voltage, current or frequency divergence from normal operation. Due to power quality problems industries have to invest large amount for mitigation of Voltage sags, distortions, harmonics and short term interruptions/disturbances etc. In paper authors tried to cover various possible sources and compensation methods of reactive power in power system.

  10. Pulse-power characteristic of VIVA-1 (Versatile Inductive Voltage Adder)

    NASA Astrophysics Data System (ADS)

    Shimiya, K.; Hozumi, Y.; Aoyama, T.; Shigeta, M.; Shibata, Kiyoshi; Sekimoto, Y.; Masugata, Katsumi; Yatsui, Kiyoshi

    1990-10-01

    Versatile Inductive Voltage Adder, (VIVA-1), with high potential gradient was successfully developed to be in operation. It was designed to produce output pulse of 4 MV, 60 ns by adding 2 MV pulses in 2 stages of induction cells, where amorphous cores are installed. Within approx. 40 percent of full charge voltage, pulse power characteristics of Marx generator, pulse forming line (PFL), transmission line (TL), and induction cells were tested for three types of loads: open circuit; dummy load of CuSO4 resistor; and electron diode. In open circuit test, approx. 2.0 MV of output voltage was obtained with good reproducibility. Dependence of output voltage on diode impedance was evaluated by using a dummy load, and good agreement was obtained with that expected. An E-beam diode was operated successfully, and approx. 18 kA of beam current was obtained at diode voltage of approx. 1 MV.

  11. International Space Station Power Systems

    NASA Technical Reports Server (NTRS)

    Propp, Timothy William

    2001-01-01

    This viewgraph presentation gives a general overview of the International Space Station Power Systems. The topics include: 1) The Basics of Power; 2) Space Power Systems Design Constraints; 3) Solar Photovoltaic Power Systems; 4) Energy Storage for Space Power Systems; 5) Challenges of Operating Power Systems in Earth Orbit; 6) and International Space Station Electrical Power System.

  12. Economical space power systems

    NASA Technical Reports Server (NTRS)

    Burkholder, J. H.

    1980-01-01

    A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

  13. Modeling of DC spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Berry, F. C.

    1995-01-01

    Future spacecraft power systems must be capable of supplying power to various loads. This delivery of power may necessitate the use of high-voltage, high-power dc distribution systems to transmit power from the source to the loads. Using state-of-the-art power conditioning electronics such as dc-dc converters, complex series and parallel configurations may be required at the interface between the source and the distribution system and between the loads and the distribution system. This research will use state-variables to model and simulate a dc spacecraft power system. Each component of the dc power system will be treated as a multiport network, and a state model will be written with the port voltages as the inputs. The state model of a component will be solved independently from the other components using its state transition matrix. A state-space averaging method is developed first in general for any dc-dc switching converter, and then demonstrated in detail for the particular case of the boost power stage. General equations for both steady-state (dc) and dynamic effects (ac) are obtained, from which important transfer functions are derived and applied to a special case of the boost power stage.

  14. Optical control system for high-voltage terminals

    DOEpatents

    Bicek, John J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal.

  15. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  16. Power system commonality study

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1992-07-01

    A limited top level study was completed to determine the commonality of power system/subsystem concepts within potential lunar and Mars surface power system architectures. A list of power system concepts with high commonality was developed which can be used to synthesize power system architectures which minimize development cost. Examples of potential high commonality power system architectures are given in this report along with a mass comparison. Other criteria such as life cycle cost (which includes transportation cost), reliability, safety, risk, and operability should be used in future, more detailed studies to select optimum power system architectures. Nineteen potential power system concepts were identified and evaluated for planetary surface applications including photovoltaic arrays with energy storage, isotope, and nuclear power systems. A top level environmental factors study was completed to assess environmental impacts on the identified power system concepts for both lunar and Mars applications. Potential power system design solutions for commonality between Mars and lunar applications were identified. Isotope, photovoltaic array (PVA), regenerative fuel cell (RFC), stainless steel liquid-metal cooled reactors (less than 1033 K maximum) with dynamic converters, and in-core thermionic reactor systems were found suitable for both lunar and Mars environments. The use of SP-100 thermoelectric (TE) and SP-100 dynamic power systems in a vacuum enclosure may also be possible for Mars applications although several issues need to be investigated further (potential single point failure of enclosure, mass penalty of enclosure and active pumping system, additional installation time and complexity). There are also technical issues involved with development of thermionic reactors (life, serviceability, and adaptability to other power conversion units). Additional studies are required to determine the optimum reactor concept for Mars applications. Various screening

  17. A combined compensation method for the output voltage of an insulated core transformer power supply

    SciTech Connect

    Yang, L.; Yang, J. Liu, K. F.; Qin, B.; Chen, D. Z.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  18. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  19. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    NASA Astrophysics Data System (ADS)

    Yuan, Wang; Xu, Zhang; Ming, Liu; Peng, Li; Hongda, Chen

    2014-10-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators.

  20. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    SciTech Connect

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  1. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  2. TFTR neutral-beam power system

    SciTech Connect

    Winje, R.A.

    1982-10-01

    The TFTR Neutral Beam Power System (NBPS) consists of the accelerator grid power supply and the auxiliary power supplies required to operate the TFTR 120-keV ion sources. The current configuration of the NBPS including the 11-MVA accelerator grid power supply and the Arc and Filament power supplies isolated for operation at accelerator grid voltages up to 120 kV, is described. The prototype NBPS has been assembled at the Princeton Plasma Physics Laboratory and has been operated. The results of the initial operation and the description and resolution of some of the technical problems encountered during the commissioning tests are presented.

  3. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    NASA Astrophysics Data System (ADS)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  4. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  5. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  6. Power Systems integration

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.

    1982-01-01

    Power systems integration in large flexible space structures is discussed with emphasis upon body control. A solar array is discussed as a typical example of spacecraft configuration problems. Information on how electric batteries dominate life-cycle costs is presented in chart form. Information is given on liquid metal droplet generators and collectors, hot spot analysis, power dissipation in solar arrays, solar array protection optimization, and electromagnetic compatibility for a power system platform.

  7. An Estimation Method of System Voltage Sag Profile using Recorded Sag Data

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuyuki; Sakashita, Tadashi

    The influence of voltage sag to electric equipment has become big issues because of wider utilization of voltage sensitive devices. In order to reduce the influence of voltage sag appearing at each customer side, it is necessary to recognize the level of receiving voltage drop due to lightning faults for transmission line. However it is hard to measure directly those sag level at every load node. In this report, a new method of efficiently estimating system voltage sag profile is proposed based on symmetrical coordinate. In the proposed method, limited recorded sag data is used as the estimation condition which is recorded at each substation in power systems. From the point of view that the number of the recorded node is generally far less than those of the transmission route, a fast solution method is developed to calculate only recorder faulted voltage by applying reciprocity theorem for Y matrix. Furthermore, effective screening process is incorporated, in which the limited candidate of faulted transmission line can be chosen. Demonstrative results are presented using the IEEJ East10 standard system and actual 1700 bus system. The results show that estimation accuracy is sufficiently acceptable under less computation labor.

  8. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  9. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  10. Environmental justice: a contrary finding for the case of high-voltage electric power transmission lines.

    PubMed

    Wartenberg, Daniel; Greenberg, Michael R; Harris, Gerald

    2010-05-01

    Environmental justice is the consideration of whether minority and/or lower-income residents in a geographic area are likely to have disproportionately higher exposures to environmental toxins than those living elsewhere. Such situations have been identified for a variety of factors, such as air pollution, hazardous waste, water quality, noise, residential crowding, and housing quality. This study investigates the application of this concept to high-voltage electric power transmission lines (HVTL), which some perceive as a health risk because of the magnetic fields they generate, and also as esthetically unpleasing. We mapped all 345 kV and higher voltage HVTL in New York State and extracted and summarized proximate US Census sociodemographic and housing characteristic data into four categories on the basis of distances from HVTL. Contrary to our expectation, people living within 2000 ft from HVTL were more likely to be exposed to magnetic fields, white, of higher income, more educated and home owners, than those living farther away, particularly in urban areas. Possible explanations for these patterns include the desire for the open space created by the rights-of-way, the preference for new homes/subdivisions that are often located near HVTL, and moving closer to HVTL before EMFs were considered a risk. This study suggests that environmental justice may not apply to all environmental risk factors and that one must be cautious in generalizing. In addition, it shows the utility of geographical information system methodology for summarizing information from extremely large populations, often a challenge in epidemiology.

  11. Reactive power and harmonic compensation based on the generalized instantaneous reactive power theory for three-phase power systems

    SciTech Connect

    Peng, Fang Zheng; Lai, Jih-Sheng

    1996-10-01

    A generalized theory of instantaneous reactive power for three-phase power systems is proposed in this paper. This theory gives a generalized definition of instantaneous reactive power, which is valid for sinusoidal or nonsinusoidal, balanced or unbalanced, three- phase power systems with or without zero-sequence currents and/or voltages. The properties and physical meanings of the newly defined instantaneous reactive power are discussed in detail. With this new reactive power theory, it is very easy to calculate and decompose all components, such as fundamental active/reactive power and current, harmonic current, etc. Reactive power and/or harmonic compensation systems for a three-phase distorted power system with and without zero-sequence components in the source voltage and/or load current are then used as examples to demonstrate the measurement, decomposition, and compensation of reactive power and harmonics.

  12. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  13. A dual-mode phase-shift modulation control scheme for voltage multiplier based X-ray power supply

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Besar, R.; Venkataseshaiah, C.

    2010-05-01

    This paper proposes a dual-mode phase-shift modulation control scheme for series resonant inverter fed voltage multiplier (VM) based X-ray power supply. In this control scheme the outputs voltage of two parallel connected series resonant inverters are mixed before supplying to VM circuit. The output voltage of the power supply is controlled by varying the phase-shift between the output voltages of two inverters. In order to achieve quick rise of output voltage, the power supply is started with zero phase-shift and as the output voltage reaches 90% of the target voltage, the phase-shift is increased to a value which corresponds to target output voltage to prevent overshoot. The proposed control scheme has been shown to have good performance. Experimental results based on the scaled-down laboratory prototype are presented to validate the effectiveness of proposed dual-mode phase shift modulation control scheme.

  14. Derivation of Instantaneous Wye and Zero-Phase Sequence Voltages from Line-Line Voltages in Unbalanced 3-Phase 3-Wire Systems and Application of This Method to 3-Phase PWM Converter Control

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Itsuo; Kawamura, Atsuo

    In general, voltage imbalances in 3-phase AC power systems are inevitable. 3-Phase PWM (Pulse Width Modulation) converter used in 3-wire systems are generally designed for use under limited imbalances of input voltages, and problems such as input current distortion, deterioration of output properties, degradation of efficiency and failure may occur in some cases. These problems cause severe damages to industries in some cases, for example, semiconductor production machines: SEMI defined “SEMI F47-0200” and “SEMI F47-0706” standards that have to be satisfied to realize voltage sag immunity. In order to compensate the remained problems due to the unbalanced input voltages, particular storage devices are designed additionally for conventional converters. This paper proposes that the determination of both the instantaneous zero-phase sequence voltage and wye voltages is essential for 3-phase PWM converter control used for a 3-wire system to keep its output rated under occasional or long-term voltage imbalances in an AC system. This paper also describes a general new method to derive the components of the voltages of instantaneous wye and zero-phase sequence voltage from line-line voltages of a 3-wire system. This paper also describes a method to apply the voltages to control the converter. The results obtained on implementation verify that this new converter keeps its output rated under unbalanced conditions wider than those defined by SEMIs without particular storage devices as far as the AC voltages are remained live.

  15. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  16. Power Losses and Thermal Modeling of A Voltage Source Inverter

    DTIC Science & Technology

    2006-03-01

    Naval Research. The ability to generate thermal simulations of systems and to accurately predict a system’s response becomes essential in order to...fuel cell and reformer demonstration which is a top priority for the Office of Naval Research. The ability to generate thermal simulations of systems...9 A. INTRODUCTION............................................................................................9 B. THERMAL MODEL GENERATION

  17. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-07-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  18. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-01-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or culombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  19. Single Event Transients in Voltage Regulators for FPGA Power Supply Applications

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard

    2006-01-01

    As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.

  20. 29 CFR 1926.1410 - Power line safety (all voltages)-equipment operations closer than the Table A zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all voltages... an energized power line is prohibited, except where the employer demonstrates that all of...

  1. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  2. Border Collision of Three-Phase Voltage-Source Inverter System with Interacting Loads

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Bin; Li, Yining; Wong, Siu-Chung; Liu, Xiangdong; Huang, Yuehui

    As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.

  3. The world's first high voltage GaN-on-Diamond power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Baltynov, Turar; Unni, Vineet; Narayanan, E. M. Sankara

    2016-11-01

    This paper presents the detailed fabrication method and extensive electrical characterisation results of the first-ever demonstrated high voltage GaN power semiconductor devices on CVD Diamond substrate. Fabricated circular GaN-on-Diamond HEMTs with gate-to-drain drift length of 17 μm and source field plate length of 3 μm show an off-state breakdown voltage of ∼1100 V. Temperature characterisation of capacitance-voltage characteristics and on-state characteristics provides insight on the temperature dependence of key parameters such as threshold voltage, 2DEG sheet carrier concentration, specific on-state resistance, and drain saturation current in the fabricated devices.

  4. Computer analysis of transient voltages in large grounding systems

    SciTech Connect

    Grcev, L.D.

    1996-04-01

    A computer model for transient analysis of a network of buried and above ground conductors is presented. The model is based on the electromagnetic field theory approach ad the modified image theory. Validation of the model is achieved by comparison with field measurements. The model is applied for computation of transient voltages to remote ground of large grounding grid conductors. Also computation of longitudinal and leakage currents, transient impedance, electromagnetic fields, and transient induced voltages is possible. This model is aimed to help in EMC and lightning protection studies that involve electrical and electronic systems connected to grounding systems.

  5. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  6. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-04-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  7. Multiple Chaos Synchronization System for Power Quality Classification in a Power System

    PubMed Central

    Huang, Cong-Hui; Lin, Chia-Hung

    2014-01-01

    This document proposes multiple chaos synchronization (CS) systems for power quality (PQ) disturbances classification in a power system. Chen-Lee based CS systems use multiple detectors to track the dynamic errors between the normal signal and the disturbance signal, including power harmonics, voltage fluctuation phenomena, and voltage interruptions. Multiple detectors are used to monitor the dynamic errors between the master system and the slave system and are used to construct the feature patterns from time-domain signals. The maximum likelihood method (MLM), as a classifier, performs a comparison of the patterns of the features in the database. The proposed method can adapt itself without the need for adjustment of parameters or iterative computation. For a sample power system, the test results showed accurate discrimination, good robustness, and faster processing time for the detection of PQ disturbances. PMID:24764771

  8. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  9. Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant

    SciTech Connect

    Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard; Kang, Yong Cheol

    2016-05-01

    Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a larger reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.

  10. A new combined method in active filter design for power quality improvement in power systems.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    The voltage & current harmonics produced by nonlinear loads in power systems cause a reduction in power quality. In order to improve the power quality, active power filters (APFs) can be used. In this paper, a new control system for designing active filters despite nonlinear loads of electric arc furnaces (EAFs) is presented. The system is composed of three main parts: computation of reference currents, regulation of DC capacitor voltage, and production of firing pulses. In the first part, the active filter control system is presented based on the combination of the synchronous detection method and instantaneous power theory. In the second part, the DC capacitor voltage regulator is applied, producing a reference current and a proper voltage regulator is developed. For the third part of the control system, we use a PI controller to provide some conditions that follow the reference current in a complete cycle, and generate firing pulses by the hysteresis method. The proposed control system not only reduces the voltage and current harmonics in power systems but can also improve the power quality indices. The above design was implemented in the EAF system of the Mobarakeh steel complex (Isfahan, Iran). The simulation results show the effectiveness of the APFs in improving the power quality indices.

  11. Evaluation of high temperature dielectric films for high voltage power electronic applications

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  12. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  13. Transient power supply voltage (v{sub DDT}) analysis for detecting IC defects

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Beegle, R.W.

    1997-04-01

    Transient power supply voltage (V{sub DDT}) analysis is a new testing technique demonstrated as a powerful alternative and complement to I{sub DDQ} testing. V{sub DDT} takes advantage of the limited response time of a voltage supply to the changing power demands of an IC during operation. Changes in the V{sub DD} response time are used to detect increases in power demand with resolutions of 100 nA at 100 kHz, 1 {mu}A at 1 MHz, and 2.5 {mu}A at 1.5 MHz. These current sensitivities have been shown for ICs with quiescent currents < 0.1 {mu}A and > 300 {mu}A. The V{sub DDT} signal acquisition protocols, frequency versus sensitivity tradeoffs, hardware considerations and limitations, data examples, and areas for future research are described.

  14. Power supply design for the filament of the high-voltage electron accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Lige; Yang, Lei; Yang, Jun; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-01

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  15. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  16. Power conditioning system for energy sources

    DOEpatents

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  17. Method for reducing fuel cell output voltage to permit low power operation

    DOEpatents

    Reiser, Carl A.; Landau, Michael B.

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  18. NEW APPROACHES: Magnetic and electric field strengths of high voltage power lines and household appliances

    NASA Astrophysics Data System (ADS)

    Austin, Lydia

    1997-03-01

    A readily obtainable meter can be used to measure the magnetic and electric field strengths of high voltage power lines and household appliances. Simple calculations show that all likely exposures are below, mostly well below, the maximum exposures recommended by the World Health Organisation.

  19. Planar edge terminations for high voltage 4H-SiC power MOSFETs

    NASA Astrophysics Data System (ADS)

    Soler, Victor; Berthou, Maxime; Mihaila, Andrei; Monserrat, Josep; Godignon, Philippe; Rebollo, José; Millán, José

    2017-03-01

    Several edge termination structures for high voltage 4H-SiC devices compatible with a planar power MOSFET fabrication process are analyzed in this paper. The edge terminations’ efficiency has been experimentally demonstrated on PiN diodes with breakdown voltage capabilities ranging from 2 to 5 kV, fabricated within a full power MOSFET process technology. The studied edge terminations consist of typical JTEs, novel FGRs using MOSFET P-well implantation, as well as a combination of JTEs and FGRs. The experimental results have shown a good efficiency of most of the implemented edge terminations. It is also shown that P-well FGRs could be an effective cost solution for high voltage SiC based power MOSFETs. Moreover, the edge termination combining JTEs and FGRs concepts shows a better tolerance of breakdown voltage values against variations in the JTE dose. The same edge termination design allows one to obtain a good efficiency for both 1.7 and 4.5 kV PiN diodes. The optimal termination has been successfully implemented on 4.5 kV power MOSFETs.

  20. Innovation on Energy Power Technology (15)Great Advances in Power System Stabilizing Technology triggered by the Wide-area Outage

    NASA Astrophysics Data System (ADS)

    Egawa, Masanao

    On July 23, 1987, a very hot day, the largest wide-area power outage occurred in Kanto-Area, Japan. The cause was a voltage collapse on the bulk power network of Tokyo Electric Power Company, due to the abnormal rate of demand rising following resume after lunch break. Aggressive studies on voltage collapse throughout industry and university have led to great advances in power system stability. This essay describes the detail record of the outage, the applied countermeasures, and the inside story when the multiple voltage solutions of power flow on actual power system were found out for the first time.

  1. Extra high voltage power transmission. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the design, construction, and use of extra high voltage power transmission lines. Both underground and overhead lines are discussed, as well as superconducting and resistive cryogenic lines. Health, safety, and psychological aspects of the electrical field, corona, ozone, and acoustic effects of these lines are discussed. New conductors, insulators, mounting, monitoring, control, and lightning protection of EHV power transmission lines are presented. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  2. AC power system breadboard

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  3. Step voltage analysis for the catenoid lightning protection system

    NASA Technical Reports Server (NTRS)

    Chai, J. C.; Briet, R.; Barker, D. L.; Eley, H. E.

    1991-01-01

    The main objective of the proposed overhead Catenoid Lightning Protection System (CLPS) is personnel safety. To ensure working personnel's safety in lightning situations, it is necessary that the potential difference developed across a distance equal to a person's pace (step voltage) does not exceed a separately established safe voltage in order to avoid electrocution (ventricular fibrillation) of humans. Therefore, the first stage of the analytical effort is to calculate the open circuit step voltage. An impedance model is developed for this purpose. It takes into consideration the earth's complex impedance behavior and the transient nature of the lightning phenomenon. In the low frequency limit, this impedance model is shown to reduce to results similar to those predicted by the conventional resistor model in a DC analysis.

  4. Use of negative capacitance to provide voltage amplification for low power nanoscale devices.

    PubMed

    Salahuddin, Sayeef; Datta, Supriyo

    2008-02-01

    It is well-known that conventional field effect transistors (FETs) require a change in the channel potential of at least 60 mV at 300 K to effect a change in the current by a factor of 10, and this minimum subthreshold slope S puts a fundamental lower limit on the operating voltage and hence the power dissipation in standard FET-based switches. Here, we suggest that by replacing the standard insulator with a ferroelectric insulator of the right thickness it should be possible to implement a step-up voltage transformer that will amplify the gate voltage thus leading to values of S lower than 60 mV/decade and enabling low voltage/low power operation. The voltage transformer action can be understood intuitively as the result of an effective negative capacitance provided by the ferroelectric capacitor that arises from an internal positive feedback that in principle could be obtained from other microscopic mechanisms as well. Unlike other proposals to reduce S, this involves no change in the basic physics of the FET and thus does not affect its current drive or impose other restrictions.

  5. High-Voltage Power Supply With Fast Rise and Fall Times

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Acker, Richard M.; Kapuslka, Robert E.

    2007-01-01

    A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals.

  6. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  7. Real time voltage and current phase shift analyzer for power saving applications.

    PubMed

    Krejcar, Ondrej; Frischer, Robert

    2012-01-01

    Nowadays, high importance is given to low energy devices (such as refrigerators, deep-freezers, washing machines, pumps, etc.) that are able to produce reactive power in power lines which can be optimized (reduced). Reactive power is the main component which overloads power lines and brings excessive thermal stress to conductors. If the reactive power is optimized, it can significantly lower the electricity consumption (from 10 to 30%-varies between countries). This paper will examine and discuss the development of a measuring device for analyzing reactive power. However, the main problem is the precise real time measurement of the input and output voltage and current. Such quality measurement is needed to allow adequate action intervention (feedback which reduces or fully compensates reactive power). Several other issues, such as the accuracy and measurement speed, must be examined while designing this device. The price and the size of the final product need to remain low as they are the two important parameters of this solution.

  8. The System Impact of Air-Conditioner Under-voltage Protection Schemes

    SciTech Connect

    Lu, Ning; Yang, Bo; Huang, Zhenyu; Bravo, Richard

    2009-03-31

    This paper presents simulation results of evaluating an under-voltage protection scheme designed to take stalled air-conditioner (a/c) units offline such that the slow voltage recovery phenomena can be solved on areas heavily loaded with a/c motors during summer peak periods. A three feeder test-bed has been first used to quantify the effectiveness of the protection scheme and the sensitivity of the under-voltage relay settings. Then two real system events of the Western US power grid have been studied to evaluate the area impact of the protection scheme proposed by Southern California Edison. The study demonstrates that by taking all or most of the stalled a/c unit offline, the feeder voltage will recover in a few seconds, much quicker than the tens of seconds that the standard thermal relays imbedded in the motors need to trip the units. The drawback of the control scheme is that after the voltage recover, it settled at a higher voltage than before the faults because a large chuck of load has been shed.

  9. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  10. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  11. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. ); Franzini, P. ); Jones, A.A. ); Lopez, M.L. ); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  12. A new VME based high voltage power supply for large experiments

    SciTech Connect

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus_minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  13. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Ye, Tan; Jianmin, Zeng; Xu, Han; Xin, Cheng; Guangjun, Xie

    2016-09-01

    A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration. Project supported by the National Natural Science Foundation of China (Nos. 61404043, 61401137), the Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Nos. IIMDKFJJ-13-06, IIMDKFJJ-14-03), and the Fundamental Research Funds for the Central Universities (No. 2015HGZX0026).

  14. Concept design of the high voltage transmission system for the collider tunnel

    NASA Astrophysics Data System (ADS)

    Norman, L. S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations--such as the Channel Tunnel--demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design.

  15. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  16. Voltages induced on a power distribution line by overhead cloud lightning

    NASA Technical Reports Server (NTRS)

    Yacoub, Ziad; Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    Voltages induced by overhead cloud lightning on a 448 m open circuited power distribution line and the corresponding north-south component of the lightning magnetic field were simultaneously measured at the NASA Kennedy Space Center during the summer of 1986. The incident electric field was calculated from the measured magnetic field. The electric field was then used as an input to the computer program, EMPLIN, that calculated the voltages at the two ends of the power line. EMPLIN models the frequency domain field/power coupling theory found, for example, in Ianoz et al. The direction of the source, which is also one of the inputs to EMPLIN, was crudely determined from a three station time delay technique. The authors found reasonably good agreement between calculated and measured waveforms.

  17. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  18. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  19. A miniaturized high-voltage integrated power supply for portable microfluidic applications.

    PubMed

    Erickson, David; Sinton, David; Li, Dongqing

    2004-04-01

    In this work a portable microfluidic device with a reusable integrated high voltage power supply is presented, which allows for quick exchange of inexpensive disposable poly(dimethylsiloxane)(PDMS) microfluidic chips on a carrier only slightly larger than a microscope slide. The device is powered by an onboard MN21 cell battery (5 mm radius, 30 mm long) and is demonstrated through the rapid and controlled transport of a fluorescent dye through an expansion chamber geometry. Power consumption experiments demonstrate the device's ability to complete over 40 dispense-flushing cycles on a single battery.

  20. Space Weather, Geomagnetic Disturbances and Impact on the High-Voltage Transmission Systems

    NASA Technical Reports Server (NTRS)

    Pullkkinen, A.

    2011-01-01

    Geomagnetically induced currents (GIC) affecting the performance of high-voltage power transmission systems are one of the most significant hazards space weather poses on the operability of critical US infrastructure. The severity of the threat was emphasized, for example, in two recent reports: the National Research Council (NRC) report "Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report" and the North American Electric Reliability Corporation (NERC) report "HighImpact, Low-Frequency Event Risk to the North American Bulk Power System." The NRC and NERC reports demonstrated the important national security dimension of space weather and GIC and called for comprehensive actions to forecast and mitigate the hazard. In this paper we will give a brief overview of space weather storms and accompanying geomagnetic storm events that lead to GIC. We will also review the fundamental principles of how GIC can impact the power transmission systems. Space weather has been a subject of great scientific advances that have changed the wonder of the past to a quantitative field of physics with true predictive power of today. NASA's Solar Shield system aimed at forecasting of GIC in the North American high-voltage power transmission system can be considered as one of the ultimate fruits of those advances. We will review the fundamental principles of the Solar Shield system and provide our view of the way forward in the science of GIC.

  1. A simple method to increase effective PMT gain by amplifier circuit powered from voltage divider

    SciTech Connect

    Popov, V.; Majewski, S.; Wojtsekhowski, B.; Guerin, D

    2001-11-01

    A novel concept is introduced of additional effective signal amplification by employing a dedicated circuit to process anode or dynode signals prior to sending them through a standard 50 /spl Omega/ line/cable. The circuit is entirely powered by the current flowing through the base voltage divider. Additional gain factors of 2-10 were easily achieved with preserved operation speed and rate capability up to several MHz. This additional signal boost can be used in many applications where higher gain and/or lower PMT operational voltages are desirable. For example, in the case of a PMT employed in a low input light signal (such as a Cherenkov counter), this technique will permit operation at a lower voltage and, therefore, will result in better operational PMT stability and longer PMT lifetime. At present, two experimental set-ups at Jefferson Lab are using PMT bases using this concept.

  2. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  3. Industrial and commercial power systems technical conference (Conference Record)

    SciTech Connect

    Not Available

    1987-01-01

    This book contains 18 selections. Some of the titles are: A Relational Database Approach to Design of Power Plant and Large Industrial Electrical Facilities; Power Quality Site Surveys: Facts, Fiction, and Fallacies; An Application Design Guide for the Selection of Low Voltage Protection Equipment Used in Power Systems with High Level Fault Currents; and Saving Electricity in Commercial Buildings with Adjustable Speed Drives.

  4. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  5. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    PubMed Central

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588

  6. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect

    Nozari, F.; Patel, H.S.

    1988-04-01

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  7. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  8. Integrated power system

    SciTech Connect

    Waddington, C.

    1987-10-13

    An integrated power system is described for transmitting power from a gas turbine engine, including a gas producer and a free turbine engine, to the driving elements of a vehicle comprising: a pair of independent output shafts; a pair of combining planetary gear systems, each being drivingly coupled to an associated one of the output shafts; a variable speed transmission drivingly coupled to the free power turbine; drive means operatively connecting the transmission and each of the combining planetary gear systems; steering means operatively coupled to each of the combining planetary gear systems for selectively driving at least one of the combining planetary gear systems; the steering means including a variable displacement hydraulic motor in driving engagement with the planetary gear systems and an hydraulic pump in driving engagement with the transmission for supplying fluid under pressure to the hydraulic motor to thereby effect steering of the vehicle; a fuel control for controlling the power output of the gas turbine engine; and an adjustable relief valve operatively interposed between the hydraulic motor and the hydraulic pump, the valve being responsive to the fuel control to establish a maximum fluid pressure imparted by the hydraulic pump to the hydraulic motor.

  9. Investigations of the quality of hospital electric power supply and the tolerance of medical electric devices to voltage dips.

    PubMed

    Hanada, Eisuke; Itoga, Shuuya; Takano, Kyoko; Kudou, Takato

    2007-06-01

    Medical devices driven by electric power have come to be commonly used in hospitals, and rapid changes of voltage or current can easily cause them to fail. A stable and high quality power supply is indispensable in order to maintain safety in the modern clinical setting. Therefore, we investigated the quality of the power supply in a hospital and determined the tolerance of 13 pieces of medical equipment to voltage dips. The results showed little distortion of the voltage wave. However, we found an approximately 7% momentary voltage dip caused by lightening and other problems, such as 2 to 5% periodic drops in voltage and voltage wave distortions caused by incorrect grounding. In a tolerance test, the settings of some medical devices were changed at the time of automatic reboot after a disturbance. For another device, trend information was initialized.

  10. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.

    1992-01-01

    Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.

  11. A versatile power converter for high-frequency link systems

    NASA Technical Reports Server (NTRS)

    Sood, Pradeep K.; Lipo, Thomas A.; Hansen, Irving G.

    1988-01-01

    A single-phase HF link appears to be an attractive alternative to the dc link commonly used in power conversion systems. Here, a power converter suitable for one-step conversion of the single-phase HF link voltage to the three-phase LF voltages typically required for interfacing with system sources and loads is proposed. The converter utilizes zero-voltage switching principles to minimize switching losses and an easy-to-implement technique of pulse-density modulation for the control of the amplitude, frequency, and waveshape of the synthesized LF signals. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straightforward. The feasibility of the proposed power circuit and the control technique has been experimentally verified.

  12. Characterization of vertical electric fields and associated voltages induced on a overhead power line from close artificially initiated lightning

    NASA Astrophysics Data System (ADS)

    Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-08-01

    Measurements were characterized of simultaneous vertical electric fields and voltages induced at both ends of a 448 m overhead power line by artificially initiated lightning return strokes. The lightning discharges struck ground about 20 m from one end of the line. The measured line voltages could be grouped into two categories: those in which multiple, similarly shaped, evenly spaced pulses were observed, which are called oscillatory; and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which are called impulsive. Voltage amplitudes range from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages.

  13. The Power Behind the Controversy: Understanding Local Policy Elites' Perceptions on the Benefits and Risks Associated with High Voltage Power Line Installation in the State of Arkansas

    NASA Astrophysics Data System (ADS)

    Moyer, Rachael M.

    Following a proposal for the installation of high voltage power lines in northwest Arkansas, a controversial policy debate emerged. Proponents of the transmission line argue that such an installation is inevitable and necessary to efficiently and reliably support the identified electric load in the region. Opponents claim that the lines will degrade the natural environment and hamper the tourism-based local economy in affected regions, notably in Ozark Mountain areas. This study seeks to understand how local policy elites perceive the benefits and risks associated with proposed transmission lines, which is a critical step in comprehending the formation and changes of related government policies. First, based upon the dual process theory of judgment, this study systematically investigates the triadic relationships between (a) more profound personal value predispositions, (b) affects and feelings, and (c) perceived benefits and risks related to the proposed installation of high voltage power lines among local policy elites in the state of Arkansas. Next, this study focuses more specifically on the role of value predispositions, specific emotional dimensions of affect heuristics, and perceptions pertaining to high voltage power line risks and benefits. Using original data collected from a statewide Internet survey of 420 local leaders and key policymakers about their opinions on the related issues, other factors claimed by previous literature, including trust, knowledge level, and demographic characteristics are considered. Analytical results suggest that grid-group cultural predispositions, as deeply held core values within local policy elites' individual belief systems, both directly and indirectly -- through affective feelings -- shape perceived utility associated with the installation of high voltage power lines. Recognizing that risk perceptions factor into policy decisions, some practical considerations for better designing policy addressing controversial issues

  14. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  15. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  16. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  17. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  18. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  19. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGES

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; ...

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  20. An improved AVC strategy applied in distributed wind power system

    NASA Astrophysics Data System (ADS)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  1. Development and fabrication of a fast recovery, high voltage power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Duffin, J. J.; Gaugh, C.; Kkaratnicki, H. M.; Troutman, G.

    1981-01-01

    The use of positive bevels for P-I-N mesa structures to achieve high voltages is described. The technique of glass passivation for mesa structures is described. The utilization of high energy radiation to control the lifetime of carriers in silicon is reported as a means to achieve fast recovery times. Characterization data is reported and is in agreement with design concepts developed for power diodes.

  2. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  3. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  4. An Adaptive Reconfigurable Active Voltage Doubler/Rectifier for Extended-Range Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    We present an adaptive reconfigurable active voltage doubler (VD)/rectifier (REC) (VD/REC) in standard CMOS, which can adaptively change its topology to either a VD or a REC by sensing the output voltage, leading to more robust inductive power transmission over an extended range. Both active VD and REC modes provide much lower dropout voltage and far better power conversion efficiency (PCE) compared to their passive counterparts by adopting offset-controlled high-speed comparators that drive the rectifying switches at proper times in the high-frequency band. We have fabricated the active VD/REC in a 0.5-µm 3-metal 2-poly CMOS process, occupying 0.585 mm2 of chip area. In an exemplar setup, VD/REC extended the power transmission range by 33% (from 6 to 8 cm) in relative coil distance and 41.5% (from 53° to 75°) in relative coil orientation compared to using the REC alone. While providing 3.1-V dc output across a 500-Ω load from 2.15- (VD) and 3.7-V (REC) peak ac inputs at 13.56 MHz, VD/REC achieved measured PCEs of 70% and 77%, respectively. PMID:24633369

  5. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  6. High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2003-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.

  7. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  8. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  9. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines.

    PubMed

    Jayaratne, E R; Ling, X; Morawska, L

    2015-09-01

    Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates.

  10. 46 CFR 111.05-29 - Dual voltage direct current systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Dual voltage direct current systems. 111.05-29 Section... Dual voltage direct current systems. Each dual voltage direct current system must have a suitably sensitive ground detection system which indicates current in the ground connection, has a range of at...

  11. High power connection system

    DOEpatents

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  12. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  13. The Selection Algorithm for Connection Modes of Medium Voltage Power Distribution Network Based on FAHP-GRA

    NASA Astrophysics Data System (ADS)

    Han, Wu; Han, Lin; Bin, Chen; Han, Wu; ying, Wen Bu

    This paper used fuzzy analytic hierarchy process (FAHP) and gray relational analysis (GRA) to solve the selection for the connection modes of medium voltage (MV) power distribution network. Firstly, it established the comprehensive evaluation indicator system from technicality, economy, and adaptability. Secondly, FAHP can evaluate the indicator weights, and avoid the ambiguity and uncertainty of judgment matrix. Finally, it combined with GRA to complete the comprehensive decision-making. This method also solves the error of the fuzzy albino number caused by fuzzy comprehensive evaluation theory. In the end, a practical example verified the reasonable and practical of this method.

  14. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  15. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  16. Ultracapacitor-Based Uninterrupted Power Supply System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less

  17. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined... temperature. Tests shall be conducted in a temperature-controlled environment over four 6-hour time...

  18. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  19. A high voltage pulsed power supply for capillary discharge waveguide applications

    SciTech Connect

    Abuazoum, S.; Wiggins, S. M.; Issac, R. C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; Ganciu, M.

    2011-06-15

    We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density {approx}10{sup 18} cm{sup -3}) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 {mu}s) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 {mu}m and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of {approx}280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.

  20. Lunar power systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  1. Lunar power systems

    NASA Astrophysics Data System (ADS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified.

  2. Power Efficient Hydraulic Systems. Volume 1. Study Phase

    DTIC Science & Technology

    1988-07-01

    AIRCRAFT SUBSYSTEMS TABLE 14. Baseline aircraft systems o HYDRAULIC SYSTEM o ELECTRICAL SYSTEM o 8000 PSI, 3 INDEPENDENT SYSTEMS o HVDC POWER o APU...valve (pump) HM hinge moment hp horsepower hr hour HVDC high voltage direct current Hz Hertz (cycles per second) IAP integrated actuator package I.D

  3. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    PubMed

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  4. High voltage-power frequency electrical heating in-situ conversion technology of oil shale

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Yang, Yang; Lopatin, Vladimir; Guo, Wei; Liu, Baochang; Yu, Ping; Gao, Ke; Ma, Yinlong

    2014-05-01

    With the depletion of conventional energy sources,oil shale has got much attention as a new type of energy resource,which is rich and widespread in the world.The conventional utilization of oil shale is mainly focused on resorting to produce shale oil and fuel gas with low extraction efficiency about one in a million due to many shortcomings and limitations.And the in-situ conversion of oil shale,more environmentally friendly,is still in the experimental stage.High voltage-power frequency electrical heating in-situ conversion of oil shale is a new type of in-situ pyrolysis technology.The main equipment includes a high voltage-power frequency generator and interior reactor. The high voltage-power frequency generator can provide a voltage between 220-8000 V which can be adjusted in real time according to the actual situation.Firstly,high voltage is used to breakdown the oil shale to form a dendritic crack between two electrodes providing a conductive channel inside the oil shale rock.And then the power frequency(220V) is used to generate the electric current for heating the internal surface of conductive channel,so that the energy can be transmitted to the surrounding oil shale.When the temperature reaches 350 degree,the oil shale begins to pyrolysis.In addition,the temperature in the conductive channel can be extremely high with high voltage,which makes the internal surface of conductive channel graphitization and improves its heat conduction performance.This technology can successfully make the oil shale pyrolysis, based on a lot of lab experiments,and also produce the combustible shale oil and fuel gas.Compared to other in-situ conversion technology,this method has the following advantages: high speed of heating oil shale,the equipment underground is simple,and easy to operate;it can proceed without the limitation of shale thickness, and can be used especially in the thin oil shale reservoir;the heating channel is parallel to the oil shale layers,which has more

  5. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  6. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  7. Shunt hybrid active power filter under nonideal voltage based on fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Dey, Papan; Mekhilef, Saad

    2016-09-01

    In this paper, a synchronous reference frame (SRF) method based on a modified phase lock loop (PLL) circuit is developed for a three-phase four-wire shunt hybrid active power filter (APF). Its performance is analysed under unbalanced grid conditions. The dominant lower order harmonics as well as reactive power can be compensated by the passive elements, whereas the active part mitigates the remaining distortions and improves the power quality. As different control methods show contradictory performance, fuzzy logic controller is considered here for DC-link voltage regulation of the inverter. Extensive simulations of the proposed technique are carried out in a MATLAB-SIMULINK environment. A laboratory prototype has been built on dSPACE1104 platform to verify the feasibility of the suggested SHAPF controller. The simulation and experimental results validate the effectiveness of the proposed technique.

  8. Time dependent and temperature dependent properties of the forward voltage characteristic of InGaN high power LEDs

    NASA Astrophysics Data System (ADS)

    Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.

    2017-03-01

    Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate

  9. Real Time Voltage and Current Phase Shift Analyzer for Power Saving Applications

    PubMed Central

    Krejcar, Ondrej; Frischer, Robert

    2012-01-01

    Nowadays, high importance is given to low energy devices (such as refrigerators, deep-freezers, washing machines, pumps, etc.) that are able to produce reactive power in power lines which can be optimized (reduced). Reactive power is the main component which overloads power lines and brings excessive thermal stress to conductors. If the reactive power is optimized, it can significantly lower the electricity consumption (from 10 to 30%—varies between countries). This paper will examine and discuss the development of a measuring device for analyzing reactive power. However, the main problem is the precise real time measurement of the input and output voltage and current. Such quality measurement is needed to allow adequate action intervention (feedback which reduces or fully compensates reactive power). Several other issues, such as the accuracy and measurement speed, must be examined while designing this device. The price and the size of the final product need to remain low as they are the two important parameters of this solution. PMID:23112662

  10. 29 CFR 1926.1410 - Power line safety (all voltages)-equipment operations closer than the Table A zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories) to a complete stop; wind conditions; degree of sway in the power line; lighting conditions, and... 29 Labor 8 2012-07-01 2012-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all...

  11. 29 CFR 1926.1410 - Power line safety (all voltages)-equipment operations closer than the Table A zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accessories) to a complete stop; wind conditions; degree of sway in the power line; lighting conditions, and... 29 Labor 8 2013-07-01 2013-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all...

  12. 29 CFR 1926.1410 - Power line safety (all voltages)-equipment operations closer than the Table A zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories) to a complete stop; wind conditions; degree of sway in the power line; lighting conditions, and... 29 Labor 8 2011-07-01 2011-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all...

  13. Power supply system design and build for Antarctica telescope

    NASA Astrophysics Data System (ADS)

    Du, Fujia; Li, Hao; Li, Aiai

    2016-07-01

    Currently, more and more telescopes were built and installed in Dome A of Antarctic. The telescopes are remote controlled, unattended operation due to Dome A's environment. These telescopes must be work successfully at least one year without any failure. According to past experience, the power supply system is the weakest point in whole system. The telescopes have to stop if the power system have a problem, even a minor problem. So the high requirement for power supply system are presented. The requirement include high reliability, the self-diagnosis and perfect monitor system. Furthermore, the optic telescope only can work at night. The power source mainly relay on diesel engine. To protect the Antarctic environment and increase the life of engines. The power capacity is limited during observation. So it need the power supply system must be high power factor, high efficient. To meet these requirement, one power supply system was design and built for Antarctic telescope. The power supply system have the following features. First, we give priority to achieve high reliability. The reliability of power system was calculated and the redundant system is designed to make sure that the spare one can be work immediately when some parts have problems. Second, the perfect monitor system was designed to monitor the voltage, current, power and power factor for each power channel. The status of power supply system can be acquired by internet continuously. All the status will be logged in main computer for future analysis. Third, the PFC (Power Factor Correction) technology was used in power supply system. This technology can dramatically increase the power factor, especially in high power situation. The DC-DC inverter instead of AC-DC inverter was used for different voltage level to increase the efficient of power supply.

  14. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  15. High power thyristors with 5 kV blocking voltage. Volume 1: Development of high-voltage-thyristors (4.5 kV) with good dynamic properties

    NASA Technical Reports Server (NTRS)

    Lock, K.; Patalong, H.; Platzoeder, K.

    1979-01-01

    Using neutron irradiated silicon with considerably lower spread in resistivity as compared to conventionally doped silicon it was possible to produce power thyristors with breakdown voltages between 3.5 kV and 5.5 kV. The thyristor pellets have a diameter of 50 mm. Maximum average on-state currents of 600 to 800 A can be reached with these elements. The dynamic properties of the thryistors could be improved to allow standard applications up to maximum repetitive voltages of 4.5 kV.

  16. SOI-Based High-Voltage, High-Temperature Integrated Circuit Gate Driver for SiC-Based Power FETs

    SciTech Connect

    Huque, Mohammad A; Tolbert, Leon M; Blalock, Benjamin; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimizing system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8-m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  17. X-rays and microwave RF power from high voltage laboratory sparks

    NASA Astrophysics Data System (ADS)

    Montanyà, Joan; Fabró, Ferran; March, Víctor; van der Velde, Oscar; Solà, Glòria; Romero, David; Argemí, Oriol

    2015-12-01

    Lightning flashes involve high energy processes that still are not well understood. In the laboratory, high voltage pulses are used to produce long sparks in open air allowing the production of energetic radiation. In this paper X-rays emitted by long sparks in air are simultaneously measured with the RF power radiation at 2.4 GHz. The experiment showed that the measured RF power systematically peaks at the time of the X-rays generation (in the microsecond time scale). All of the triggered sparks present peaks of RF radiation before the breakdown of the gap. The RF peaks are related to the applied voltage to the gap. RF peaks are also detected in discharges without breakdown. Cases where X-rays are detected presented higher RF power. The results indicate that at some stage of the discharge, before the breakdown, electrons are very fast accelerated letting in some cases to produce X-rays. Microwave radiation and X-rays may come from the same process.

  18. Electromagnetic fields and cancer in children residing near Norwegian high-voltage power lines.

    PubMed

    Tynes, T; Haldorsen, T

    1997-02-01

    The aim of the nested case-control study reported here was to test the hypothesis that exposure to electromagnetic fields of the type generated by high-voltage power lines increases the incidence of cancer in children aged 0-14 years. The study population comprised children who during at least one of the years 1960, 1970, 1980, 1985, 1987, or 1989 had lived in a census ward crossed by a high-voltage power line. The cases were diagnosed from 1965 to 1989 and were matched to controls by year of birth, sex, and municipality. Exposure to electric and magnetic fields was calculated by means of computer programs in which power line characteristics and distance were taken into account. No association was found between exposure to time-weighted average exposure to magnetic fields and cancer at all sites, brain tumors, lymphoma, or leukemia. Cancer at other sites showed elevated odds ratios in the two highest exposure categories in some, but not all, measures of exposure. This study provides little support for an association between children's exposure to magnetic fields and cancer and no support for an association between leukemia and such exposure, but no firm conclusions can be drawn owing to the small numbers involved.

  19. Space Station power system selection

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1986-01-01

    The Space Station power system selection process is described with attention given to management organization and technical considerations. A hybrid power system was chosen because of the large life cycle cost savings. The power management and distribution system that was chosen was the 400 Hz system.

  20. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  1. Novel High-Voltage, High-Power Piezoelectric Transformer Developed and Demonstrated for Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Carazo, Alfredo V.; Wintucky, Edwin G.

    2004-01-01

    Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The

  2. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    SciTech Connect

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  3. High power laser pulses with voltage controlled durations of 400 - 1000 ps.

    PubMed

    Harth, F; Ulm, T; Lührmann, M; Knappe, R; Klehr, A; Hoffmann, Th; Erbert, G; L'huillier, J A

    2012-03-26

    We report on the generation and amplification of pulses with pulse widths of 400 - 1000 ps at 1064 nm. For pulse generation an ultra-fast semiconductor modulator is used that modulates a cw-beam of a DFB diode laser. The pulse lengths could be adjusted by the use of a voltage control. The pulses were amplified in a solid state Nd:YVO₄ regenerative amplifier to an average power of up to 47.7 W at 100 - 816 kHz.

  4. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  5. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  6. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  7. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  8. 30 CFR 18.53 - High-voltage longwall mining systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage longwall mining systems. 18.53..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage...

  9. General Performance Specification for the Common Modular Power System

    DTIC Science & Technology

    2007-10-29

    voltage converters shall be sized to allow for vehicle start from either onboard energy storage or external electrical power. Electric power...STANAG No. 2601 Standardization of Electrical Systems in Tactical Land Vehicles STANDARDS: Federal Military MIL-STD-704F Aircraft Electric ...Power Characteristics MIL-STD-1275D Characteristics Of 28 Volt DC Electrical Systems In Military Vehicles MIL-STD-810F Environmental Engineering

  10. Module Two: Voltage; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will study and learn what voltage is, how it is generated, what AC (alternating current) and DC (direct current) are and why both kinds are needed, and how to measure voltages. The module is divided into six lessons: EMF (electromotive force) from chemical action, magnetism, electromagnetic induction, AC voltage, the…

  11. System for increasing corona inception voltage of insulating oils

    DOEpatents

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  12. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  13. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  14. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    SciTech Connect

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  15. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    SciTech Connect

    Lustikova, J. Shiomi, Y.; Handa, Y.; Saitoh, E.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spin Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.

  16. System and method for floating-substrate passive voltage contrast

    DOEpatents

    Jenkins, Mark W.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Soden, Jerry M.; Walraven, Jeremy A.; Pimentel, Alejandro A.

    2009-04-28

    A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.

  17. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  18. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  19. Photovoltaic power regulation system

    SciTech Connect

    Jaster, D.R.

    1986-02-18

    This patent describes a multi-solar module direct current battery charging arrangement consisting of: a group of solar cells; a reverse current blocking diode; a first relay having an energizing winding; and a set of contacts; the diode, the energizing winding and the solar module connected across the battery; a second relay having a second set of contacts; the first relay contacts operate upon a predetermined current flow through the first relay winding to close the first relay and contacts to operate the second relay. A voltage regulator has a set of contacts. The regulator contacts operate upon the battery reaching a predetermined state of charge as indicated by the voltage level; solar cells and a third relay having a set of contacts; the second relay make contacts, the voltage regulator make contacts, the third relay and the second group of solar cells connected in series; the third relay operated upon the second relay operating indicating the solar cells are functioning, and the voltage regulator operating its associated contacts indicating the batteries require further charging to operate the third relay; and the third relay operated to close the associated contacts to connect the second plurality of solar cells across the battery.

  20. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  1. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  2. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  3. Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Edler, H. G.

    1978-01-01

    Potential organizational options for a solar power satellite system (SPS) were investigated. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international); and cost effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives appeared to offer reasonable promise as potential options for SPS. A large number of key issues emerged as being factors which would influence the final selection process. Among these issues were a variety having to do with international law, international institutions, environmental controls, economics, operational flexibility, congressional policies, commercial-vs-governmental ownership, national dedication, and national and operational stategic issues.

  4. "These Power Lines Make Me Ill": A Typology of Residents' Health Responses to a New High-Voltage Power Line.

    PubMed

    Porsius, Jarry T; Claassen, Liesbeth; Woudenberg, Fred; Smid, Tjabe; Timmermans, Danielle R M

    2017-03-17

    Little attention has been devoted to the potential diversity in residents' health responses when exposed to an uncertain environmental health risk. The present study explores whether subgroups of residents respond differently to a new high-voltage power line (HVPL) being put into operation. We used a quasi-experimental prospective field study design with two pretests during the construction of a new HVPL, and two posttests after it was put into operation. Residents living nearby (0-300 m, n = 229) filled out questionnaires about their health and their perception of the environment. We applied latent class growth models to investigate heterogeneity in the belief that health complaints were caused by a power line. Classes were compared on a wide range of variables relating to negative-oriented personality traits, perceived physical and mental health, and perceptions of the environment. We identified five distinct classes of residents, of which the largest (49%) could be described as emotionally stable and healthy with weak responses to the introduction of a new power line. A considerable minority (9%) responded more strongly to the new line being activated. Residents in this class had heard more about the health effects of power lines beforehand, were more aware of the activation of the new line, and reported a decrease in perceived health afterwards. Based on our findings we can conclude that there is a considerable heterogeneity in health responses to a new HVPL. Health risk perceptions appear to play an important role in this typology, which has implications for risk management.

  5. Description of a 20 Kilohertz power distribution system

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1986-01-01

    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.

  6. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose.

  7. Modification of atmospheric DC fields by space charge from high-voltage power lines

    NASA Astrophysics Data System (ADS)

    Fews, A. P.; Wilding, R. J.; Keitch, P. A.; Holden, N. K.; Henshaw, D. L.

    Corona ion discharge is responsible for a flux of small ions emanating from an overhead power line capable of modifying the ambient electrical environment. The ensuing space charge can be detected as a change in magnitude of the earth's natural DC electric field at ground level. DC field mill meters were used to measure the vertical component of electric fields upwind and downwind of 132 and 400 kV power lines. Evidence of space charge blowing downwind of power lines was observed in 21 out of 22 cases. Time series measurements recorded in the downwind direction were highly variable with fields of higher magnitude compared to those recorded upwind. Model DC field profiles were used to estimate a lower limit to the space charge density at body height arising from power lines. The average lower limit was ˜3000 cm -3 excess unipolar charges. The result suggests that between 10% and 60% of outdoor aerosols gain excess charge by the attachment of corona ions. Downwind of a 400 kV line in Somerset that was prone to excessive corona discharge, the estimated mean lower limit excess unipolar space charge density was ˜6000 cm -3, suggesting that up to 100% of aerosols gain excess charge by the attachment of corona ions. Investigations into the time variation of DC electric fields around motorways and the natural diurnal variation of the earth's DC field were also undertaken and compared to the power line data. The results show that the power line time series are clearly distinguishable from typical examples of both types of field variation, demonstrating the relatively highly charged atmospheres that generally exist around high-voltage power lines. The results are of potential public health concern, because they suggest a degree of aerosol charging that may result in a non-trivial increase in lung deposition of inhaled pollutant aerosols.

  8. Systems and methods for process and user driven dynamic voltage and frequency scaling

    DOEpatents

    Mallik, Arindam [Evanston, IL; Lin, Bin [Hillsboro, OR; Memik, Gokhan [Evanston, IL; Dinda, Peter [Evanston, IL; Dick, Robert [Evanston, IL

    2011-03-22

    Certain embodiments of the present invention provide a method for power management including determining at least one of an operating frequency and an operating voltage for a processor and configuring the processor based on the determined at least one of the operating frequency and the operating voltage. The operating frequency is determined based at least in part on direct user input. The operating voltage is determined based at least in part on an individual profile for processor.

  9. Computer Controlled MHD Power Consolidation and Pulse Generation System

    DTIC Science & Technology

    2007-11-02

    4465 Publication Date: Aug 01,1990 Title: Computer Controlled MHD Power Consolidation and Pulse Generation System Personal Author: Johnson, R...of Copies In Library: 000001 Record ID: 26725 : Computer Controlled MHD Power Consolidation and Pulse Generation System Final Technical Progress...Four-pulse CI System For A Diagonally Connected MHD Generator 14 9 Diagonal Output Voltage for Rsource =10 ohms, Rload = 1 ohm 16 10 Diagonal

  10. Radioactive resistance of elements for over-voltage protection of low-voltage systems

    NASA Astrophysics Data System (ADS)

    Osmokrovic, P.; Stojanovic, M.; Loncar, B.; Kartalovic, N.; Krivokapic, I.

    1998-04-01

    Aim of this work is to examine the over-voltage protection under the ionizing radiation influence. The use of modern electronic devices (nuclear, military and space technology) in the conditions of ionizing radiation brings up the question of radioactive resistance of electronic components and over-voltage protection components. The question of reliability of these components under the influence of ionizing radiation is also a relevant one. The entire effects of radiation, which cause the irreversible changes of the material characteristics, are defined as the dosage or integral effects. The resistance of the over-voltage material (the Transient Suppresser Diodes (TSD), Metaloxide Varistors, Gas Filled Surge Arresters (GFSA) and Polycarbon Capacitors) subjected to influence of n +γ radiation caused by californium source was examined in order to determine the radiation effects. It was determined that TSD are highly sensitive to the radiation. The radiation effects on Metaloxide Varistors are similar to the effects on the TSD. GFSA showed the temporary characteristics improvement. It was determined that the Polycarbon Capacitor capacity decreases under the influence of radiation. The obtained results are explained theoretically.

  11. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power...

  12. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power...

  13. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power...

  14. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power...

  15. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check wires. 77.906 Section 77.906 Mineral Resources MINE... wires and ground check wires. On and after September 30, 1971, all trailing cables supplying power...

  16. The Small Explorer power system electronics

    NASA Technical Reports Server (NTRS)

    Dakermanji, G.; Carlsson, U.; Temkin, D.; Culver, H.; Rodriguez, G. E.; Ahmad, A.

    1991-01-01

    The power system electronics for the NASA Goddard Space Flight Center Small Explorer Satellites are intended to satisfy various planned missions. The selected topology is a direct energy transfer (DET) system with the battery connected directly to the bus. The shunt control technique is a linear sequential full shunt which provides a simple solar array interface and can support both 3 axis stabilized and spinner satellites. In addition, it can meet stringent electromagnetic interference requirements which are expected on some Small Explorer Missions. The Power Systems Electronics (PSE) performs battery charge control using both temperature compensated charge/discharge ratio ampere hour integration and voltage-temperature control. The PSE includes all the circuits needed to perform telemetry and command functions using an optical MIL-STD-1773 interface.

  17. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  18. The influence of lightning induced voltage on the distribution power line polymer insulators.

    PubMed

    Izadi, Mahdi; Abd Rahman, Muhammad Syahmi; Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam

    2017-01-01

    Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.

  19. The influence of lightning induced voltage on the distribution power line polymer insulators

    PubMed Central

    Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam

    2017-01-01

    Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance. PMID:28234930

  20. Measurements and Modeling of Noise on 22.9-kV Medium-Voltage Underground Power Line for Broadband Power Line Communication

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Shin, Donghwan; Kim, Yonghwa; Lee, Jaejo; Eom, Kihwan

    This paper proposed the measurements and modeling of noise on the 22.9-kV Medium-Voltage (MV) underground power distribution cable for Broadband Power Line Communication (BPLC). The proposed measurement system was composed of inductive coupler and Digital Phosphor Oscilloscope (DPO). The measurement noise data was obtained from thirty-two pad mounted transformers in the test field located in Choji area of Ansan city. After conducting analysis of noise characteristics in time and frequency domain, the noise model are presented. In order to analyze the noise in frequency domain, Power Spectral Density (PSD) was computed with empirical data using Welch's method. The modeling of the power line noise at each frequency carried out using Cumulative Probability Distribution (CPD) of the noise power. It compared with common Cumulative Distribution Functions (CDF) of Nakagami-m distribution, Gaussian distribution, Gamma distribution. In low frequency range, gamma distribution was fitted with the CPD. Nakagami-m distribution provides a good fitting to the noise CPD above 20MHz frequency range.

  1. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  2. Power Transfer in Physical Systems.

    ERIC Educational Resources Information Center

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  3. Module Five: Relationships of Current, Voltage, and Resistance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    This module covers the relationships between current and voltage; resistance in a series circuit; how to determine the values of current, voltage, resistance, and power in resistive series circuits; the effects of source internal resistance; and an introduction to the troubleshooting of series circuits. This module is divided into five lessons:…

  4. A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission.

    PubMed

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-06-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std . CMOS process, occupying 0.144 mm(2) of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages.

  5. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  6. Contingency Analysis of South Bandung Electric Power System

    NASA Astrophysics Data System (ADS)

    Fauziah, D.; Mulyadi, Y.

    2017-03-01

    Electric power transmission system must operate reliably and continuously, but in fact there are many disturbance that affect the reliability and stability of the power system. This study aims to determine the weak elements of power system when release of components occur. This study uses simulation with Newton Raphson power flow method for contingency analysis. The study is located in South Bandung electric power system with voltage of 150 kV. In this study, the object of contingency analysis is IBT-II 500/150 KV at peak periods load in 2013 to evaluate the system reliability when release of the Inter bus Transformer (IBT). Selection of the component is based that IBT is the most important component in the power supply that should be maintain continuously. The results of the study and analysis show that in the event of contingency almost all bus voltage has decreased below the limit allowable voltage and IBT-I get overloaded, then the maneuver is performed according to the procedures of specified load. The results of this study can be use as a reference for the electric power operating system which has conditions similar to the simulated cases.

  7. Water Powered Bioassay System

    DTIC Science & Technology

    2004-06-01

    For anolyte, microorganism culture is mixed with 1 M of glucose in a 0.1 M phosphate buffer (pH 7.0). The electron transfer mediator, methylene blue ...over a 43-minute period. However, for anolyte without yeast, the voltage stays at 25 mV. Moreover, the effect of methylene blue is also addressed...Anolyte without methylene blue is put into the anode compartments and the open-circuit potential is found increasing from 25 mV to 40 mV in about 10

  8. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  9. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    PubMed

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.

  10. Magnetic fields of high voltage power lines and risk of cancer in Finnish adults: nationwide cohort study.

    PubMed Central

    Verkasalo, P. K.; Pukkala, E.; Kaprio, J.; Heikkilä, K. V.; Koskenvuo, M.

    1996-01-01

    OBJECTIVE: To investigate the risk of cancer in association with magnetic fields in Finnish adults living close to high voltage power lines. DESIGN: Nationwide cohort study. SUBJECTS: 383,700 people who lived during 1970-89 within 500 metres of overhead power lines of 110-400 kV in a magnetic field calculated to be > or = 0.01 microT. Study subjects were identified by record linkages of nationwide registers. MAIN OUTCOME MEASURES: Numbers of observed and expected cases of cancer, standardised incidence ratios, and incidence rate ratios adjusted for sex, age, calendar year, and social class--for example, by continuous cumulative exposure per 1 microT year with 95% confidence intervals from multiplicative models for all cancers combined and 21 selected types. RESULTS: Altogether 8415 cases of cancer were observed (standardised incidence ratio 0.98; 95% confidence interval 0.96 to 1.00) in adults. All incidence rate ratios for both sexes combined were non-significant and between 0.91 and 1.11. Significant excesses were observed in multiple myeloma in men (incidence rate ratio 1.22) and in colon cancer in women (1.16). CONCLUSIONS: Typical residential magnetic fields generated by high voltage power lines do not seem to be related to the risk of overall cancer in adults. The previously suggested associations between extremely low frequency magnetic fields and tumours of the nervous system, lymphoma, and leukaemia in adults and breast cancer in women were not confirmed. PMID:8898595

  11. Expert system requirements for power system restoration

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. ); Milanicz, D.P. )

    1994-08-01

    This paper is one of series presented on behalf of the System Operation Subcommittee with the intent of focusing industry attention on power system restoration. Expert systems are being considered for restoring bulk power supplies. In general, there are three restoration periods following a major power disturbance: establishment of initial sources of power, re-integration of a skeleton of the bulk power supply, and minimization of the unserved loads. Expert systems together with analytical tools have the potential of addressing the restoration procedures over these three periods. This paper describes the expert system requirements from the point of view of the practicing power engineers with emphasis placed on the initial power sources and requirements. The paper draws on the previous reports by the Power System Restoration Working Group.

  12. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  13. Reliability and Power Quality Evaluation of High-Voltage Supplied Customer

    NASA Astrophysics Data System (ADS)

    Yoshino, Jun; Kita, Hiroyuki; Tanaka, Eiichi; Hasegawa, Jun; Kubo, Hiroshi; Yonaga, Shigeru

    Recently, a number of electric consumers have concerned about the reliability of electricity to be served. For example, some consumers need the electricity with a higher reliability by the automation of manufacturing processes. On the other hand, some consumers need the electricity of a cheaper price even if the reliability becomes a little worse. Under such circumstances, it is necessary that power suppliers evaluate the needs of every consumers precisely and propose the most desirable measures for meeting their requirements. This paper develops a tool to analyze the reliability for high-voltage supplied consumers quantitatively. Further, this paper presents a method for evaluating the outage cost of consumers to help them choose the most appropriate measures for maintaining the reliability. The proposed method applies the fuzzy reasoning approach. The validity of the proposed method is ascertained through some numerical simulations.

  14. Spectral response of atmospheric electric field measurements near AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

    2015-10-01

    To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

  15. Measurements of induced voltages and currents in a distribution power line and associated atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Santiago-Perez, Julio

    1988-01-01

    The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.

  16. Novel multijunction thermal converter in planar technique for AC current, voltage, power and optical radiation measurement

    NASA Astrophysics Data System (ADS)

    Klonz, M.; Weimann, T.

    1990-05-01

    A new planar thin film design of multijunction thermocouples on a silicon chip containing a window with a SiO2-membrane for low heat conductance underneath of the thermocouples is described. It is used as the sensor for the temperature difference in a multijunction thermal converter for ac-dc transfer of electrical quantities like voltage, current and power via Joule heat in a thin film resistor. By coating the heater with an optically absorbing layer it is used as a highly sensitive radiometer transferring absorbed energy to Joule heat in the resistor. The design can easily be optimized for all different frequency applications. It offers the possibility of the mass production of transfer standards at highest level of accuracy.

  17. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    PubMed

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  18. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    SciTech Connect

    Babij, Michał; Kowalski, Zbigniew W. Nitsch, Karol; Gotszalk, Teodor; Silberring, Jerzy

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  19. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Babij, Michał; Kowalski, Zbigniew W.; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  20. New live line tester for porcelain suspension insulators on high-voltage power lines

    SciTech Connect

    Vaillancourt, G.H.; St-Jean, M. ); Bellerive, J.P. ); Jean, C. )

    1994-01-01

    Suspension insulator assemblies known as insulator strings are used in overhead power transmission lines to mechanically support high-voltage conductors while providing adequate insulation to withstand switching and lightning overvoltages. Since the useful life in service of the individual insulator elements making up these strings is hard to predict, they must be verified periodically to insure that adequate line reliability is maintained at all times. Over the years many testing methods have been used for this purpose, each one with its own advantages and disadvantages. Until now at Hydro-Quebec, porcelain insulators had been tested by the buzz method which simply consists of applying a short-circuit to each insulator in a string and listening for a buzz-like sound indicating a good insulator. However, safety considerations that preclude short-circuiting insulators and other disadvantages of that method have led Hydro-Quebec to undertake and complete the development of a new insulator tester. The working principle of this new device is based on the automatic measurement and recording of the electric field along the insulator string which decreases considerably in front of an internally-shorted insulator. The tester is slid along the string while the insulators are counted automatically. The information from tests on up to 200 strings can be stored in the device to be later transferred in a host computer for interpretation and/or permanent storage. The new tester also gives information on voltage distribution along the insulator strings which can be useful for the design of future power transmission lines.