Hydrogen turbine power conversion system assessment
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.
1978-01-01
A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.
1988-01-01
system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. RM06-16-010; RM06-16-011] Mandatory Reliability Standards for the Bulk Power System; Supplemental Notice of Technical Conference September 17, 2010. On August 19, 2010 the Federal Energy Regulatory Commission announced that a Technical...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. RM06-16-010; RM06-16-011] Mandatory Reliability Standards for the Bulk Power System; Supplemental Notice of Technical Conference September 14, 2010. On August 19, 2010 the Federal Energy Regulatory Commission announced that a Technical...
NASA Technical Reports Server (NTRS)
1980-01-01
Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.
Solar power satellite system definition study. Volume 1, phase 1: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-12-01
The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW ofmore » electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.« less
Assessment of lightweight mobile nuclear power systems. [for airborne vehicles
NASA Technical Reports Server (NTRS)
Anderson, J. L.; Rom, F. E.
1973-01-01
A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.
Development and design of photovoltaic power prediction system
NASA Astrophysics Data System (ADS)
Wang, Zhijia; Zhou, Hai; Cheng, Xu
2018-02-01
In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.
Solar energy/utility interface - The technical issues
NASA Astrophysics Data System (ADS)
Tabors, R. D.; White, D. C.
1982-01-01
The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.
Assessment of distributed solar power systems: Issues and impacts
NASA Astrophysics Data System (ADS)
Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.
1982-11-01
The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.
Detection of Frauds and Other Non-technical Losses in Power Utilities using Smart Meters: A Review
NASA Astrophysics Data System (ADS)
Ahmad, Tanveer; Ul Hasan, Qadeer
2016-06-01
Analysis of losses in power distribution system and techniques to mitigate these are two active areas of research especially in energy scarce countries like Pakistan to increase the availability of power without installing new generation. Since total energy losses account for both technical losses (TL) as well as non-technical losses (NTLs). Utility companies in developing countries are incurring of major financial losses due to non-technical losses. NTLs lead to a series of additional losses, such as damage to the network (infrastructure and the reduction of network reliability) etc. The purpose of this paper is to perform an introductory investigation of non-technical losses in power distribution systems. Additionally, analysis of NTLs using consumer energy consumption data with the help of Linear Regression Analysis has been carried out. This data focuses on the Low Voltage (LV) distribution network, which includes: residential, commercial, agricultural and industrial consumers by using the monthly kWh interval data acquired over a period (one month) of time using smart meters. In this research different prevention techniques are also discussed to prevent illegal use of electricity in the distribution of electrical power system.
Space-Based Solar Power Conversion and Delivery Systems Study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1977-01-01
The research concerning space-based solar power conversion and delivery systems is summarized. The potential concepts for a photovoltaic satellite solar power system was studied with emphasis on ground output power levels of 5,000 MW and 10,000 MW. A power relay satellite, and certain aspects of the economics of these systems were also studied. A second study phase examined in greater depth the technical and economic aspects of satellite solar power systems. Throughout this study, the focus was on the economics of satellite solar power. The results indicate technical feasibility of the concept, and provide a preliminary economic justification for the first phase of a substantial development program. A development program containing test satellites is recommended. Also, development of alternative solar cell materials (other than silicon) is recommended.
NASA Technical Reports Server (NTRS)
Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.
1981-01-01
Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. RM06-16-010; RM06-16-011] Mandatory Reliability Standards for the Bulk Power System; Notice Allowing Post-Technical Conference Comments September 24, 2010. On September 23, 2010, the Federal Energy Regulatory Commission conducted a...
Problems of standardizing and technical regulation in the electric power industry
NASA Astrophysics Data System (ADS)
Grabchak, E. P.
2016-12-01
A mandatory condition to ensure normal operation of a power system and efficiency in the sector is standardization and legal regulation of technological activities of electric power engineering entities and consumers. Compared to the times of USSR, the present-time technical guidance documents are not mandatory to follow in most cases, being of an advisory nature due to the lack of new ones. During the last five years, the industry has been showing a deterioration of the situation in terms of ensuring reliability and engineering controllability as a result of the dominant impact of short-term market stimuli and the differences in basic technological policies. In absence of clear requirements regarding the engineering aspects of such activities, production operation does not contribute to the preserving of technical integrity of the Russian power system, which leads to the loss of performance capability and controllability and causes disturbances in the power supply to consumers. The result of this problem is a high rate of accident incidence. The dynamics of accidents by the type of equipment is given, indicating a persisting trend of growth in the number of accidents, which are of a systematic nature. Several problematic aspects of engineering activities of electric power engineering entities, requiring standardization and legal regulation are pointed out: in the domestic power system, a large number of power electrotechnical and generating equipment operate along with systems of regulation, which do not comply with the principles and technical rules representing a framework where the Energy System of Russia is built and functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Nathan; Heaps, Colton; Symko-Davies, Martha
The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.
ERIC Educational Resources Information Center
Utah State Board of Higher Education, Salt Lake City.
For Utah residents to remain in the forefront or even stay competitive economically, the state's work force must acquire the knowledge and skills that match or exceed those of their most technically advanced competitors. A powerful engine for economic growth is a high-quality system of vocational-technical education. The majority of Utah public…
NASA Technical Reports Server (NTRS)
Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.
1988-01-01
The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.
Regulatory Guidance for Lightning Protection in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Wilgen, John B; Ewing, Paul D
2006-01-01
Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less
Regulatory guidance for lightning protection in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.
2006-07-01
Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less
Cost estimation of HVDC transmission system of Bangka's NPP candidates
NASA Astrophysics Data System (ADS)
Liun, Edwaren; Suparman
2014-09-01
Regarding nuclear power plant development in Bangka Island, it can be estimated that produced power will be oversupply for the Bangka Island and needs to transmit to Sumatra or Java Island. The distance between the regions or islands causing considerable loss of power in transmission by alternating current, and a wide range of technical and economical issues. The objective of this paper addresses to economics analysis of direct current transmission system to overcome those technical problem. Direct current transmission has a stable characteristic, so that the power delivery from Bangka to Sumatra or Java in a large scale efficiently and reliably can be done. HVDC system costs depend on the power capacity applied to the system and length of the transmission line in addition to other variables that may be different.
Solar-pumped laser for free space power transmission
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1989-01-01
Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.
Parametric Cost Study of AC-DC Wayside Power Systems
DOT National Transportation Integrated Search
1975-09-01
The wayside power system provides all the power requirements of an electric vehicle operating on a fixed guideway. For a given set of specifications there are numerous wayside power supply configurations which will be satisfactory from a technical st...
NASA Astrophysics Data System (ADS)
Bezruchko, Konstantin; Davidov, Albert
2009-01-01
In the given article scientific and technical complex for modeling, researching and testing of rocket-space vehicles' power installations which was created in Power Source Laboratory of National Aerospace University "KhAI" is described. This scientific and technical complex gives the opportunity to replace the full-sized tests on model tests and to reduce financial and temporary inputs at modeling, researching and testing of rocket-space vehicles' power installations. Using the given complex it is possible to solve the problems of designing and researching of rocket-space vehicles' power installations efficiently, and also to provide experimental researches of physical processes and tests of solar and chemical batteries of rocket-space complexes and space vehicles. Scientific and technical complex also allows providing accelerated tests, diagnostics, life-time control and restoring of chemical accumulators for rocket-space vehicles' power supply systems.
Research on power market technical analysis index system employing high-low matching mechanism
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Shengyu
2018-06-01
The power market trading technical analysis refers to a method that takes the bidding behavior of members in the power market as the research object, sums up some typical market rules and price trends by applying mathematical and logical methods, and finally can effectively assist members in the power market to make more reasonable trading decisions. In this paper, the following four indicators have been proposed: bidding price difference scale, extreme bidding price rate, dispersion of bidding price and monthly transaction satisfaction of electricity trading, which are the core of the index system.
Power System Trade Studies for the Lunar Surface Access Module
NASA Technical Reports Server (NTRS)
Kohout, Lisa, L.
2008-01-01
A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.
Space Shuttle Technical Conference, Part 2
NASA Technical Reports Server (NTRS)
Chaffee, Norman (Compiler)
1985-01-01
The retrospective presentation provides technical disciplinary focus in the following technical areas: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support, environmental control, and crew station; (6) ground operations; (7) propulsion and power; (8) communications and tracking; (9) mechanics and mechanical systems; and (10) thermal and contamination environments and protection systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... or municipal authority play in forming your bulk power system reliability plans? b. Do you support..., North American Electric Reliability Corporation (NERC) Nick Akins, CEO of American Electric Power (AEP..., EL11-62-000] Reliability Technical Conference, North American Electric Reliability Corporation, Public...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liun, Edwaren, E-mail: edwaren@batan.go.id; Suparman, E-mail: edwaren@batan.go.id
Regarding nuclear power plant development in Bangka Island, it can be estimated that produced power will be oversupply for the Bangka Island and needs to transmit to Sumatra or Java Island. The distance between the regions or islands causing considerable loss of power in transmission by alternating current, and a wide range of technical and economical issues. The objective of this paper addresses to economics analysis of direct current transmission system to overcome those technical problem. Direct current transmission has a stable characteristic, so that the power delivery from Bangka to Sumatra or Java in a large scale efficiently andmore » reliably can be done. HVDC system costs depend on the power capacity applied to the system and length of the transmission line in addition to other variables that may be different.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
.../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...
78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD13-6-000] Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory... related to the reliability of the Bulk-Power System. A more formal agenda will be issued at a later date...
Systems Integration Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less
Unified Technical Concepts. Module 6: Power.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…
NASA Technical Reports Server (NTRS)
Clark, T. B. (Editor)
1979-01-01
The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.
NASA Astrophysics Data System (ADS)
Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.
2004-02-01
The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutz, Thomas G; Ogden, Joan M
2000-07-01
In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., singlemore » family, residential, multi-dwelling, neighborhood).« less
Power beaming research at NASA
NASA Technical Reports Server (NTRS)
Rather, John D. G.
1992-01-01
NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.
NASA Technical Reports Server (NTRS)
Norton, Jeffrey E.; Wiederholt, Bradley J.; Johnson, William B.
1990-01-01
Microcomputer Intelligence for Technical Training (MITT) uses Intelligent Tutoring System (OTS) technology to deliver diagnostic training in a variety of complex technical domains. Over the past six years, MITT technology has been used to develop training systems for nuclear power plant diesel generator diagnosis, Space Shuttle fuel cell diagnosis, and message processing diagnosis for the Minuteman missile. Presented here is an overview of the MITT system, describing the evolution of the MITT software and the benefits of using the MITT system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LiVecchi, Al
2015-05-07
This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In fundingmore » provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.« less
Computational models of an inductive power transfer system for electric vehicle battery charge
NASA Astrophysics Data System (ADS)
Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.
2015-09-01
One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.
Technical and economic evaluation of a Brayton-Rankine combined cycle solar-thermal power plant
NASA Astrophysics Data System (ADS)
Wright, J. D.; Copeland, R. J.
1981-05-01
An assessment of gas-liquid direct-contact heat exchange and of a new storage-coupled system was conducted. Both technical and economic issues are evaluated. Specifically, the storage-coupled combined cycle is compared with a molten salt system. The open Brayton cycle system is used as a topping cycle, and the reject heat powers the molten salt/Rankine system. In this study the molten salt system is left unmodified, the Brayton cycle is integrated on top of a Marietta description of an existing molten salt plant. This compares a nonoptimized combined cycle with an optimized molten salt system.
Research on the EDM Technology for Micro-holes at Complex Spatial Locations
NASA Astrophysics Data System (ADS)
Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.
2017-12-01
For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.
Space-based solar power conversion and delivery systems study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1976-01-01
The technical and economic aspects of satellite solar power systems are presented with a focus on the current configuration 5000 MW system. The technical studies include analyses of the orbital system structures, control and stationkeeping, and the formulation of program plans and costs for input to the economic analyses. The economic analyses centered about the development and use of a risk analysis model for a system cost assessment, identification of critical issues and technologies, and to provide information for programmatic decision making. A preliminary economic examination of some utility interface issues is included. Under the present state-of-knowledge, it is possible to formulate a program plan for the development of a satellite solar power system that can be economically justified. The key area of technological uncertainty is man's ability to fabricate and assemble large structures in space.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
An evolutionary Satellite Power Systems development plan was prepared. Planning analysis was directed toward the evolution of a scenario that met the stated objectives, was technically possible and economically attractive, and took into account constraining considerations, such as requirements for very large scale end-to-end demonstration in a compressed time frame, the relative cost/technical merits of ground testing versus space testing, and the need for large mass flow capability to low Earth orbit and geosynchronous orbit at reasonable cost per pound.
Wind Fins: Novel Lower-Cost Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Morris; Dr. Will D. Swearingen
This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less
Third SEI Technical Interchange: Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
Given here are the proceedings of the 3rd Space Exploration Initiative (SEI) Technical Interchange. Topics covered include the First Lunar Outpost (FLO), the Lunar Resource Mapper, lunar rovers, lunar habitat concepts, lunar shelter construction analysis, thermoelectric nuclear power systems for SEI, cryogenic storage, a space network for lunar communications, the moon as a solar power satellite, and off-the-shelf avionics for future SEI missions.
Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Harris, Aaron P.
2013-01-01
A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle,more » powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.« less
Wireless Instrumentation Systems for Flight Testing at NASA AFRC
NASA Technical Reports Server (NTRS)
Hang, Richard
2017-01-01
NASA Armstrong Flight Research Center is revolutionizing its traditional wired instrumentation systems with wireless technologies. This effort faces many technical challenges, such as spectrum compliance, time synchronization, power distribution and airworthiness. This presentation summarizes NASA AFRC's flight test capabilities with current conventional instrumentation methodology and highlights the technical challenges of wireless systems used for flight test research applications.
Satellite Power Systems (SPS): Concept development and evaluation program: Preliminary assessment
NASA Technical Reports Server (NTRS)
1979-01-01
A preliminary assessment of a potential Satellite Power System (SPS) is provided. The assessment includes discussion of technical and economic feasibility; the effects of microwave power transmission beams on biological, ecological, and electromagnetic systems; the impact of SPS construction, deployment, and operations on the biosphere and on society; and the merits of SPS compared to other future energy alternatives.
Photovoltaic utility/customer interface study
NASA Astrophysics Data System (ADS)
Eichler, C. H.; Hayes, T. P.; Matthews, M. M.; Wilraker, V. F.
1980-12-01
The technical, economic, and legal and regulatory issues of interconnecting small, privately-owned, on-site photovoltaic generating systems to an electric utility are addressed. Baseline residential, commercial and industrial class photovoltaic systems were developed. Technical issues of concern affecting this interconnection were identified and included fault protection, undervoltage protection, lamp flicker, revenue metering, loss of synchromism, electrical safety, prevention of backfeeding a de-energized utility feeder, effects of on-site generation on utility relaying schemes, effects of power conditioner harmonic distortion on the electric utility, system isolation, electromagnetic interference and site power factor as seen by the utility. Typical interconnection wiring diagrams were developed for interconnecting each class of baseline photovoltaic generating system.
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
47 CFR 15.611 - General technical requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... § 15.109(b). (2) Low voltage power lines. Access BPL systems that operate over low-voltage power lines, including those that operate over low-voltage lines that are connected to the in-building wiring, shall... limits—(1) Medium voltage power lines. (i) Access BPL systems that operate in the frequency range of 1...
The influence of utility-interactive PV system characteristics to ac power networks
NASA Astrophysics Data System (ADS)
Takeda, Y.; Takigawa, K.; Kaminosono, H.
Two basic experimental photovoltaic (PV) systems have been built for the study of variation of power quality, aspects of safety, and technical problems. One system uses a line-commutated inverter, while the other system uses a self-commutated inverter. A description is presented of the operating and generating characteristics of the two systems. The systems were connected to an ac simulated network which simulates an actual power distribution system. Attention is given to power generation characteristics, the control characteristics, the harmonics characteristics, aspects of coordination with the power network, and questions regarding the reliability of photovoltaic modules.
The development of a residential heating and cooling system using NASA derived technology
NASA Technical Reports Server (NTRS)
Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.
1972-01-01
A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.
Technical data for concentrated solar power plants in operation, under construction and in project.
Pelay, Ugo; Luo, Lingai; Fan, Yilin; Stitou, Driss; Rood, Mark
2017-08-01
This article presents technical data for concentrated solar power (CSP) plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant) and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.). Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017) [1].
Solar-powered irrigation systems. Technical progress report, July 1977--January 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-02-28
Dispersed solar thermal power systems applied to farm irrigation energy needs are analyzed. The 17 western states, containing 84% of nationwide irrigated croplands and consuming 93% of nationwide irrigation energy, have been selected to determine were solar irrigation systems can compete most favorably with conventional energy sources. Financial analysis of farms, according to size and ownership, was accomplished to permit realistic comparative analyses of system lifetime costs. Market potential of optimized systems has been estimated for the 17-state region for near-term (1985) and intermediate-term (2000) applications. Technical, economic, and institutional factors bearing on penetration and capture of this market aremore » being identified.« less
NASA Astrophysics Data System (ADS)
Nored, Donald L.
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
NASA Technical Reports Server (NTRS)
Nored, Donald L.
1990-01-01
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
Reference Reactor Module for the Affordable Fission Surface Power System
NASA Astrophysics Data System (ADS)
Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.
2008-01-01
Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO2-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important ``affordability'' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.
Photovoltaic power conditioning subsystem: State of the art and development opportunities
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.
1984-01-01
Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
NASA/DOD Flight Experiments Technical Interchange Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
This document contains the proceedings of the Flight Experiments Technical Interchange Meeting held in Monterey California, October 5-9, 1992. Technical sessions 4 through 8 addressing space structures, propulsion, space power systems, space environments and effects, and space operations are covered. Many of the papers are presented in outline and viewgraph form.
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
Technical Assistance for Southwest Solar Technologies Inc. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie
2012-07-01
Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, A. S.
2013-01-15
A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.
Solar Power Satellite Concept Evaluation. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1977-01-01
A program was developed to determine the technical feasiblity of a satellite solar power station. The space construction, maintenance, and transport systems are discussed. Environmental factors, in addition to manufacturing, natural resources, and energy were considered. Cost estimates and alternative systems are outlined.
Overcoming the Adoption Barrier to Electric Flight
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.;
2016-01-01
Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.
NASA Technical Reports Server (NTRS)
1979-01-01
An environmentally oriented microwave technology exploratory research program aimed at reducing the uncertainty associated with microwave power system critical technical issues is described. Topics discussed include: (1) Solar Power Satellite System (SPS) development plan elements; (2) critical technology issues related to the SPS preliminary reference configuration; (3) pilot plant to demonstrate commercial viability of the SPS system; and (4) research areas required to demonstrate feasibility of the SPS system. Progress in the development of advanced GaAs solar cells is reported along with a power distribution subsystem.
15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...
15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
technical backup material for the OCE NEMP PROGRAM, Development of Criteria for Protection of NIKE-X Power Plant and Facilities Electrical Systems Against Nuclear Electromagnetic Pulse Effects, Protective MEASURES. (Author)
Biomass CHP Catalog of Technologies
This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.
2014-12-10
AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz
Concentrating solar power (CSP) power cycle improvements through application of advanced materials
NASA Astrophysics Data System (ADS)
Siefert, John A.; Libby, Cara; Shingledecker, John
2016-05-01
Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.
NASA Technical Reports Server (NTRS)
Mildice, J.; Sundberg, R.
1987-01-01
The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.
Integrating high levels of variable renewable energy into electric power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Integrating high levels of variable renewable energy into electric power systems
Kroposki, Benjamin
2017-11-17
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Independent assessment of laser power beaming options
NASA Technical Reports Server (NTRS)
Ponikvar, Donald R.
1992-01-01
Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.
Utility interface issues for grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Chu, D.; Key, T.; Fitzer, J.
Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.
NASA Astrophysics Data System (ADS)
Arakelyan, E. K.; Andryushin, A. V.; Burtsev, S. Y.; Andryushin, K. A.
2017-11-01
The analysis of technical and parametric constraints on the adjustment range of highpower CCP and recommended technological solutions in the technical literature for their elimination. Established that in the conditions of toughening the requirements for economy, reliability and maneuverability on the part of the system operator with the participation of CCP in control the frequency and power in the power system, existing methods do not ensure the fulfillment of these requirements. The current situation in the energy sector — the lack of highly manoeuvrable power equipment leads to the need participate in control of power consumption diagrams for all types of power plants, including CCP, although initially they were intended primarily for basic loads. Large-scale research conducted at the department of Automated control systems of technological processes, showed the possibility of a significant expansion of the adjustment range of CCP when it operating in the condensing mode and in the heating mode. The report presents the main results of these research for example the CCP-450 and CCP-450T. Various technological solutions are considered: when CCP in the condensation mode — the use of bypass steam distribution schemes, the transfer of a part of the steam turbine into a low-steam mode; when CCP operation in the heating mode — bypass steam distribution and the transfer CCP to gas turbine unit — power heating plants mode with the transfer the steam turbine to the motor mode. Data on the evaluation of the technical and economic feasibility of the proposed innovative technological solutions are presented in comparison with the methods used to solve this problem, which are used in practice, such as passing through the failures of the electric load graphs by transferring the CCP to the mode of operation with incomplete equipment. When comparing, both the economics, and the maneuverability and reliability of the equipment are considered.
Fluid Power Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…
NASA Astrophysics Data System (ADS)
Afanasyev, A. P.; Bazhenov, R. I.; Luchaninov, D. V.
2018-05-01
The main purpose of the research is to develop techniques for defining the best technical and economic trajectories of cables in urban power systems. The proposed algorithms of calculation of the routes for laying cables take into consideration topological, technical and economic features of the cabling. The discrete option of an algorithm Fast marching method is applied as a calculating tool. It has certain advantages compared to other approaches. In particular, this algorithm is cost-effective to compute, therefore, it is not iterative. Trajectories of received laying cables are considered as optimal ones from the point of view of technical and economic criteria. They correspond to the present rules of modern urban development.
NASA Astrophysics Data System (ADS)
Buksa, John J.; Kirk, William L.; Cappiello, Michael W.
A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.
Improving the Comprehensibility of a Simulated Technical Manual.
1985-06-20
dilithium-controlled matter- antimatter conversion system. If you place the power switch Si in the A position, the phaser system gets power. If the indicator...ship’s on-board dilithium-controlled matter- antimatter -plasmation dielectric energy accumulator does not have a Normal Operation Indicator on the J-4...standard energon conversion cycle, whereby power generated by the ship’s matter- antimatter conversion system is converted to a 60-gigavolt phase
Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis
NASA Technical Reports Server (NTRS)
1977-01-01
The technical and economic feasibility of Satellite Solar Power Systems was studied with emphasis on the analysis and definition of an integrated strawman configuration concept, from which credible cost data could be estimated. Specifically, system concepts for each of the major subprogram areas were formulated, analyzed, and iterated to the degree necessary for establishing an overall, workable baseline system design. Cost data were estimated for the baseline and used to conduct economic analyses. The baseline concept selected was a 5-GW crystal silicon truss-type photovoltaic configuration, which represented the most mature concept available. The overall results and major findings, and the results of technical analyses performed during the final phase of the study efforts are reported.
NASA Astrophysics Data System (ADS)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
NASA Astrophysics Data System (ADS)
Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.
2017-01-01
In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.
NASA Astrophysics Data System (ADS)
Livermore, C.; Velásquez-García, L. F.
2015-12-01
Greetings, and welcome to Boston, MA and PowerMEMS 2015 - the 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications! The objective of PowerMEMS 2015 is to catalyze innovation in micro- and nano-scale technologies for the energy domain. The scope of the meeting ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of Power MEMS range from the harvesting, storage, conversion and conditioning of energy, to integrated systems that manage these processes, to actuation, pumping, and propulsion. Our Conference aims to stimulate the exchange of insights and information, as well as the development of new ideas, in the Power MEMS field. Our goal is to allow the attendees to interact and network within our multidisciplinary community that includes professionals from many branches of science and engineering, as well as energy, policy, and entrepreneurial specialists interested in the commercialization of Power MEMS technologies. Since the first PowerMEMS in Sendai, Japan in 2000, the Conference has grown in size, reputation, impact, and technical breadth. This continuing growth is evident in this year's technical program, which includes an increasing number of papers on nanomaterials, additive manufacturing for energy systems, actuators, energy storage, harvesting strategies and integrated energy harvesting systems, for example. This year's technical program is highlighted by six plenary talks from prominent experts on piezoelectrics, robotic insects, thermoelectrics, photovoltaics, nanocomposite cathodes, and thermal energy conversion systems. The contributed program received a large number of abstract submissions this year, 169 in total. After careful review by the 34-member Technical Program Committee, a total of 135 papers were selected for presentation. The 60 contributed oral presentations are arranged in two parallel sessions. The 75 posters are arranged in a ''two-in-one'' poster session in which the poster session time is divided in two; half the posters will be presented during each half-session, allowing the poster presenters to also browse the posters during the poster session. Posters will remain up during the meeting, so please feel free to peruse them at your leisure. The Proceedings will be visible and accessible through IOP after conclusion of the Conference. We hope to maximize interaction among participants and stimulate lively discussion through the technical program and social events. For the first time at the Conference, a great many sponsors are making their presence known at PowerMEMS through tabletop displays, which will catalyze engaging conversations between our industrial partners and the research community. Also, for the first time at PowerMEMS, we will host a Rump Session - an informal event in which Conference participants engage in honest and fun discussions of topics of relevance to the community while strengthening bonds within the community. This meeting is made possible by many generous contributions of time, effort, and financial support. Thanks are due to the Technical Program Committee for their intensive efforts in reviewing abstract submissions, and to the International Steering Committee for their advice and support. We are grateful to Preferred Meeting Management Inc. for their many and key contributions to the management and organization of our Conference. Finally, we gratefully acknowledge the organizational and financial support provided for this meeting by the Transducers Research Foundation, Northeastern University, the Massachusetts Institute of Technology, and our exhibitors and other supporters. We hope that you find our Conference enjoyable and fruitful, and that you enjoy your stay in the Boston, MA area.
The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations
NASA Astrophysics Data System (ADS)
Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.
2017-05-01
The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.
Solar- and wind-powered irrigation systems
NASA Astrophysics Data System (ADS)
Enochian, R. V.
1982-02-01
Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.
Satellite power system concept development and evaluation program. Volume 2: System definition
NASA Technical Reports Server (NTRS)
1981-01-01
The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.
Shpangenberg, S
1992-01-01
The study is carried out with schoolchildren from the educative and industrial complex of energetics (two classes with total 60 students) at the age of 17-18, from the Technical College of Energetics "V. Pick"--Sofia. They are trained for the profession "operator on power aggregates". The investigation is performed during the educative and industrial practice of the students in the Heat Power Station "Tr. Kostov" and the Heat Power Station "Sofia", as well as in the training shop of the technical college. Studies are made on: the functional adaptation of the organism through the reactivity of the CNS, some analysers, the cardiovascular system and the sympathetic-adrenal system, haemopoiesis; the factors of the educative and industrial environment; working/professional maturity of the students; health status of the adolescents. The results of the examination show low effectiveness of the education and industrial training in the Heat power station or low daily and annual exposure, leading to monotony, hypodynamia especially when working in second shift. It is recommended the education and industrial practice in the secondary special schools and technical colleges to be carried out in training shops, educative and industrial workshops and at standardization of the environmental factors and organization of rational regime of work and rest.
NASA Technical Reports Server (NTRS)
Doolin, B. F.
1975-01-01
Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.
NASA Astrophysics Data System (ADS)
Cho, Young-Ho
2012-09-01
This special section of Journal of Micromechanics and Microengineering features papers selected from the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2011), held at Sejong Hotel in Seoul, Korea during 15-18 November 2011. Since the first PowerMEMS workshop held in Sendai, Japan in 2000, the workshop has developed as the premier forum for reporting research results in micro and nanotechnology for power generation, energy conversion, harvesting and processing applications, including in-depth technical issues on nanostructures and materials for small-scale high-density energy and thermal management. Potential PowerMEMS applications cover not only portable power devices for consumer electronics and remote sensors, but also micro engines, impulsive thrusters and fuel cells for systems ranging from the nanometer to the millimeter scale. The 2011 technical program consists of 1 plenary talk, 4 invited talks and 118 contributed presentations. The 48 oral and 70 poster presentations, selected by 27 Technical Program Committee Members from 131 submitted abstracts, have stimulated lively discussion maximizing the interaction between participants. Among them, this special section includes 9 papers covering micro-scale power generators, energy converters, harvesters, thrusters and thermal coolers. Finally, we are grateful to the members of the International Steering Committee, the Technical Program Committee, and the Local Organizing Committee for their efforts and contributions to PowerMEMS 2011. We also thank the two companies Samsung Electro-Mechanics and LG Elite for technical tour arrangements. Special thanks go to Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, as well as to the staff of IOP Publishing for making this special section possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekhota, F.N.
1996-04-01
At present, up to 70% of Russian territory is not covered by central electrical distribution systems. In the field of fuel cell power plants, Russia is at parity with the leading foreign countries with respect to both technical and economic performance and the level of research being conducted. Civilian use of these generating systems on a broad scale, however, demands that a number of problems be solved, particularly those relating to the need for longer plant service life, lower unit cost of electricity, etc. The Ministry of Science and technical Policy of the Russian Federation issued a decree creating amore » new are of concentration, `Fuel Cell Based Power Plants for Civilian Needs,` in the GNTPR `Environmentally Clean Power Industry,` which will form the basis for financial support in this area out of the federal budget.« less
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.
2017-06-01
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.
Terrestrial Micro Renewable Energy Applications of Space Technology
NASA Astrophysics Data System (ADS)
Komerath, N. M.; Komerath, P. P.
This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.
Electrical Power and Illumination Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle
NASA Astrophysics Data System (ADS)
Sai, Li; Wei, Zhou; Xueren, Wang
2017-03-01
By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.
NASA Technical Reports Server (NTRS)
Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.
1987-01-01
The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
Electrochemical Membrane for Carbon Dioxide Capture and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
The JPL isolated application experiment series
NASA Technical Reports Server (NTRS)
Levin, R. R.
1981-01-01
The technical, operational, and economic readiness of parabolic dish power systems for a variety of applications in the power range below 10 MWe are discussed. Power systems are developed and tested to the point where commercialization efforts lead to successful market penetration. A key element in this strategy is the use of experiments to test hardware and assess operational readiness. The Isolated Application Experiments are described and their objectives discussed.
Integrated System Safety Program for the MX Weapon System.
1979-09-25
Quantitative AnalIsis Of Specified Undesired Events Nuclr Safey Anisis Reports ISARI Contractor Inpu To AFWL Technical Nucler Sa An. Is FIGURE 1...Launch Includes all functions from initiation of launch se- quence to missile first motion, such as transfer from ground power to airborne power ...all credible contingency or emergency condi- tions, such as Toxic gases/fluid release, inadvertently armed ordnance, electric power loss, and destruct
Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine
2013-01-01
This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind) power systems.
Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine
2013-01-01
This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind) power systems. PMID:24489488
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Larry Chick
2003-05-20
The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. Thismore » topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-09
The 21st Century Power Partnership (21CPP) aims to accelerate the global transformation of power systems. The Power Partnership is a multilateral effort of the Clean Energy Ministerial (CEM) and serves as a platform for public-private collaboration to advance integrated policy, regulatory, financial, and technical solutions for the large-scale deployment of renewable energy in combination with deep energy efficiency and smart grid solutions. This fact sheet details the 21CPP's work in India.
78 FR 38311 - Reliability Technical Conference Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... issues related to the reliability of the Bulk-Power System. The agenda for this conference is attached... Reliability Technical Docket No. AD13-6-000 Conference. North American Electric Docket No. RC11-6-004 Reliability Corporation. North American Electric Docket No. RR13-2-000 Reliability Corporation. Not...
Unified Technical Concepts. Physics for Technicians.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary programs. This UTC classroom textbook, consisting of 14 chapters, deals with physics for technicians. Addressed in the individual chapters of the guide are the following topics: force, work, rate, momentum, resistance, power, potential and…
Analysis on energy consumption index system of thermal power plant
NASA Astrophysics Data System (ADS)
Qian, J. B.; Zhang, N.; Li, H. F.
2017-05-01
Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.
Tomczewski, Andrzej
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.
2014-01-01
The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326
Gillner, Annett; Borgwaldt, Nicole; Kroll, Sylvia; Roschka, Sybille
2016-01-01
Objective. Results of a device-training for nonambulatory individuals with thoracic and lumbar spinal cord injury (SCI) using a powered exoskeleton for technically assisted mobility with regard to the achieved level of control of the system after training, user satisfaction, and effects on quality of life (QoL). Methods. Observational single centre study with a 4-week to 5-week intensive inpatient device-training using a powered exoskeleton (ReWalk™). Results. All 7 individuals with SCI who commenced the device-training completed the course of training and achieved basic competences to use the system, that is, the ability to stand up, sit down, keep balance while standing, and walk indoors, at least with a close contact guard. User satisfaction with the system and device-training was documented for several aspects. The quality of life evaluation (SF-12v2™) indicated that the use of the powered exoskeleton can have positive effects on the perception of individuals with SCI regarding what they can achieve physically. Few adverse events were observed: minor skin lesions and irritations were observed; no falls occurred. Conclusions. The device-training for individuals with thoracic and lumbar SCI was effective and safe. All trained individuals achieved technically assisted mobility with the exoskeleton while still needing a close contact guard. PMID:27610382
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Causes of power broadening in EIT intensity noise spectroscopy
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Snider, Charles; O'Leary, Shannon
2011-05-01
EIT noise spectroscopy is a potentially promising way to simplify magnetometer design. One technically fortuitous characteristic of this intensity noise spectroscopy is the non-power broadening behaviour. We describe quantum optics theory applied to more realistic models of EIT systems that explain the existence and range of this power broadening-free regime.
Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, E.; Warren, A.; Roberts, J. O.
This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of windmore » resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.« less
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
NASA Astrophysics Data System (ADS)
Matsumoto, Satoshi
This paper deals with the recent topics related to sensing, monitoring, and diagnosis for electric power equipment. Moreover the risk management for such equipments has been an object of study in many terms such as economical, technical aspects, safety and rest, CSR (Corporate Social Responsibility) etc. The relationship between the function of the economic engineering and the maintenance strategy for electric power system are reviewed.
NASA Astrophysics Data System (ADS)
Al-Taie, A.; Graber, L.; Pamidi, S. V.
2017-12-01
Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.
Evaluation of Contribution for Voltage Control Ancillary Services Based on Social Surplus
NASA Astrophysics Data System (ADS)
Ueki, Yuji; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun
Reactive power supply plays an important role in active power supply with adequate system voltages. Various pricing mechanism for reactive power supply have been developed and some of them are adopted in some power systems, however they are in a trial stage. The authors also focus on development of a pricing method for reactive power ancillary services. This problem involves two technical issues: rational estimation of the cost associated with reactive power supply and fair and transparent allocation of the estimated cost among the market participants. This paper proposes methods for evaluating the contribution of generators and demands.
Drewes, A M; Nielsen, K D; Taagholt, S J; Svendsen, L; Bjerregård, K; Nielsson, L; Kristensen, L
1996-05-01
A new system for polysomnographic recording at home is presented. It consists of a 12 to 24-channel amplifier system with direct digitization of the polygraph signals using a portable computer. Sampling frequency, amplification and filter settings can be defined by the user, and the signals are evaluated at bedside. Technical testing proved a high signal/noise ratio, linear amplification and a good signal quality. Clinical testing of the first 100 recordings showed that they were acceptable for conventional sleep scoring in 98 cases. A comparison of two consecutive recordings was done in 9 healthy subjects and 11 patients with rheumatic disorders. Using conventional sleep staging, only a slight "first night effect" (FNE) was demonstrated in the sleep architecture. Power spectral analysis using autoregressive modeling demonstrated only a difference of power between the 2 nights in the beta (14.5-25 Hz) band. In conclusion, the usability and technical advantages make the system very suitable for ambulatory recordings and only a minimal FNE should be considered when results are evaluated.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.
A Conservative Approach to System Design.
ERIC Educational Resources Information Center
Turner, William R., III; Zumoff, Joel
1979-01-01
The development of an inexpensive, effective information system at Cornell University is described. The change from an outdated student records and registration system is discussed as well as considerations that motivated Cornell to institute a less powerful and less technically attractive system. (SF)
Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.
This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less
Solar Mirror Fabrication in the Technical Services Building
1966-02-21
Daniel Bernatowicz, Chief of the Advanced Power Systems Branch at the National Aeronautics and Space Administration (NASA) Lewis Research Center, examines a 20-foot section of a solar mirror being fabricated in the Jig Bore Room of the Technical Services Building. NASA Lewis was conducting a wide-ranging effort to explore methods of generating electrical power for spacecraft. One method employed a large parabolic mirror to concentrate the sun’s energy. The mirror had to remain rigid and withstand micrometeoroids, but remain light and compact enough to be easily launched. In 1963 Bernatowicz and his researchers undertook a program to design a solar mirror to work with the Brayton cycle system on a space station. The mirror in this photograph was prepared for a conference on Advanced Technology in Space Power Systems held at Lewis in late August 1966. Lewis experts discussed advances with batteries, fuel cells, isotope and thermoelectric generators, and the SNAP-8 space power system. Lewis was developing several types of solar mirrors to work with a Brayton cycle electric generating system. The mirror’s 12 sections were shaped using a unique forming process developed at Lewis, coated with an epoxy, and plated with aluminum. The mirror concentrated the Sun's rays on a heat storage receiver containing lithium fluoride. This material was heated to produce power in a turbogenerator system, while additional heat was stored for use when the unit was in the Earth's shadow.
On the Development of Fuel-Free Power Supply Sources on Pneumatic Energy Conversion Principles
NASA Astrophysics Data System (ADS)
Son, E. E.; Nikolaev, V. G.; Kudryashov, Yu. I.; Nikolaev, V. V.
2017-12-01
The article is devoted to the evaluation of capabilities and problems of creation of fuel-free power supply of isolated and autonomous Russian consumers of low (up to several hundreds kW) power based on the joint use of wind power plants and progressive systems of pneumatic accumulation and conversion of energy. The basic and functional schemes and component structure of the system prototype are developed and proposed, the evaluations of the expected technical and economic indicators of system are presented, and the ways of its further practical implementation are planned.
Microwave power transmitting phased array antenna research project
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1978-01-01
An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.
Heat engine development for solar thermal power systems
NASA Astrophysics Data System (ADS)
Pham, H. Q.; Jaffe, L. D.
The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.
Satellite power system: Concept development and evaluation program, reference system report
NASA Technical Reports Server (NTRS)
1979-01-01
The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.
NASA Technical Reports Server (NTRS)
Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.
1980-01-01
The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. A description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coddington, M.; Kroposki, B.; Basso, T.
Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the Highmore » Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.« less
Space transfer concepts and analyses for exploration missions
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1992-01-01
The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis in the structure, power, life support system, and radiation environment.
Lorenzi, N M; Riley, R T
2000-01-01
As increasingly powerful informatics systems are designed, developed, and implemented, they inevitably affect larger, more heterogeneous groups of people and more organizational areas. In turn, the major challenges to system success are often more behavioral than technical. Successfully introducing such systems into complex health care organizations requires an effective blend of good technical and good organizational skills. People who have low psychological ownership in a system and who vigorously resist its implementation can bring a "technically best" system to its knees. However, effective leadership can sharply reduce the behavioral resistance to change-including to new technologies-to achieve a more rapid and productive introduction of informatics technology. This paper looks at four major areas-why information system failures occur, the core theories supporting change management, the practical applications of change management, and the change management efforts in informatics.
THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.
2010-08-31
This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be sharedmore » between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.« less
Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.
Power generation technology options for a Mars mission
NASA Technical Reports Server (NTRS)
Bozek, John M.; Cataldo, Robert L.
1994-01-01
The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.
Construction and application research of Three-dimensional digital power grid in Southwest China
NASA Astrophysics Data System (ADS)
Zhou, Yang; Zhou, Hong; You, Chuan; Jiang, Li; Xin, Weidong
2018-01-01
With the rapid development of Three-dimensional (3D) digital design technology in the field of power grid construction, the data foundation and technical means of 3D digital power grid construction approaches perfection. 3D digital power grid has gradually developed into an important part of power grid construction and management. In view of the complicated geological conditions in Southwest China and the difficulty in power grid construction and management, this paper is based on the data assets of Southwest power grid, and it aims at establishing a 3D digital power grid in Southwest China to provide effective support for power grid construction and operation management. This paper discusses the data architecture, technical architecture and system design and implementation process of the 3D digital power grid construction through teasing the key technology of 3D digital power grid. The application of power grid data assets management, transmission line corridor planning, geological hazards risk assessment, environmental impact assessment in 3D digital power grid are also discussed and analysed.
On the life cycle cost and return on investment of a 500 GW global space solar power system
NASA Astrophysics Data System (ADS)
Koelle, H. H.
Past studies have produced considerable evidence that Peter E. Glaser's proposal to establish solar power plants in the geostationary orbit (to contribute to the supply of our planet with electrical energy) is technically feasible. However, the economical viability and the risks involved were hurdles to be taken. A new reference system using chemical propellants only and lunar resources seem to provide satisfactory answers with respect to economy and risk. Detailed simulations of this new reference concept through a full life cycle provide new insights which are reason enough to encourage further analysis. Data on a 500 GW SSPS system and its technical and financial properties over a 14 year development and 100 year operational life cycle are presented on 24 diagrams.
Solar Sea Power Plants (SSPP): A critical review and survey
NASA Technical Reports Server (NTRS)
Strauss, A. M.
1974-01-01
An overview of technical and economic matters relating to the eventual success or failure of the SSPP concept is presented, with emphasis on the pollution and energy problems which the SSPP would serve to eliminate. Factors discussed include cost, mariculture possibilities, siting, legal limitations, design materials, mooring and anchoring, and the human element involved. Several alternative power systems are considered for incorporation into SSPP design, such as Nitinol power, Claude cycle, and closed cycle engine systems.
500-Watt Solid-State RF Power Amplifier AM-7209( )/VRC.
1983-03-18
AD-A127 462 580-WRATT SOLID-STATE RF POWER AMPLIFIER AM-7289( )/VRC 1/2 (U) E- SYSTEMS INC ST PETERSBURG FL ECI DIV N HARRIS 18 MAR 83 60-6±289 CECOM...AND DEVELOPMENT TECHNICAL REPORT CECOM-82-C-J23 1 500-WATT SOLID-STATE RF POWER AMPLIFIER AM-7209( )/VRC M. Harris E- SYSTEMS , INC., ECI DIVISION 1502...CONTRACT OR GRANT NUMSER(t) M. Harris DAABO7-82-C-J231 9m PERFORMING ORGANIZATION NAME AND ADDRESS II. PROGRAM ELEMENT. PROJECT TASK E- SYSTEMS , INC
Market assessment of photovoltaic power systems for agricultural applications in Nigeria
NASA Technical Reports Server (NTRS)
Staples, D.; Steingass, H.; Nolfi, J.
1981-01-01
The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.
Market assessment of photovoltaic power systems for agricultural applications in Nigeria
NASA Astrophysics Data System (ADS)
Staples, D.; Steingass, H.; Nolfi, J.
1981-10-01
The market potential for stand-alone photovoltaic systems in agriculture was studied. Information is presented on technical and economically feasible applications, and assessments of the business, government and financial climate for photovoltaic sales. It is concluded that the market for stand-alone systems will be large because of the availability of captial and the high premium placed on high reliability, low maintenance power systems. Various specific applications are described, mostly related to agriculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, K.
This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.« less
Thermal Storage Applications Workshop. Volume 2: Contributed Papers
NASA Technical Reports Server (NTRS)
1979-01-01
The solar thermal and the thermal and thermochemical energy storage programs are described as well as the technology requirements for both external (electrical) and internal (thermal, chemical) modes for energy storage in solar power plants. Specific technical issues addressed include thermal storage criteria for solar power plants interfacing with utility systems; optimal dispatch of storage for solar plants in a conventional electric grid; thermal storage/temperature tradeoffs for solar total energy systems; the value of energy storage for direct-replacement solar thermal power plants; systems analysis of storage in specific solar thermal power applications; the value of seasonal storage of solar energy; criteria for selection of the thermal storage system for a 10 MW(2) solar power plant; and the need for specific requirements by storage system development teams.
Power systems for ocean regional cabled observatories
NASA Technical Reports Server (NTRS)
Kojima, Junichi; Asakawa, Kenichi; Howe, Bruce M.; Kirkham, Harold
2004-01-01
Development of power systems is the most challenging technical issue in the design of ocean regional cabled observatories. ARENA and NEPTUNE are two ocean regional cabled observatory networks with aims that are at least broadly similar. Yet the two designs are quite different in detail. This paper outlines the both systems and explores the reasons for the divergence of design, and shows that it arose because of differences in the priority of requirements.
NASA Technical Reports Server (NTRS)
Kraft, C. C., Jr.
1977-01-01
A satellite based energy concept is described, including the advantages of the basic concept, system characteristics, cost, and environmental considerations. An outline of a plan for the further evaluation and implementation of the system is given. It is concluded that the satellite concept is competitive with other advanced power generation systems when a variety of factors are considered, including technical feasibility, cost, safety, natural resources, environment, baseload capability, location flexibility, land use, and existing industrial base for implementation.
Orbital service module systems analysis study documentation. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
1978-01-01
Near term, cost effective concepts were defined to augment the power and duration capability offered to shuttle payload users. Feasible concept options that could evolve to provide free-flying power and other services to users in the 1984 time frame were also examined.
Thermionic fuel element for the S-prime reactor
NASA Astrophysics Data System (ADS)
Van Hagan, Thomas H.; Drees, Elizabeth A.
1993-01-01
Technical aspects of the thermionic fuel element (TFE) design proposed for the S-PRIME space nuclear power system are discussed. Topics covered include the rational for selecting a multicell TFE approach, a technical description of the S-PRIME TFE and its estimated performance, and the technology readiness of the design, which emphasizes techology maturity and low risk.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... risks and impacts from geomagnetically induced currents to transformers and other equipment on the Bulk... this event in the Calendar. The event will contain a link to the webcast. The Capitol Connection... for a fee. If you have any questions, visit www.CapitolConnection.org or call 703-993-3100. Commission...
Fly-By-Light/Power-By-Wire Requirements and Technology Workshop
NASA Technical Reports Server (NTRS)
Baker, Robert L. (Editor); Pitts, Felix L. (Editor)
1992-01-01
The results of the Fly-By-Light/Power-By-Wire (FBL/PBW) Workshop held on March 17-19, 1992, at the NASA Langley Research Center are presented. The FBL/PBW program is a joint NASA LeRC/LaRC effort to develop the technology base for confident application of integrated FBL/PBW systems to transport aircraft. The objectives of the workshop were to ascertain the FBL/PBW program technical requirements and satisfy the requirements and needs from the industry viewpoint, provide a forum for presenting and documenting alternative technical approaches which satisfy the requirements, and assess the plan adequacy in accomplishing plan objectives, aims, and technology transfer. Areas addressed were: optical sensor systems, power-by-wire systems, FBL/PBW fault-tolerant architectures, electromagnetic environment assessment, and system integration and demonstration. The workshop consisted of an introductory meeting, a 'keynote' presentation, a series of individual panel sessions covering the above areas, with midway presentations by the panel chairpersons, followed by a final summarizing/integrating session by the individual panels, and a closing plenary session summarizing the results of the workshop.
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Martin, J. J.; Houts, M. G.
2003-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.
Multipath study for a low altitude satellite utilizing a data relay satellite system
NASA Technical Reports Server (NTRS)
Eggert, D.
1970-01-01
Technical considerations associated with a low altitude satellite operating in conjuction with a data relay satellite system are reported. Emphasis was placed on the quantitative characterization of multipath phenomenon and determination of power received via both the direct and earth reflection paths. Attempts were made to develop a means for estimating the magnitude and nature of the reflected power.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
NASA Astrophysics Data System (ADS)
Klaiber, Thomas
The paper discusses the technical requirements and the customer demands for vehicles that have an on-board methanol reformer and fuel cells. The research concentrates on the technical developmental risks which include minimizing volume, reducing weight and, at the same time, improving efficiency and system dynamics. Fuel cell powered vehicles with methanol reformers are not only suitable for a niche market but also these vehicles will compete with conventional vehicles. The greatest hindrance will be the price of the fuel cell. A possible progressive development of the number of fuel cell powered vehicles in conjunction with a reduction in costs will be discussed in the paper. When fuel cell vehicles come to the market it is necessary that an infrastructure for the fuel methanol or hydrogen is installed. Therefore, it will only be possible to introduce fuel cell vehicles into special markets, e.g. California. Such a process will need to be subsidized by additional incentives like tax concessions. Today there are many technical risks and unsolved problems relating to production technologies, infrastructure, and costs. Nevertheless, among the alternative power units, the fuel cell seems to be the only one that might be competitive to the conventional power unit, especially relating to emissions.
Highest integration in microelectronics: Development of digital ASICs for PARS3-LR
NASA Astrophysics Data System (ADS)
Scholler, Peter; Vonlutz, Rainer
Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.
Technical Manual for Batteries, Navy Lithium Safety Program Responsibilities and Procedures
2004-08-19
lithium ion batteries and all equipment powered by lithium electrochemical power source(s) through all phases of the life of such systems. The purpose of this manual is to establish safety guidelines for the selection, design, testing, evaluation, use, packaging, storage, transportation and disposal of lithium
Mobile Atmospheric Pollutant Mapping System (MAPMS)
1989-12-01
SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Muhlheim, Michael David; Wood, Richard
The US Nuclear Regulatory Commission (NRC) is initiating a new rulemaking project to develop a digital system common-cause failure (CCF) rule. This rulemaking will review and modify or affirm the NRC's current digital system CCF policy as discussed in the Staff Requirements Memorandum to the Secretary of the Commission, Office of the NRC (SECY) 93-087, Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light Water Reactor (ALWR) Designs, and Branch Technical Position (BTP) 7-19, Guidance on Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based Instrumentation and Control Systems, as well as Chapter 7, Instrumentation and Controls, in NRCmore » Regulatory Guide (NUREG)-0800, Standard Review Plan for Review of Safety Analysis Reports for Nuclear Power Plants (ML033580677). The Oak Ridge National Laboratory (ORNL) is providing technical support to the NRC staff on the CCF rulemaking, and this report is one of several providing the technical basis to inform NRC staff members. For the task described in this report, ORNL examined instrumentation and controls (I&C) technology implementations in nuclear power plants in the light of current CCF guidance. The intent was to assess whether the current position on CCF is adequate given the evolutions in digital safety system implementations and, if gaps in the guidance were found, to provide recommendations as to how these gaps could be closed.« less
Space-based solar power conversion and delivery systems study
NASA Technical Reports Server (NTRS)
1976-01-01
Even at reduced rates of growth, the demand for electric power is expected to more than triple between now and 1995, and to triple again over the period 1995-2020. Without the development of new power sources and advanced transmission technologies, it may not be possible to supply electric energy at prices that are conductive to generalized economic welfare. Solar power is renewable and its conversion and transmission from space may be advantageous. The goal of this study is to assess the economic merit of space-based photovoltaic systems for power generation and a power relay satellite for power transmission. In this study, satellite solar power generation and transmission systems, as represented by current configurations of the Satellite Solar Station (SSPS) and the Power Relay Satellite (PRS), are compared with current and future terrestrial power generation and transmission systems to determine their technical and economic suitability for meeting power demands in the period of 1990 and beyond while meeting ever-increasing environmental and social constraints.
A practical solar energy heating and cooling system
NASA Technical Reports Server (NTRS)
Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.
1973-01-01
Recent study has concluded that solar-powered residential heating and cooling system is non technically and economically feasible. Proposed system provides space heating, air conditioning, and hot water. Installation costs will be greater than for conventional heating systems, but this difference will eventually be defrayed by very low operating costs.
Systems Analysis and Integration Publications | Transportation Research |
data Vehicle analysis Vehicle energy Vehicle modeling Vehicle simulation Wireless power transfer The NREL Systems Analysis and Integration Publications Systems Analysis and Integration Publications NREL publishes technical reports, fact sheets, and other documents about its systems analysis and
The Independent Technical Analysis Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.
2007-04-13
The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.
NASA Technical Reports Server (NTRS)
1977-01-01
An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.
A critical review of the state of foreign space technology
NASA Technical Reports Server (NTRS)
Grey, J.; Gerard, M.
1978-01-01
A conference was held to exchange technical information in the area of space technology. Soviet system capability and technology both in Intersputnik and in the domestic Ekran system was discussed in detail. The thermonic power conversion system used in the Soviet Topaz nuclear power reactor was described in detail. Other areas of examination included: (1) Bioastronautics; (2) Space based industry; (3) Propulsion; (4) Astrodynamics; (5) Contact with extraterrestrial intelligence; and (6) Space rescue and safety.
Implantable radio frequency identification sensors: wireless power and communication.
Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer
2011-01-01
There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.
Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.R.
This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKegg, A.
On February 6, 1987, Westinghouse Industry Services Queensland and Integrated Power Corporation (IPC) of Rockville, Maryland began their joint effort to design, build and install a hybrid photovoltaic/diesel power generation station. Installation began on June 1, 1987 and the system was operational on October 30, 1987. The system combines the quality, reliability and low operating costs of photovoltaics with the lower capital cost, high energy density and high efficiency at full load of diesel generators. The performance of the Coconut Island power system has been an unquestioned success. Power availability has exceeded 99 percent, a level comparable with local utilities.more » Energy capacity has not only met projections, but the system's flexibility has allowed energy output to be increased 40 percent beyond design level to accommodate the Islanders' enthusiastic demand for power. The power describes the design, performance, installation, and acceptance of the hybrid system. A table lists technical applications.« less
Power system restoration - A task force report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adibi, M.; Clelland, P.; Link, L.
1987-05-01
The IEEE PES System Operation Subcommittee has established the Power System Restoration Task Force to: review operating practices, conduct a literature search, prepare relevant glossaries and bibliographies, and promote information exchange through technical papers. This is the first report of the Task Force. The problem of bulk power system restoration following a complete or partial collapse is practically as old as the electric utility industry itself. Many electric utilities have developed over the years system restoration schemes that meet the needs of their particular systems. These plans provide a great deal of insight into how the restorative process is viewedmore » by operating and planning personnel and what concerns and constraints any plan must operate under.« less
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Economic analysis of transmission line engineering based on industrial engineering
NASA Astrophysics Data System (ADS)
Li, Yixuan
2017-05-01
The modern industrial engineering is applied to the technical analysis and cost analysis of power transmission and transformation engineering. It can effectively reduce the cost of investment. First, the power transmission project is economically analyzed. Based on the feasibility study of power transmission and transformation project investment, the proposal on the company system cost management is put forward through the economic analysis of the effect of the system. The cost management system is optimized. Then, through the cost analysis of power transmission and transformation project, the new situation caused by the cost of construction is found. It is of guiding significance to further improve the cost management of power transmission and transformation project. Finally, according to the present situation of current power transmission project cost management, concrete measures to reduce the cost of power transmission project are given from the two aspects of system optimization and technology optimization.
NASA Technical Reports Server (NTRS)
Lizcano, Maricela
2017-01-01
High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.
Composite turbine blade design options for Claude (open) cycle OTEC power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penney, T R
1985-11-01
Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.
NASA Technical Reports Server (NTRS)
Hange, Craig E.
2016-01-01
This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.
Rolling scheduling of electric power system with wind power based on improved NNIA algorithm
NASA Astrophysics Data System (ADS)
Xu, Q. S.; Luo, C. J.; Yang, D. J.; Fan, Y. H.; Sang, Z. X.; Lei, H.
2017-11-01
This paper puts forth a rolling modification strategy for day-ahead scheduling of electric power system with wind power, which takes the operation cost increment of unit and curtailed wind power of power grid as double modification functions. Additionally, an improved Nondominated Neighbor Immune Algorithm (NNIA) is proposed for solution. The proposed rolling scheduling model has further improved the operation cost of system in the intra-day generation process, enhanced the system’s accommodation capacity of wind power, and modified the key transmission section power flow in a rolling manner to satisfy the security constraint of power grid. The improved NNIA algorithm has defined an antibody preference relation model based on equal incremental rate, regulation deviation constraints and maximum & minimum technical outputs of units. The model can noticeably guide the direction of antibody evolution, and significantly speed up the process of algorithm convergence to final solution, and enhance the local search capability.
DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon
Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applicationsmore » may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh
2015-08-18
Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.
NASA Technical Reports Server (NTRS)
1991-01-01
Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.
Cost and Performance Model for Photovoltaic Systems
NASA Technical Reports Server (NTRS)
Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.
1986-01-01
Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.
Diagnostic Algorithm Benchmarking
NASA Technical Reports Server (NTRS)
Poll, Scott
2011-01-01
A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.
NASA Astrophysics Data System (ADS)
Ananthichristy, A., Dr.; Elanthirayan, R.; Brindha, R., Dr.; Siddhiq, M. S.; Venkatesh, N.; Harshit, M. V.; Nikhilreddy, M.
2018-04-01
Congestion management is one of the technical challenges in power system deregulation. In deregulated electricity market it may always not be possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. Transmission congestion occurs when there is insufficient transmission capacity to simultaneously accommodate all constraints for transmission of a line. Flexible Alternative Current Transmission System (FACTS) devices can be an alternative to reduce the flows in the heavily loaded lines, resulting in an increased loadability, low system loss, improved stability of the network, reduced cost of production and fulfilled contractual requirement by controlling the power flow in the network. A method to determine the optimal location of FACTS has been suggested based on reduction of total system VAR power losses. The simulation was done on IEEE 14 bus system and results were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
Distributed photovoltaic systems - Addressing the utility interface issues
NASA Astrophysics Data System (ADS)
Firstman, S. I.; Vachtsevanos, G. J.
This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.
An efficient start-up circuitry for de-energized ultra-low power energy harvesting systems
NASA Astrophysics Data System (ADS)
Hörmann, Leander B.; Berger, Achim; Salzburger, Lukas; Priller, Peter; Springer, Andreas
2015-05-01
Cyber-physical systems often include small wireless devices to measure physical quantities or control a technical process. These devices need a self-sufficient power supply because no wired infrastructure is available. Their operational time can be enhanced by energy harvesting systems. However, the convertible power is often limited and discontinuous which requires the need of an energy storage unit. If this unit (and thus the whole system) is de-energized, the start-up process may take a significant amount of time because of an inefficient energy harvesting process. Therefore, this paper presents a system which enables a safe and fast start-up from the de-energized state.
Space Station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Sundberg, Gale R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the Space Station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
Space station 20-kHz power management and distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.; Sundberg, G. R.
1986-01-01
During the conceptual design phase a 20-kHz power distribution system was selected as the reference for the space station. The system is single-phase 400 VRMS, with a sinusoidal wave form. The initial user power level will be 75 kW with growth to 300 kW. The high-frequency system selection was based upon considerations of efficiency, weight, safety, ease of control, interface with computers, and ease of paralleling for growth. Each of these aspects will be discussed as well as the associated trade-offs involved. An advanced development program has been instituted to accelerate the maturation of the high-frequency system. Some technical aspects of the advanced development will be discussed.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
Aerospace Power Technology for Potential Terrestrial Applications
NASA Technical Reports Server (NTRS)
Lyons, Valerie J.
2012-01-01
Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.
Satellite Power Systems /SPS/ - Overview of system studies and critical technology
NASA Technical Reports Server (NTRS)
Manson, S. V.
1980-01-01
Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.
This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.
A solar-hydrogen economy for U.S.A.
NASA Astrophysics Data System (ADS)
Bockris, J. Om.; Veziroglu, T. N.
The benefits, safety, production, distribution, storage, and uses, as well as the economics of a solar and hydrogen based U.S. energy system are described. Tropical and subtropical locations for the generation plants would provide power from photovoltaics, heliostat arrays, OTEC plants, or genetically engineered algae to produce hydrogen by electrolysis, direct thermal conversion, thermochemical reactions, photolysis, or hybrid systems. Either pipelines for gas transport or supertankers for liquefied hydrogen would distribute the fuel, with storage in underground reservoirs, aquifers, and pressurized bladders at sea. The fuel would be distributed to factories, houses, gas stations, and airports. It can be used in combustion engines, gas turbines, and jet engines, and produces water vapor as an exhaust gas. The necessary research effort to define and initiate construction of technically and economically viable solar-hydrogen plants is projected to be 3 yr, while the technical definition of fusion power plants, the other nondepletable energy system, is expected to take 25 yr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracho, Riccardo; Linvill, Carl; Sedano, Richard
With the vision to transform the power sector, Mexico included in the new laws and regulations deployment of smart grid technologies and provided various attributes to the Ministry of Energy and the Energy Regulatory Commission to enact public policies and regulation. The use of smart grid technologies can have a significant impact on the integration of variable renewable energy resources while maintaining reliability and stability of the system, significantly reducing technical and non-technical electricity losses in the grid, improving cyber security, and allowing consumers to make distributed generation and demand response decisions. This report describes for Mexico's Ministry of Energymore » (SENER) an overall approach (Optimal Feasible Pathway) for moving forward with smart grid policy development in Mexico to enable increasing electric generation from renewable energy in a way that optimizes system stability and reliability in an efficient and cost-effective manner.« less
Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William
2011-05-01
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-didmore » the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.« less
[The professionalized transformation of medical witchcraft in the Qin-Han Dynasties].
Liu, Yang; Liu, Changhua
2014-03-01
By witchcraft, it refers to the activities of imagining and intending to affect or control the object through"supernatural power". Ancient witchcraft was applied extensively in which those applied for medical purpose included sorcery, praying, superstitious art of anti-disaster, and tabooing, were collectively called"medical witchcraft". During the Qin-Han periods, witchcraft was transformed by the theory of Yin-Yang and Five-Phases as a part of technical profession. Among them, the system of demon-ghost witchcraft was replaced by the necromantic ghost system; exorcism and taboo system were infiltrated with the conception of the art of mathematics and technical system; whereas the superstitious art of anti-disaster was replaced by incantation. The remnants of medical witchcraft not yet totally transformed were also applied by the technical professionals of the Qin-Han Dynasties.
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...
11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Space transfer concepts and analysis for exploration missions
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1992-01-01
The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.
RTO Technical Publications: A Quarterly Listing
NASA Technical Reports Server (NTRS)
2004-01-01
This is a listing of recent unclassified RTO technical publications for April 1, 2004 through June 30, 2004, processed by the NASA Center for AeroSpace Information. Topics covered include: heat transfer and cooling in propulsion and power systems; assessment of operator functional state; microwaves; aerodynamics in solid rocket propulsion; command, control, communications and intelligence modeling; personal protective equipment against anti-personnel mine blast; and data fusion and visualization.
Superconducting power transmission system development. Cable insulation development
NASA Astrophysics Data System (ADS)
1983-09-01
The development of an underground superconducting power transmission system which is economical and technically attractive to the utility industry is discussed. Suitable superconductors and dielectric insulation were developed. Cables several hundred feet long are tested under realistic conditions. Three operating runs of about 2 weeks duration each were accomplished. The 60 Hz steady state performance of the cables under rated conditions was explored. Over voltage endurance tests and emergency level current tests were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)
2000-04-01
system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
Technology for large space systems: A bibliography with indexes (supplement 07)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 366 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1982 and June 30, 1982. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
Progress in space nuclear reactor power systems technology development - The SP-100 program
NASA Technical Reports Server (NTRS)
Davis, H. S.
1984-01-01
Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.
Approach to developing reliable space reactor power systems
NASA Technical Reports Server (NTRS)
Mondt, Jack F.; Shinbrot, Charles H.
1991-01-01
During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top-down systems approach which includes a point design based on a detailed technical specification of a 100-kW power system. The SP-100 system requirements implicitly recognize the challenge of achieving a high system reliability for a ten-year lifetime, while at the same time using technologies that require very significant development efforts. A low-cost method for assessing reliability, based on an understanding of fundamental failure mechanisms and design margins for specific failure mechanisms, is being developed as part of the SP-100 Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report, produced for the Ministry of National Resources, Energy and Environment (MNRE) of Swaziland, determines the least cost capacity expansion option to meet the future power demand and system reliability criteria of Swaziland, with particular emphasis on the proposed Interconnector between Swaziland and Mozambique. Volume 3 contains EPC Specifications and is divided into the following divisions: (1) Commercial; (2) General Technical Requirements; (3) Transmission Line Technical Requirements; (4) Substation Technical Requirements; (5) Specifications.
International data collection and analysis. Task 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
Commercial nuclear power has grown to the point where 13 nations now operate commercial nuclear power plants. Another four countries should join this list before the end of 1980. In the Nonproliferation Alternative Systems Assessment Program (NASAP), the US DOE is evaluating a series of alternate possible power systems. The objective is to determine practical nuclear systems which could reduce proliferation risk while still maintaining the benefits of nuclear power. Part of that effort is the development of a data base denoting the energy needs, resources, technical capabilities, commitment to nuclear power, and projected future trends for various non-US countries.more » The data are presented by country for each of 28 non-US countries. This volume contains compiled data on Mexico, Netherlands, Pakistan, Philippines, South Africa, South Korea, and Spain.« less
Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations
NASA Technical Reports Server (NTRS)
Turpin, J. B.
2007-01-01
This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.
Wind power demonstration and siting problems. [for recharging electrically driven automobiles
NASA Technical Reports Server (NTRS)
Bergey, K. H.
1973-01-01
Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
Grid Stability Awareness System (GSAS) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuerborn, Scott; Ma, Jian; Black, Clifton
The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less
The Mod-2 wind turbine development project
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Dennett, J. T.; Gordon, L. H.
1981-01-01
A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.
Electrical safety during transplantation.
Amicucci, G L; Di Lollo, L; Fiamingo, F; Mazzocchi, V; Platania, G; Ranieri, D; Razzano, R; Camin, G; Sebastiani, G; Gentile, P
2010-01-01
Technologic innovations enable management of medical equipment and power supply systems, with improvements that can affect the technical aspects, economics, and quality of medical service. Herein are outlined some technical guidelines, proposed by Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, for increasing the effectiveness of the power supply system and the safety of patients and surgeons in the operating room, with particular focus on transplantation. The dependence of diagnoses and therapies on operation of the electrical equipment can potentially cause great risk to patients. Moreover, it is possible that faulty electrical equipment could produce current that may flow through the patient. Because patients are particularly vulnerable when their natural protection is considerably decreased, as during transplantation or other surgery, power supply systems must operate with a high degree of reliability and quality to prevent risk, and must be designed to reduce hazards from direct and indirect contact. Reliability of the power supply system is closely related to the quality of the project, choice of materials, and management of the system (eg, quality and frequency of servicing). Among the proposed guidelines, other than normal referencing, are (1) adoption of a monitoring system to improve the quality of the electrical parameters in the operating room, (2) institution of emergency procedures for management of electrical faults, (3) a procedure for management of fires in the operating room, (4) and maintenance interventions and inspections of medical devices to maintain minimal requirements of safety and performance. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
Contents: project plan summary; project and mission objectives; related studies and technology support activities; technical summary; management; procurement approach; project definition items and schedule; resources; management review; controlled items; and safety, reliability, and quality assurance.
SOLAR THERMAL HEATING SYSTEM FOR A ZERO ENERGY HOUSE
Technical Challenge to Sustainability: The inter-disciplinary team, Pittsburgh Synergy, plans to design and build an 800sf home powered by site-based solar energy systems for the 2005 Solar Decathlon. The house employs a home-based business and related transportation needs,...
A 25-kW Series-Resonant Power Converter
NASA Technical Reports Server (NTRS)
Frye, R. J.; Robson, R. R.
1986-01-01
Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... direct method of power determination due to technical reasons, the indirect method of determining antenna... antenna input power by the indirect method must determine the value F (efficiency factor) applicable to... antenna system field monitoring point, when the point itself is not changed. (2) A change in the type of...
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-01-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Polymer electrolyte fuel cells: Potential transportation and stationary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
1993-04-01
The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less
Complex Mobile Independent Power Station for Urban Areas
NASA Astrophysics Data System (ADS)
Tunik, A. A.; Tolstoy, M. Y.
2017-11-01
A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...
Energy conversion alternatives study
NASA Technical Reports Server (NTRS)
Shure, L. T.
1979-01-01
Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.
A Systems Engineering Approach to the Development of an Autonomous Sailing Vessel
2011-01-01
netbook . Power issues and heat dissipation must also be considered in the selection process. Actuation: Because the system is designed to allow a...use of a lap- top or netbook as the primary processor. While we have used a small form com- puter (Pico system) in the past, the Technical Support
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Application of DNA Profiling in Resolving Aviation Forensic Toxicology Issues
2009-10-01
National Technical Information Service, Springfield, VA 22161 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21 ...J,. Schumm. JW ..Development. of. highly. polymorphic.pentanucleotide.tandem.repeat.loci. with.low.stutter ..Profiles in DNA ..1998;2:3–6 . 21 ... PowerPlex ™ 16 System, Technical Manual No. D012 ..Madison,.WI:.Promega.Cor- poration;. 2000. (Available. at:. www .cstl .nist .gov/ strbase/images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhinefrank, Kenneth; Lamb, Bradford; Prudell, Joseph
This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) andmore » lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).« less
NASA Astrophysics Data System (ADS)
Kozier, K. S.; Rosinger, H. E.
The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.
Space Solar Power Demonstrations: Challenges and Progress
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)
2002-01-01
The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).
Energy Systems Integration News | Energy Systems Integration Facility |
answer that question by examining the technical, infrastructure, economic, and policy barriers to greater intra-hour, inter-hour, seasonal, and inter-annual variability of solar resources-essential information powerful tool that provides essential information to policymakers, financiers, project developers, and
Energy Systems Integration Facility | NREL
influence how electric power systems operate far into the future. LEARN MORE Sharing Knowledge Recent 2017 Journal Article Wind and Solar Resource Data Sets Technical Report Innovation Incubator , Liquid Submerged Server for High-Efficiency Data Centers News and Announcements News More News News
47 CFR 74.861 - Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power Auxiliary Stations § 74.861 Technical requirements. (a) Transmitter power is the power at the transmitter output terminals and delivered... the purpose of this subpart, the transmitter power is the carrier power. (b) Each authorization for a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, J.E.; Ratajczak, A.F.; Delombard, R.
1982-02-01
The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well,more » and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.« less
NASA Technical Reports Server (NTRS)
Martz, J. E.; Ratajczak, A. F.; Delombard, R.
1982-01-01
The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.
Hemmati, Reza; Saboori, Hedayat
2016-01-01
Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741
Hemmati, Reza; Saboori, Hedayat
2016-05-01
Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.
Technical Potential Assessment for the Renewable Energy Zone (REZ) Process: A GIS-Based Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nathan; Roberts, Billy J
Geographic Information Systems (GIS)-based energy resource and technical potential assessments identify areas capable of supporting high levels of renewable energy (RE) development as part of a Renewable Energy Zone (REZ) Transmission Planning process. This document expands on the REZ Process to aid practitioners in conducting GIS-based RE resource and technical potential assessments. The REZ process is an approach to plan, approve, and build transmission infrastructure that connects REZs - geographic areas that have high-quality RE resources, suitable topography and land-use designations, and demonstrated developer interest - to the power system. The REZ process helps to increase the share of solarmore » photovoltaic (PV), wind, and other resources while also maintaining reliability and economics.« less
Thermochemical energy storage for a lunar base
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Mckissock, Barbara I.; Difilippo, Frank
1992-01-01
A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.
Concentrating Solar Power Systems
NASA Astrophysics Data System (ADS)
Pitz-Paal, R.
2017-07-01
Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.
A market survey of geothermal wellhead power generation systems
NASA Technical Reports Server (NTRS)
Leeds, M. W.
1978-01-01
The market potential for a portable geothermal wellhead power conversion device is assessed. Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individual in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.
Lessons learned from the NEPTUNE power system, and other deep-sea adventures
NASA Astrophysics Data System (ADS)
Kirkham, Harold
2006-11-01
The development of underwater science systems presents some challenging technical issues. It seems that the best efforts of the engineers and scientists involved are sometimes inadequate, and projects that once seemed straightforward end up being late or over-budget, or cancelled. This paper will review some of the lessons that may be learned from the examples of three science projects in the deep ocean: the Deep Underwater Muon and Neutrino Detector neutrino detector, the H2O observatory, and the power system part of the NEPTUNE regional cabled observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Booth, Sarah
2013-11-01
The Puerto Rico Electric Power Authority developed the minimum technical requirements for interconnection of wind turbine generation and photovoltaic power plants. NREL has conducted a review of these requirements based on generic technical aspects and electrical characteristics of wind and photovoltaic power plants, and on existing requirements from other utilities (both U.S. and European).
Zhai, Haibo; Rubin, Edward S
2016-04-05
Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.
Conceptual design study Science and Applications Space Platform SASP. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Runge, F. C.
1980-01-01
The platform payload accommodations, configuration drivers, and power system are described in detail. The platform design was analyzed and is presented. Demonstration tests are described and the results are reported.
Technical and economic aspects of the Intelsat system
NASA Astrophysics Data System (ADS)
Jefferis, A. K.
1992-03-01
The paper gives some background on the Intelsat system and explains the financial principles of the organization, which operates as a cost sharing cooperative. The members contribute both capital and operating costs in accordance with their use. The determination of the measure of 'use' in such a complex system requires a careful analysis of the factors which cause the cost. Most of these are technical, based on the use of satellite power, bandwidth and similar factors. Others reflect service related features such as priority, long-term commitment and market elasticity. This last element is only taken into account after ensuring that every service fully contributes the marginal cost of providing it.
Update on the Puerto Rico Electric Power Authority`s spinning reserve battery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1996-11-01
The Puerto Rico Electric Power Authority completed start-up testing and began commercial operation of a 20MW/14MWh battery energy storage facility in April 1995. The battery system was installed to provide rapid spinning reserve and frequency control for the utility`s island electrical system. This paper outlines the needs of an island utility for rapid spinning reserve; identifies Puerto Rico`s unique challenges; reviews the technical and economic analyses that justified installation of a battery energy system; describes the storage facility that was installed; and presents preliminary operating results of the facility.
75 FR 5779 - Notice Providing Agenda for Technical Conference on RTO/ISO Responsiveness
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
.... Southwest Power Pool, Inc Docket Nos. ER09-1050-000, ER09- 1192-000. ISO New England, Inc. and New England Docket No. ER09-1051-000. Power Pool. PJM Interconnection, LLC Docket No. ER09-1063-000. New York Independent System Operator, Docket No. ER09-1142-000. Inc. On November 13, 2009, the Commission issued a...
NASA Astrophysics Data System (ADS)
Chubov, S. V.; Soldatov, A. I.
2017-02-01
This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.
Photovoltaics and Wind Power Systems. Course Syllabus.
ERIC Educational Resources Information Center
Bergen County Vocational-Technical High School, Hackensack, NJ.
This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... bring together experts from diverse backgrounds and experiences including electric system operators... transmission switching; AC optimal power flow modeling; and use of active and dynamic transmission ratings. In... variability of the system, including forecast error? [cir] How can outage probability be captured in...
Development of German-English Machine Translation System.
ERIC Educational Resources Information Center
Lehmann, Winifred P.; Stachowitz, Rolf
This report documents efforts over a five-month period toward completion of a pilot system for machine translation of German scientific and technical literature into English. The report is divided into three areas: grammar formalism, programming, and linguistics. Work on grammar formalism concentrated mainly on increasing the power of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, Martha; Coulter, John
2014-09-25
Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education formore » graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.« less
Unmanned air vehicle (UAV) ultra-persitence research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dron, S. B.
2012-03-01
Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively pushmore » UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.« less
Flexible, Smart, and Lethal: Adapting US SEAD Doctrine to Changing Threats
2016-01-01
into the format and design of the article. To gain total air supremacy in the modern age, air forces must not only render the enemy’s air force...assets that result in the greatest deg- 68 | Air & Space Power Journal Bucki radation of the enemy’s total system.” The focus is on key C2 nodes...40R6 / S-400 Triumf Self Propelled Air Defence System / SA-21,” Technical Report APA -TR-2009-0503, Air Power Australia, 27 January 2014, http
Advanced Information Systems Design: Technical Basis and Human Factors Review Guidance
2000-03-01
D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter Display Systems," Proceedings of the Human Factors Society 25th...Reactor (PWR) (Source: Reprinted with permission from Woods, D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter...Dials display rpCJni?3 (b) Fluid-Tanks display B (c) Seesaw display I 72 CF \\^- J B ’ V ’II ’ ( d ) Mimic display B E * • \\ ^r 7
Liquid Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2007-01-01
Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.
Review of Supervisory Control and Data Acquisition (SCADA) Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reva Nickelson; Briam Johnson; Ken Barnes
2004-01-01
A review using open source information was performed to obtain data related to Supervisory Control and Data Acquisition (SCADA) systems used to supervise and control domestic electric power generation, transmission, and distribution. This report provides the technical details for the types of systems used, system disposal, cyber and physical security measures, network connections, and a gap analysis of SCADA security holes.
Space station systems analysis study. Part 2, Volume 2. [technical report
NASA Technical Reports Server (NTRS)
1977-01-01
Specific system options are defined and identified for a cost effective space station capable of orderly growth with regard to both function and orbit location. Selected program options are analyzed and configuration concepts are developed to meet objectives for the satellite power system, earth servicing, space processing, and supporting activities. Transportation systems are analyzed for both LEO and GEO orbits.
Biomass power for rural development. Technical progress report, January 1--March 31, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
Brief progress reports are presented on the following tasks: design packages for retrofits at the Dunkirk Station; fuel supply and site development plans; major equipment guarantees and project risk sharing; power production commitment; power plant site plan, construction and environmental permits; and experimental strategies for system evaluation. The paper then discusses in more detail the following: feedstock development efforts; clone-site testing and genetic studies; and efforts at outreach, extension and technology transfer.
An atmosphere protection subsystem in the thermal power station automated process control system
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Kislov, E. A.
2014-03-01
Matters concerned with development of methodical and mathematical support for an atmosphere protection subsystem in the thermal power station automated process control system are considered taking as an example the problem of controlling nitrogen oxide emissions at a gas-and-oil-fired thermal power station. The combined environmental-and-economic characteristics of boilers, which correlate the costs for suppressing emissions with the boiler steam load and mass discharge of nitrogen oxides in analytic form, are used as the main tool for optimal control. A procedure for constructing and applying environmental-and-economic characteristics on the basis of technical facilities available in modern instrumentation and control systems is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1980-07-01
This specification defines the system and subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project. This project involves the solar repowering of all (120.2 MWe gross) of the 115 MWe net power No. One steam-Rankine unit of the Arizona Public Service Company's Saguaro station. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 3.8 hours of sensible heat thermal energy storage. The quad-cavity type receiver is mounted on a tower within a single surrounding collector field of 10,500 second generation heliostats.
NASA Technical Reports Server (NTRS)
Bitterlich, E.
1977-01-01
Technical possibilities and economic advantages of integrating hot water storage systems into power plants fired with fossil fuels are discussed. The systems can be charged during times of load reduction and then used for back-up during peak load periods. Investment costs are higher for such systems than for gas turbine power plants fired with natural gas or light oil installed to meet peak load demand. However, by improving specific heat consumption by about 1,000 kcal/k ohm, which thus reduces the related costs, investment costs will be compensated for, so that power production costs will not increase.
NATO Scientific and Technical Information Service (NSTIS): functional description. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molholm, K.N.; Blados, W.N.; Bulca, C.
1987-08-01
This report provides a functional description of the requirements for a NATO Scientific and Technical Information Service (NSTIS). The user requirements and much of the background information in this report were derived primarily from interviews with more than 60 NATO Headquarters staff members between 2 March and 25 March 1987. In addition, representatives of the Supreme Headquarters Applied Powers Europe (SHAPE) Technical Centre (STC), the Supreme Allied Commander Atlantic (Anti-Submarine Warfare Research) Centre (SACLANTCEN), the NATO Communications and Information Systems Agency (NACISA), The Advisory Group for Aerospace Research and Development (AGARD), the U.S. Defense Technical Information Center (DTIC), and themore » Technical Documentation Center for the Armed Forces in the Netherlands (TDCK), were interviewed, either in person or by telephone.« less
The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View
ERIC Educational Resources Information Center
Rompelman, Otto; De Graaff, Erik
2006-01-01
Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…
NASA Astrophysics Data System (ADS)
Zhang, Xinhua; Zhou, Zhongkang; Chen, Xiaochun; Song, Jishuang; Shi, Maolin
2017-05-01
system is proposed based on NaS battery and lithium ion battery, that the former is the main large scale energy storage technology world-widely used and developed and the latter is a flexible way to have both power and energy capacities. The hybrid energy storage system, which takes advantage of the two complementary technologies to provide large power and energy capacities, is chosen to do an evaluation of econom ical-environmental based on critical excess electricity production (CEEP), CO2 emission, annual total costs calculated on the specific given condition using Energy PLAN software. The result shows that hybrid storage system has strengths in environmental benefits and also can absorb more discarded wind power than single storage system and is a potential way to push forward the application of wind power and even other types of renewable energy resources.
SNAP 19 Viking Program. Bimonthly technical progress report, October 1979-November 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-01
Monitoring and evaluation of Viking 1 Lander power system data continued. The RTG series power range as measured at the PCDA was 65 to 68 watts at fin root temperatures between 280/sup 0/F and 310/sup 0/F. The Mars landed performance history of Viking 1 include both the minimum and maximum data for each of the SOL days. Monitoring and evaluation of Viking 2 Lander power system data continued. The RTG series power range as measured at the PCDA was 71 to 72 watts at fin root temperatures between 230/sup 0/F and 260/sup 0/F. The Mars landed performance history of Vikingmore » 2 include both the minimum and maximum data for each of the SOL days. The performance of both power systems continues to be very satisfactory. Power system performance data for Pioneer 10 and Pioneer 11 spacecraft were monitored through the reporting period. The estimated RTG system net power was 116 watts for Pioneer 10 and 118 watts for Pioneer Saturn. The September 1 encounter with Saturn appears to have had no deleterious effect on the RTG's of the spacecraft power system. The telemetry signals from both spacecrafts remain satisfactory.« less
SNAP 19 Viking Program. Bimonthly technical progress report, April-May 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Monitoring and evaluation of Viking Lander 1 power system data continued. The RTG series power range as measured at the PCDA was 65 to 67 watts at finroot temperatures between 280/sup 0/F and 310/sup 0/F. The Mars Lander performance history of Viking 1 include both the minimum and maximum data for each of the SOL days. Final available power system data for Viking Lander 2 are shown. Typical SOL day cycles for mission day 1193 are presented. The RTG series power ranged from 69 to 70 watts at finroot temperatures between 270/sup 0/F and 300/sup 0/F. The Mars Lander performancemore » history for Viking 2 is shown. Power system performance data for Pioneer 10 and Pioneer Saturn (initially designated Pioneer 11) were monitored through the reporting period. After adjusting for the telemetry characteristics, the estimated RTG system net power was 114 watts for both Pioneer 10 and Pioneer Saturn.« less
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
The worldwide market for photovoltaics in the rural sector
NASA Technical Reports Server (NTRS)
Brainard, W. A.
1982-01-01
The worldwide market for stand-alone photovoltaic power systems in three specific segments of the rural sector were determined. The worldwide market for photovoltaic power systems for village power, cottage industry, and agricultural applications were addressed. The objectives of these studies were to: The market potential for small stand-alone photovoltaic power system in specific application areas was assessed. Technical, social and institutional barriers to PV utilization were identified. Funding sources available to potential users was also identified and marketing strategies appropriate for each sector were recommended to PV product manufacturers. The studies were prepared on the basis of data gathered from domestic sources and from field trips to representative countries. Both country-specific and sector-specific results are discussed, and broadly applicable barriers pertinent to international marketing of PV products are presented.
NASA Astrophysics Data System (ADS)
Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.
1997-02-01
Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.
Self-powered integrated systems-on-chip (energy chip)
NASA Astrophysics Data System (ADS)
Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.
2010-04-01
In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.
Detection of incipient defects in cables by partial discharge signal analysis
NASA Astrophysics Data System (ADS)
Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.
1992-07-01
As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Adams, David L.; Trinidad, P. Paul
1997-01-01
NASA Langley Technical Library has been involved in developing systems for full-text information delivery of NACA/NASA technical reports since 1991. This paper will describe the two prototypes it has developed and the present production system configuration. The prototype systems are a NACA CD-ROM of thirty-three classic paper NACA reports and a network-based Full-text Electronic Reports Documents System (FEDS) constructed from both paper and electronic formats of NACA and NASA reports. The production system is the DigiDoc System (DIGItal Documents) presently being developed based on the experiences gained from the two prototypes. DigiDoc configuration integrates the on-line catalog database World Wide Web interface and PDF technology to provide a powerful and flexible search and retrieval system. It describes in detail significant achievements and lessons learned in terms of data conversion, storage technologies, full-text searching and retrieval, and image databases. The conclusions from the experiences of digitization and full- text access and future plans for DigiDoc system implementation are discussed.
Improved Emergency Egress Lighting System for the ISS
NASA Technical Reports Server (NTRS)
Eaton, Leslie L.; Barr, Don A.
2005-01-01
Emergency lights provide illumination in corridors, stairwells, ramps, escalators, aisles, and exit passageways during power failures. Safety and visibility are critical during a power outage. If emergency lights fail to operate properly, the building occupants can become disoriented. Four documents in a collection discuss different topics relating to a proposed improved emergency egress lighting system (EELS) for the International Space Station (ISS). While the present EELS is designed around rows of green-light-emitting diodes, the proposed system contains strips of electroluminescent tape using different colors for each egress path. The proposed EELS can be powered by the same battery currently used by the present EELS, but would require an inverter because electroluminescent devices require AC. Electroluminescent devices also require significantly less current and, depending on the color, would emit 3 to 8 times the light of the present EELS. In addition, they could operate for up to 75 hours (versus .20 minutes for the present system). The first document contains a one-page summary of the proposal and an evaluation of technical merit. The second document summarizes the motivation for, and the design of, the proposed EELS. The third document addresses relevant aspects of the measurement of spectral sensitivity and the psychophysics of perception of light. The fourth document presents additional background information and technical specifications for the electroluminescent tapes.
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Sovie, R. J.
1991-01-01
The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.
Bidirectional power converter control electronics
NASA Technical Reports Server (NTRS)
Mildice, J. W.
1987-01-01
The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.
7 CFR 2003.22 - Functional organization of RUS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engineering practices and specifications. (ii) Power Supply Division. Headed by a division director, this... office develops engineering practices, policies, and technical data related to borrowers' telecommunications systems; and evaluates the application of new communications network technology, including...
7 CFR 2003.22 - Functional organization of RUS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engineering practices and specifications. (ii) Power Supply Division. Headed by a division director, this... office develops engineering practices, policies, and technical data related to borrowers' telecommunications systems; and evaluates the application of new communications network technology, including...
7 CFR 2003.22 - Functional organization of RUS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engineering practices and specifications. (ii) Power Supply Division. Headed by a division director, this... office develops engineering practices, policies, and technical data related to borrowers' telecommunications systems; and evaluates the application of new communications network technology, including...
7 CFR 2003.22 - Functional organization of RUS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engineering practices and specifications. (ii) Power Supply Division. Headed by a division director, this... office develops engineering practices, policies, and technical data related to borrowers' telecommunications systems; and evaluates the application of new communications network technology, including...
7 CFR 2003.22 - Functional organization of RUS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engineering practices and specifications. (ii) Power Supply Division. Headed by a division director, this... office develops engineering practices, policies, and technical data related to borrowers' telecommunications systems; and evaluates the application of new communications network technology, including...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowlin, S. C.; Heimiller, D.; Bilello, D.
This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).
NASA Technical Reports Server (NTRS)
Eder, D.
1992-01-01
Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.
Energy saving and consumption reducing evaluation of thermal power plant
NASA Astrophysics Data System (ADS)
Tan, Xiu; Han, Miaomiao
2018-03-01
At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.
MOD-2 wind turbine development
NASA Technical Reports Server (NTRS)
Gordon, L. H.; Andrews, J. S.; Zimmerman, D. K.
1983-01-01
The development of the Mod-2 turbine, designed to achieve a cost of electricity for the 100th production unit that will be competitive with conventional electric power generation is discussed. The Mod-2 wind turbine system (WTS) background, project flow, and a chronology of events and problem areas leading to Mod-2 acceptance are addressed. The role of the participating utility during site preparation, turbine erection and testing, remote operation, and routine operation and maintenance activity is reviewed. The technical areas discussed pertain to system performance, loads, and controls. Research and technical development of multimegawatt turbines is summarized.
Advanced Stirling Convertor Development for NASA Radioisotope Power Systems
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Wilson, Scott D.; Collins, Josh
2015-01-01
Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.
Flywheel energy storage for electromechanical actuation systems
NASA Technical Reports Server (NTRS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
1991-01-01
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Flywheel energy storage for electromechanical actuation systems
NASA Astrophysics Data System (ADS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.
Grid-connected distributed solar power systems
NASA Astrophysics Data System (ADS)
Moyle, R.; Chernoff, H.; Schweizer, T.
This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.
Solar power satellites - Technical, social and political implications
NASA Astrophysics Data System (ADS)
Knelman, F. H.
Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.
Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China
NASA Astrophysics Data System (ADS)
Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming
2017-12-01
Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.
Bridges to Opportunity for New Mexico.
ERIC Educational Resources Information Center
Bird, Keith W.
This document, presented in PowerPoint slide print-outs, discusses the Kentucky Community and Technical College System's role as strategic partner in Kentucky's economic and workforce development system. The KCTCS is composed of 25 colleges in sixteen geographic districts. The KCTCS has 3 main goals that it hopes to achieve by 2020: (1) access…
21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...
21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1980-01-01
As part of the National Solar Energy program, the US Department of Energy is now engaged in the development of technically feasible, low cost candidate component and system technologies to the point where technical readiness can be demonstrated by 1982. The overall strategy is to pursue parallel options that continue to show promise of meeting the program goals, thus increasing the probability that at least one technology will be successful. Included in technology development are both flat plate solar collectors and concentrator solar collectors, as well as the balance of system components, such as structures, power conditioning, power controls, protection, and storage. Generally, these last items are common to both flat plate and concentrator systems, but otherwise there is considerable disparity in design philosophy, photovoltaic cell requirements, and possible applications between the two systems. Objectives for research activities at NASA Lewis for stand alone applications, and at Sandia Laboratories where intermediate load center applications are addressed, are highlighted as well as college projects directed by Oak Ridge National Laboratory, and international applications managed by the Solar Energy Research Institute. Joint DOD/DOE effects for military applications are also summarized.
Document for 270 Voltage Direct Current (270 V dc) System
NASA Astrophysics Data System (ADS)
1992-09-01
The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
77 FR 21555 - Reactive Power Resources; Supplemental Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-10-000] Reactive Power... Commission (Commission) announced that a staff Technical Conference on Reactive Power Resources will be held... may register at the following Web page: https://www.ferc.gov/whats-new/registration/reactive-power-4...
NASA Astrophysics Data System (ADS)
Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang
2018-01-01
With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.
Liquid-Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, K. A.
2007-01-01
Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.
Back-Up/ Peak Shaving Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda L.
2008-05-28
This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less
Solar thermal power & gas turbine hybrid design with molten salt storage tank
NASA Astrophysics Data System (ADS)
Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo
2017-06-01
Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibo, A.
SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).
Design of DSP-based high-power digital solar array simulator
NASA Astrophysics Data System (ADS)
Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo
2013-12-01
To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).
Aerospace Vehicle Design, Spacecraft Section. Volume 3
NASA Technical Reports Server (NTRS)
1988-01-01
Research results are presented for the following groups: Project Mars Airplane Vehicle and Reconnaissance Instrument Carrier (MAVRIC), ACME, ARES, Project ACRONYM, Mars Aircraft Recepticle with Technical Instruments, Aerobraking, and Navigation (MARTIAN), and NOMADS. Each project is described by the following areas of focus: mission planning and costs; aerobraking systems; structures and thermal control systems; attitude and articulation control systems; comman and data control systems; science instrumentation; and power and propulsion systems.
NASA Technical Reports Server (NTRS)
Antonio, Franklin P.; Gilhousen, Klein S.; Jacobs, Irwin M.; Weaver, Linday A., Jr.
1988-01-01
The techinical characteristics of the OmniTRACS system are described. The system is the first operational mobile Ku-band satellite communications system and provides two-way message and position determination service to mobile terminals using existing Ku-band satellites. Interference to and from the system is minimized by the use of special spread-spectrum techniques, together with low power and low data rate transmissions.
Space reflector technology and its system implications
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1979-01-01
The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.
Technical and economic feasibility study of solar/fossil hybrid power systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Calogeras, J. E.
1977-01-01
Results show that new hybrid systems utilizing fossil fuel augmentation of solar energy can provide significant capital and energy cost benefits when compared with solar thermal systems requiring thermal storage. These benefits accrue from a reduction of solar collection area that results from both the use of highly efficient gas and combined cycle energy conversion subsystems and elimination of the requirement for long-term energy storage subsystems. Technical feasibility and fuel savings benefits of solar hybrid retrofit to existing fossil-fired, gas and vapor cycle powerplants was confirmed; however, economic viability of steam cycle retrofit was found to be dependent on the thermodynamic and operational characteristics of the existing powerplant.
NASA Astrophysics Data System (ADS)
Brace, Christopher L.; Ziemlewicz, Timothy J.; Schefelker, Rick; Hinshaw, J. L.; Lubner, Meghan G.; Lee, Fred T.
2013-02-01
Microwave tumor ablation continues to evolve into a viable treatment option for many cancers. Current systems are poised to supplant radiofrequency ablation as the dominant percutaneous thermal therapy. Here is provided an overview of technical details and early clinical results with a high-powered, gas-cooled microwave ablation system. The system was developed with academic-industry collaboration using federal and private funding. The generator comprises three synchronous channels that each produce up to 140W at 2.45GHz. A mountable power distribution module facilitates CT imaging guidance and monitoring and reduces clutter in the sterile field. Cryogenic carbon-dioxide cools the coaxial applicator, permitting a thin applicator profile (~1.5 mm diameter) and high power delivery. A total of 106 liver tumors were treated (96 malignant, 10 benign) from December 2010 to June 2012 at a single academic institution. Mean tumor size +/- standard deviation was 2.5+/-1.3cm (range 0.5-13.9cm). Treatment time was 5.4+/-3.3min (range 1-20min). Median follow-up was 6 months (range 1-16 months). Technical success was reported in 100% of cases. Local tumor progression was noted in 4/96 (4.3%) of malignancies. The only major complication was a pleural effusion that was treated with thoracentesis. Microwave ablation with this system is an effective treatment for liver cancer. Compared to previous data from the same institution, these results suggest an increased efficacy and equivalent safety to RF ablation. Additional data from the lung and kidney support this conclusion.
Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek
Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form amore » hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burman, K.; Olis, D.; Gevorgian, V.
2011-09-01
This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA),more » and British Virgin Islands (BVI) grids via a submarine cable system.« less
TPV power source development for an unmanned undersea vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmquist, G.A.
The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology andmore » the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.« less
The assessment of exploitation process of power for access control system
NASA Astrophysics Data System (ADS)
Wiśnios, Michał; Paś, Jacek
2017-10-01
The safety of public utility facilities is a function not only of effectiveness of the electronic safety systems, used for protection of property and persons, but it also depends on the proper functioning of their power supply systems. The authors of the research paper analysed the power supply systems, which are used in buildings for the access control system that is integrated with the closed-circuit TV. The Access Control System is a set of electronic, electromechanical and electrical devices and the computer software controlling the operation of the above-mentioned elements, which is aimed at identification of people, vehicles allowed to cross the boundary of the reserved area, to prevent from crossing the reserved area and to generate the alarm signal informing about the attempt of crossing by an unauthorised entity. The industrial electricity with appropriate technical parameters is a basis of proper functioning of safety systems. Only the electricity supply to the systems is not equivalent to the operation continuity provision. In practice, redundant power supply systems are used. In the carried out reliability analysis of the power supply system, various power circuits of the system were taken into account. The reliability and operation requirements for this type of system were also included.
Conceptual study of superconducting urban area power systems
NASA Astrophysics Data System (ADS)
Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian
2010-06-01
Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.
NASA Technical Reports Server (NTRS)
Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.
1985-01-01
The underlying engineering and mathematical models as well as the computational methods used by the Spectrum Orbit Utilization Program 5 (SOUP5) analysis programs are described. Included are the algorithms used to calculate the technical parameters, and references to the technical literature. The organization, capabilities, processing sequences, and processing and data options of the SOUP5 system are described. The details of the geometric calculations are given. Also discussed are the various antenna gain algorithms; rain attenuation and depolarization calculations; calculations of transmitter power and received power flux density; channelization options, interference categories, and protection ratio calculation; generation of aggregrate interference and margins; equivalent gain calculations; and how to enter a protection ratio template.
Alternate space station freedom configuration considerations to accommodate solar dynamic power
NASA Technical Reports Server (NTRS)
Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.
1989-01-01
The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
Design of energy storage system to improve inertial response for large scale PV generation
Wang, Xiaoyu; Yue, Meng
2016-07-01
With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less
Annual technical report, fiscal year 1979. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1980-01-01
Accomplishments of the Point-Focusing Distributed Receiver Technology project are presented. The following aspects of the project are discussed: information dissemination, concentrator development, receiver and heat transport network development, power conversion, manufacturing, systems engineering, and tests and evaluations.
The worldwide market for photovoltaics in the rural sector
NASA Technical Reports Server (NTRS)
Brainard, W. A.
1982-01-01
Attention is given to the assessment of results obtained by three NASA studies aimed at determining the global market for stand-alone photovoltaic (PV) power systems in the village power, cottage industry, and agricultural applications areas of the rural sector. An attempt was made to identify technical, social, and institutional barriers to PV system implementation, as well as the funding sources available to potential users. Country- and sector-specific results are discussed, and marketing strategies appropriate for each sector are suggested for the benefit of American PV products manufacturers.
Satellite Power System (SPS) FY 79 program summary
NASA Technical Reports Server (NTRS)
1980-01-01
The Satellite Power System (SPS) program a joint effort to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept is discussed. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. This Program Summary not only covers FY 1979 but includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.
CHARACTERISTIC QUALITIES OF SOME ATOMIC POWER STATIONS (in Hungarian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligeti, G.
1962-04-01
Mostly as the result of economic factors, the current rate of construction of public atomic power stations has slowed down. The use of atomic energy is considered economical only in a few special cases, such as ship propulsion or supplying power to remote regions. For this reason, many reactors were designed especially for the construction of such midget'' power stations, operating at power levels ranging from 10 to 70 Mw. Technical details are given of such already-built or proposed systems, including the following: pressurized- water reactors such as the Babcock and Wilcox 60-Mw reactor, using 2.4% U/sup 235/ fuel; themore » Humphrey-Glasow Company's 20 Mw reactor; the gascooled system of the de Havilland Company; the organicmoderated reactor of the English Electric Company; the organic-moderated system of the Hawker-Siddeley Nuclear Power Company; the boiling-water reactor of the Mitchell Engineering Company and the steam-cooled, heavy-water reactor of the Rolls-Royce & Vickers Company. (TTT)« less
Solar power satellite system sizing tradeoffs
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Monford, L. G.
1981-01-01
Technical and economic tradeoffs of smaller solar power satellite systems configured with larger antennas, reduced output power, and smaller rectennas, are considered. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz are calculated. Two 2.45 GHz configurations dependent upon the ionospheric power density limit are chosen as examples. If the ionospheric limit could be increased to 54 mW sq/cm from the present 23 mW sq/cm level, a 1.53 km antenna satellite operating at 2.45 GHz would provide 5.05 GW of output power from a 6.8 km diameter rectenna. This system gives a 54 percent reduction in rectenna area relative to the reference solar power satellite system at a modest 17 percent increase in electricity costs. At 5.8 GHz, an 0.75 km antenna providing 2.72 GW of power from a 5.8 km diameter rectenna is selected for analysis. This configuration would have a 67 percent reduction in rectenna area at a 36 percent increase in electricity costs. Ionospheric, atmospheric, and thermal limitations are discussed. Antenna patterns for three configurations to show the relative main beam and sidelobe characteristics are included.
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
Streamlining and Standardizing Due Diligence to Ensure Quality of PV Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah
Those investing in PV power plants would like to have confidence that the plants will provide the anticipated return on investment. While due diligence is capably performed by independent engineers today, as PV systems mature, there will be benefit in standardization and streamlining of this process. The IECRE has defined technical information that is needed as a basis for each transaction step such as approving a design to begin construction, documenting readiness to operate, quantifying performance after a year of operation, and assessing the health of the plant in preparation for sale of the plant. The technical requirements have beenmore » defined by IEC Technical Committee 82 and have been designed to be both effective and efficient in completing the assessments. This workshop will describe these new tools that are now available to the community and will include a panel/audience discussion about how and when they can be most effectively used.« less
Review of the technical bases of 40 CFR Part 190.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, John E.; McMahon, Kevin A.; Siegel, Malcolm Dean
2010-07-01
The dose limits for emissions from the nuclear fuel cycle were established by the Environmental Protection Agency in 40 CFR Part 190 in 1977. These limits were based on assumptions regarding the growth of nuclear power and the technical capabilities of decontamination systems as well as the then-current knowledge of atmospheric dispersion and the biological effects of ionizing radiation. In the more than thirty years since the adoption of the limits, much has changed with respect to the scale of nuclear energy deployment in the United States and the scientific knowledge associated with modeling health effects from radioactivity release. Sandiamore » National Laboratories conducted a study to examine and understand the methodologies and technical bases of 40 CFR 190 and also to determine if the conclusions of the earlier work would be different today given the current projected growth of nuclear power and the advances in scientific understanding. This report documents the results of that work.« less
Space resources. Volume 2: Energy, power, and transport
NASA Technical Reports Server (NTRS)
Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)
1992-01-01
This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.
Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision (in Chinese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong
Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logicmore » and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s Systemmore » 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.« less
Data-driven planning of distributed energy resources amidst socio-technical complexities
NASA Astrophysics Data System (ADS)
Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram
2017-08-01
New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.
Integrated digital/electric aircraft concepts study
NASA Technical Reports Server (NTRS)
Cronin, M. J.; Hays, A. P.; Green, F. B.; Radovcich, N. A.; Helsley, C. W.; Rutchik, W. L.
1985-01-01
The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost.
Comparative performance of solar thermal power generation concepts
NASA Technical Reports Server (NTRS)
Wen, L.; Wu, Y. C.
1976-01-01
A performance comparison is made between the central receiver system (power tower) and a distributed system using either dishes or troughs and lines to transport fluids to the power station. These systems were analyzed at a rated capacity of 30 MW of thermal energy delivered in the form of superheated steam at 538 C (1000 F) and 68 atm (1000 psia), using consistent weather data, collector surface waviness, pointing error, and electric conversion efficiency. The comparisons include technical considerations for component requirements, land utilization, and annual thermal energy collection rates. The relative merits of different representative systems are dependent upon the overall conversion as expressed in the form of performance factors in this paper. These factors are essentially indices of the relative performance effectiveness for different concepts based upon unit collector area. These performance factors enable further economic tradeoff studies of systems to be made by comparing them with projected production costs for these systems.
46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...
46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.
The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.
Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.
The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.
The Troll HSE Risk Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiig, E.; Berthelsen, I.; Donovan, K.
1996-12-31
The Petroleum Act and Internal Control regulations in Norway lay down requirements for how HSE shall be Managed and documented. To comply with the Norwegian legislation the Troll Project has developed an HSE Risk Management System (RMS) structured around Hazards and Effects Management. The resulting quality, technical and operating integrity, and HSE performance are an endorsement of the power of RMS.
The Role of Project Science in the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Weisskopf, Martin C.
2006-01-01
The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This third-year course for electrical power station wirer apprentices is a foundation for the study of all aspects of installation and maintenance of power station equipment. It also provides a good technical background as well as the general knowledge essential to power station operator trainees. The course is intended to be equivalent to a…
Development of a single-phase 30 m HTS power cable
NASA Astrophysics Data System (ADS)
Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook
2006-05-01
HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.
NASA Technical Reports Server (NTRS)
1993-01-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
Development of the Engineering Test Satellite-3 (ETS-3) ion engine system
NASA Technical Reports Server (NTRS)
Kitamura, S.
1984-01-01
The ion engine system onboard the ETS-3 is discussed. The system consists of two electron bombardment type mercury ion engines with 2 mN thrust and 2,000 sec specific impulse and a power conditioner with automatic control functions. The research and development of the system, development of its EM, PM and FM, the system test and the technical achievements leading up to final launch are discussed.
NASA Astrophysics Data System (ADS)
1993-03-01
Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems.
Technical Feasibility Assessment of Lunar Base Mission Scenarios
NASA Astrophysics Data System (ADS)
Magelssen, Trygve ``Spike''; Sadeh, Eligar
2005-02-01
Investigation of the literature pertaining to lunar base (LB) missions and the technologies required for LB development has revealed an information gap that hinders technical feasibility assessment. This information gap is the absence of technical readiness levels (TRL) (Mankins, 1995) and information pertaining to the criticality of the critical enabling technologies (CETs) that enable mission success. TRL is a means of identifying technical readiness stages of a technology. Criticality is defined as the level of influence the CET has on the mission scenario. The hypothesis of this research study is that technical feasibility is a function of technical readiness and technical readiness is a function of criticality. A newly developed research analysis method is used to identify the technical feasibility of LB mission scenarios. A Delphi is used to ascertain technical readiness levels and CET criticality-to-mission. The research analysis method is applied to the Delphi results to determine the technical feasibility of the LB mission scenarios that include: observatory, science research, lunar settlement, space exploration gateway, space resource utilization, and space tourism. The CETs identified encompasses four major system level technologies of: transportation, life support, structures, and power systems. Results of the technical feasibility assessment show the observatory and science research LB mission scenarios to be more technical ready out of all the scenarios, but all mission scenarios are in very close proximity to each other in regard to criticality and TRL and no one mission scenario stands out as being absolutely more technically ready than any of the other scenarios. What is significant and of value are the Delphi results concerning CET criticality-to-mission and the TRL values evidenced in the Tables that can be used by anyone assessing the technical feasibility of LB missions.
Reference reactor module for NASA's lunar surface fission power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David I; Kapernick, Richard J; Dixon, David D
Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on themore » lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.« less
Heat engine development for solar thermal power systems
NASA Technical Reports Server (NTRS)
Pham, H. Q.; Jaffe, L. D.
1981-01-01
The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).
Space-based power conversion and power relay systems: Preliminary analysis of alternate systems
NASA Technical Reports Server (NTRS)
1976-01-01
The results are presented of nine months of technical study of non-photovoltaic options for the generation of electricity for terrestrial use by satellite power stations (SPS). A concept for the augmentation of ground-based solar power plants by orbital sunlight reflectors was also studied. Three SPS types having a solar energy source and two which used nuclear reactors were investigated. Data derived for each included: (1) configuration definition, including mass statement; (2) information for use in environmental impact assessment; (3) energy balance (ratio of energy produced to that required to achieve operation), and (4) development and other cost estimates. Cost estimates were dependent upon the total program (development, placement and operation of a number of satellites) which was postulated. This postulation was based upon an analysis of national power capacity trends and guidelines received from MSFC.
The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration
NASA Astrophysics Data System (ADS)
Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai
2017-02-01
The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.
, advancing technical solutions for resilient power systems, and assessing development impacts of clean energy applications in developing countries Distributed generation policies and impacts Education M.A. in global Impacts Associated with Low Emission Development Strategies: Lessons Learned from Pilot Efforts in Kenya
Michael Sadler and the German Connection.
ERIC Educational Resources Information Center
Higginson, J. H.
1990-01-01
Chronicles works of Michael Sadler who compared British and German educational systems, emphasizing Germany's contributions in technical education. Presents Sadler's 1912 recommendations--eight lessons premised upon powerful centralized government's ability to implement policy. Reflects on how World War I and Nazism influenced Sadler's thought and…
77 FR 21766 - Midwest Independent Transmission System Operator, Inc.; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... Authority Area benefitted by such commitments. In Docket No. ER12-679- 000, MISO proposed a mechanism by which to mitigate the exercise of market power with regard to offers made to address VLR issues. In its...
5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...
5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, James Gerald
2012-02-01
An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensivemore » experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.« less
NASA Astrophysics Data System (ADS)
Dinzi, R.; Hamonangan, TS; Fahmi, F.
2018-02-01
In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.
Overview and future direction for blackbody solar-pumped lasers
NASA Technical Reports Server (NTRS)
Deyoung, R. J.
1988-01-01
A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.
Low-Mass, Low-Power Hall Thruster System
NASA Technical Reports Server (NTRS)
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
Technology for large space systems: A bibliography with indexes (supplement 08)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system. It provides helpful information to the researcher, manager, and designer in technology development and mission design in the area of Large Space System Technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 09)
NASA Technical Reports Server (NTRS)
1983-01-01
This bibliography lists 414 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1983 and June 30, 1983. Information on technology development and mission design in the area of Large Space System Technology is provided. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics. advanced materials, assembly concepts, propulsion, and solar power satellite systems.
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.
Technology for large space systems: A bibliography with indexes (supplement 10)
NASA Technical Reports Server (NTRS)
1984-01-01
The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
10 CFR 52.137 - Contents of applications; technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FOR NUCLEAR POWER PLANTS Standard Design Approvals § 52.137 Contents of applications; technical... power plants similar in design and location to plants for which construction permits have previously... light-water-cooled nuclear power plants, an evaluation of the standard plant design against the Standard...
Modular photovoltaic stand-alone systems: Phase 1
NASA Technical Reports Server (NTRS)
Naff, G. J.; Marshall, N. A.
1983-01-01
A family of modular stand-alone power systems that covered the range in power level from 1 kw to 14 kw was developed. Products within this family were required to be easily adaptable to different environments and applications, and were to be both reliable and cost effective. Additionally, true commonality in hardware was to be exploited, and unnecessary recurrence of design and development costs were to be minimized; thus improving hardware availability. Assurance of compatibility with large production runs, was also an underlying program goal. A secondary objective was to compile, evaluate, and determine the economic and technical status of available, and potentially available, technology options associated with the balance of systems (BOS) for stand-along photovoltaic (PV) power systems. The secondary objective not only directly supported the primary but additionally contributed to the definition and implementation of the BOS cost reduction plan.
The Development of Dispatcher Training Simulator in a Thermal Energy Generation System
NASA Astrophysics Data System (ADS)
Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.
2018-01-01
A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.
An improved adaptive weighting function method for State Estimation in Power Systems with VSC-MTDC
NASA Astrophysics Data System (ADS)
Zhao, Kun; Yang, Xiaonan; Lang, Yansheng; Song, Xuri; Wang, Minkun; Luo, Yadi; Wu, Lingyun; Liu, Peng
2017-04-01
This paper presents an effective approach for state estimation in power systems that include multi-terminal voltage source converter based high voltage direct current (VSC-MTDC), called improved adaptive weighting function method. The proposed approach is simplified in which the VSC-MTDC system is solved followed by the AC system. Because the new state estimation method only changes the weight and keeps the matrix dimension unchanged. Accurate and fast convergence of AC/DC system can be realized by adaptive weight function method. This method also provides the technical support for the simulation analysis and accurate regulation of AC/DC system. Both the oretical analysis and numerical tests verify practicability, validity and convergence of new method.
NASA Astrophysics Data System (ADS)
Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti
2017-06-01
Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.
Effect of using of IEEJ (Power and Energy) Technical Papers on Engineering Education
NASA Astrophysics Data System (ADS)
Shirakawa, Shingo
The IEEJ has published useful papers for electric power and energy systems. These papers published in IEEJ transactions contribute to special engineers to receive the doctor degree or understand newly developed technologies etc. But, it is very important to know the impression of young students about IEEJ transactions papers considering the technology transfer. This paper describes reaction comments of next generation university students under learning engineering of design and drawing of power equipments in 2009 after the Lehman Shock (the Lehman Brothers' worldwide economical collapse dated Sept. 15 2008).
Solar power satellite system definition study. Part 1 and part 2, volume 2: Technical summary
NASA Technical Reports Server (NTRS)
1977-01-01
Practical designs for power transmission were developed to meet requirements and constraints. Microwave link error was analyzed to confirm attainability of acceptable link efficiency. Silicon photovoltaic was determined to be the best overall choice for energy conversion, with a potassium Rankine cycle as the backup choice. Space transportation operations provide low cost because of traffic level, and the payload volume is the launch vehicle design driver. The power cost is 4 to 5 /kwh, which will be competitive with fossil fuel sources by the year 2000.
Technical Manual for the SAM Physical Trough Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, M. J.; Gilman, P.
2011-06-01
NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field,more » power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.« less
Electric power restructuring in iran: achievements and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosroshahi, Kaveh Aflaki; Jadid, Shahram; Shahidehpour, Mohammad
2009-03-15
Although the power market in Iran is not fully constructed, several key steps have been taken to meet privatization and restructuring objectives. The addition of a power exchange sector has placed the power market on par with that in other countries. Operational concerns that still need to be addressed include technical and non-technical losses, enhancing new investment, and providing incentives for introducing energy efficiency and promoting green power generation. (author)
NASA Astrophysics Data System (ADS)
Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic
2018-05-01
One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.
NASA Astrophysics Data System (ADS)
Mahto, Tarkeshwar; Mukherjee, V.
2016-09-01
In the present work, a two-area thermal-hybrid interconnected power system, consisting of a thermal unit in one area and a hybrid wind-diesel unit in other area is considered. Capacitive energy storage (CES) and CES with static synchronous series compensator (SSSC) are connected to the studied two-area model to compensate for varying load demand, intermittent output power and area frequency oscillation. A novel quasi-opposition harmony search (QOHS) algorithm is proposed and applied to tune the various tunable parameters of the studied power system model. Simulation study reveals that inclusion of CES unit in both the areas yields superb damping performance for frequency and tie-line power deviation. From the simulation results it is further revealed that inclusion of SSSC is not viable from both technical as well as economical point of view as no considerable improvement in transient performance is noted with its inclusion in the tie-line of the studied power system model. The results presented in this paper demonstrate the potential of the proposed QOHS algorithm and show its effectiveness and robustness for solving frequency and power drift problems of the studied power systems. Binary coded genetic algorithm is taken for sake of comparison.
High-Penetration Photovoltaic Planning Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, M. H.
1980-01-01
The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less
Space nuclear power: Key to outer solar system exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, G.L.; Allen, D.M.
1998-07-01
In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US shouldmore » continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.« less
Second NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
1994-01-01
This document contains the proceedings of the Second NASA Workshop on Wiring for Space Applications held at NASA LeRC in Cleveland, OH, 6-7 Oct. 1993. The workshop was sponsored by NASA Headquarters Code QW Office of Safety and Mission Quality, Technical Standards Division and hosted by NASA LeRC, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry, and academia presented and discussed topics on arc tracking phenomena, wiring system design, insulation constructions, and system protection. Presentation materials provided by the various speakers are included in this document.
NASA Technical Reports Server (NTRS)
Atkinson, J. H.; Hobgood, J. M.
1984-01-01
The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englebretson, Steven; Ouyang, Wen; Tschida, Colin
This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less
Space station automation of common module power management and distribution, volume 2
NASA Technical Reports Server (NTRS)
Ashworth, B.; Riedesel, J.; Myers, C.; Jakstas, L.; Smith, D.
1990-01-01
The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD.
Biomedical effects of low-power laser controlled by electroacupuncture
NASA Astrophysics Data System (ADS)
Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.
1997-12-01
The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.
Isolated step-down DC -DC converter for electric vehicles
NASA Astrophysics Data System (ADS)
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
ERIC Educational Resources Information Center
Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.
2016-01-01
Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…
Maneuverability and mobility in palm-sized legged robots
NASA Astrophysics Data System (ADS)
Kohut, Nicholas J.; Birkmeyer, Paul M.; Peterson, Kevin C.; Fearing, Ronald S.
2012-06-01
Palm sized legged robots show promise for military and civilian applications, including exploration of hazardous or difficult to reach places, search and rescue, espionage, and battlefield reconnaissance. However, they also face many technical obstacles, including- but not limited to- actuator performance, weight constraints, processing power, and power density. This paper presents an overview of several robots from the Biomimetic Millisystems Laboratory at UC Berkeley, including the OctoRoACH, a steerable, running legged robot capable of basic navigation and equipped with a camera and active tail; CLASH, a dynamic climbing robot; and BOLT, a hybrid crawling and flying robot. The paper also discusses, and presents some preliminary solutions to, the technical obstacles listed above plus issues such as robustness to unstructured environments, limited sensing and communication bandwidths, and system integration.
10 CFR 52.17 - Contents of applications; technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...
10 CFR 52.17 - Contents of applications; technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...
10 CFR 52.17 - Contents of applications; technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...
10 CFR 52.17 - Contents of applications; technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... discuss safety considerations for electric vehicles powered by lithium-ion (Li-ion) batteries. The... technical symposium to discuss regulatory and safety considerations for lithium-ion (Li-ion) battery-powered... Li-ion batteries and Li-ion battery-powered vehicles, as well as presentations by the Department of...
San Diego field operational test of smart call boxes : technical aspects
DOT National Transportation Integrated Search
1997-01-01
Smart call boxes are devices similar to those used as emergency call boxes in California. The basic call box consists of a microprocessor, a cellular transceiver, and a solar power source. The smart call box system also includes data-collection devic...
Nuclear Technology Series. Course 10: Power Plant Systems.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...
6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Recommendation M.1371-1: 2000, Technical Characteristics For A Universal Shipborne AIS Using Time Division... power receptacle accessible for the pilot's laptop computer; and (5) The Minimum Keyboard Display (MKD... AIS position reports using differential GPS corrections from the U.S. and Canadian Coast Guards...
Modeling Power Systems as Complex Adaptive Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Malard, Joel M.; Posse, Christian
2004-12-30
Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We reviewmore » and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.« less
Final Test and Evaluation Results from the Solar Two Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO
Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less
The Environmental Impact Study Of Micro Hydro Power In Pekalongan Indonesia
NASA Astrophysics Data System (ADS)
Suwarto; Hadi, Sudharto P.; Hermawan
2018-02-01
Curugmuncar II micro hydro power (MHP) located in Petungkriyono sub district is one of three MHPs installed in Pekalongan district. This study aims to analyze the MHP operation environmental impact. The study used qualitative method, with interviews, observations, and material testing. The data used are primary and secondary data. This research was conducted in Curugmuncar Village, Petungkriyono Subdistrict, Pekalongan Regency, Indonesia. MHP has power capacity of 100 KW with power usage of 50 KW. MHP used by 155 users with load capacity 2 A 220 volt AC. The community more used of lights as the houses and street lighting. The MHP operation had several environmental factors such as: sociology, technically feasible, hydrology, physical and chemical water quality, ergonomics, economically feasible, irrigation, clean water supply, government policy, and others. The supporting factors sustainability of MHP were sociology, irrigation, ergonomics, clean water supply, physical and chemical water quality, hydrology, and government policy. The inhibiting factors of MHP operation were technically feasible, economically feasible, and government policy. The results showed that the MHP environment requires a professional management system to achieve the MHP sustainability
Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions
NASA Technical Reports Server (NTRS)
Silverman, S. W.; Willenberg, H. J.; Robertson, C.
1985-01-01
An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.
Power system restoration - A task force report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adibi, M.; Clelland, P.; Fink, L.
1986-01-01
The IEEE PES System Operation Subcommittee has established the Power System Restoration Task Force to: review operating practices, conduct a literature search, prepare relevant glossaries and bibliographies, and promote information exchange through technical papers. This is the first report of the Task Force. The problem of bulk power system restoration following a complete or partial collapse is practically as old as the electric utility industry itself. Many electric utilities have developed over the years system restoration schemes that meet the needs of their particular systems. These plans provide a great deal of insight into how the restorative process is viewedmore » by operating and planning personnel and what concerns and constraints any plan must operate under. The body of the report consists of notes prepared by members of the Task Force. It should not be interred that a complete reporting on Power System Restoration is undertaken here. The intent is to report upon work of the Task Force to date. The report also reviews several different restoration plans and shows their common concerns and constraints.« less
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2004-05-07
The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine.more » This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.« less
Technology for large space systems: A bibliography with indexes (supplement 19)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
NASA Astrophysics Data System (ADS)
1992-10-01
Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 14)
NASA Technical Reports Server (NTRS)
1986-01-01
This bibliography lists 645 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1985 and December 31, 1985. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Laser beam distribution system for the HiLASE Center
NASA Astrophysics Data System (ADS)
Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś
2017-12-01
We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.
NASA Technical Reports Server (NTRS)
1992-01-01
Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 17)
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 13)
NASA Technical Reports Server (NTRS)
1986-01-01
This bibliography lists 399 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1985 and June 30, 1985. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 18)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 569 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1,1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 16)
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 673 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1986 and December 31, 1986. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for Large Space Systems: a Bibliography with Indexes (Supplement 21)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 745 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Technology for large space systems: A bibliography with indexes (supplement 15)
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 594 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1986 and June 30, 1986. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, D.R.; Chandler, J.R.; Church, J.P.
1979-01-01
The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.
Modern Topics in Energy and Power Technical Meeting
2016-09-01
systems are abysmally low, primarily due to their poor electronic structure. The III-V-based solar cells show the highest solar PV efficiency and thus are...initiatives include creating jet fuel based on seawater, research on photovoltaics ( PVs ) of different types, lightweight fuel cell systems for unmanned air...technoeconomic analysis studies indicate that a 20% solar -to-hydrogen PEC conversion efficiency is necessary for a commercially viable system. Additional
Status and Trend of Automotive Power Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhenxian
2012-01-01
Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barley, C.D.; Winn, C.B.
1997-12-31
This paper provides an overview of the emerging technology of remote, stand-alone electrical power systems featuring a renewable source (wind or photovoltaics [PV]) as well as a diesel generator, with or without an energy storage device. Other stand-alone power systems are discussed briefly, mainly to emphasize the domain of hybrid systems. The history of hybrid systems is reviewed, beginning with the first wind/diesel system in the late 1970s. Other topics include issues arising from the characteristics of diesel engine/generator sets; simple vs. complex systems; the various energy storage technologies that have been used or proposed; control strategies; modeling; optimization; andmore » some {open_quotes}nuts & bolts{close_quotes} details. The bibliography includes over 130 references which are cited throughout the topical discussions. It is concluded that the technical feasibility of hybrid systems has been demonstrated through many prototype installations, and that areas for further improvements include higher reliability and more economical energy storage devices. 139 refs., 7 figs., 1 tab.« less
High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study
NASA Technical Reports Server (NTRS)
Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.
2013-01-01
This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.
Printed batteries and conductive patterns in technical textiles
NASA Astrophysics Data System (ADS)
Willert, Andreas; Meuser, Carmen; Baumann, Reinhard R.
2018-05-01
Various applications of functional devices need a tailored and reliable supply of electrical energy. Batteries are electrochemical systems that deliver energy for functional devices and applications. Due to the common use, several rigid types of batteries have been standardized. To fully integrate the battery into a product that is bendable, free in geometry and less than 1 mm thick, printing of power adaptable batteries is a challenging area of research. Therefore, the well-known zinc-manganese system, which is very promising due to its environmental sustainability and its simplicity, has been used to manufacture battery solutions on a new kind of substrate: technical textiles. Another challenge is the deposition of conductive patterns. At present, embroidery with metallic yarn is the only possibility to provide conducting paths on technical textiles, a time-consuming and elaborate process. Screen printed conductive pathways will generate a new momentum in the manufacturing of conductivity on textiles.
Technology for large space systems: A special bibliography with indexes (supplement 04)
NASA Technical Reports Server (NTRS)
1981-01-01
This bibliography lists 259 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1980 and December 31, 1980. Its purpose is to provide information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology Program. Subject matter is grouped according to systems, interactive analysis and design. Structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
One leg lateral jumps - a new test for team players evaluation.
Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E
2013-10-01
We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".
Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Brophy, John R.
2013-01-01
Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO 2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combinedmore » Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO 2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO 2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO 2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO 2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO 2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO 2 captured. The incremental COE for the ECM-based CO 2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle,more » etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2 captured. The incremental COE for the ECM-based CO2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less
Wind Energy Deployment in Isolated Islanded Power Systems: Challenges & Realities (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
Rising costs of fuels, energy surety, and the carbon impacts of diesel fuel are driving remote and islanded communities dependent on diesel power generation to look for alternatives. Over the past few years, interest in using wind energy to reduce diesel fuel consumption has increased dramatically, potentially providing economic, environmental, social, and security benefits to the energy supply of isolated and islanded communities. However, the task of implementing such systems has remained elusive and subject to many cases of lower-than-expected performance. This poster describes the current status of integrating higher contribution wind technology into islanded power systems, the progress ofmore » recent initiatives implemented by the U.S. Department of Energy and Interior, and some of the lingering technical and commercial challenges. Operating experience from a number of power systems is described. The worldwide market for wind development in islanded communities (some of these supplying large domestic loads) provides a strong market niche for the wind industry, even in the midst of a slow global recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercialmore » plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)« less
Wind power generation and dispatch in competitive power markets
NASA Astrophysics Data System (ADS)
Abreu, Lisias
Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.
Power and On-Board Propulsion System Benefit Studies at NASA GRC
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2000-01-01
This paper discusses the value of systems studies that provide unbiased 'honest broker' assessments of the quantified benefits afforded by advanced technologies for specific missions. The organization, format, and approach used by the NASA Glenn Research Center (GRC) Systems Assessment Team (SAT) to perform system studies for the GRC advanced power and on-board propulsion technology development program is described. Three levels of assessments and a sensitivity analysis are explained and example results are presented. The impact of system studies results and some of the main challenges associated with systems studies are identified. A call for collaboration is made where system studies of all types from all organizations can be reviewed, providing a forum for the widest peer review to ensure accurate and unbiased technical content, and to avoid needless duplication.
An assessment of inductive coupling roadway powered vehicles
NASA Technical Reports Server (NTRS)
Leschly, K. O.; Feinberg, A.; Heft, R.; Warren, G.
1980-01-01
The technical concept underlying the roadway powered vehicle system is the combination of an electrical power source embedded in the roadway and a vehicle-mounted power pickup that is inductively coupled to the roadway power source. The feasibility of such a system, implemented on a large scale was investigated. Factors considered included current and potential transportation modes and requirements, economics, energy, technology, social and institutional issues. These factors interrelate in highly complex ways, and a firm understanding of each of them does not yet exist. The study therefore was structured to manipulate known data in equally complex ways to produce a schema of options and useful questions that can form a basis for further, harder research. A dialectical inquiry technique was used in which two adversary teams, mediated by a third-party team, debated each factor and its interrelationship with the whole of the known information on the topic.
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
Laser Powered Launch Vehicle Performance Analyses
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)
2001-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.
Space, our next frontier; Proceedings of the conference, Dallas, TX, June 7, 8, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, G.
1985-01-01
The present conference on space development encompasses space commercialization, legislative, legal, and insurance-related factors in current space programs, political aspects of space militarization and governmental control, the military future uses of space and their consequences, command and control issues arising in space, economic influences on space policy, and recent developments in space solar power generation concepts. Attention is given to public opinion surveys concerning the scientific, military, and economic uses of space, the Leasecraft orbital industrial infrastructure concept, capitalism and democracy in space development, the current status of space law on commercialization topics, the nature of Ballistic Missile Defense, themore » Soviet Space threat, the High Frontier concept for space defense, lunar solar power systems, solar power satellites, and the utilization of lunar resources for the reduction of lunar base construction costs. Such specific technical issues as microgravity crystal growth and directional solidification, electrophoresis operations for pharmaceuticals, and technical barriers to commercial access to space, are also noted.« less
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
Leadership Team | Water Power | NREL
leading wind energy and water power research efforts in structural analysis and simulation, computational Leadership Team Leadership Team Learn more about the expertise and technical skills of the water power research team and staff at NREL. Photo of Daniel Laird Daniel Laird Center Director I-Technical Dr
10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...
9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...
9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...
29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...
19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEntee, Jarlath
Ocean Renewable Power Company's OCGen Module Mooring Project provided an extensive research, design, development, testing and data collection effort and analysis conducted with respect to a positively buoyant, submerged MHK device secured to the seabed using a tensioned mooring system. Different analytic tools were evaluated for their utility in the design of submerged systems and their moorings. Deployment and testing of a prototype OCGen® system provided significant data related to mooring line loads and system attitude and station keeping. Mooring line loads were measured in situ and reported against flow speeds. The Project made a significant step in the developmentmore » of designs, methodologies and practices related to floating and mooring of marine hydrokinetic (MHK) devices. Importantly for Ocean Renewable Power Company, the Project provided a sound basis for advancing a technically and commercially viable OCGen® Power System. The OCGen® Power System is unique in the MHK industry and, in itself, offers distinct advantages of MHK devices that are secured to the seabed using fixed structural frames. Foremost among these advantages are capital and operating cost reductions and increased power extraction by allowing the device to be placed at the most energetic level of the water column.« less
SNAP 19 Viking Program. Bimonthly technical progress report, February 1980-March 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Viking 1 Lander power system data has not been available during this reporting period, but summary reports indicate no anomalies in performance. Monitoring and evaluation of Viking 2 Lander power system data continued. Temperature data were similar to those 23 months ago, but combined RTG output power was down by 7 watts from the 75 watts recorded in February of 1978. On February 7, 1980, during a scheduled relay transmission the Lander 2 battery voltage dropped below 26.5 volts. With the orbiter attitude control gas supply nearly depleted and the space network stations required for Voyager encounter with Saturn latermore » this year, the final relay from Viking Lander 2 had been scheduled to take place on April 11. The attempt was made but no data were received. Power system performance data for Pioneer 10 and Pioneer Saturn (initially designated Pioneer 11) were monitored. The estimated RTG system net power was 115 watts for both, Pioneer 10 and Pioneer Saturn. The telemetry signal quality from Pioneer Saturn remains excellent. Pioneer 10, for the first time, shows a loss of signal strength.« less
Applications of energy harvesting for ultralow power technology
NASA Astrophysics Data System (ADS)
Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.
2015-06-01
Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.
DOE-GTO Low Temperture Projects Evaluation and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
2017-05-01
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M.; Mosey, G.
2014-11-01
The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reductionmore » goals.« less
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Heatpipe space power and propulsion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, M.G.; Poston, D.I.; Ranken, W.A.
1995-07-01
Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systemsmore » are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Ilic; E. Baker; R. Hatcher
The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in themore » Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.« less
Integrated Display and Environmental Awareness System - System Architecture Definition
NASA Technical Reports Server (NTRS)
Doule, Ondrej; Miranda, David; Hochstadt, Jake
2017-01-01
The Integrated Display and Environmental Awareness System (IDEAS) is an interdisciplinary team project focusing on the development of a wearable computer and Head Mounted Display (HMD) based on Commercial-Off-The-Shelf (COTS) components for the specific application and needs of NASA technicians, engineers and astronauts. Wearable computers are on the verge of utilization trials in daily life as well as industrial environments. The first civil and COTS wearable head mounted display systems were introduced just a few years ago and they probed not only technology readiness in terms of performance, endurance, miniaturization, operability and usefulness but also maturity of practice in perspective of a socio-technical context. Although the main technical hurdles such as mass and power were addressed as improvements on the technical side, the usefulness, practicality and social acceptance were often noted on the side of a broad variety of humans' operations. In other words, although the technology made a giant leap, its use and efficiency still looks for the sweet spot. The first IDEAS project started in January 2015 and was concluded in January 2017. The project identified current COTS systems' capability at minimum cost and maximum applicability and brought about important strategic concepts that will serve further IDEAS-like system development.
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
Overview of NASA GRC Stirling Technology Development
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.; Thieme, Lanny G.
2004-01-01
The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts.
Guo, Xiaopeng; Ren, Dongfang; Guo, Xiaodan
2018-06-01
Recently, Chinese state environmental protection administration has brought out several PM10 reduction policies to control the coal consumption strictly and promote the adjustment of power structure. Under this new policy environment, a suitable analysis method is required to simulate the upcoming major shift of China's electric power structure. Firstly, a complete system dynamics model is built to simulate China's evolution path of power structure with constraints of PM10 reduction considering both technical and economical factors. Secondly, scenario analyses are conducted under different clean-power capacity growth rates to seek applicable policy guidance for PM10 reduction. The results suggest the following conclusions. (1) The proportion of thermal power installed capacity will decrease to 67% in 2018 with a dropping speed, and there will be an accelerated decline in 2023-2032. (2) The system dynamics model can effectively simulate the implementation of the policy, for example, the proportion of coal consumption in the forecast model is 63.3% (the accuracy rate is 95.2%), below policy target 65% in 2017. (3) China should promote clean power generation such as nuclear power to meet PM10 reduction target.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Compiler); Lawrence, George F. (Compiler)
1991-01-01
Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Large space structures and systems in the space station era: A bibliography with indexes
NASA Technical Reports Server (NTRS)
Ferrainolo, John J. (Editor)
1990-01-01
Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems.
Oria, Prisca A; Hiscox, Alexandra; Alaii, Jane; Ayugi, Margaret; Mukabana, Wolfgang Richard; Takken, Willem; Leeuwis, Cees
2014-11-18
There has been increasing effort in recent years to incorporate user needs in technology design and re-design. This project employed a bottom-up approach that engaged end users from the outset. Bottom-up approaches have the potential to bolster novel interventions and move them towards adaptive and evidence-based strategies. The present study concerns an innovative use of solar-powered mosquito trapping systems (SMoTS) to control malaria in western Kenya. Our paper highlights the co-dependence of research associated with the development of the SMoTS technology on one hand and research for enhancing the sustainable uptake of that very same intervention within the community on the other. During the pre-intervention year, we examined the design, re-design and piloting of a novel technology to generate lessons for malaria elimination on Rusinga Island. Initial ideas about many technological necessities were evaluated and re-designed following feedback from various sources, including technical and social research as well as broader interactions with the social environment. We documented the interlocking of the multiple processes and activities that took place through process observation and document reviews. We analysed the data within the conceptual framework of system innovation by identifying mutual shaping between technical and social factors. Our findings illustrate how various project stakeholders including project staff, collaborators, donor, and community members simultaneously pursued interdependent technological transformations and social interests. In the ongoing process, we observed how partial outcomes in the technological domain influenced social events at a later phase and vice versa. Looking at malaria intervention projects employing novel technologies as niches that may evolve towards system innovation, helps to reveal interrelations between the various technical and social aspects. Revealing these interrelations requires a different role for research and different perspective on innovation where innovation is more than the technical aspects. This approach therefore requires that research is designed in a way that enables obtaining feedback from both aspects.
Design of virtual SCADA simulation system for pressurized water reactor
NASA Astrophysics Data System (ADS)
Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman
2016-02-01
The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.
A Survey on Simultaneous Wireless Information and Power Transfer
NASA Astrophysics Data System (ADS)
Perera, T. D. P.; Jayakody, D. N. K.; De, S.; Ivanov, M. A.
2017-01-01
This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems.
A synergetic use of hydrogen and fuel cells in human spaceflight power systems
NASA Astrophysics Data System (ADS)
Belz, S.
2016-04-01
Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.
On the life cycle cost and return on investment of a 500 GW global space solar power system
NASA Astrophysics Data System (ADS)
Koelle, H. H.
1987-10-01
Past studies have produced considerable evidence that Glaser's (1968 and 1973) proposal to establish solar powerplants in the geostationary orbit (to contribute to the supply of our planet with electrical energy) is technically feasible. However, the economical viability and the risks involved were hurdles to be taken. A new reference system using chemical propellants only and lunar resources seem to provide satisfactory answers with respect to economy and risk. Detailed simulations of this new reference concept through a full life cycle provide new insights which are reason enough to encourage further analysis. Data on a 500 GW SSPS system and its technical and financial properties over a 14 year development and 100 year operational life cycle are presented on 24 diagrams.
Investigation of possibilities for solar-powered high-energy lasers in space
NASA Technical Reports Server (NTRS)
1982-01-01
Solar pumped lasers were investigated. The literature was reviewed for possible solar laser candidates from optical pumping experiments. A baseline CO electric discharge laser system was shown to be technically feasible. The most promising direct solar pumped laser was identified to be CF3I. Using the 'STAG' solar laser concept and CF3I, it was found that such a system could be weight competitive with the baseline CO laser system.
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
47 CFR 76.611 - Cable television basic signal leakage performance criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
... average power level of the strongest cable television carrier on the system. (c) In paragraph (a)(1) and... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television basic signal leakage...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.611 Cable...
Concepts. The Journal of Defense Systems Acquisition Management. Summer 1981. Volume 4, Number 3.
1981-01-01
Performance FREQUENCY POWER OUTPUT GIZMO MODEL 25 0-50 MHZ SATISFACTORY 50-125 MHZ UNSATISFACTORY ASTROMATICS MODEL C 0-50 MHZ SATISFACTORY 50-125 MHZ...MHZ) GIZMO ----- ASTROMATICS- NOTES: 1. Diagrams excellent for portraying precise technical relationships. 2. Diagrams are economical means of
Graphing Misconceptions and Possible Remedies Using Microcomputer-Based Labs.
ERIC Educational Resources Information Center
Barclay, William L.
Graphing is a common and powerful symbol system for representing concrete data. Yet research has shown that students often have graphical misconceptions about how graphs are related to the concrete event. Currently, the Technical Education Research Center (TERC) is developing microcomputer-based laboratories (MBL) science units that use probes to…
NASA Technical Reports Server (NTRS)
1973-01-01
The probe bus and orbiter subsystems are defined, and tradeoffs analyzed. Subsystems discussed include: communications, electric power, data handling, attitude determination and control, propulsion, thermal control, structure and mechanisms, NASA/ESRO orbiter interface, mission operation, and flight support.
47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...
47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1984-01-01
The technical progress of researches Alternatives for Jet Engine Control is reported. A numerical study employing feedback tensors for optimal control of nonlinear systems was completed. It is believed that these studies are the first of their kind. State regulation, with a decrease in control power is demonstrated. A detailed treatment follows.
NASA Astrophysics Data System (ADS)
Tanaka, Shuji; Toriyama, Toshiyuki
2005-09-01
This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was edited in collaboration with Professor Toshiyuki Toriyama (Ritsumeikan University), Co-chair of the Technical Program Committee, and the Institute of Physics Publishing staff.
Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Bitteker, L. J.; Jones, J. E.
2001-01-01
Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.
Space fabrication demonstration system, technical volume
NASA Technical Reports Server (NTRS)
1979-01-01
The automatic beam builder ABB was developed, fabricated, and demonstrated within the established contract cost and schedule constraints. The ABB demonstrated the feasibility of: producing lightweight beams automatically within the required rate of 1 to 5 ft of completed beam per minute and producing structurally sound beams with axial design load of 5538 N based on the Grumman photovoltaic satellite solar power system design reference structure.
Pulsed Energy Systems for Generating Plasmas
NASA Technical Reports Server (NTRS)
Rose, M. Franklin; Shotts, Z.
2005-01-01
This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.
Fiscal Year 1962-63 SNAP 10A Program Proposal (Revised August 15, 1961)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-08-15
The SNAPSHOT program is a joint AEC-USAF effort to flight test SNAP units. SNAPSHOT flights are intended to establish the capabilities of nuclear auxiliary power so that its future use in space systems can be programmed with confidence overcoming both technical and psychological barriers. A set of flight tests for the SNAP 10A system form a part of this effort.
Technical Information/Website Preservation
NASA Technical Reports Server (NTRS)
PintoRey, Christian R.
2010-01-01
This document reviews the work of the author in NASA's Motivating Undergraduates in Science and Technology (MUST) internship. The intern worked on the Space Shuttles hydraulic systems (i.e., Auxiliary Power Units (APU's) and Hydraulic Pump Units (HPU's)), and website preservation of the hydraulic technology captured in websites relating to the coming.the Space Shuttle Retirement. Several figures and pictures show an overview of the orbiter's hydraulic systems
1983-10-05
battle damage. Others are local electrical power and cooling disruptions. Again, a highly critical function is lost if its computer site is destroyed. A...formalized design of the test bed to meet the requirements of the functional description and goals of the program. AMTEC --Z3IT TASKS: 610, 710, 810
The Light Ion Pulsed Power Induction Accelerator for ETF
1995-07-01
the technical development necessary to demonstrate scientific and engineering feasibility for fusion energy production with a reprated driver. In...order for ETF to be cost effective, the accelerator system must be able to drive several target chambers which will test various Inertial Fusion ... Energy (IFE) reactor technologies. We envision an elevator system positioning and removing multiple target chambers from the center area of the ion beam
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Fusion power for space propulsion.
NASA Technical Reports Server (NTRS)
Roth, R.; Rayle, W.; Reinmann, J.
1972-01-01
Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.
Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Jensen, David; Poll, Scott
2009-01-01
Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.
Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria
NASA Astrophysics Data System (ADS)
Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.
2017-02-01
This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.