Sample records for power unit development

  1. Space shuttle orbiter auxiliary power unit development challenges

    NASA Technical Reports Server (NTRS)

    Lance, R.; Weary, D.

    1985-01-01

    When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.

  2. Effect of accuracy of wind power prediction on power system operator

    NASA Technical Reports Server (NTRS)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  3. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  4. International Nursing: How Much Power Do Nurse Managers Have?

    PubMed

    Trus, Marija; Martinkenas, Arvydas; Suominen, Tarja

    This study was conducted to explore issues of nurse managers' power and empowerment. Data were collected from nurse managers by way of a questionnaire consisting of background factors, work-related questions, and power-related questions at the unit and organization levels. The degree of empowerment was evaluated using 2 established instruments (CWEQ-II and Work Empowerment Questionnaire). The overall level of managers' personal power within their own units was relatively high. Nurse managers' perception of their power at an organizational level was found to be at a moderate level. Several factors related to an individual's professional background were correlated to power issues, both at the unit and organizational levels. Structural and psychological empowerment correlated with the overall level of power at a unit level and the overall level of power at an organizational level. Nurse managers self-reported their own general power at a unit level as high, which offers them possibilities to lead the development of nursing care in their units. Organizations may benefit more from nurse managers' leadership by more fully integrating them in the development processes of the entire organization.

  5. Development of a high power density 2.5 kW class solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Yokoo, M.; Mizuki, K.; Watanabe, K.; Hayashi, K.

    2011-10-01

    We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.

  6. Activity and accomplishments of dish/Stirling electric power system development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  7. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  8. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  9. Dynamic of small photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.

    The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.

  10. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  11. Research and application of thermal power unit’s load dynamic adjustment based on extraction steam

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Huicong; Li, Weiwei

    2018-02-01

    The rapid development of heat and power generation in large power plant has caused tremendous constraints on the load adjustment of power grids and power plants. By introducing the thermodynamic system of thermal power unit, the relationship between thermal power extraction steam and unit’s load has analyzed and calculated. The practical application results show that power capability of the unit affected by extraction and it is not conducive to adjust the grid frequency. By monitoring the load adjustment capacity of thermal power units, especially the combined heat and power generating units, the upper and lower limits of the unit load can be dynamically adjusted by the operator on the grid side. The grid regulation and control departments can effectively control the load adjustable intervals of the operating units and provide reliable for the cooperative action of the power grid and power plants, to ensure the safety and stability of the power grid.

  12. Development of a thermoelectric one-man cooler for use by NASA astronauts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, P.; Mathiprakasam, B.; DeMott, D.

    This paper presents the development of a one-man thermoelectric (TE) cooling unit designed for use by NASA astronauts while they are wearing a protective suit during the launch and reentry phases of space shuttle missions. The unit was designed to provide a low-cooling level of 340 Btu/hour in a 75{degree}F environment and a high-cooling level of 480 Btu/hour in a 95{degree}F environment. The unit has an envelope 8 inches wide by 11 inches high by 4.5 inches deep. The TE unit was designed to optimize space and power consumption while providing adequate cooling. The operation of the TE cooling unitmore » requires {similar_to}1.2 amps of 28 VDC power in the low power mode and {similar_to}3.0 amps of 28 VDC power in the high power mode. Two of these units have flown on several shuttle missions this year and are scheduled for continued use on future missions. The response to the TE unit`s performance has been very positive from the shuttle crew. Additional units are being fabricated to keep the shuttle crew members cooled while final development is under way. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  13. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  14. Status of the Development of Flight Power Processing Units for the NASAs Evolutionary Xenon Thruster - Commercial (NEXT-C) Project

    NASA Technical Reports Server (NTRS)

    Aulisio, Michael V.; Pinero, Luis R.; White, Brandon L.; Hickman, Tyler A.; Bontempo, James J.; Hertel, Thomas A.; Birchenough, Arthur G.

    2016-01-01

    A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.

  15. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  16. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  17. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    NASA Technical Reports Server (NTRS)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  18. 77 FR 12241 - Smart Grid Trade Mission to the United Kingdom; London, United Kingdom, October 15-17, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... 2020 and by 80% of 1990 levels by 2050. Power generation is a major source of carbon emissions, with 74% of power generated in the United Kingdom coming from fossil fuels. As the government seeks to reduce... power. Highly developed, sophisticated, and diversified, the UK market is the single largest export...

  19. How to develop renewable power in China? A cost-effective perspective.

    PubMed

    Cong, Rong-Gang; Shen, Shaochuan

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power.

  20. How to Develop Renewable Power in China? A Cost-Effective Perspective

    PubMed Central

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672

  1. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…

  2. DC-to-DC power supply for light aircraft flight testing

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1980-01-01

    The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design.

  3. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  4. Near-term capital spending in the North American power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, B.; Mullins, S.

    2007-01-15

    The article provides a snapshot of activity in the four distinct North American electric power generation niches - coal, nuclear, gas and renewables. Consideration of capacity and investment levels are a viable way of comparing growth trends. Coal still remains the fuel of choice for most new North American units. Between now and 2010 some 25 coal-fired units are scheduled to come on-line; another 246 units are in earlier stages of development. In 2005, spending on renewable energy development surpassed investment in gas-fired unit construction for the first time. 4 photos.

  5. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  6. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  7. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  8. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  9. Social Studies: Emergence of America as a World Power.

    ERIC Educational Resources Information Center

    McCormick, Jackie

    The quinmester American studies elective course for grades seven through nine focuses on the development of the United States as a world power from 1898 when conditions and influential groups of expansionists contributed to the United States, changing from an isolationist nation to the present world power. Emphasis is on the concept of national…

  10. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  11. Lightweight Solar Photovoltaic Blankets

    NASA Technical Reports Server (NTRS)

    Ceragioli, R.; Himmler, R.; Nath, P.; Vogeli, C.; Guha, S.

    1995-01-01

    Lightweight, flexible sheets containing arrays of stacked solar photovoltaic cells developed to supply electric power aboard spacecraft. Solar batteries satisfying stringent requirements for operation in outer space also adaptable to terrestrial environment. Attractive for use as long-lived, portable photovoltaic power sources. Cells based on amorphous silicon which offers potential for order-of-magnitude increases in power per unit weight, power per unit volume, and endurance in presence of ionizing radiation.

  12. Experimental Results From a 2kW Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  13. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  14. Green Power Marketing in the United States: A Status Report (Tenth Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Dagher, L.; Swezey, B.

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion ofmore » key market trends and issues.« less

  15. Green Power Marketing in the United States. A Status Report (Tenth Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Dagher, Leila; Swezey, Blair

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion ofmore » key market trends and issues.« less

  16. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  17. 75 FR 63867 - DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... procedures, physical security plan, guard training and qualification plan, or cyber security plan for the... Power Plant Unit 1, Exemption From Certain Security Requirements 1.0 Background DTE Energy (DTE) is the... atmospheric pressure. In November 1972, the Power Reactor Development Company (PRDC), the licensee at that...

  18. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less

  19. Identification of unmeasured variables in the set of model constraints of the data reconciliation in a power unit

    NASA Astrophysics Data System (ADS)

    Szega, Marcin; Nowak, Grzegorz Tadeusz

    2013-12-01

    In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems

  20. Application of CFB technology for large power generating units and CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units aremore » used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.« less

  1. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.

  2. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20 year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335 and 442 % for SO2, NOx and CO2, respectively, and decreased by 23 % for PM2.5. Driven by the accelerated economy growth, large power plants were constructed throughout the country after 2000, resulting in dramatic growth in emissions. Growth trend of emissions has been effective curbed since 2005 due to strengthened emission control measures including the installation of flue-gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination for temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  3. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  4. Long life Regenerative Fuel Cell technology development plan

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.

    1992-01-01

    This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.

  5. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.

    1981-01-01

    The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.

  6. Development of Electric Power Units Driven by Waste Heat

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  7. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  8. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  9. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    NASA Astrophysics Data System (ADS)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  10. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  11. 2015 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    This annual report--now in its tenth year--provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation trends and then covers an array of industry and technology trends. The report also discusses project performance, wind turbine prices, project costs, operations and maintenance expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments, expenses, and prices paid for wind powermore » in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments.« less

  12. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  13. New procedure speeds cold start, protects turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallard, R.E.; Jordan, C.A.

    1995-09-01

    System dispatch from today`s power plants must consider availability of purchase power (buy and sell), fuel prices, and unit availability and efficiency. To gain the best combination of these factors, steam units must be capable of quick removal and return to service. However, unit startups are expensive, time consuming nd operationally demanding. For example, excessive thermal stresses can be catastrophic to a unit. With those factors in mind, Jacksonville Electric Authority (JEA) developed the ``valve open start`` procedure described here.

  14. Qualification testing of solar photovoltaic powered refrigerator freezers for medical use in remote geographic locations

    NASA Astrophysics Data System (ADS)

    Kaszeta, W. J.

    1982-12-01

    One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.

  15. Qualification testing of solar photovoltaic powered refrigerator freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Kaszeta, W. J.

    1982-01-01

    One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.

  16. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  17. 2013 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  18. 2016 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp C; Elchinger, Michael A; Tian, Tian

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  19. 2015 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Tian, Tian

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  20. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)

  1. Phase I Development of Neutral Beam Injector Solid-State Power System

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth

    2017-10-01

    Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.

  2. Developing and applying modern methods of leakage monitoring and state estimation of fuel at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.

    2014-02-01

    The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.

  3. Substantiation of the cogeneration turbine unit selection for reconstruction of power units with a T-250/300-23.5 turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Bilan, V. N.; Kadkina, I. V.

    2016-11-01

    The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer's requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1. The information is also presented on the use of the existing foundations, the fact that the overall dimensions of the turbine unit compartment are not changed, the selection of the new turbine type, and the solutions adopted on the basis of this information as to LPC blading, steam admission type, issues associated with thermal displacements, etc.

  4. Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

    NASA Astrophysics Data System (ADS)

    Larin, B. M.

    2018-01-01

    Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

  5. Power Mechanics Curriculum Guide. Curriculum Development. Bulletin 1813.

    ERIC Educational Resources Information Center

    Territo, Peter A., Jr.; McMurry, James G.

    This model instructional unit was developed to aid trade and industrial education teachers in Louisiana in preparing students for careers in the field of power mechanics. Students are provided experiences related to the design, theory, construction, and appropriate uses of the power systems, as well as the maintenance and repair of the more common…

  6. 2015 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospectsmore » for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes trends in project performance, wind turbine transaction prices, installed project costs, and operations and maintenance (O&M) expenses. It also reviews the prices paid for wind power in the United States and how those prices compare to short-term wholesale electricity prices and forecasts of future natural gas prices. Next, the report examines policy and market factors impacting the domestic wind power market, including federal and state policy drivers as well as transmission and grid integration issues. The report concludes with a preview of possible near-term market developments. This edition of the annual report updates data presented in previous editions while highlighting key trends and important new developments from 2015. The report concentrates on larger, utility-scale wind turbines, defined here as individual turbines that exceed 100 kW in size.« less

  7. 2014 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  8. 2015 Renewable Energy Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Tian, Tian

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  9. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    NASA Astrophysics Data System (ADS)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  10. Development, Fabrication, and Testing of Inverter Power System for Metroliner

    DOT National Transportation Integrated Search

    1979-11-01

    This report documents the development and subsequent fabrication of a solid state auxiliary power conditioning unit (APCU) for the upgraded Metroliner. The APCU is an inverter of the pulse width modulated type having multiple parallel transistors in ...

  11. PowerFilm PowerShade Fixed Site Solar System Cost Reduction Plan

    DTIC Science & Technology

    2014-07-31

    2337 230’^ St Ames, lA 50014 JL’Olt^lO:pi𔄁oq7 j pageii Executive summary Power film and its partners have developed a Generation II PowerShade...which meets or exceeds the goals of this development contract, increasing power and improving the ROI of the power shade significantly while improving a...number of the human factors. Comparing the Gen II 1.8 KW PowerShade to the equivalent power Gen I unit (Gen I Medium), The cost has been reduced

  12. 2012 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  13. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. B.

    2015-12-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO2, NOx, and CO2, respectively, and decreased by 23 and 27 % for PM2.5 and PM10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  14. 2015 Key Water Power Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States.

  15. Improving Safety and Reliability of Space Auxiliary Power Units

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1998-01-01

    Auxiliary Power Units (APU's) play a critical role in space vehicles. On the space shuttle, APU's provide the hydraulic power for the aerodynamic control surfaces, rocket engine gimballing, landing gear, and brakes. Future space vehicles, such as the Reusable Launch Vehicle, will also need APU's to provide electrical power for flight control actuators and other vehicle subsystems. Vehicle designers and mission managers have identified safety, reliability, and maintenance as the primary concerns for space APU's. In 1997, the NASA Lewis Research Center initiated an advanced technology development program to address these concerns.

  16. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  17. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    NASA Technical Reports Server (NTRS)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  18. Military Power in a Democratic Society. Teacher and Student Manuals.

    ERIC Educational Resources Information Center

    Zarlengo, F. John

    This unit focuses on the classic problem of the place of military power in a democratic society. Early sections examine the relationship between civil and military authority as developed in colonial America and written into the Constitution. The second half of the unit invites consideration of the relevance and workability of the earlier tradition…

  19. Simulation of load-sharing in standalone distributed generation system

    NASA Astrophysics Data System (ADS)

    Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.

    2018-05-01

    This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.

  20. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  1. Powered glove with electro-pneumatic actuation unit for the disabled

    NASA Astrophysics Data System (ADS)

    Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.

  2. The Roots of the Command and Control of Air Power: An Appraisal of Three Air Forces Through 1945

    DTIC Science & Technology

    2014-09-17

    Co., 1927), 121. 33 Joubert de la Ferté, The Third Service, 48. 34 Scot Robertson, The Development of RAF Strategic Bombing Doctrine, 1919-1939...5 Scot Robertson, The Development of RAF Strategic Bombing Doctrine, 1919-1939 (Westport, Conn: Praeger, 1995), 36. 6 Powers, Strategy without...Royal United Services Institution Vol LXXV (February 1930): 109. 36 Collier, The Defence of the United Kingdom, 12.; Derek Wood and Derek D. Dempster

  3. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna

    2015-03-01

    The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  4. Development Status of the NSTAR Ion Propulsion System Power Processor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.

    1995-01-01

    A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.

  5. An extensible, low-cost drifter control unit

    NASA Astrophysics Data System (ADS)

    Giudici, Andrea; Torsvik, Tomas; Soomere, Tarmo

    2017-04-01

    We introduce an extensible, low-cost drifter control unit, which is developed for use with surface drifters that are deployed in inland water bodies or near-coast regions. The control unit is custom-built on top of a small footprint micro controller. It makes use of a GPS receiver for position tracking, a GSM radio for data transmission, and two sensor buses to handle analog and digital data measured by an array of external sensors. A cloud-based data collection platform receives and stores the data transmitted over GPRS from the drifter. The control unit was found to perform satisfactorily in operational testing, providing data at sub-Hz frequency for position and temperature during extended time. Test deployments revealed some issues related to power consumption spikes. Even though the unit is fully functional in the present form and shows, on average, low energy consumption , battery packs with relatively large maximum output power are required to ensure its operation within prolonged periods of time. We expect that a further development of the power supply unit together with a careful de-synchronization scheme of sensors' operation would smooth those peaks without any loss of the quality of recorded information.

  6. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  7. National Will: Achilles Heel in United States National Strategy

    DTIC Science & Technology

    1990-05-01

    value of the psychosocial or national-will. element of power is significantly underrated by national leaders in developing an appropriate national... developing and using the political, economic, and psychosocial powers of a nation, together with its armed forces during peace and war to secure National...employ the 5 M RI psychosocial element of power. Colonel Summers argues that, this failure to develop and use national will was our major strategic

  8. Understanding the impact of power in organizations.

    PubMed

    King, C; Koliner, A

    1999-03-01

    Although implementation of Shared Governance appears to have failed, it failed primarily on the surface. Many staff nurses actively involved in the Shared Governance movement not only were empowered but were dramatically affected on a professional level. Several council chairpersons were empowered to assume management roles in the transition back to the hierarchial model--a manifestation of their professional growth and development. At the unit level, several units lobbied the new leadership to allow them to continue to do peer review and unit-based council management of unit governance issues. Three councils lobbied to continue to do their work, although in a modified role, in the reestablished hierarchial structure. The three remaining councils were those of Practice, Quality, and Research. If nurse leaders at any level within the organization are to guide their departments forward while in the throes of the current chaos in health care, they must develop and use their power bases, both formal and informal, as individuals and then as leaders. Russell Coile identifies the need for more clinical expertise (expert power) on the executive team of health care organizations. He predicts that 50% of the executive team will be nurses and physicians and that only health care executives with an MBA or financial backgrounds, who also have well-developed informal power bases with skills in relationship development, facilitation, and networking, will be part of the new system. Those with a diversified informal power base will be most successful in guiding their organization to its destination. The future for nursing leaders is in the sharing of information; it is about embracing diversity and recognizing the contributions others can make that are refreshingly different; it is also about clearly defining a balance in life, because balanced leaders who have found a way to nurture and meet their own needs are better positioned to do the same for others. Ultimately, understanding the impact of power in an organization, regardless of organizational structure, begins with understanding and defining your own power base.

  9. Power Equipment Technology. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for power equipment technology occupations. The list contains units (with and without subunits), competencies, and…

  10. Research on unit commitment with large-scale wind power connected power system

    NASA Astrophysics Data System (ADS)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  11. 2011 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  12. Automotive Power Trains.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the operation, maintenance, and troubleshooting of automotive power trains and certain auxiliary equipment. The course contains six study units covering basic power trains; clutch principles and operations; conventional…

  13. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  14. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  15. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  16. Implementation of a Sage-Based Stirling Model Into a System-Level Numerical Model of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2011-01-01

    The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.

  17. Nuclear power program and technology development in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t asmore » easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.« less

  18. Development, implementation, and evaluation of an energy and power unit of instruction for junior high school industrial arts/technology education programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litowitz, L.S.

    The unit of instruction was developed and refined in three stages. In the first stage, potential objectives for the unit of instruction were identified from appropriate literature. The objectives were mailed to a group primarily consisting of IA/TE state supervisors for critiquing. Upon receiving responses from the critique group, a revised list of objectives was created. From this revised list a content framework was developed. The content framework was then submitted for critiquing to a second group primarily consisting of energy and power curriculum developers. The responses from the second critique group were summarized, and a refined content framework wasmore » produced. A series of twelve hand-on learning activities for junior high school students were then developed to fulfill the unit objectives and concepts identified in the content framework. These activities were critiqued by a final group of experts representing in-service junior high school IA/TE teachers. Revisions to the unit of instruction were made based on feedback from the final critique group. The unit of instruction was then implemented in a junior high school setting as a final means of obtaining formative evaluation. Results of the formative evaluation indicated that the students who participated in the field test had met many of the unit objectives. Recommendations as to the use of the unit of instruction were made.« less

  19. Thermal control of power supplies with electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  20. Evolution of the Power Processing Units Architecture for Electric Propulsion at CRISA

    NASA Astrophysics Data System (ADS)

    Palencia, J.; de la Cruz, F.; Wallace, N.

    2008-09-01

    Since 2002, the team formed by EADS Astrium CRISA, Astrium GmbH Friedrichshafen, and QinetiQ has participated in several flight programs where the Electric Propulsion based on Kaufman type Ion Thrusters is the baseline conceptOn 2002, CRISA won the contract for the development of the Ion Propulsion Control Unit (IPCU) for GOCE. This unit together with the T5 thruster by QinetiQ provides near perfect atmospheric drag compensation offering thrust levels in the range of 1 to 20mN.By the end of 2003, CRISA started the adaptation of the IPCU concept to the QinetiQ T6 Ion Thruster for the Alphabus program.This paper shows how the Power Processing Unit design evolved in time including the current developments.

  1. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    PubMed

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  2. Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Darmanto, P. S.

    2016-09-01

    Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.

  3. Status of tubular SOFC field unit demonstrations

    NASA Astrophysics Data System (ADS)

    George, Raymond A.

    Siemens Westinghouse is in the final stage of its tubular solid oxide fuel cell (SOFC) development program, and the program emphasis has shifted from basic technology development to cost reduction, scale-up and demonstration of pre-commercial power systems at customer sites. This paper describes our field unit demonstration program including the EDB/ELSAM 100-kW e combined heat and power (CHP) system, the Southern California Edison (SCE) 220-kW e pressurized SOFC/gas turbine (PSOFC/GT) power system, and the planned demonstrations of commercial prototype power systems. In the Spring of 1999, the EDB/ELSAM 100-kW e SOFC-CHP system produced 109 kW e net AC to the utility grid at 46% electrical efficiency and 65 kW t to the hot water district heating system, verifying the analytical predictions. The SCE 220-kW e PSOFC/GT power system will undergo factory startup in the Fall of 1999.

  4. Optimization of controlled processes in combined-cycle plant (new developments and researches)

    NASA Astrophysics Data System (ADS)

    Tverskoy, Yu S.; Muravev, I. K.

    2017-11-01

    All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.

  5. Light Water Reactor Sustainability Program Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less

  6. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    NASA Astrophysics Data System (ADS)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  7. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  8. Survey II of Public and Leadership Attitudes Toward Nuclear Power Development in the United States. Study No. 2628.

    ERIC Educational Resources Information Center

    Harris (Louis) and Associates, Inc., New York, NY.

    This publication details a national survey done by Louis Harris and Associates, similar to one done in 1975, to assess attitudes toward nuclear power in the United States. The survey consisted of three parts. The first part was in-person, door-to-door interviews with 1,597 randomly selected households nationwide. The second part was 309…

  9. Highways into the Past: History, Organizing & Power. A Project HIP-HOP Resource for High School Students.

    ERIC Educational Resources Information Center

    Murray, Nancy; Armandt, Kristen; Dixit, Ravi; Fitzpatrick, Michael; Garrido, Marco; Leslie, Eric; Marcelino, Sandra; McQueen, Cyrus Malik, III; Prince, Marisa; Rego, Luis; White-Hammond, Mariama; Wong, Helen

    This curriculum, developed by a project titled "Highways into the Past, History, Organizing, and Power" (HIP-HOP), discusses the meaning of "race" in the United States and outlines the history of the civil rights movement. This resource begins with a unit that traces the concept of race as a social invention that reflects a social reality. The…

  10. Hydrogen arcjet technology

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.

    1991-01-01

    During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.

  11. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less

  12. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  13. Recent Stirling Conversion Technology Developments and Operational Measurements

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Schifer, Nicholas

    2009-01-01

    Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.

  14. Radioisotope-powered cardiac pacemaker program. Clinical studies of the nuclear pacemaker model NU-5. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements;more » develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved.« less

  15. Clinical assessment of pacemaker power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilitch, M.; Parsonnet, V.; Furman, S.

    1980-01-01

    The development of power sources for cardiac pacemakers has progressed from a 15-year usage of mercury-zinc batteries to widely used and accepted lithium cells. At present, there are about 6 different types of lithium cells incorporated into commercially distributed pacemakers. The authors reviewed experience over a 5-year period with 1711 mercury-zinc, 130 nuclear (P238) and 1912 lithium powered pacemakers. The lithium units have included 698 lithium-iodide, 270 lithium-silver chromate, 135 lithium-thionyl chloride, 31 lithium-lead and 353 lithium-cupric sulfide batteries. 57 of the lithium units have failed (91.2% component failure and 5.3% battery failure). 459 mercury-zinc units failed (25% component failuremore » and 68% battery depletion). The data show that lithium powered pacemaker failures are primarily component, while mercury-zinc failures are primarily battery related. It is concluded that mercury-zinc powered pulse generators are obsolete and that lithium and nuclear (P238) power sources are highly reliable over the 5 years for which data are available. 3 refs.« less

  16. Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production

  17. Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    2015-05-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less

  18. Improvement of the Power Control Unit for Ion Thruster to Cope with Milli-Newton Range RIT

    NASA Astrophysics Data System (ADS)

    Ceruti, Luca; Polli, Aldo; Galantini, Paolo

    2014-08-01

    The recent development and testing activities of a miniaturized Radio-Frequency Ion Thruster, with relevant ancillary elements, in the range of 10 to 100 micro-Newtons, joined with past flight heritage in the milli-Newton range (RIT-10 for Artemis), shows an appealing capability of such an electrical propulsion technology to support thrust in a wide range of space applications from very fine attitude control up to deorbiting of small-medium satellites. As expectable, this implies that the mentioned ancillary elements (mainly Radio-Frequency Generator and Power Control Unit) require adaptation to the different requirements imposed to different missions and thrust ranges. Regarding the Power Control Unit different power levels, both the controllability requirements and the spacecraft interfaces impose non negligible adaptation leading to significant increase of development activities and associated cost (nonrecurring) increase. From that and with the main purpose to minimize such impacts and provide reliable equipments, Selex ES since a few years is devoting maximum attention in the incremental innovation of the existing design in order to maximize their reuse.

  19. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  20. Green Power Marketing in the United States: A Status Report (Ninth Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Swezey, B.

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% ofmore » utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.« less

  1. Development of a 670 GHz Extended Interaction Klystron Power Amplifier

    DTIC Science & Technology

    2011-03-01

    Klystron Power Amplifier 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...avelengths,” /40/EIK%20Tec W%20Wavelen oyski, R. Dobbs, act, High Power ction Klystron ,” Conf., Montere opments to the M or Modeling Cod 2005). ic...Research Projects Agency or the Department of Defense. Development of a 670 GHz Extended Interaction Klystron Power Amplifier David Chernin Science

  2. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  3. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.

  4. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.

  5. Optimizing the Utility Power of a Geothermal Power Plant using Variable Frequency Drive (VFD) (Case Study: Sibayak Geothermal Power Plant)

    NASA Astrophysics Data System (ADS)

    Sinaga, R. H. M.; Manik, Y.

    2018-03-01

    Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.

  6. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  7. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  8. Intermediate States and Powerful Ideas: Learning about Image Formation.

    ERIC Educational Resources Information Center

    Goldberg, Fred; Bendall, Sharon

    This paper describes a curriculum unit developed in the domain of geometrical optics which has been incorporated into an activity-based physics course for prospective elementary teachers. The instructional goal was to help students develop a set of powerful ideas that could be applied both verbally and diagrammatically to account for optical…

  9. 76 FR 6820 - Contract for Hydroelectric Power Development at the C-Drop, a Feature of the Klamath Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Acquisition and Easements, Hydraulics and Hydrology, Water Rights, Project Features and Design, Power... Federal water resource projects, Reclamation will consider proposals for non-Federal development of... part of the Klamath Project, the United States constructed A, B, and C-Canals, which carry water south...

  10. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih-Chieh

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  11. Development of a Battery-Free Solar Refrigerator

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor was replaced with a Danfoss DC compressor slightly larger than the one used in the laboratory unit. The control system was integrated onto a single electronics card and packaged with its starting capacitors. The water for thermal storage was placed behind a liner that was made to fit inside the original factory liner. The original condenser was also augmented with additional surface area to improve performance. PV panels with a total rated power of 180 watts were used. The unit was tested with very successful results in an outside ambient environment, demonstrating its potential for widespread use in many off-grid applications for solar refrigeration.

  12. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  13. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. Smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza

    2016-04-01

    This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation in a variety of extreme environments and can be parachuted into the needed locations. The Smart Nanogrid Systems will have sensors that will sense the environmental conditions for the wind turbines and solar panels for maximum energy harvesting as well as identifying the appliances in use. These signal will be sent to a control system to send signal to the energy harvester actuators to maximize the power generation as well as regulating the power, i.e., either send the power to the appliances and consumer devices or send the power to the batteries and capacitors for energy storage, if the power is being generated but there are no consumer appliances in use, making it a "smart nanogrid deployable renewable energy harvesting system."

  15. 2013 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, R.; Bolinger, M.; Barbose, G.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  16. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  17. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  18. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  19. 75 FR 13600 - Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...- 2010-0116] Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S... Anna Power Station, Unit Nos. 1 and 2 (NAPS), and Surry Power Station, Unit Nos. 1 and 2 (SPS), located...

  20. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  1. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  2. Design, Assembly, Integration, and Testing of a Power Processing Unit for a Cylindrical Hall Thruster, the NORSAT-2 Flatsat, and the Vector Gravimeter for Asteroids Instrument Computer

    NASA Astrophysics Data System (ADS)

    Svatos, Adam Ladislav

    This thesis describes the author's contributions to three separate projects. The bus of the NORSAT-2 satellite was developed by the Space Flight Laboratory (SFL) for the Norwegian Space Centre (NSC) and Space Norway. The author's contributions to the mission were performing unit tests for the components of all the spacecraft subsystems as well as designing and assembling the flatsat from flight spares. Gedex's Vector Gravimeter for Asteroids (VEGA) is an accelerometer for spacecraft. The author's contributions to this payload were modifying the instrument computer board schematic, designing the printed circuit board, developing and applying test software, and performing thermal acceptance testing of two instrument computer boards. The SFL's cylindrical Hall effect thruster combines the cylindrical configuration for a Hall thruster and uses permanent magnets to achieve miniaturization and low power consumption, respectively. The author's contributions were to design, build, and test an engineering model power processing unit.

  3. A New Generation of Electrical Power Supply for Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent

    2014-08-01

    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  4. Development and testing of a source subsystem for the supporting development PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1991-01-01

    The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.

  5. Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.

    2005-01-01

    The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.

  6. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  7. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  8. 10. UNITS 35 AND 36 ('HOUSE UNITS') DIABLO POWERHOUSE AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. UNITS 35 AND 36 ('HOUSE UNITS') DIABLO POWERHOUSE AS VIEWED FROM GENERATOR FLOOR LOOKING SOUTH. THE BRIDGE CRANE TO THE TOP LEFT WAS THE HIGHEST RATED CAPACITY BRIDGE CRANE IN THE WORLD WHEN IT WAS ORDERED IN 1930, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. 78 FR 46616 - Virginia Electric and Power Company; North Anna Power Station, Units 1 and 2; Surry Power Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Nuclear Energy Institute (NEI) 99-01, Methodology for Development of Emergency Action Levels.'' The... readily accessible means available in the Control Room. Environmental Impacts of the Proposed Action The... that there are no significant environmental impacts associated with the proposed action. Environmental...

  10. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  11. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  12. Hardware Assessment in Support of the Dynamic Power Convertor Development Effort

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Oriti, Sal M.; Schifer, Nicholas A.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.

  13. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee

    2003-06-09

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less

  14. 1. Pipe Floor Rear Corridor, view to the southeast. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Pipe Floor Rear Corridor, view to the southeast. The wall of Unit 2 turbine pit is visible in the right foreground. The pipe and valve cluster in the right foreground is part of the blow down valve for Unit 2. This valve allows the water in the draft chest to be lowered (i.e., 'blown down') so that the unit can be motored (i.e., run like an electric motor rather than an electric power generator). - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  15. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    NASA Astrophysics Data System (ADS)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  16. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays.

    PubMed

    Han, Wuxiao; He, Haoxuan; Zhang, Linlin; Dong, Chuanyi; Zeng, Hui; Dai, Yitong; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2017-09-06

    The emerging multifunctional flexible electronic-skin for establishing body-electric interaction can enable real-time monitoring of personal health status as a new personalized medicine technique. A key difficulty in the device design is the flexible power supply. Here a self-powered wearable noninvasive electronic-skin for perspiration analysis has been realized on the basis of a piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. The electronic-skin can detect lactate, glucose, uric acid, and urea in the perspiration, and no outside electrical power supply or battery is used in the biosensing process. The piezoelectric impulse of the piezo-biosensing units serves as the power supply and the data biosensor. The working mechanism can be ascribed to the piezoelectric-enzymatic-reaction coupling effect of enzyme/ZnO nanowires. The electronic-skin can real-time/continuously monitor the physiological state of a runner through analyzing the perspiration on his skin. This approach can promote the development of a new-type of body electric and self-powered biosensing electronic-skin.

  17. 20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR UNITS 23, 22, AND 21 HAS BEEN AUTOMATED FOR MANY YEARS BUT THE MANUAL JACKING STATIONS REMAIN IN PLACE AND FUNCTIONAL, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  18. A review of oscillating water columns.

    PubMed

    Heath, T V

    2012-01-28

    This paper considers the history of oscillating water column (OWC) systems from whistling buoys to grid-connected power generation systems. The power conversion from the wave resource through to electricity via pneumatic and shaft power is discussed in general terms and with specific reference to Voith Hydro Wavegen's land installed marine energy transformer (LIMPET) plant on the Scottish island of Islay and OWC breakwater systems. A report on the progress of other OWC systems and power take-off units under commercial development is given, and the particular challenges faced by OWC developers reviewed.

  19. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  20. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  1. Comprehensive Software Simulation on Ground Power Supply for Launch Pads and Processing Facilities at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Victor, Elias; Vasquez, Angel L.; Urbina, Alfredo R.

    2017-01-01

    A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket.

  2. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  3. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on coal-derived gases, diesel, and other logistic fuels. Innovative carbonate fuel cell/turbine hybrid power plant designs promising record energy conversion efficiencies approaching 75% have also emerged. This paper will review the historical development of this unique technology from milliwatt-scale laboratory cells to present megawatt-scale commercial power plants.

  4. Matching of energetic, mechanic and control characteristics of positioning actuator

    NASA Astrophysics Data System (ADS)

    Y Nosova, N.; Misyurin, S. Yu; Kreinin, G. V.

    2017-12-01

    The problem of preliminary choice of parameters of the automated drive power channel is discussed. The drive of the mechatronic complex divides into two main units - power and control. The first determines the energy capabilities and, as a rule, the overall dimensions of the complex. The sufficient capacity of the power unit is a necessary condition for successful solution of control tasks without excessive complication of the control system structure. Preliminary selection of parameters is carried out based on the condition of providing the necessary drive power. The proposed approach is based on: a research of a sufficiently developed but not excessive dynamic model of the power block with the help of a conditional test control system; a transition to a normalized model with the formation of similarity criteria; constructing the synthesis procedure.

  5. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Keymore » economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.« less

  6. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  7. 77 FR 63342 - Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...] Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power Station Units 1... Operating License Nos. DPR-32 and DPR-37, NPF-4 and NPF-7 for Surry Power Station, Units 1 and 2, Surry County, [[Page 63343

  8. Green Power Marketing in the United States. A Status Report (2008 Data)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Kreycik, Claire; Friedman, Barry

    Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricitymore » provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.« less

  9. Green Power Marketing in the United States: A Status Report (2008 Data)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Kreycik, C.; Friedman, B.

    Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricitymore » provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.« less

  10. 76 FR 77563 - Florida Power & Light Company; St. Lucie Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ....2, because the P-T limits developed for St. Lucie, Unit 1, use a finite element method to determine... Code for calculating K Im factors, and instead applies FEM [finite element modeling] methods for...

  11. Solid State Energy Conversion Alliance Delphi SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Larry Chick

    2003-05-20

    The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. Thismore » topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.« less

  12. Mathematical modeling of the impedance of single and multi-tube AMTEC units

    NASA Technical Reports Server (NTRS)

    Shields, V. B.; Williams, R. M.; Ryan, M. A.; Cortez, R.; Homer, M. L.; Kisor, A. K.; Manatt, K.

    2001-01-01

    AMTEC power systems are designed for use on extended space missions. During the lifetime of such missions the power available for the spacecraft will depend on the degradation of the system performance. Development of a tool that allows monitoring of the system degradation will provide an aid in dtermining the condition of the power source.

  13. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) General. A manual fire alarm system shall consist of a power supply, a control unit on which are... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The power supply shall be as specified for automatic fire detecting system by § 161.002-9. (d) Manual fire...

  14. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (a) General. A manual fire alarm system shall consist of a power supply, a control unit on which are... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The power supply shall be as specified for automatic fire detecting system by § 161.002-9. (d) Manual fire...

  15. 75 FR 76495 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ..., Supplement 1 and 2, ``Use of Nuclear Energy Institute (NEI) 99-01, Methodology for Development of Emergency.... Environmental Impacts of the Proposed Action The NRC has completed its environmental assessment of the proposed... NRC concludes that there are no significant environmental impacts associated with the proposed action...

  16. The modeling of a standalone solid-oxide fuel cell auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  17. United Stirling's Solar Engine Development: the Background for the Vanguard Engine

    NASA Technical Reports Server (NTRS)

    Holgersson, S.

    1984-01-01

    The development and testing resulting in the Vanguard engine and some of the characteristics of the Stirling engine based power conversion unit are described. The major part of the solar engine development is concentrated to the three different areas, the receiver, the lubrication system and the control system. Five engines are on test within the solar project. The function of the components are validated in actual solar tests.

  18. Thermal Cycle Testing of the Powersphere Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Curtis, Henry; Piszczor, Mike; Kerslake, Thomas W.; Peterson, Todd T.; Scheiman, David A.; Simburger, Edward J.; Giants, Thomas W.; Matsumoto, James H.; Garcia, Alexander; Liu, Simon H.; hide

    2007-01-01

    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU.

  19. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...- 2010-0373] Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos... and DPR-25 for Dresden Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power...

  20. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  1. Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee

    2010-01-01

    Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.

  2. Development of a Practical Broadband Active Vibration Control System

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  3. Green Propellant Demonstration with Hydrazine Catalyst of F-16 Emergency Power Unit

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Brechbill, Shawn

    2015-01-01

    Some space vehicle and aircraft Auxiliary Power Units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel which requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants that could enable their use in APU's: the Swedish LMP-103S and the Air Force Research Laboratory (AFRL) AF-M315E. While there has been work on development of these propellants for thruster applications (Prisma and Green Propulsion Infusion Mission, respectively), there has been less focus on the application to power units. Beginning in 2012, an effort was started by the Marshall Space Flight Center (MSFC) on the APU application. The MSFC plan was to demonstrate green propellants with residual Space Shuttle hardware. The principal investigator was able to acquire a Solid Rocket Booster gas generator and an Orbiter APU. Since these test assets were limited in number, an Air Force equivalent asset was identified: the F-16 Emergency Power Unit (EPU). In June 2013, two EPU's were acquired from retired aircraft located at Davis Monthan Air Force Base. A gas generator from one of these EPU's was taken out of an assembly and configured for testing with a version of the USAF propellant with a higher water content (AF-M315EM) to reduce decomposition temperatures. Testing in November 2014 has shown that this green propellant is reactive with the Hydrazine catalyst (Shell 405) generating 300 psi of pressure with the existing F-16 EPU configuration. This paper will highlight the results of MSFC testing in collaboration with AFRL.

  4. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yishen; Zhou, Zhi; Liu, Cong

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less

  5. Direct current power delivery system and method

    DOEpatents

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  6. Developments in United Kingdom Waveguide Power Standards,

    DTIC Science & Technology

    1980-04-01

    would manifest itself when a calibrated bolometer was compared with a non-bolometric standard (including a thermistor standard where the current...Geneva mechanism and this ensures extremely smooth mechanical operation. d) temperature control of the thermistor power meters at DI and D2 to better... thermistor heads. During calibration in terms of a power standard, and a subsequent measurement, the noise and drift in the standard power meter and device

  7. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  8. 15. Potential Transformer for Unit 2 and Operating Floor Front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Potential Transformer for Unit 2 and Operating Floor Front Corridor, view to the east-southeast. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Design of a highly integrated video acquisition module for smart video flight unit development

    NASA Astrophysics Data System (ADS)

    Lebre, V.; Gasti, W.

    2017-11-01

    CCD and APS devices are widely used in space missions as instrument sensors and/or in Avionics units like star detectors/trackers. Therefore, various and numerous designs of video acquisition chains have been produced. Basically, a classical video acquisition chain is constituted of two main functional blocks: the Proximity Electronics (PEC), including detector drivers and the Analogue Processing Chain (APC) Electronics that embeds the ADC, a master sequencer and the host interface. Nowadays, low power technologies allow to improve the integration, radiometric performances and power budget optimisation of video units and to standardize video units design and development. To this end, ESA has initiated a development activity through a competitive process requesting the expertise of experienced actors in the field of high resolution electronics for earth observation and Scientific missions. THALES ALENIA SPACE has been granted this activity as a prime contractor through ESA contract called HIVAC that holds for Highly Integrated Video Acquisition Chain. This paper presents main objectives of the on going HIVAC project and focuses on the functionalities and performances offered by the usage of the under development HIVAC board for future optical instruments.

  10. N-body scattering. I. The algebraic structure of transition amplitude and integral equations (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pao, C.K.

    1975-05-01

    An assessment of wave energy as a source of electrical power in the United Kingdom is reported. British Hovercraft Corporation has conducted some tank tests for Wavepower Limited, studying various simple float systems. It aims to develop a wave-power device that is simple, cheap, made up of small mass- produced units, can be installed in sections, and can be easily maintained. A chain of floats, hinged together, with waves traveling down the chain, was investigated. Pumps on the hinges absorb power from the relative rotation of adjacent floats. A wave-power device could also serve as an effective breakwater. Direct generationmore » of electricity is a feasible application of wave power. The system is compared with a rocking boom concept. Wave energy could be used in conjunction with thermal stations to provide sufficient capacity when wave power is low. Wave power has a high availability when compared with wind power. (MCW)« less

  11. Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Lu, Shuai; Singh, Ruchi

    2011-09-23

    Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimatemore » parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.« less

  12. An improved APU for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Mckenna, R.; Hagemann, D.; Loken, G.; Jonakin, J.; Baughman, J.

    1985-01-01

    The Space Shuttle Orbiter Auxiliary Power Unit has operated successfully on all four orbiter vehicles and all missions. The current Auxiliary Power Unit (APU) operational life is limited to 12 missions, and the APU turnaround time between flights is longer than originally anticipated. The objective of the Improved APU program is to increase life to 50 missions, reduce installed vehicle weight by 134 lb., and reduce turnaround time. This paper describes the design changes incorporated into the improved APU and the associated development testing.

  13. 22. Blow Down Valve for Unit 1, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Blow Down Valve for Unit 1, view to the southwest. This valve allows the water in the draft chest to be lowered (i.e., 'blown down') so that the unit can be motored (i.e., run like an electric motor rather than an electric power generator). The valve is operated by pressure from the instrument air system (part of which is visible in photograph MT-105-A-17 above), but the unit draws on the station air system (see photograph MT-105-A-24 below) to lower the water in the draft chest. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  14. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY: Nuclear Regulatory... construct and operate new nuclear power plants (NPPs) on multi-unit sites to provide an evaluation of the... License) of New Nuclear Power Plants on Operating Units at Multi-Unit Sites (Package). ML112630039 Federal...

  15. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider uncertainty from various elements, such as solar photovoltaic , electric vehicle chargers, and residential baseloads, in the form of discrete probability functions. In the last part of this thesis we address some other resources and concepts for enhancing the operation of power distribution and transmission systems. In particular, we proposed a new framework to determine the best sites, sizes, and optimal payment incentives under special contracts for committed-type DG projects to offset distribution network investment costs. In this framework, the aim is to allocate DGs such that the profit gained by the distribution company is maximized while each DG unit's individual profit is also taken into account to assure that private DG investment remains economical.

  16. Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve

    2001-01-01

    The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.

  17. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    NASA Astrophysics Data System (ADS)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  18. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  19. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... applications for North Anna Power Station, Unit Nos. 1 and 2 (NAPS), for Renewed Facility Operating License Nos...

  20. World wide IFC phosphoric acid fuel cell implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  1. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.

  2. Visible high power fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  3. Estimating Energy Consumption of Mobile Fluid Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Lauren; Zigler, Bradley T.

    This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less

  4. Improvement of chemical monitoring of water-chemistry conditions at thermal power stations based on electric conductivity and pH measurements

    NASA Astrophysics Data System (ADS)

    Larin, A. B.; Larin, B. M.

    2016-05-01

    The increased requirements to the quality of the water heat conductor for working superhigh (SHP) and supercritical (SCP) pressure power plants and promising units, including combined-cycle gas turbine (CCGT) units and power plants with ultrasupercritical parameters (USCPs), can largely be satisfied through specific electric conductivity and pH measurements for cooled heat conductor samples combined with calculations of ionic equilibria and indirect measurements of several specified and diagnostic parameters. The possibility of calculating the ammonia and chloride concentrations and the total concentration of hardness and sodium cations in the feed water of drum-type boilers and the phosphate and salt contents in boiler water was demonstrated. An equation for evaluating the content of potentially acid substances in the feed water of monotube boilers was suggested. The potential of the developed procedure for evaluating the state of waterchemistry conditions (WCCs) in power plants with CCGT units was shown.

  5. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  6. Development of Thin-Film Battery Powered Transdermal Medical Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less

  7. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  8. Experimental Data for Two Different Alternator Configurations in a Solar Brayton Power System

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Shaltens, Richard K.; Espinosa, William D.

    1997-01-01

    A solar dynamic (SD) space power system has been under test at the NASA Lewis Research Center since 1994. The SD Ground Test Demonstration (GTD) system includes a solar concentrator, heat receiver with thermal energy storage, Brayton power conversion unit, and radiator installed in a thermal-vacuum chamber with a solar simulator. The Brayton unit has been operated with two different turboalternator compressor (TAC) assemblies, one which included a Rice Lundell alternator and another which incorporated a permanent magnet (PM) alternator. The Rice alternator was part of the mini-Brayton rotating unit, designed and built during the 1970's and refurbished for the GTD. The PM TAC was a development unit from the Joint US/Russian SD Flight Project. This paper highlights the operational differences (and similarities) between the Rice and PM TAC configurations including a comparative evaluation of startup characteristics and operating performance. The two alternator configurations were tested under similar thermal conditions, as an interchangeable component within the SD system. The electrical characteristics of the two units, however, dictated the use of significantly different power conditioning and control strategies. The electrical control architectures are described and compared. Test data are presented on TAC startup and system operating performance for both configurations.

  9. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  10. 200 TO 300 KVA Conditioned Power System - Development

    DTIC Science & Technology

    1985-03-01

    converts generator output powet to 13.2 kv dc power . The system includes an output filter that assures that the ripple amplitude will be within the...output filter and the neutral forming transformer. These elements convert the inverter pole outputs into quality four-wire output power . 2-72 2.4.2.6... power converted directly from the variable speed generator, and only that power required to be 400-Hz will be converted by the V.S.C.F. unit. Redundency

  11. Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo

    Economic activity relies on electric power provided by electrical generation, transmission, and distribution systems. This paper presents a method developed at Los Alamos National Laboratory to estimate electric power consumption by different industries in the United States. Results are validated through comparisons with existing literature and benchmarking data sources. We also discuss the limitations and applications of the presented method, such as estimating indirect electric power consumption and assessing the economic impact of power outages based on input-output economic models.

  12. Green Application for Space Power

    NASA Technical Reports Server (NTRS)

    Robinson, Joel

    2015-01-01

    Most space vehicle auxiliary power units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel that requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants (less toxic) that could enable their use in APUs. The Swedish government, in concert with the Swedish Space Corporation, has developed a propellant based on ammonium dinitramide (LMP-103S) that was flown on the Prisma spacecraft in 2010. The United States Air Force (USAF) has been developing a propellant based on hydroxylammonium nitrate (AFM315E) that is scheduled to fly on the Green Propellant Infusion Mission in the spring of 2016 to demonstrate apogee and reaction control thrusters. However, no one else in the Agency is currently pursuing use of green propellants for application to the APUs. Per the TA-01 Launch Propulsion Roadmap, the Space Technology Mission Directorate had identified the need to have a green propellant APU by 2015. This is our motivation for continuing activities.

  13. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  14. Advanced Stirling Convertor (ASC) Development for NASA RPS

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  15. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.

  16. Single String Integration Test of the High Voltage Hall Accelerator System

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas W.; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Shastry, Rohit

    2013-01-01

    HiVHAc Task Objectives:-Develop and demonstrate low-power, long-life Hall thruster technology to enable cost effective EP for Discovery-class missions-Advance the TRL level of potential power processing units and xenon feed systems to integrate with the HiVHAc thruster.

  17. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  18. Test Program of the "Combined Data and Power Management Infrastructure"

    NASA Astrophysics Data System (ADS)

    Eickhoff, Jens; Fritz, Michael; Witt, Rouven; Bucher, Nico; Roser, Hans-Peter

    2013-08-01

    As already published in previous DASIA papers, the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques and Onboard Software design. This satellite furthermore features an innovative hybrid architecture of Onboard Computer and Power Control and Distribution Unit. One of the main challenges was the development of an ultra-compact and performing Onboard Computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based Onboard Software (OBSW) and CCSDS standard based ground/space communication. The developed architecture (see [1, 2, 3]) is called a “Combined Onboard Data and Power Management Infrastructure” - CDPI. It features: The OBC processor boards based on a LEON3FT architecture - from Aeroflex Inc., USA The I/O Boards for all OBC digital interfaces to S/C equipment (digital RIU) - from 4Links Ltd. UK CCSDS TC/TM decoder/encoder boards - with same HW design as I/O boards - just with limited number of interfaces. HW from 4Links Ltd, UK, driver SW and IP-Core from Aeroflex Gaisler, SE Analog RIU functions via enhanced PCDU from Vectronic Aerospace, D OBC reconfiguration unit functions via Common Controller - here in PCDU [4] The CDPI overall assembly is meanwhile complete and a exhaustive description can be found in [5]. The EM test campaign including the HW/SW compatibility testing is finalized. This comprises all OBC EM units, OBC EM assembly and the EM PCDU. The unit test program for the FM Processor-Boards and Power-Boards of the OBC are completed and the unit tests of FM I/O-Boards and CCSDS-Boards have been completed by 4Links at the assembly house. The subsystem tests of the assembled OBC also are completed and the overall System tests of the CDPI with system reconfiguration in diverse possible FDIR cases also reach the last steps. Still ongoing is the subsequent integration of the CDPI with the satellite's avionics components encompassing TTC, AOCS, Power and Payload Control. This paper provides a full picture of the test campaign. Further details can be taken from

  19. Childcare Market Management: How the United Kingdom Government Has Reshaped Its Role in Developing Early Childhood Education and Care

    ERIC Educational Resources Information Center

    Penn, Helen

    2007-01-01

    This article reviews early education and care policies in the United Kingdom since 1997, when a Labour Government came to power, and sets them in the wider context of international changes. It argues that the Labour Government has, by intention and by default, supported the development of private sector, and especially corporate sector childcare.…

  20. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    PubMed

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  1. Modelling conflicts with cluster dynamics in networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Rodgers, G. J.

    2010-12-01

    We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.

  2. A new topology and control method for electromagnetic transmitter power supplies

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming; Zhang, Jialin; Yuan, Dakang

    2017-04-01

    As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.

  3. State regulation of nuclear power and national energy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, J.W.

    1992-12-31

    In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiologicalmore » injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.« less

  4. The Future of Atomic Energy

    DOE R&D Accomplishments Database

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  5. Landscape Management: Field Operator.

    ERIC Educational Resources Information Center

    Smith, Carole A.

    These materials for a six-unit course were developed to prepare secondary and postsecondary students for entry-level positions in landscape management. The six units are on orientation, hand tools, light power equipment, water and watering techniques, planting and maintaining plant beds, and establishing and maintaining turf. The first section is…

  6. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  7. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    NASA Astrophysics Data System (ADS)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  8. Design of high-voltage, high-power, solid state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controllers (RPC's), which combine the functions of a circuit breaker and a switch, were developed for use in dc aerospace systems. Power-switching devices used in the designs are the gate-turnoff thyristor (GTO) and MOSFET. The RPC's can switch dc voltages to 1200 V and currents to 1000 A. Seven different units were constructed and subjected to laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times which limit surge currents and voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout proportional to I sq T and microsecond tripout for large overloads.

  9. Design of high-voltage, high-power, solid state remote power controllers for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sturman, J. C.

    1985-05-01

    Two general types of remote power controllers (RPC's), which combine the functions of a circuit breaker and a switch, were developed for use in dc aerospace systems. Power-switching devices used in the designs are the gate-turnoff thyristor (GTO) and MOSFET. The RPC's can switch dc voltages to 1200 V and currents to 1000 A. Seven different units were constructed and subjected to laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times which limit surge currents and voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout proportional to I sq T and microsecond tripout for large overloads.

  10. Development status of the small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1982-01-01

    The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.

  11. Plasma contactor development for Space Station

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  12. Plasma contactor development for Space Station

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-12-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  13. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  14. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  15. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  17. AUTOMOTIVE DIESEL MAINTENANCE 1, UNIT XVI, I--USE AND CARE OF SMALL HAND TOOLS, II--PRINCIPLES OF THE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF SMALL HAND TOOLS USED IN DIESEL ENGINE MAINTENANCE AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) UNDERSTANDING TORQUE AND HOW IT IS MEASURED, (2) REPAIRING AND REPLACING THREADED…

  18. The United States National Library Power School Program: Research Evaluation and Implications for Professional Development and Library Education.

    ERIC Educational Resources Information Center

    Hopkins, Dianne McAfee; Zweizig, Douglas L.

    The Library Power program is a school improvement initiative of the DeWitt-Wallace Reader's Digest Fund that began in 1988, designed to promote the full integration of the school library media program into the school curriculum in public elementary and junior high/middle schools. With a total investment exceeding $45 million, Library Power is the…

  19. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  20. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  1. 46 CFR 161.002-12 - Manual fire alarm systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the control unit and terminating at manual fire alarm boxes. Power failure alarm devices may be... specifically approved. (b) Types. Manual fire alarm systems shall be one of the following types, or a... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The...

  2. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT II, MECHANICAL TRANSMISSIONS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF TRANSMISSIONS, (2) RATIO DIFFERENCE, (3) CONSTANT MESH TRANSMISSIONS, (4) FOUR-SPEED TRUCK TRANSMISSION POWER FLOW, AND (5) TRANSMISSION TROUBLESHOOTING.…

  3. Developing Character and Aligning Personal Values with Organizational Values in the United States Coast Guard

    DTIC Science & Technology

    2000-06-02

    York: Simon & Schuster, 1991). 30Stephen R. Covey, The 7 Habits of Highly Effective People , Powerful Lessons in Personal Change (New York: Simon...California: Parker & Son Publications, Inc., 1991. Covey, Stephen R. The 7 Habits of Highly Effective People , Powerful Lessons in Personal Change

  4. The Power of Student Empowerment: Measuring Classroom Predictors and Individual Indicators

    ERIC Educational Resources Information Center

    Kirk, Chris Michael; Lewis, Rhonda K.; Brown, Kyrah; Karibo, Brittany; Park, Elle

    2016-01-01

    Despite spending more money per student than almost all developed nations, the United States lags behind in educational indicators with persistent disparities between privileged and marginalized students. Most approaches have ignored the role of power dynamics in predicting student performance. Building on the existing literature in school climate…

  5. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment and Finding of No Significant Impact... Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North Carolina. In accordance with 10 CFR 51.21... of Nuclear Plants: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437...

  6. Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel

    NASA Astrophysics Data System (ADS)

    Lawrence, Jeremy; Boltze, Matthias

    An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.

  7. Major design issues of molten carbonate fuel cell power generation unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less

  8. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  9. High Efficiency mm-Wave Transmitter Array

    DTIC Science & Technology

    2016-09-01

    SECURITY CLASSIFICATION OF: High efficiency, high power transmitters integrated in silicon at 45, 94 and 138 GHz were developed. Our approach...employs CMOS-SOI and SiGe HBT unit amplifiers, power -combined in free-space using antenna arrays to attain high power levels. In the baseline approach...the-art were made. At 45GHz, a single CMOS chip produced an RF power of 630mW, which yielded an EIRP of 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  10. Quantifying Power Grid Risk from Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Wei, L. H.; Gannon, J. L.

    2012-12-01

    We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.

  11. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU performance over its full operating range. The primary test variables used in operating the Brayton PCU were heater input power and rotor speed. Testing demonstrated a maximum steady-state alternating-current power output of 1835 W at a gas heater power of 9000 W and a rotor speed of 52000 rpm. The corresponding measured turbine inlet gas temperature was 1076 K, and the compressor inlet gas temperature was 282 K. When insulation losses from the gas heater were neglected, the Brayton cycle efficiency for the maximum power point was calculated to be 24 percent. The net direct-current power output was 1750 W, indicating a PMAD efficiency of about 95 percent.

  12. Acculturation Experiences of Taiwanese Students during Exchanges in the United States

    ERIC Educational Resources Information Center

    Lee, Annie (Ya-Ping); Bei, Lienti; DeVaney, Sharon A.

    2007-01-01

    This phenomenological study examined the acculturation experience of Taiwanese students who attended universities in the United States as exchange students. Hofstede's four dimensions of culture provided a framework for developing questions. Eight exchange students were interviewed. Taiwanese students realized there was a lower power distance…

  13. Principles of Technology Curriculum Guide. Curriculum Development. Bulletin 1812.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This document describes minimum competencies and suggested student activities for a seven-unit course called Principles of Technology. The instructional units are called Force, Work, Rate, Resistance, Energy, Power, and Force Transformers. The first section of the document contains information on how to use the guide, goals for industrial…

  14. 8. Generator Barrel and Shaft of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Generator Barrel and Shaft of Unit 1, view to the northwest, with turbine shaft and thrust bearing visible in upper center of photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  15. Market Power and Cultural Imperialism.

    ERIC Educational Resources Information Center

    Gandy, Oscar H., Jr.

    This paper argues that the conditions that have historically supported the regulation of the telecommunications industry in the United States have been reproduced around the world and exist most formidably within the developing nations. In support of this argument, the paper examines several key periods in United States regulatory history. It then…

  16. Windpower - Assessing the potential

    NASA Astrophysics Data System (ADS)

    1985-09-01

    The development of wind turbine technology in California is discussed. Consideration is given to the large-scale experiments being carried out by the California Energy Commission to investigate the capital costs, and power capacity of a 4000 unit wind turbine 'farm' near Altamont, California. The financial impetus behind wind farm development is also discussed, with attention given to the need for tax incentives and an expanded federal role in financing wind power feasibility studies.

  17. Development of a Low Cost 10kW Tubular SOFC Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all ofmore » the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.« less

  18. Design, development, and field demonstration of a remotely deployable water quality monitoring system

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.

    1981-01-01

    A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.

  19. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  20. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...

  1. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...

  2. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...

  3. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...

  4. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...

  5. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  6. 40 CFR 52.2636 - Implementation plan for regional haze.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... River Station Units 1, 2, and 3 (PM); (iv) PacifiCorp Dave Johnston Power Plant Unit 3 (PM); (v) PacifiCorp Dave Johnston Power Plant Unit 4 (PM and NOX); (vi) PacifiCorp Jim Bridger Power Plant Units 1, 2, 3, and 4 (PM and NOX); (vii) PacifiCorp Naughton Power Plant Units 1, 2, and 3 (PM and NOX); and...

  7. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as wellmore » as considering the path forward for smaller community scale projects.« less

  8. Development of the Power Simulation Tool for Energy Balance Analysis of Nanosatellites

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jung; Sim, Eun-Sup; Kim, Hae-Dong

    2017-09-01

    The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLABⓇ graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STKⓇ-MATLABⓇ connectivity was used to send the generated power from STKⓇ to MATLABⓇ automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.

  9. 16. Governor Accumulator Tanks for Units 3 and 4 and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Governor Accumulator Tanks for Units 3 and 4 and Grounding Transformer for Unit 4, view to the east. The back of the governor housing is visible in center of photograph, between the accumulator tanks. The grounding transformer for Unit 4 is located on left side of photograph, behind wire mesh safety cage. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  10. Analysis of typical world countries' wind power and PV industry policies and their enlightenment to China

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Lijun; Qiu, Hongji; Li, Yuanfei; Peng, Lilin

    2017-01-01

    The wind power and PV are the key fields of clean energy development in China in recent years. However, there are still many aspects of problems in wind power and PV industries at present, such as the insufficient consumptive ability and the limitation of market competition capability. The effective leading and support of government in the aspect of policies is especially needed in order to solve these problems. Based on the analysis of main policies system of wind power and PV in our country, Spain, the United Kingdom and Germany are chosen as typical countries because of their wind power and PV industries are relatively developed. Their policies of wind power and PV industries are studied respectively from five aspects, namely macroscopic laws, development planning, administrative policies, fiscal and tax policies and price policies. Then the comparison among typical countries and China is made and the exiting problems in China's policies of wind power and PV industries are summed up. Finally, the suggestions to promote China's wind power and PV industries development are presented.

  11. Arc-Jet Thrustor Development

    NASA Technical Reports Server (NTRS)

    Curran, F. M.; Hamley, J. A.; Gruber, R. P.; Sankovic, J. M.; Haag, T. W.; Marren, W. E.; Sarmiento, C. J.; Carney, L.

    1993-01-01

    Two flight-type 1.4-kW hydrazine arcjet systems developed and tested under Lewis program. Each consists of thrustor, gas generator, and power-processing unit. Performance significantly improved. Technology transferred to user community, and first commercial flight anticipated in 1993.

  12. A direct methanol fuel cell system to power a humanoid robot

    NASA Astrophysics Data System (ADS)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  13. The analysis of parameters of the cryogenic oxygen unit cooperating with power plant to realize oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Hnydiuk-Stefan, Anna; Składzień, Jan

    2015-03-01

    The paper examines from the thermodynamic point of view operation of coal fired power unit cooperating with the cryogenic oxygen unit, with a particular emphasis on the characteristic performance parameters of the oxygen unit. The relatively high purity technical oxygen produced in the oxygen unit is then used as the oxidant in the fluidized bed boiler of the modern coal fired power unit with electric power output of approximately 460 MW. The analyzed oxygen unit has a classical two-column structure with an expansion turbine (turboexpander), which allows the use of relatively low pressure initially compressed air. Multivariant calculations were performed, the main result being the loss of power and efficiency of the unit due to the need to ensure adequate driving power to the compressor system of the oxygen generating plant.

  14. Overview of OT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pate, R.; Dooley, R.B.

    1995-01-01

    At the last International Fossil Cycle Chemistry Conference in June 1991, a report was given on the Electric Power Research Institute (EPRI) sponsored project to study and transfer technology on the use of oxygenated feedwater treatment (OT). The report basically summarized the excellent results of employing OT worldwide, and updated the project activities which included development of an EPRI guidance document for implementation of OT in US utilities. Since the OT conversions of Georgia Power`s Wansley Unit No. 1 and Ohio Edison`s Sammis Unit 5 in November 1991, over 30 once-through units have subsequently been converted. In 1994, the firstmore » US drum unit was converted. The results have been outstanding with very large reductions of feedwater corrosion products (usually Fe<1 ppb at the economizer inlet) as a result of the more oxidizing environment (>+120 mV) and the change of the surface oxide layer from magnetite to ferric oxide hydrate (FeOOH) throughout the feedwater system. The benefits accrue because FeOOH blocks the pores of original Fe{sub 3}O{sub 4} reducing the transport of oxygen and iron ions through the layer. These surface layers of FeOOH also have a much lower solubility in flowing feedwater. This paper will provide an overview of the two supercritical/subcritical unit feedwater treatment technologies, (OT & AVT). In addition, the results of the two EPRI OT demonstration units (Wansley 1, Georgia Power Co. & Sammis 5, Ohio Edison) will be presented.« less

  15. A Retrospective of Four Decades of Military Interest in Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Guazzoni, Guido; Matthews, Selma

    2004-11-01

    Following a short discussion on the origin of Thermophotovoltaic (TPV), this presentation offers a retrospective of the progress and results of the recurrent efforts in TPV conducted in the United States by the Military during the last 40 years. The US Army's interest in TPV, for the development of portable power sources, started a few years after the energy conversion approach was conceived. TPV technology was seen to offer a solution for the Army's need for power in the 10 to 1500 Watt range. The technology offered the means to overcome the limitation of size and weight found in existing commercial power sources, with the additional advantage of silent and multifuel operation. Hence, the Army invested research and development (R&D) funding to investigate TPV feasibility for tactical field application. After an initial decade of continuous research studies by the Army, the support for this technology has experienced cycles of significant efforts interrupted by temporary waiting periods to allow this technology to further mature. Over the last four decades, several TPV proof of concept systems were developed. The results of their testing and evaluation have demonstrated the feasibility of the technology for development of power sources with output of several watts to a few hundreds watts. To date, the results have not been found to adequately demonstrate the applicability of TPV to the development of military power generators with output above 500 watts. TPV power sources have not been developed yet for Army field use or troop testing. The development risk is still considered to be moderate-to-high since practical-size systems that go beyond the laboratory test units have not been designed, constructed, tested. The greatest need is for system development, along with concurrent continued component development and improvement. The Defense Advanced Research Project Agency (DARPA) support for TPV R&D effort has been drastically reduced. The Army is still pursuing a 500watt TPV unit demonstrator. No further collaboration among DARPA, Army, NASA is contemplated, which seems indicative of the beginning of a new period of waiting for additional maturing of this technology. The Army's assessment about the viability of TPV for integrated systems indicates that the technology will require a few more years of development. However, at this time, for the completion of component and system development, a strong effort is needed in the private sector. The achievement of the necessary ruggedness for some critical components, acceptable overall efficiency, and system thermal management, is essential for a new, strong restart of TPV effort by the Military.

  16. The Meteosat Second Generation (MSG) power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.E.; Levins, D.; Robben, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less

  17. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  18. Using Loop Heat Pipes to Minimize Survival Heater Power for NASA's Evolutionary Xenon Thruster Power Processing Units

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2017-01-01

    A thermal design concept of using propylene loop heat pipes to minimize survival heater power for NASA's Evolutionary Xenon Thruster power processing units is presented. It reduces the survival heater power from 183 W to 35 W per power processing unit. The reduction is 81%.

  19. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ..., Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the... Operating License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant, Unit 1... rule's compliance date for all operating nuclear power plants, but noted that the Commission's...

  20. STS-31: APU Controller Removal

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The launch April 10 of the STS-31 was scrubbed at T-4 minutes due to a faulty valve in auxiliary power unit (APU) number one. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. This video shows the removal of the STS-31's auxiliary power unit (APU).

  1. New two-tier low pressure turbine for heavy duty steam turbines

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.

    2017-11-01

    Among factors characterising steam turbine units of power plants, a specific metal content which value decreases inversely to turbine power is of substantive importance. In turn, their maximum power depends on the capacity of low pressure turbines. It is traditionally managed to increase either by installation of larger number of low pressure turbines or by lengthening the exhaust blades. It is worth noting that the above-mentioned methods have some technical restrictions by the number of rotors to be connected. Currently some works aimed at solving the stated technical problems appear in the literature for the purpose of increasing the unit power of turbomachines, for example, by using exhaust blades with the length of 1 500 mm and longer. However, it is to be understood that increasing the exhaust area of turbomachine only by lengthening exhaust blades cannot provide a cost-effective and reliable work of the turbine flow part. Here new problems appear: losses rise abruptly due to the stage fan-out, the turbomachine dimensions increase, etc. In this connection, an issue of development of new, technically implementable ways of turbo-units power increase is very acute today.

  2. Play and learn team building.

    PubMed

    Haas, R C; Martin, S

    1997-05-01

    In order to have a team function correctly, power must be distributed equally, with no team member having more perceived power than any other. It is this leveling of the playing field that allows the team to develop and to stimulate the creative juices of its members. This article discusses techniques that can help an organization break down the power barriers and permit its employees to become a cohesive unit--a team.

  3. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  4. Hospital nurses' lived experience of power.

    PubMed

    Fackler, Carol A; Chambers, Angelina N; Bourbonniere, Meg

    2015-05-01

    The purpose of this study was to explore hospital nurses' lived experience of power. A hermeneutic phenomenological approach informed by Merleau-Ponty's philosophy of the phenomenology of perception was used to further an understanding of nurses' embodiment of power. Fourteen hospital clinical nurses employed in intensive care units and on medical floors in two major medical centers in the northeastern United States participated in 1-hr semistructured interviews about their lived experience of power. A hermeneutic analytic approach and reflexive (cultural) bracketing produced three relational themes of power: (a) knowing my patients and speaking up for them; (b) working to build relationships that benefit patients; and (c) identifying my powerful self. Hospital clinical nurses develop a sense of power. Nurses believe power develops through acquisition of knowledge, experience, and self-confidence; this process is enhanced by exposure to good mentors. Nurses use their power to build relationships and advocate for patients. They consciously use power to improve patient care. Nurses' voices need to be heard and acknowledged. To do this in the clinical setting and beyond, hospital nurses must invite themselves or find ways to be invited into the authoritative discourse of hospital organizations. Nurses use their power to advocate for positive outcomes for patients and families. The satisfaction that comes from these positive relationships may improve nurses' perceptions of their work environment. Nurses' understanding and use of sociopolitical knowing needs further study, so that nurses may understand how to participate in current and future debates and decisions about our changing healthcare delivery systems and services. © 2015 Sigma Theta Tau International.

  5. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  6. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  7. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  8. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  9. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  10. Insertion of GaAs MMICs into EW systems

    NASA Astrophysics Data System (ADS)

    Schineller, E. R.; Pospishil, A.; Grzyb, J.

    1989-09-01

    Development activities on a microwave/mm-wave monolithic IC (MIMIC) program are described, as well as the methodology for inserting these GaAs IC chips into several EW systems. The generic EW chip set developed on the MIMIC program consists of 23 broadband chip types, including amplifiers, oscillators, mixers, switches, variable attenuators, power dividers, and power combiners. These chips are being designed for fabrication using the multifunction self-aligned gate process. The benefits from GaAs IC insertion are quantified by a comparison of hardware units fabricated with existing MIC and digital ECL technology and the same units manufactured with monolithic technology. It is found that major improvements in cost, reliability, size, weight, and performance can be realized. Examples illustrating the methodology for technology insertion are presented.

  11. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXII, MICHIGAN/CLARK TRANSMISSION--CONVERTER/TRANSMISSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP A DETAILED UNDERSTANDING OF A SPECIFIC POWER CONVERTER AND TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE A CLOSER LOOK AT THE CONVERTER, CONVERTER ASSEMBLY AND INSTALLATION, TRANSMISSION FUNCTION, AND TRANSMISSION SHIFTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED…

  12. Reading Profiles for Adults with Low-Literacy: Cluster Analysis with Power and Speeded Measures

    ERIC Educational Resources Information Center

    Mellard, Daryl F.; Fall, Emily; Mark, Caroline

    2009-01-01

    The United States' National Institute for Literacy's (NIFL) review of adult literacy instruction research recommended adult education (AE) programs assess underlying reading abilities in order to plan appropriate instruction for low-literacy learners. This study developed adult reading ability groups using measures from power tests and speeded…

  13. Estimation of lifespan and economy parameters of steam-turbine power units in thermal power plants using varying regimes

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2016-08-01

    The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.

  14. KSC-08pd1650

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – Auxiliary power unit 3, or APU3, is ready for installation in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  15. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  16. Decentralized and Modular Electrical Architecture

    NASA Astrophysics Data System (ADS)

    Elisabelar, Christian; Lebaratoux, Laurence

    2014-08-01

    This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.

  17. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0 Background Carolina Power & Light Company... operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things... request to generically extend the rule's compliance date for all operating nuclear power plants, but noted...

  18. 26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view to the northwest. The exciter supplies the DC current to the generator rotor to create electricity. Each of the four original units has an exciter identical to this one, and all are scheduled for replacement. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  19. Middle East. Grade Six, Unit Two, 6.2. Comprehensive Social Studies Curriculum for the Inner City.

    ERIC Educational Resources Information Center

    Trell, Pat

    This sixth grade unit is one of a sequential learning series of the Focus on Inner City Social Studies project developed in accordance with the needs and problems of an urban society. A description of the project is provided in SO 008 271. As part of the sixth grade curriculum focusing on world power, this six week unit examines the nations…

  20. Photovoltaic stand-alone modular systems, phase 2

    NASA Technical Reports Server (NTRS)

    Naff, G. J.; Marshall, N. A.

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  1. Photovoltaic stand-alone modular systems, phase 2

    NASA Astrophysics Data System (ADS)

    Naff, G. J.; Marshall, N. A.

    1983-07-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  2. Concentrating Solar Power Projects - DEWA CSP Tower Project | Concentrating

    Science.gov Websites

    Turbine Capacity: Net: 100.0 MW Gross: 100.0 MW Status: Under development Start Year: 2020 Do you have development Country: United Arab Emirates City: Dubai Contact(s): Webmaster Solar Break Ground: 2018 Start

  3. An inflight refill unit for replenishing research animal drinking water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. L.; Barnes, R.

    1995-01-01

    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab.

  4. Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, Hani; Shilo, Vlad

    2016-01-01

    The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster, power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions. The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive highlevel commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature limits and demonstrated total efficiencies a high as 95 percent. Integrated testing of the unit was performed with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, K.L.; De Steese, J.G.

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the gridmore » during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.« less

  6. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Eurek, K.; Mai, T.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact ofmore » variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.« less

  7. 7. Unit 3 Service Water System Valves, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Unit 3 Service Water System Valves, view to the east. These pipes and valves supply water from the draft chest for cooling the generator barrels. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  8. Development and on-site field testing of the power-tube airlift aerator and chances for commercialization

    USDA-ARS?s Scientific Manuscript database

    Aeration of ponds when dissolved oxygen (DO) concentrations are low is the principal management tool that allows for higher feeding rates, increased production, and decreased cost per unit fish produced. Recent research conducted at the USDA-ARS Warmwater Aquaculture Research Unit has shown that fee...

  9. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  10. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  11. Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package

    NASA Astrophysics Data System (ADS)

    Usov, S. V.; Kudinov, A. A.

    2016-04-01

    Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.

  12. 2014 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, R.; Bolinger, M.

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditionalmore » power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.« less

  13. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  14. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  15. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  16. Auction development for the price-based electric power industry

    NASA Astrophysics Data System (ADS)

    Dekrajangpetch, Somgiat

    The restructuring of the electric power industry is to move away from the cost-based monopolistic environment of the past to the priced-based competitive environment. As the electric power industry is restructuring in many places, there are still many problems that need to be solved. The work in this dissertation contributes to solve some of the electric power auction problems. The majority of this work is aimed to help develop good markets. A LaGrangian relaxation (LR) Centralized Daily Commitment Auction (CDCA) has been implemented. It has been shown that the solution might not be optimal nor fair to some generation companies (GENCOs) when identical or similar generating units participate in a LR CDCA based auction. Supporting information for bidding strategies on how to change unit data to enhance the chances of bid acceptance has been developed. The majority of this work is based on Single Period Commodity Auction (SPCA). Alternative structures for the SPCA are outlined. Whether the optimal solution is degenerated is investigated. Good pricing criteria are summarized and the pricing method following good pricing criteria is developed. Electricity is generally considered as a homogeneous product. When availability level is used as additional characteristic to distinct electricity, electricity can be considered a heterogeneous product. The procedure to trade electricity as a heterogeneous product is developed. The SPCA is formulated as a linear program. The basic IPLP algorithm has been extended so that sensitivity analysis can be performed as in the simplex method. Sensitivity analysis is used to determine market reach. Additionally, sensitivity analysis is used in combination with the investigation of historical auction results to provide raw data for power system expansion. Market power is a critical issue in electric power deregulation. Firms with market power have an advantage over other competitor firms in terms of market reach. Various approaches to determine market power and market reach are to be investigated. How firms can acquire additional customers or additional transactions, given the auction results, is to be investigated. Additionally, how firms can utilize their market power to enhance their chances of success is to be investigated.

  17. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...

  18. Stabilization of gas turbine unit power

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  19. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  20. Overview of Non-nuclear Testing of the Safe, Affordable 30-kW Fission Engine, Including End-to-End Demonstrator Testing

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Martin, J. J.; Houts, M. G.

    2003-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

  1. THz instrumentation for the Herschel Space Observatory's heterodyne instrument for far infrared

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Ward, John S.; Maiwald, Frank W.; Ferber, Robert R.; LeDuc, Henry G.; Schlecht, Erich T.; Gill, John J.; Hatch, William A.; Kawamura, Jonathan H.; Stern, Jeffrey A.; Gaier, Todd C.; Samoska, Lorene A.; Weinreb, Sander; Bumble, Bruce; Pukala, David M.; Javadi, Hamid H.; Finamore, Bradley P.; Lin, Robert H.; Dengler, Robert J.; Velebir, James R.; Luong, Edward M.; Tsang, Raymond; Peralta, Alejandro; Wells, Mary; Chun, William; Zmuidzinas, Jonas; Karpov, Alexandre; Phillips, Thomas; Miller, David; Maestrini, Alain E.; Erickson, Neal; Swift, Gerald; Liao, K. T.; Paquette, Michael

    2004-10-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  2. THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.; hide

    2004-01-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  3. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power... authorize operation of the Surry Power Station, Units 1 and 2 (Surry 1 and 2) respectively. The license...

  4. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Notice of Withdrawal of...) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC, the licensee, to withdraw its... for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2, located in Calvert County, MD. The...

  5. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Calvert Cliffs.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...

  6. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

  7. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1...

  8. Modernisation Issues of Diesel-Electric Shunting Locomotive Power Units

    NASA Astrophysics Data System (ADS)

    Hoimoja, Hardi; Jalakas, Tanel; Rosin, Argo; Rassylkin, Anton

    2010-01-01

    The research concentrates on the modernisation issues of inefficient diesel-electric shunting locomotives, produced in the former Soviet Union. The existing diesel-generator unit, serving as an onboard power plant can be replaced by hybridised units, with an energy storage unit acting as a peaking power source for dynamic modes. By integrating an energy storage unit into the power plant, the locomotive traction drive becomes hybridised, consuming less fuel during transients and idling.

  9. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  10. Experimental Validation of a Closed Brayton Cycle System Transient Simulation

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Hervol, David S.

    2006-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.

  11. EPA RE-Powering Mapper Feasibility Studies

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Office of Land and Emergency Management (OLEM) Office of Communications, Partnerships and Analysis (OCPA) initiated the RE-Powering America's Land Initiative to demonstrate the enormous potential that contaminated lands, landfills, and mine sites provide for developing renewable energy in the United States. As part of the RE-Powering America's Land Initiative, the EPA and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) evaluated the feasibility of developing renewable energy production on Superfund, brownfields, and former landfill or mining sites. These reports pair EPA's expertise on contaminated sites with the renewable energy expertise of NREL.

  12. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins UniversityApplied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a dead bus recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus.

  13. Engineering aspect of the microwave ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket

    NASA Astrophysics Data System (ADS)

    Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi

    The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.

  14. Evaluation of hybrid inverters for strategic environmental research and development program applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginn, J.W.

    1995-11-01

    The photovoltaic systems test facility at Sandia National Laboratories is evaluating the performance of large hybrid power-processing centers (PPC`s). The primary customer for this work has been the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense. One of the goals of SERDP is to develop power-processing hardware to be used in photovoltaic-hybrid power systems at remote military installations. Power for these installations is presently provided by engine-generators. Currently, hardware for twelve such sites is in various stages of procurement. The subject of this talk is testing of the PPC for the first SERDP system, a 300-kWmore » unit for Superior Valley, a US Navy site at China Lake, California.« less

  15. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... power assist system. This test is not applicable to vehicles equipped with full power brake system as...

  16. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  17. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  18. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  19. Optimized Power Generation and Distribution Unit for Mobile Applications

    DTIC Science & Technology

    2006-09-01

    reference commands to the overall system. This would be consistent with exoskeleton usage . Power Generation (prime mover) Power Distribution...technologies i.e. technologies that as of yet have not been used in the same field. • Produce list(s) in order of ranking for different properties ...developments have come through material science and bearing technology – it is the material properties of a flywheel that determine the maximum energy that can

  20. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  1. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear metric detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering, 111 meter, Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  2. KSC-08pd1652

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd1651

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd1654

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, auxiliary power unit 3, or APU3, is in place on space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd1653

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians install auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  6. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

  7. The impact of electric vehicles on the outlook of future energy system

    NASA Astrophysics Data System (ADS)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  8. Lightweight, Flexible, Thin, Integrated Solar-Power Packs

    NASA Technical Reports Server (NTRS)

    Hanson, Robert R.

    2004-01-01

    Lightweight, flexible, thin, one-piece, solar-power packs are undergoing development. Each power pack of this type is a complete, modular, integrated power-supply system comprising three power subsystems that, in conventional practice, have been constructed as separate units and connected to each other by wires. These power packs are amenable to a variety of uses: For example, they could be laminated to the tops of tents and other shelters to provide or augment power for portable electronic equipment in the field, and they could be used as power sources for such small portable electronic systems as radio transceivers (including data relays and cellular telephones), laptop computers, video camcorders, and Global Positioning System receivers.

  9. Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W

    2012-01-01

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Departmentmore » of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required for each unit since those criteria summarize key aspects of plant operations, how often are they called upon and how much do they operate. The primary analysis of the overall project is based on security-constrained unit commitment (SCUC) and economic dispatch (SCED) simulations of the SPP-SERC regions as modeled for the year 2022. The SCUC/SCED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as best as possible in the model. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy.« less

  10. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  11. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Merrill Skeist; Richard H.; Anthony G.P. Marini

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a seriesmore » L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.« less

  12. Power and Energy Systems Technology Program. Research Series No. 43.

    ERIC Educational Resources Information Center

    Haakenson, Harvey

    The overall objective of this project was to develop a training program and materials for power plant training in North Dakota. The project utilized four separate instructional units and four separate enrollment times with eight students enrolling in each phase to a maximum of thirty-two students. The course that resulted from the project is…

  13. NREL-Developed CUBE Helps Solve Army's Refueling Challenge | News | NREL

    Science.gov Websites

    Demonstration Opened Door to Idea Origins of the CUBE date to 2007 when representatives from the Army's Mobile proposed testing and evaluating some of the unit's mobile electric power systems, including a small wind to it." While the Army's original mobile electric power systems underwent testing at the

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIV, UNDERSTANDING DC GENERATOR PRINCIPLES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) WHAT IS A GENERATOR AND ITS USE, (2) SHUNT GENERATOR PRINCIPLES, (3) POWER AND RATINGS OF A GENERATOR, (4) ARMATURE REACTION, (5) WHAT IS POLARITY, (6) TWO GENERATOR…

  15. Turbokon scientific and production implementation company—25 years of activity

    NASA Astrophysics Data System (ADS)

    Favorskii, O. N.; Leont'ev, A. I.; Milman, O. O.

    2016-05-01

    The main results of studies performed at ZAO Turbokon NPVP in cooperation with leading Russian scientific organizations during 25 years of its activity in the field of development of unique ecologically clean electric power and heat production technologies are described. They include the development and experimental verification using prototypes and full-scale models of highly efficient air-cooled condensers for steam turbines, a high temperature gas steam turbine for stationary and transport power engineering, a nonfuel technology of electric power production using steam turbine installations with a unit power of 4-20 MW at gas-main pipelines and industrial boiler houses and heat stations. The results of efforts in the field of reducing vibroactivity of power equipment for transport installations are given. Basic directions of further research for increasing the efficiency and ecological safety of home power engineering are discussed.

  16. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    NASA Astrophysics Data System (ADS)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  17. Extended range of the Lockheed Martin Mini cryocooler

    NASA Astrophysics Data System (ADS)

    Frank, D.; Sanders, L.; Nason, I.; Mistry, V.; Guzinski, M.; Roth, E.; Olson, J. R.

    2017-12-01

    This paper describes the expanded performance range of the Lockheed Martin Mini cryocooler thermal mechanical unit (TMU). The design is based on the standard unit originally developed for NASA and a higher capacity developed for ESA. These higher capacity Mini units are in a split configuration with the cold head separated from the compressor. The TMU provides cooling over a wide range of temperatures with a weight of 1.9 kg including the 1.4 kg compressor and the 0.45 kg cold head. The unit provides for 3.5 W cooling at 105 K and approximately 7 W cooling at 150 K for 293 K reject temperature with 60 W of input power.

  18. ExoMars Mission 2016, Orbiter Module Power System Architecture (Based On An Unregulated Bus & MPPT Controlled Step-Down Voltage Regulators)

    NASA Astrophysics Data System (ADS)

    Digoin, JJ.; Boutelet, E.

    2011-10-01

    The main objective of the ExoMars program is to demonstrate key flight in situ enabling technologies in support of the European ambitions for future exploration missions and to pursue fundamental scientific investigations. Two missions are foreseen within the ExoMars program for the 2016 and 2018 launch opportunities to Mars. The 2016 mission is an ESA led mission that will supply a Mars Orbiter Module (OM) carrying an Entry Descent module (EDM) and NASA/ESA scientific instruments. The 2018 mission is a NASA led mission bringing one ESA rover and one NASA rover onto the Mars surface. This paper presents the OM Electrical Power Sub- system (EPS) design achieved at the end of pre- development phase. The main aspects addressed are: - EPS major constraints due to mission and environment, a succinct description of the power units, - Trade-off analyses results leading to the selected EPS architecture, - Preliminary results of electrical and energy simulations, - EPS units development plan.

  19. Orbiter Auxiliary Power Unit Flight Support Plan

    NASA Technical Reports Server (NTRS)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  20. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; hide

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  1. Nuclear power plant 5,000 to 10,000 kilowatts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this proposal is to present a suggested program for the development of an Aqueous Homogeneous Reactor Power Plant for the production of power in the 5000 to 10,000 kilowatt range under the terms of the Atomic Energy Commission's invitation of September 21, 1955. It envisions a research and development program prior to finalizing fabricating commitments of full scale components for the purpose of proving mechanical and hydraulic operating and chemical processing feasibility with the expectation that such preliminary effort will assure the contruction of the reactor at the lowest cost and successful operation at the earliest date.more » It proposes the construction of a reactor for an eventual net electrical output of ten megawatts but initially in conjunction with a five megawatt turbo-generating unit. This unit would be constructed at the site of the existing Hersey diesel generating plant of the Wolverine Electric Cooperative approximately ten miles north of Big Rapids, Michigan.« less

  2. 76 FR 187 - Programmatic Environmental Assessment and Final Finding of No Significant Impact for Exemptions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... proposed action may include issuing exemptions to nuclear power plant licensees for up to 40 nuclear power.... Fitzpatrick Nuclear Power Plant Joseph M. Farley Nuclear Plant, Units 1 and 2 Millstone Power Station, Unit... Palisades Nuclear Plant Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Perry Nuclear Power Plant...

  3. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  4. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  5. CSP cogeneration of electricity and desalinated water at the Pentakomo field facility

    NASA Astrophysics Data System (ADS)

    Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.

    2016-05-01

    The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.

  6. Lifelong Optimization

    DTIC Science & Technology

    2015-04-13

    cope with dynamic, online optimisation problems with uncertainty, we developed some powerful and sophisticated techniques for learning heuristics...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National ICT Australia United NICTA, Locked Bag 6016 Kensington...ABSTRACT Optimization solvers should learn to improve their performance over time. By learning both during the course of solving an optimization

  7. Cutting planes for the multistage stochastic unit commitment problem

    DOE PAGES

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    2016-04-20

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  8. Cutting planes for the multistage stochastic unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  9. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  10. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  11. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    NASA Astrophysics Data System (ADS)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  12. The Coriolis Program.

    ERIC Educational Resources Information Center

    Lissaman, P. B. S.

    1979-01-01

    Detailed are the history, development, and future objectives of the Coriolis program, a project designed to place large turbine units in the Florida Current that would generate large amounts of electric power. (BT)

  13. The 10 kW power electronics for hydrogen arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Hill, Gerald M.

    1992-01-01

    A combination of emerging mission considerations such as 'launch on schedule', resource limitations, and the development of higher power spacecraft busses has resulted in renewed interest in high power hydrogen arcjet systems with specific impulses greater than 1000 s for Earth-space orbit transfer and maneuver applications. Solar electric propulsion systems with about 10 kW of power appear to offer payload benefits at acceptable trip times. This work outlines the design and development of 10 kW hydrogen arcjet power electronics and results of arcjet integration testing. The power electronics incorporated a full bridge switching topology similar to that employed in state of the art 5 kW power electronics, and the output filter included an output current averaging inductor with an integral pulse generation winding for arcjet ignition. Phase shifted, pulse width modulation with current mode control was used to regulate the current delivered to arcjet, and a low inductance power stage minimized switching transients. Hybrid power Metal Oxide Semiconductor Field Effect Transistors were used to minimize conduction losses. Switching losses were minimized using a fast response, optically isolated, totem-pole gate drive circuit. The input bus voltage for the unit was 150 V, with a maximum output voltage of 225 V. The switching frequency of 20 kHz was a compromise between mass savings and higher efficiency. Power conversion efficiencies in excess of 0.94 were demonstrated, along with steady state load current regulation of 1 percent. The power electronics were successfully integrated with a 10 kW laboratory hydrogen arcjet, and reliable, nondestructive starts and transitions to steady state operation were demonstrated. The estimated specific mass for a flight packaged unit was 2 kg/kW.

  14. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  15. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  16. New 5 Kilowatt Free-Piston Stirling Space Converter Developments

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W.

    2007-01-01

    NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW converter allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the converter level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling converter assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Converter Power System. Assumed requirements for this new converter for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.

  17. New 5 Kilowatt Free-Piston Stirling Space Convertor Developments

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.

    2007-01-01

    NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW convertor allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling convertor assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Convertor Power System. Assumed requirements for this new convertor for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.

  18. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  19. Cost Savings Associated with the LV 100-5 Tank Engine

    DTIC Science & Technology

    2002-03-01

    34 F. UNDER ARMOR AUXILLARY POWER UNIT...................................... 35 viii G. SUMMARY...48 E. UNDER ARMOR AUXILLARY POWER UNIT...................................... 49 F. SUMMARY...the gunner and commander thermal sights. An under armor auxiliary power unit, new computer mass memory unit, color maps and displays are included

  20. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  1. Improvement for enhancing effectiveness of universal power system (UPS) continuous testing process

    NASA Astrophysics Data System (ADS)

    Sriratana, Lerdlekha

    2018-01-01

    This experiment aims to enhance the effectiveness of the Universal Power System (UPS) continuous testing process of the Electrical and Electronic Institute by applying work scheduling and time study methods. Initially, the standard time of testing process has not been considered that results of unaccurate testing target and also time wasting has been observed. As monitoring and reducing waste time for improving the efficiency of testing process, Yamazumi chart and job scheduling theory (North West Corner Rule) were applied to develop new work process. After the improvements, the overall efficiency of the process possibly increased from 52.8% to 65.6% or 12.7%. Moreover, the waste time could reduce from 828.3 minutes to 653.6 minutes or 21%, while testing units per batch could increase from 3 to 4 units. Therefore, the number of testing units would increase from 12 units up to 20 units per month that also contribute to increase of net income of UPS testing process by 72%.

  2. Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.

    2017-11-01

    The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.

  3. ISS EPS Orbital Replacement Unit Block Diagrams

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.

    2001-01-01

    The attached documents are being provided to Switching Power Magazine for information purposes. This magazine is writing a feature article on the International Space Station Electrical Power System, focusing on the switching power processors. These units include the DC-DC Converter Unit (DDCU), the Bi-directional Charge/Discharge Unit (BCDU), and the Sequential Shunt Unit (SSU). These diagrams are high-level schematics/block diagrams depicting the overall functionality of each unit.

  4. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  5. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  6. Unmanned powered balloons

    NASA Technical Reports Server (NTRS)

    Korn, A. O.

    1975-01-01

    In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.

  7. Electrical Power Generated from Tidal Currents and Delivered to USCG Station Eastport, ME

    DTIC Science & Technology

    2011-01-21

    35 Theory of Operation The ORPC Pre-Commercial Beta Turbine Generator Unit (“Beta TGU”) uses a hydrokinetic cross flow turbine based on Darrieus ...development in the wind turbine industry. The power coefficient (a measure of energy extraction effectiveness) is defined as follows: 31 2 turbine ...stream area of the device. Axial flow wind turbines have demonstrated power coefficients to an estimated 48% which approaches the theoretical “Betz

  8. Analysis of shadowing effects on spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Fincannon, H. J.

    1995-01-01

    This paper describes the Orbiting Spacecraft Shadowing Analysis (OSSA) computer program that was developed at NASA Lewis Research Center in order to assess the shadowing effects on various power systems. The algorithms, inputs and outputs are discussed. Examples of typical shadowing analyses that have been performed for the International Space Station Freedom, International Space Station Alpha and the joint United States/Russian Mir Solar Dynamic Flight Experiment Project are covered. Effects of shadowing on power systems are demonstrated.

  9. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V.

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  10. International water and steam quality standards on thermal power plants at all-volatile treatment

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2016-12-01

    One of the methods for the improvement of reliability and efficiency of the equipment at heat power plants is the decrease in the rate of corrosion of structural materials and sedimentation in water/steam circuit. These processes can be reduced to minimum by using the water with low impurity content and coolant treatment. For many years, water and steam quality standards were developed in various countries (United States, Germany, Japan, etc.) for specific types of equipment. The International Association for the Properties of Water and Steam (IAPWS), which brings together specialists from 21 countries, developed the water and steam quality standards for various types of power equipment based on theoretical studies and long-term operating experience of power equipment. Recently, various water-chemistry conditions are applied on heatpower equipment including conventional boilers and HRSGs with combined cycle power plants (Combined Cycle Power Plants (CCPP)). In paper, the maintenance conditions of water chemistry with ammonia or volatile amine dosing are described: reducing AVT(R), oxidizing AVT(O), and oxygen OT. Each of them is provided by the water and steam quality standards and recommendations are given on their maintenance under various operation conditions. It is noted that the quality control of heat carrier must be carried out with a particular care on the HPPs with combined cycle gas turbine units, where frequent starts and halts are performed.

  11. Power System Observation by using Synchronized Phasor Measurements as a Smart Device

    NASA Astrophysics Data System (ADS)

    Mitani, Yasunori

    Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.

  12. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  13. Wireless power transmission for battery charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into mmore » coil segments with capacitors interconnecting adjacent coil segments.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvolanek, E.; Kuiper, J.; Carr, A.

    In 2005, the National Renewable Energy Laboratory (NREL) completed an assessment of the potential for solar and wind energy development on National Forest System (NFS) public lands managed by the US Department of Agriculture, U.S. Forest Service (USFS). This report provides an update of the analysis in the NREL report, and extends the analysis with additional siting factors for solar and wind energy. It also expands the scope to biomass and geothermal energy resources. Hydropower is acknowledged as another major renewable energy source on NFS lands; however, it was not analyzed in this project primarily because of the substantially differentmore » analysis that would be needed to identify suitable locations. Details about each renewable energy production technology included in the study are provided following the report introduction, including how each resource is converted to electrical power, and examples of existing power plants. The analysis approach was to use current and available Geographic Information System (GIS) data to map the distribution of the subject renewable energy resources, major siting factors, and NFS lands. For each major category of renewable energy power production, a set of siting factors were determined, including minimum levels for the renewable energy resources, and details for each of the other siting factors. Phase 1 of the analysis focused on replicating and updating the 2005 NREL analysis, and Phase 2 introduced additional siting factors and energy resources. Source data were converted to a cell-based format that helped create composite maps of locations meeting all the siting criteria. Acreages and potential power production levels for NFS units were tabulated and are presented throughout this report and the accompanying files. NFS units in the southwest United States were found to have the most potentially suitable land for concentrating solar power (CSP), especially in Arizona and New Mexico. In total, about 136,032 acres of NFS lands were found potentially suitable for CSP development, potentially yielding as much as 13,603 megawatts (MW) of electricity, assuming 10 acres per MW. For photovoltaic solar power (PV), the top NFS units were more widely distributed than CSP. Notably, more than 150,000 acres in Comanche National Grassland in Colorado were found to be potentially suitable for PV development, accounting for more than 25% of the potentially suitable NFS lands combined. In total, about 564,698 acres of NFS lands were found potentially suitable for PV development, potentially yielding as much as 56,469 MW of electricity, assuming 10 acres per MW. NFS units most suitable for wind power are concentrated in the northern Great Plains. In total, about 3,357,792 acres of NFS lands were found potentially suitable for wind development, potentially yielding as much as 67,156 MW of electricity, assuming 50 acres per MW. Of that area, 571,431 acres (11,429 MW) are located within the Bankhead-Jones Farm Tenant Act Land in Montana. NFS lands in Alaska have considerable wind resources, but other siting factors eliminated almost the entire area. The southwest coast of Chugach National Forest, near Seward, Alaska, maintains the majority of the remaining acreage. NFS units with highly suitable biomass resources are located from Idaho to Louisiana. In total, about 13,967,077 acres of NFS lands are potentially highly suitable for biomass from logging and thinning residue development. Of that, 1,542,247 acres is located in Fremont-Winema National Forest in Oregon. Not surprisingly, most NFS units have at least some level of potentially suitable biomass resources. In general, biomass resources such as these could significantly offset consumption of coal and petroleum-based fuels. NFS units deemed potentially highly suitable for enhanced geothermal system (EGS) development were distributed widely from California to Virginia, accounting for some 6,475,459 acres. Mark Twain National Forest in Missouri has the largest area of all the NFS units, with 900,637 acres. While more rigorous studies are needed for siting geothermal plants, especially those regarding the geological characteristics of specific sites, current results suggest a significant potential for geothermal power generation within many NFS units. The first phase of analysis for solar and wind resources sought to replicate the 2005 NREL methodology using updated source data.1 The total acres meeting the criteria for all NFS lands were lower in the updated assessment compared to the 2005 NREL analysis because the earlier assessment included all land that fell within NFS administrative boundaries rather than only NFS-managed land within them. Acreages were again lower when refined screening factors were added, as would be expected. These remaining areas are of greater interest because they adhere to a broader set of criteria. As this study illustrates, GIS data availability for renewable energy resources and major screening factors has reached a point where national screening level studies can effectively assess the levels and spatial distributions for potentially renewable energy technology development. More detailed siting studies, land use planning, and environmental compliance assessments are essential before individual projects can be permitted and built. However, this study can serve to inform resource managers and planners of where these technologies are most likely to be investigated and proposed; help prioritize efforts to continue informed and sustainable development of renewable power generation within the United States; and help characterize the role of the USFS in this arena. The authors caution against using the areas reported in the results as a final and definitive estimate of suitability for these technologies. The analysis is most useful for determining locations that should be examined more fully, and for identifying regional and national trends.« less

  15. Design and fabrication of the Brayton rotating unit

    NASA Technical Reports Server (NTRS)

    Davis, J. E.

    1972-01-01

    The Brayton rotating unit (BRU), operating on a gas bearing system, has been designed, fabricated, and demonstrated for use in a closed Brayton cycle space power conversion system. The BRU uses a binary mixture of xenon and helium (molecular weight, 83.8) as the cycle working fluid and bearing lubricating medium and was designed to produce from 2.25 to 10.5 kw sub e of 1200 Hz three-phase electrical power. The single-shaft rotating assembly operates at a design speed of 36,000 rpm and comprises a radial single-stage compressor, a four-pole Rice alternator rotor, and a radial inflow turbine. Four units, a dynamic simulator and three component research packages, were supplied to the NASA Lewis Research Center for performance testing and further development.

  16. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Xiong, Tianqi; Jiang, Wei; Gao, Weidong

    2016-01-01

    Shandong is considered to be the top provincial emitter of air pollutants in China due to its large consumption of coal in the power sector and its dense distribution of coal-fired plants. To explore the atmospheric emissions of the coal-fired power sector in Shandong, an updated emission inventory of coal-fired power plants for the year 2012 in Shandong was developed. The inventory is based on the following parameters: coal quality, unit capacity and unit starting year, plant location, boiler type and control technologies. The total SO2, NOx, fine particulate matter (PM2.5) and mercury (Hg) emissions are estimated at 705.93 kt, 754.30 kt, 63.99 kt and 10.19 kt, respectively. Larger units have cleaner emissions than smaller ones. The coal-fired units (≥300 MW) are estimated to account for 35.87% of SO2, 43.24% of NOx, 47.74% of PM2.5 and 49.83% of Hg emissions, which is attributed primarily to the improved penetration of desulfurization, LNBs, denitration and dust-removing devices in larger units. The major regional contributors are southwestern cities, such as Jining, Liaocheng, Zibo and Linyi, and eastern cities, such as Yantai and Qindao. Under the high-efficiency control technology (HECT) scenario analysis, emission reductions of approximately 58.61% SO2, 80.63% NOx, 34.20% PM2.5 and 50.08% Hg could be achieved by 2030 compared with a 2012 baseline. This inventory demonstrates why it is important for policymakers and researchers to assess control measure effectiveness and to supply necessary input for regional policymaking and the management of the coal-fired power sector in Shandong.

  17. Performance of a flight qualified, thermoelectrically temperature controlled QCM sensor with power supply, thermal controller and signal processor

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.

    1980-01-01

    A thermoelectrically temperature controlled quartz crystal microbalance (QCM) system was developed for the measurement of ion thrustor generated mercury contamination on spacecraft. Meaningful flux rate measurements dictated an accurately held sensing crystal temperature despite spacecraft surface temperature variations from -35 C to +60 C over the flight temperature range. An electronic control unit was developed with magentic amplifier transformer secondary power supply, thermal control electronics, crystal temperature analog conditioning and a multiplexed 16 bit frequency encoder.

  18. Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations.

    PubMed

    He, Chiyang; Zhu, Zaifang; Gu, Congying; Lu, Joann; Liu, Shaorong

    2012-03-02

    Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet and outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (∼3100 psi). We further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Stacking open-capillary electroosmotic pumps in series to boost the pumping pressure to drive high-performance liquid chromatographic separations

    DOE PAGES

    He, Chiyang; Zhu, Zaifang; Gu, Congying; ...

    2012-01-09

    Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet andmore » outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (~3100 psi). Here, we further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides.« less

  20. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  1. 78 FR 76600 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... development of Traveling Wave Reactor (TWR) design information and related technology between the United...; REALIZING that the successful development of traveling wave reactors for the production of power for..., component or equipment) that has not yet entered into the public domain and that is especially designed...

  2. A New Type of Great Power Relationship Between the United States and China: The Military Dimension

    DTIC Science & Technology

    2014-09-01

    multipolar world system and a pro - spective security and economic partner of the United States. This stands midway between the panda-hug- ging and dragon...actually played different roles in East Asia, from victim to suzerain, from pro - moting the policies of openness and mutual respect characteristic of... Finlandization of Asia would be a profoundly destabilizing development that needs to be deterred. The United States therefore must steer a complex

  3. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  4. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  5. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  6. Toward an Understanding of (EM)Power(Ment) for HIV/AIDS Prevention with Adolescent Women.

    ERIC Educational Resources Information Center

    Gutierrez, Lorraine; Oh, Hyun Joo; Gillmore, Mary Rogers

    Preventing the spread of Acquired Immune Deficiency Syndrome (AIDS) among women is a national priority. In the United States, AIDS is the sixth leading cause of death among young adult women, and their rate of infection is four times higher than men. This article was developed to help stimulate interest in the power dynamics of relationships and…

  7. USAF Dehumidification Efforts for Corrosion Control

    DTIC Science & Technology

    2011-08-16

    Stored AGE Renewable energy powers dehumidification equipment (DH) DH maintains dry air in storage booths, protecting AGE equipment from...lighting also powered by renewable energy 11 CHP Shelters • Used to prevent corrosion on outer skin • Being developed for the F-22 at...DH can be Sheltered or Unsheltered • Air Dehydration Units - Uses a self rejuvenating desiccant wheel dehumidifier - Closed or open loop

  8. Mini-BRU/BIPS 1300 watt (sub)e dynamic power conversion system development: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of the Brayton Isotope Power System (BIPS) is summarized. A 1200 watt sub e ground development unit was built and tested in a 0.000010 torr vacuum environment. Peformance mapping and 1000 hours of proof of concept system testing were completed. Specific components, primarily turbocompressor/alternator and recuperator performed according to predictions, thus achieving the design goal of 25 percent net power conversion efficiency. The system was fabricated from superalloy (Hastelloy-X and Waspaloy) thus placing it entirely within current state-of-the-art technology. The system could be flyable in the early 1980's pending flight qualification.

  9. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  10. General purpose molecular dynamics simulations fully implemented on graphics processing units

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  11. 76 FR 16806 - Notice of Intent To Prepare an Environmental Impact Statement and Environmental Impact Report for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... leases being developed are already part of a geothermal unit, which is currently producing energy... Proposed Casa Diablo IV Geothermal Development Project, Mammoth Lakes, Mono County, CA AGENCY: Bureau of... Report (EIR) to consider approval of the development of a proposed 33-megawatt (MW) geothermal power...

  12. The Power Supply And Control Unit For The HEMP Thruster

    NASA Astrophysics Data System (ADS)

    Brag, Rafael; Lenz, Werner; Huther, Andreas; Herty, Frank

    2011-10-01

    In the recent years, Astrium GmbH started to develop electronics to control and supply Electric Propulsion systems or corresponding components. One of the developments is a Power Supply and Control Unit (PSCU) for the Thales Electron Devices development "High Efficiency Multistage Plasma Thruster" (HEMP- T). The PSCU is developed, manufactured and tested on the Astrium southern Germany site in Friedrichshafen. The first application is the SGEO Satellite (HISPASAT- 1), where the In-Orbit Demonstration (IOD) of the HEMP Thruster system will prove the success of the product. Astrium conducted several coupling tests during the PSCU development especially concentrated on *Thruster electrical I/F parameters *Neutralizer electrical I/F parameters *Flow Control I/F parameters Results of these tests were used to refine the specification and adapt the PSCU drivers and control algorithms. Furthermore, the tests results gave Thales and Astrium the possibility for a deep understanding of the interaction between the physics and the electronics. The paper presents an overview of the PSCU topology, key features, technical and development logic details as well as a view into the control capabilities of the PSCU.

  13. Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana

    NASA Astrophysics Data System (ADS)

    Gaustad, K. L.; Desteese, J. G.

    1993-07-01

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

  14. Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets.

  15. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less

  16. A Window into Different Cultural Worlds: Young Children's Everyday Activities in the United States, Brazil, and Kenya

    ERIC Educational Resources Information Center

    Tudge, Jonathan R. H.; Doucet, Fabienne; Odero, Dolphine; Sperb, Tania M.; Piccinini, Cesar A.; Lopes, Rita S.

    2006-01-01

    A powerful means to understand young children's normative development in context is to examine their everyday activities. The daily activities of 79 children (3 years old) were observed, for 20 hr each, in their usual settings. Children were selected from 4 cultural groups: European American and African American (Greensboro, United States), Luo…

  17. 18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ON THE TURBINE ARE EACH EQUIPPED WITH A SHEAR PIN AND OIL PRESSURE GAUGE. IF A GATE JAMS, THE PIN SMEARS AND THE CHANGE IN OIL PRESSURE TRIGGERS AN ALARM, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  18. 10. Turbine Pit of Unit 5, view to the north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Turbine Pit of Unit 5, view to the north. Note the difference in configuration within this turbine pit as compared to one of the original pits illustrated in photograph number MT-105-A-11. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  19. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    NASA Astrophysics Data System (ADS)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  20. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  1. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Pinero, Luis; Schneidegger, Robert; Dunning, John; Birchenough, Art

    2012-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hours and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hours of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  2. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Scheidegger, Robert J.; Pinero, Luis R.; Birchenough, Arthur J.; Dunning, John W.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hr and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location-the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hr of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  3. The U.S. Department of Energy advanced radioisotope power system program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.

    1998-07-01

    Radioisotope power systems for spacecraft are and will continue to be an enabling power technology for deep space exploration. The US Department of Energy (DOE) is responsible for the Nation's development of Advanced Radioisotope Power Systems (ARPS) to meet harsh environments and long life requirements. The DOE has provided radioisotope power systems for space missions since 1961. The radioisotope power system used for the recent Cassini mission included three Radioisotope Thermoelectric Generators (RTGs) which provided a total of 888 Watts electric at 6.7% conversion efficiency. The DOE's goal is to develop a higher efficiency and lower mass ARPS for futuremore » deep space missions. The ARPS program involves the design, development, fabrication, and qualification, and safety analysis of the ARPS units. Organizations that support the development, fabrication and testing of the ARPS include the Lockheed Martin Astronautics (LMA), Advanced Modular Power Systems (AMPS), Mound, Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL). The Europa Orbiter and Pluto/Kuiper Express missions represent the near term programs targeted for the application of ARPS in addressing the issues and questions existing for deep space exploration.« less

  4. GT200 getting better than 34% efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, R.

    1980-01-01

    Design features are described for the GT200, a 50-Hz machine blend of high temperature advanced aircraft rotating components and heavy frame industrial gas turbine structure. It includes a twin spool as generator with a two-stage power turbine giving nominal performance of 85,000 kW ISO peak output with a 10,120 Btu per kW-h heat rate on LHV distillate. It is desgined for base, intermediate, or peak load operation simple or combined cycle. Stal-Laval in Sweden developed it and sold the first unit to the Swedish State Power Board in July 1977. The unit was installed at the Stallbocka Station.

  5. Diagram of the Saturn V Launch Vehicle in Metric

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear metric detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering, 111 meter, Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  6. Diagram of Saturn V Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is a good cutaway diagram of the Saturn V launch vehicle showing the three stages, the instrument unit, and the Apollo spacecraft. The chart on the right presents the basic technical data in clear detail. The Saturn V is the largest and most powerful launch vehicle in the United States. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams. Development of the Saturn V was the responsibility of the Marshall Space Flight Center at Huntsville, Alabama, directed by Dr. Wernher von Braun.

  7. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  8. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    NASA Astrophysics Data System (ADS)

    Chen, H. J.; Gao, B. T.; Zhang, X. H.; Deng2, Z. Q.

    2006-10-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  9. Ocean Circulation Modeling for Aquatic Dispersion of Liquid Radioactive Effluents from Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y.G.; Lee, G.B.; Bang, S.Y.

    2006-07-01

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sitesmore » which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM (Research Institute of Applied Mechanics' Ocean Model, Kyushu University, Japan). The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z coordinate vertically. Model domain is 126.5 deg. E to 142.5 deg. E of east longitude and 33 deg. N and 52 deg. N of the north latitude. The space of the horizontal grid was 1/12 deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC (Japan Oceanographic Data Center), KNFRDI (Korea National Fisheries Research and Development Institute), and ECMWF (European Center for Medium-Range Weather Forecasts). The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea/Japan Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site. (authors)« less

  10. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  11. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  12. United States-Mexico electricity transfers: Of alien electrons and the migration of undocumented environmental burdens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, A.

    This article intends to set forth the necessity for reform in the United States policy and procedures regarding approval of power transfers between the United States and Mexico. In order to do this, the article will review the history of electrical power transfers between the United States and Mexico (Part II), analyze recent regulatory changes in the United States and Mexico which may result in increased power exports to Mexico (Part III), evaluate the extent to which the present permit and authorization system in the United States considers the increased environmental burden of such power transfers (Part IV), and, wheremore » appropriate, propose some procedural and policy reforms that could take into account the environmental burdens generated by the production of power destined for transfer across the United States-Mexico border (Part V).« less

  13. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of..., LLC (Exelon, the licensee) for operation of the Peach Bottom Atomic Power Station, Units 2 and 3...) in the Peach Bottom Atomic Power Station (PBAPS) LLRW Storage Facility. Considering the nature of the...

  14. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...

  15. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be fired in Cabras Power Plant Units Nos. 1 through 3 and in Piti Power Plant Units Nos. 4 and 5... conditionally exempts Piti Power Plant Units No. 8 and No. 9 from certain CAA requirements. (2) A waiver of the... Administrator of EPA conditionally exempts Guam Power Authority (“GPA”) from certain CAA requirements. (1) A...

  16. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4... Regulations (10 CFR), for the Comanche Peak Nuclear Power Plant (CPNPP), Units 3 and 4, Combined License (COL... Peak Nuclear Power Plant, Units 3 and 4,'' dated May 13, 2011. Agencies and Persons Consulted On March...

  17. Advanced Stirling Convertor (ASC) - From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower, Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks lead by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were to address future Radioisotope Power System (RPS) advanced power conversion needs. The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 %), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered three ASC-E machines to the Department of Energy (DOE) and Lockheed Martin Space Systems Company, two units for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design has recently been initiated for the ASC-E2, an evolution from the ASC-E that substitutes higher temperature materials enabling improved performance and higher reliability margins. This paper summarizes the history and status of the ASC project and discusses plans for this technology which enables RPS specific power of 8 W/kg for future NASA missions.

  18. Design Investigation of Solar Powered Lasers for Space Applications

    DTIC Science & Technology

    1979-05-01

    Brayton Cycle Power Units 64 3.4 Heat Exchanger 75 3.5 Waste Heat Radiator 79 3.6 Solar Powered Gas Dynamic Laser 82 3.7 Solar Powered Electric... Brayton Cycle Space Power Units 65 10 Supersonic C02 GDL (1 MW) 85 11 Specific Weights for Comparative Evaluation of Solar Lasers 88 12 Subsonic C02...for the Brayton Cycle Power Units 61 21 Solar Radiation Boiler-Receiver Solar Radiation from the Collectors in Focussed (at left) on the

  19. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  20. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.

    2002-05-01

    A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.

  1. Cost and performance of coal-based energy in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temchin, J.; DeLallo, M.R.

    1998-07-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less

  2. Development status of the PDC-1 Parabolic Dish Concentrator

    NASA Technical Reports Server (NTRS)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  3. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolutions. Volume 3: Cost estimates

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.

  4. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  5. Integration Tests of the 4 kW-Class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASA's Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This paper presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation along with open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thruster's discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  6. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation.

  7. Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2012-06-01

    As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

  8. Software Development for EECU Platform of Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  9. Electric auxiliary power unit for Shuttle evolution

    NASA Technical Reports Server (NTRS)

    Meyer, Doug; Weber, Kent; Scott, Walter

    1989-01-01

    The Space Shuttle Orbiter currently uses three hydrazine fueled auxiliary power units (APUs) to provide hydraulic power for the vehicle aerodynamic surface controls, main engine thrust vector control, landing gear, steering, and brakes. Electric auxiliary power units have been proposed as possible replacements to the hydrazine auxiliary power units. Along with the potential advantages, this paper describes an Electric APU configuration and addresses the technical issues and risks associated with the subsystem components. Additionally, characteristics of an Electric APU compared to the existing APU and the direction of future study with respect to the Electric APU is suggested.

  10. Characterization of the Advanced Stirling Radioisotope Generator EU2

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  11. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  12. Power saver circuit for audio/visual signal unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Right, R. W.

    1985-02-12

    A combined audio and visual signal unit with the audio and visual components actuated alternately and powered over a single cable pair in such a manner that only one of the audio and visual components is drawing power from the power supply at any given instant. Thus, the power supply is never called upon to provide more energy than that drawn by the one of the components having the greater power requirement. This is particularly advantageous when several combined audio and visual signal units are coupled in parallel on one cable pair. Typically, the signal unit may comprise a hornmore » and a strobe light for a fire alarm signalling system.« less

  13. Performance analysis and an assessment of operational issues of Ya-21U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramonov, D.V.; El-Genk, M.S.

    1996-03-01

    Extensive testing of the Soviet made TOPAZ-II space nuclear power system unit designated {open_quote}{open_quote}Ya-21U{close_quote}{close_quote} was conducted both in the USSR (1989{endash}1990) and in the US (August 1993 to March 1995). The unit underwent a total of 15 tests for a cumulative test/operation time of almost 8000 hours. These tests included steady-state operation at different power levels, fast startups and power optimizations. Leaks were detected in some of the Thermionic Fuel Elements (TFEs) after the first test in the US. These leaks that facilitated air incursion into the interelectrode gap caused operational changes in both electric power and conversion efficiency andmore » changed the optimum cesium pressure and load voltage. Additional changes in operational performance were detected following shock and vibration tests performed in August 1994. Test data was examined and analyzed to assess the performance of not only individual TFEs, and also the whole Ya-21U unit, and identify causes for measured operational performance changes; most probable causes were identified and discussed. The Ya-21U unit remained operational throughout extensive testing for 8000 hours at conditions far exceeding the design limits of the TOPAZ-II system. No single TFE was damaged during testing and measured operational performance changes were uniform among working section TFEs. In addition to providing a unique knowledge base for future development and operation of thermionic power systems, the test results testify to the reliability and ruggedness of the TOPAZ-II system design. {copyright} {ital 1996 American Institute of Physics.}« less

  14. Industrial Arts Curriculum Guide for Power Technology.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    This curriculum guide provides topic outlines and objectives for units in a three-level/-course Power Technology program. Introductory materials are objectives for industrial education and for power technology and list of general safety rules. Units contained in Level I, Power Technology, are History of Power, Basic Machines, Forms of Power, Power…

  15. Using the FORTH Language to Develop an ICU Data Acquisition System

    PubMed Central

    Goldberg, Arthur; SooHoo, Spencer L.; Koerner, Spencer K.; Chang, Robert S. Y.

    1980-01-01

    This paper describes a powerful programming tool that should be considered as an alternative to the more conventional programming languages now in use for developing medical computer systems. Forth provides instantaneous response to user commands, rapid program execution and tremendous programming versatility. An operating system and a language in one carefully designed unit, Forth is well suited for developing data acquisition systems and for interfacing computers to other instruments. We present some of the general features of Forth and describe its use in implementing a data collection system for a Respiratory Intensive Care Unit (RICU).

  16. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower

    NASA Astrophysics Data System (ADS)

    Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel

    2017-04-01

    The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.

  17. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    NASA Astrophysics Data System (ADS)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  18. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    PubMed

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. South America and Education for Sustainable Development

    ERIC Educational Resources Information Center

    Ostuni, Josefina

    2006-01-01

    Three South American countries, Argentina, Chile and Brazil, have been selected in order to study the impact of the document "The United Nations Decade of Education for Sustainable Development". In these countries, whose people react energetically against any attempt to break the environmental balance, the synergic power of education is…

  20. 77 FR 68813 - Notice of Availability of the Draft Environmental Impact Statement and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... geothermal unit, which is currently providing energy sufficient to power three operating geothermal plants... the Casa Diablo IV Geothermal Development Project, CA AGENCY: Bureau of Land Management, Interior... Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development...

  1. Flower Power: Prospects for Photosynthetic Energy

    ERIC Educational Resources Information Center

    Poole, Alan D.; Williams, Robert H.

    1976-01-01

    This report focuses on the prospects and possibilities for using biomass as an energy source for the United States. However, the greatest potential for utilizing biomass as fuel exists in energy-starved developing nations, since it appears possible to develop biomass technologies keeping capital inputs low in relation to labor inputs. (BT)

  2. Development Status of the NASA 30-cm Ion Thruster and Power Processor

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.

    1994-01-01

    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.

  3. U.S. Army PEM fuel cell programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, A.S.; Jacobs, R.

    The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less

  4. Oil market power and United States national security

    PubMed Central

    Stern, Roger

    2006-01-01

    It is widely believed that an oil weapon could impose scarcity upon the United States. Impending resource exhaustion is thought to exacerbate this threat. However, threat seems implausible when we consider strategic deficits of prospective weapon users and the improbability of impending resource exhaustion. Here, we explore a hypothesis relating oil to national security under a different assumption, abundance. We suggest that an oil cartel exerts market power to keep abundance at bay, commanding monopoly rents [or wealth transfers (wt)] that underwrite security threats. We then compare security threats attributed to the oil weapon to those that may arise from market power. We first reexamine whether oil is abundant or scarce by reviewing current development data, then we estimate a competitive price for oil. From this, we derive wt2004 collections by Persian Gulf states ≈ $132-178 × 109. We find that wt and the behavior of states collecting it interact to actuate security threats. Threats underwritten by wt are (i) the potential for emergence of a Persian Gulf superpower and (ii) terrorism. It is therefore oil market power, not oil per se, that actuates threats. We also describe a paradox in the relation of market power to the United States' defense doctrine of force projection to preempt a Gulf superpower. Because the superpower threat derives from wt, force alone cannot preempt it. A further paradox is that because foreign policy is premised on oil weapon fear, market power is appeased. Threats thereby grow unimpeded. PMID:16428291

  5. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If your...

  6. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If your...

  7. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If your...

  8. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If your...

  9. 40 CFR 1033.510 - Auxiliary power units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Auxiliary power units. 1033.510 Section 1033.510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.510 Auxiliary power units. If your...

  10. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  11. Affidavit and Flyers from the Chinese Boycott Case. The Constitution Community: The Development of the Industrial United States (1870-1900).

    ERIC Educational Resources Information Center

    Greene, Mary Frances

    Under Article I, Section 8, Clause 4, of the United States Constitution, the U.S. Congress is granted the power to "establish an uniform Rule of Naturalization." With passage of the Chinese Exclusion Act in 1882, Congress exercised this authority, denying the rights of citizenship to all Chinese immigrants. The Chinese Boycott Case…

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  13. 11. Turbine Pit and Shaft of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Turbine Pit and Shaft of Unit 1, view to the south, with operating ring at base of shaft and servo motor arms in foreground and in left background recess. Turbine monitoring and auxiliary equipment is located in the rightbackground recess. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  14. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  15. Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. I.; Barnes, R.

    1994-01-01

    The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on 1 Nov. 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHF's) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR). The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out and into the RAHF drinking water tanks. The CWR is a Kevlar(trademark) reinforced storage bladder, connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system and allows for the transport of the water back to the Spacelab where it is pumped into each of two RAHFs. Additional components of the FPU system include the inlet and outlet fluid hoses, a power cable for providing 28 volt direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab. This paper will present the design process and development approach for the lnflight Refill Unit, define some of the key design issues which had to be addressed, and summarize the inflight operational performance of the unit during the SLS-2 mission.

  16. Bluetooth data collection system for planning and arterial management.

    DOT National Transportation Integrated Search

    2014-08-01

    This report presents the results of a research and development project of an implementable portable wireless traffic data collection system. Utilizing Bluetooth wireless technology as a platform, portable battery powered data collection units housed ...

  17. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L; Duleep, K. G.; Upreti, Girish

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reducemore » costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.« less

  18. A Novel Nanosecond Pulsed Power Unit for the Formation of ·OH in Water

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Hu, Sheng; Zhang, Han

    2012-04-01

    A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of ·OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of ·OH increased with the increase in peak voltage, and the generation rates of ·OH were 4.1 × 10-10 mol/s, 5.7 × 10-10 mol/s, and 7.7 × 10-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10-12 mol/J obtained.

  19. Low-Mass, Low-Power Hall Thruster System

    NASA Technical Reports Server (NTRS)

    Pote, Bruce

    2015-01-01

    NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.

  20. Geothermal FIT Design: International Experience and U.S. Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickerson, W.; Gifford, J.; Grace, R.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less

  1. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  2. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  3. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  4. 75 FR 13318 - Virginia Electric and Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... notice. SUMMARY: This document corrects a notice appearing in the Federal Register on March 3, 2010 (75... Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2); Correction to Environmental... Surry 1 and 2, respectively.'' This action is necessary to add an implementation date for Surry Unit 2...

  5. Fission Surface Power for the Exploration and Colonization of Mars

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Porter, Ron; Gaddis, Steve; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    The colonization of Mars will require abundant energy. One potential energy source is nuclear fission. Terrestrial fission systems are highly developed and have the demonstrated ability to safely produce tremendous amounts of energy. In space, fission systems not only have the potential to safely generate tremendous amounts of energy, but could also potentially be used on missions where alternatives are not practical. Programmatic risks such as cost and schedule are potential concerns with fission surface power (FSP) systems. To be mission enabling, FSP systems must be affordable and programmatic risk must be kept acceptably low to avoid jeopardizing exploration efforts that may rely on FSP. Initial FSP systems on Mars could be "workhorse" units sized to enable the establishment of a Mars base and the early growth of a colony. These systems could be nearly identical to FSP systems used on the moon. The systems could be designed to be safe, reliable, and have low development and recurring costs. Systems could also be designed to fit on relatively small landers. One potential option for an early Mars FSP system would be a 100 kWt class, NaK cooled system analogous to space reactors developed and flown under the U.S. "SNAP" program or those developed and flown by the former Soviet Union ("BUK" reactor). The systems could use highly developed fuel and materials. Water and Martian soil could be used to provide shielding. A modern, high-efficiency power conversion subsystem could be used to reduce required reactor thermal power. This, in turn, would reduce fuel burnup and radiation damage .effects by reducing "nuclear" fuels and materials development costs. A realistic, non-nuclear heated and fully integrated technology demonstration unit (TDU) could be used to reduce cost and programmatic uncertainties prior to initiating a flight program.

  6. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.

    PubMed

    Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua

    2018-03-01

    The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

  8. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  9. Human resource development for nuclear generation - from the perspective of a utility company

    NASA Astrophysics Data System (ADS)

    Kahar, Wan Shakirah Wan Abdul; Mostafa, Nor Azlan; Salim, Mohd Faiz

    2017-01-01

    Malaysia is currently in the planning phase of its nuclear power program, with the first unit targeted to be operational in 2030. Training of nuclear power plant (NPP) staffs are usually long and rigorous due to the complexity and safety aspects of nuclear power. As the sole electricity utility in the country, it is therefore essential that Tenaga Nasional Berhad (TNB) prepares early in developing its human resource and nuclear expertise as a potential NPP owner-operator. A utility also has to be prudent in managing its work force efficiently and effectively, while ensuring that adequate preparations are being made to acquire the necessary nuclear knowledge with sufficient training lead time. There are several approaches to training that can be taken by a utility company with no experience in nuclear power. These include conducting feasibility studies and benchmarking exercises, preparing long term human resource development, increasing the exposure on nuclear power technology to both the top management and general staff, and employing the assistance of relevant agencies locally and abroad. This paper discusses the activities done and steps taken by TNB in its human resource development for Malaysia's nuclear power program.

  10. Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Beckel, Steve

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems is one of fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU testbed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU's and APU components have been acquired for testing at MSFC. In concert with this effort, ATK has been developing green propellant technology based on the Swedish Space Corp ECAPS LMP-103S propellant. Propellant blending and test facilities have been established at ATK's Elkton MD facility with the intent to provide suitable propellant blends for application to green APU systems as well as thrusters. This paper will summarize the status of the testing efforts with ATK for use of the green propellant LMP-103S based on ammonium dinitramide and use of the Air Force Research Laboratory (AFRL) propellant AF-M315E based on hydroxyl ammonium nitrate with these test assets.

  11. Saudi Arabia: perspective on oil, foreign policy, and the Arab-Israeli conflict, 1970-1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurdi, M.A.M.

    1982-01-01

    This study examines, through a descriptive and analytical approach, the Saudi perspective on its oil power and policies in world affairs and how the Arab-Israeli conflict affects these policies. A special emphasis on the United States-Saudi Arabian relationship is made, since Saudi Arabia looks at the United States as the key factor in the Arab-Israeli conflict. To serve this end, the dissertation is divided into three parts. Part one examines the economic and political reality of oil power, its implication and limitation. Also, this part examines the behavior and the policies of the oil companies, the oil-consuming countries, and themore » oil-producing countries after the structural change of the oil industry and the shift in control of production and prices from the hands of the oil companies to those of the oil-producing countries. Part two examines the Saudi Arabian economy, the role of oil in developing this economy, and the effect of Saudi development plans on Saudi oil policies. Part three examines Saudi foreign policy, especially its role in the Arab-Israeli conflict, with emphasis on the Saudi oil role in this regard. Also, this part examines the United States-Saudi Arabia relationship and interest, the United States interest in Israel, and, finally, how Riyadh sees these interests affecting United States policies in the Middle East.« less

  12. Design and operation experience of 230 MWe CFB boilers at Turow power plant in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, W.; Bis, Z.; Laskawiec, J.

    The Power Station Turow is located in Bogatynia, Poland, and has operated 10 pulverized coal units each of 200 MW. The plant provided 2000 MW at the lowest cost per kWh in Poland. The Turow units have approached and in some cases already gone beyond their 25--30 year's design life. To meet Poland's new environmental standards, which are now compatible with the EU, Turow decided to replace and upgrade six units (No. 1 to 6) from 200 MW to 230 MW units and remove one unit No. 7. Units No. 8, 9 and 10 were equipped with dry sorbent desulfurizationmore » technology. Units No. 1 and 2 have been replaced with new clean coal circulating fluidized bed technology. The Power Station Turow with six CFB units is to be the largest in the world power station based on fluidized bed technology.« less

  13. 49 CFR 570.6 - Brake power unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Brake power unit. 570.6 Section 570.6... Pounds or Less § 570.6 Brake power unit. (a) Vacuum hoses shall not be collapsed, abraded, broken... brake pedal, the pedal shall fall slightly when the engine is started, demonstrating integrity of the...

  14. 49 CFR 393.94 - Interior noise levels in power units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Interior noise levels in power units. 393.94... noise levels in power units. (a) Applicability of this section. The interior noise level requirements..., if the reading has not been influenced by extraneous noise sources such as motor vehicles operating...

  15. 49 CFR 393.94 - Interior noise levels in power units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Interior noise levels in power units. 393.94... noise levels in power units. (a) Applicability of this section. The interior noise level requirements..., if the reading has not been influenced by extraneous noise sources such as motor vehicles operating...

  16. Green Power Marketing in the United States. A Status Report (11th Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Kreycik, Claire; Friedman, Barry

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  17. Green Power Marketing in the United States: A Status Report (11th Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, L.; Kreycik, C.; Friedman, B.

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  18. Use of circulating-fluidized-bed combustors in compressed-air energy storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.

    1990-07-01

    This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less

  19. Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010

    NASA Astrophysics Data System (ADS)

    Tong, D.; Qiang, Z.; Davis, S. J.

    2016-12-01

    There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from <1MW to >1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.

  20. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is beingmore » implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.« less

Top