14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...
14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...
Research and application of thermal power unit’s load dynamic adjustment based on extraction steam
NASA Astrophysics Data System (ADS)
Li, Jun; Li, Huicong; Li, Weiwei
2018-02-01
The rapid development of heat and power generation in large power plant has caused tremendous constraints on the load adjustment of power grids and power plants. By introducing the thermodynamic system of thermal power unit, the relationship between thermal power extraction steam and unit’s load has analyzed and calculated. The practical application results show that power capability of the unit affected by extraction and it is not conducive to adjust the grid frequency. By monitoring the load adjustment capacity of thermal power units, especially the combined heat and power generating units, the upper and lower limits of the unit load can be dynamically adjusted by the operator on the grid side. The grid regulation and control departments can effectively control the load adjustable intervals of the operating units and provide reliable for the cooperative action of the power grid and power plants, to ensure the safety and stability of the power grid.
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1987-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1989-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.
2016-08-01
The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.
Storage peak gas-turbine power unit
NASA Technical Reports Server (NTRS)
Tsinkotski, B.
1980-01-01
A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.
Simulation of load-sharing in standalone distributed generation system
NASA Astrophysics Data System (ADS)
Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.
2018-05-01
This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.
Improved control system power unit for large parachutes
NASA Technical Reports Server (NTRS)
Chandler, J. A.; Grubbs, T. M.
1968-01-01
Improved control system power unit drives the control surfaces of very large controllable parachutes. The design features subassemblies for determining control surface position and cable loading, and protection of the load sensor against the possibility of damage during manipulation.
Power amplification in an isolated muscle–tendon unit is load dependent
Sawicki, Gregory S.; Sheppard, Peter; Roberts, Thomas J.
2015-01-01
ABSTRACT During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle–tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle–tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle–tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. PMID:26449973
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2013 CFR
2013-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2014 CFR
2014-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2012 CFR
2012-01-01
....010 is based on a 20 percent tolerance in the total power loss at full-load and fixed output power... measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency of the n1 units in the first sample as follows: ER83AD04.006 Step 4. Compute the...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on a 20 percent tolerance in the total power loss at full-load and fixed output power. Given the... performance of the n1 units in the first sample as follows: ER83AD04.005 where Xi is the measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency...
10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on a 20 percent tolerance in the total power loss at full-load and fixed output power. Given the... performance of the n1 units in the first sample as follows: ER83AD04.005 where Xi is the measured full-load efficiency of unit i. Step 3. Compute the sample standard deviation (S1) of the measured full-load efficiency...
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.
1999-01-01
The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.
Dynamic of small photovoltaic systems
NASA Astrophysics Data System (ADS)
Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.
The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.
The 30-cm ion thruster power processor
NASA Technical Reports Server (NTRS)
Herron, B. G.; Hopper, D. J.
1978-01-01
A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
NASA Technical Reports Server (NTRS)
Lebron, Ramon C.
1992-01-01
The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.
Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption
NASA Astrophysics Data System (ADS)
Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li
2017-05-01
The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.
NASA Astrophysics Data System (ADS)
Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu
2018-05-01
This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.
Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahimpour, Alireza; Qi, Hairong; Fugate, David L
Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less
40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Road load power, test weight, and inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) [Reserved] (b) Power absorption unit...
Diesel-Powered Heavy-Duty Refrigeration Unit Noise
DOT National Transportation Integrated Search
1976-01-01
A series of noise measurements were performed on a diesel-powered heavy-duty refrigeration unit. Noise survey information collected included: polar plots of the 'A Weighted' noise levels of the unit under maximum and minimum load conditions; a linear...
Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov
2013-07-01
It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial bearing load can be determined using load cells, bearing properties multiplied by shaft displacement, or bearing bracket stiffness multiplied by housing compression or movement. Different load measurement methods should be used depending on the design of the machine and accuracy demands in the load measurement. The methodology presented in the paper is applied to a 40 MW hydropower unit; suggestions are presented for the alarm and trip levels for the machine based on the mechanical properties and radial loads.
NASA Astrophysics Data System (ADS)
Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang
2018-01-01
In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation
NASA Technical Reports Server (NTRS)
Fox, D. A.; Fullemann, J. S.
1980-01-01
Compact, solid state, electric-power controller switches power on and off at remote load, limits current drawn by load, and shuts off (with 2- to 3- second trip time) in case of short circuit. Lightweight efficient hybrid unit operates at 28 volts dc and at maximum currents of from 3 to 2 amperes.
Wash load and bed-material load transport in the Yellow River
Yang, C.T.; Simoes, F.J.M.
2005-01-01
It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.
Photovoltaic stand-alone modular systems, phase 2
NASA Technical Reports Server (NTRS)
Naff, G. J.; Marshall, N. A.
1983-01-01
The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.
Photovoltaic stand-alone modular systems, phase 2
NASA Astrophysics Data System (ADS)
Naff, G. J.; Marshall, N. A.
1983-07-01
The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao
2018-02-01
Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.
Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less
Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
2017-12-11
The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less
NASA Astrophysics Data System (ADS)
Chubov, S. V.; Soldatov, A. I.
2017-02-01
This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.
126. View in Generator Room of exciter unit no. 1; ...
126. View in Generator Room of exciter unit no. 1; looking northwest. This unit includes a Pelton wheel manufactured by Allis Chalmers, no. 261, type C-1, Breaking Horse Power 600, head 370 feet, and 360 rpm; a General Electric DC generator, no. 1357609, type MPC 8, 340-350 form LD, 1360 amp, 350 rpm, 250 volts (no load), 250 volts (full load); and a General Electric induction motor, no. 4228863, type KT-4424, 20-500-360 form A, 60 cycles, 45 amp, 6,600 volts, 500 horsepower, continuous 50-degree centigrade rise, 350 rpm with full-load. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
NASA Astrophysics Data System (ADS)
Szurgacz, Dawid; Brodny, Jaroław
2018-01-01
A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.
NASA Astrophysics Data System (ADS)
Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.
2018-01-01
For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
NASA Astrophysics Data System (ADS)
Dulǎu, Lucian Ioan
2015-12-01
This paper describes the simulation of a microgrid system with storage technologies. The microgrid comprises 6 distributed generators (DGs), 3 loads and a 150 kW storage unit. The installed capacity of the generators is 1100 kW, while the total load demand is 900 kW. The simulation is performed by using a SCADA software, considering the power generation costs, the loads demand and the system's power losses. The generators access the system in order of their power generation cost. The simulation is performed for the entire day.
Hemmati, Reza; Saboori, Hedayat
2016-01-01
Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741
Hemmati, Reza; Saboori, Hedayat
2016-05-01
Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.
Artificial neural network application for space station power system fault diagnosis
NASA Technical Reports Server (NTRS)
Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.
1995-01-01
This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.
Load-embedded inertial measurement unit reveals lifting performance.
Tammana, Aditya; McKay, Cody; Cain, Stephen M; Davidson, Steven P; Vitali, Rachel V; Ojeda, Lauro; Stirling, Leia; Perkins, Noel C
2018-07-01
Manual lifting of loads arises in many occupations as well as in activities of daily living. Prior studies explore lifting biomechanics and conditions implicated in lifting-induced injuries through laboratory-based experimental methods. This study introduces a new measurement method using load-embedded inertial measurement units (IMUs) to evaluate lifting tasks in varied environments outside of the laboratory. An example vertical load lifting task is considered that is included in an outdoor obstacle course. The IMU data, in the form of the load acceleration and angular velocity, is used to estimate load vertical velocity and three lifting performance metrics: the lifting time (speed), power, and motion smoothness. Large qualitative differences in these parameters distinguish exemplar high and low performance trials. These differences are further supported by subsequent statistical analyses of twenty three trials (including a total of 115 total lift/lower cycles) from fourteen healthy participants. Results reveal that lifting time is strongly correlated with lifting power (as expected) but also correlated with motion smoothness. Thus, participants who lift rapidly do so with significantly greater power using motions that minimize motion jerk. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
Development Status of the NSTAR Ion Propulsion System Power Processor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.
1995-01-01
A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.
Power management circuits for self-powered systems based on micro-scale solar energy harvesting
NASA Astrophysics Data System (ADS)
Yoon, Eun-Jung; Yu, Chong-Gun
2016-03-01
In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.
Electrical Power Distribution and Control Modeling and Analysis
NASA Technical Reports Server (NTRS)
Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.
2001-01-01
This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.
Distributed photovoltaic system impact upon utility load/supply management practices
NASA Astrophysics Data System (ADS)
Vachtsevanos, G. J.; Meliopoulos, A. P.; Paraskevopoulos, B. K.
A methodology is described for simulation of the economic and technical factors of photovoltaic (PV) installations interfacing with utility load/management operations. A probabalistic technique is used to model the expected demand, reliability of the generating units, costs and profits from each unit, expected unserviced energy, and the loss of load probability. The available power from PV arrays is treated stochastically with statistical weighting on the basis of site meteorological data. The goal is to include the PV power while minimizing operational costs, taking into account the level of penetration of the total PV output. Two sample simulations for a utility with a diverse generating mix demonstrate that overall costs would decrease in both cases with PVs on-line through the emphasis on cheaper-fueled generators and peak-load shaving when possible.
Comparison of Wind Power and Load Forecasting Error Distributions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Florita, A.; Orwig, K.
2012-07-01
The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less
Electric Transport Traction Power Supply System With Distributed Energy Sources
NASA Astrophysics Data System (ADS)
Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.
2016-04-01
The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery
NASA Astrophysics Data System (ADS)
Kasprzyk, Leszek; Tomczewski, Andrzej; Bednarek, Karol; Bugała, Artur
2017-10-01
The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.
Decentralized control of units in smart grids for the support of renewable energy supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE; Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE; Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE
Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced bymore » a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.« less
Flexibility of CCS Power Plants and Transport Systems
NASA Astrophysics Data System (ADS)
Nimtz, Michael; Krautz, Hans-Joachim
2013-04-01
Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.
Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel
NASA Astrophysics Data System (ADS)
Fu, Liang; Wu, Changli; Tang, Weiping
2018-02-01
The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.
Research study on multi-KW-DC distribution system
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1975-01-01
A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.
Modular, high power, variable R dynamic electrical load simulator
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1974-01-01
The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.
Loss of Load Probability Calculation for West Java Power System with Nuclear Power Plant Scenario
NASA Astrophysics Data System (ADS)
Azizah, I. D.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.; Shafii, M. A.
2017-03-01
Loss of Load Probability (LOLP) index showing the quality and performance of an electrical system. LOLP value is affected by load growth, the load duration curve, forced outage rate of the plant, number and capacity of generating units. This reliability index calculation begins with load forecasting to 2018 using multiple regression method. Scenario 1 with compositions of conventional plants produce the largest LOLP in 2017 amounted to 71.609 days / year. While the best reliability index generated in scenario 2 with the NPP amounted to 6.941 days / year in 2015. Improved reliability of systems using nuclear power more efficiently when compared to conventional plants because it also has advantages such as emission-free, inexpensive fuel costs, as well as high level of plant availability.
Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S
2018-05-10
The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.
NASA Astrophysics Data System (ADS)
Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.
2013-12-01
In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.
Improving Legacy Aircraft Systems Through Condition-Based Maintenance: An H-60 Case Study
2014-09-01
level functions. These decompositions are equivalent to a detailed design effort in systems engineering. NAMPSOPs have a common architectural structure...Assembly Power Available Spindle Cables No.1 Engine Load Demand Spindle Control Cables Engine Pneumatic Starters Auxiliary Power Unit IRCM FLIR Mission...Analysis Fuel System Main Rotor Head Main Module Main Gear Box Radiator Engine Output Shaft Auxiliary Power Unit Flight Control Cables Tail Landing
Power controller 28Vdc load switching (N. O. SPST). Final report, 31 August 1977-21 January 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMackin, J.B.
1980-01-21
A solid state power controller has been designed in four ratings to switch 28Vdc power to selected loads upon remote command. The four ratings trip out at currents of 10, 5, 2 and 1/2 amps. The design allows for wide variations in load and supply voltage and will not trip out on short load transients of up to 1000% of rated load current. In case of failure of the controller circuitry, an internal fuse protects the load from excessive current. The control current which operates the controller also provides a sensing function so that the state of the controller canmore » be determined remotely. The controllers are designed to operate over a case temperature range of -54 C to 120 C. A quantity of 100 units have been fabricated, tested, and supplied to the Navy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Liu, Guopeng; Huang, Sen
Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivationmore » and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate variable generation sources. The flexible loads can successfully track a power dispatch signal from the coordinator, while having little impact on the quality of service to the end-users.« less
NASA Astrophysics Data System (ADS)
Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.
2010-08-01
The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.
Computer Power. Part 2: Electrical Power Problems and Their Amelioration.
ERIC Educational Resources Information Center
Price, Bennett J.
1989-01-01
Describes electrical power problems that affect computer users, including spikes, sags, outages, noise, frequency variations, and static electricity. Ways in which these problems may be diagnosed and cured are discussed. Sidebars consider transformers; power distribution units; surge currents/linear and non-linear loads; and sizing the power…
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Lebron, Ramon C.
1999-01-01
The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris
2013-01-01
A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.
NASA Astrophysics Data System (ADS)
Mahto, Tarkeshwar; Mukherjee, V.
2016-09-01
In the present work, a two-area thermal-hybrid interconnected power system, consisting of a thermal unit in one area and a hybrid wind-diesel unit in other area is considered. Capacitive energy storage (CES) and CES with static synchronous series compensator (SSSC) are connected to the studied two-area model to compensate for varying load demand, intermittent output power and area frequency oscillation. A novel quasi-opposition harmony search (QOHS) algorithm is proposed and applied to tune the various tunable parameters of the studied power system model. Simulation study reveals that inclusion of CES unit in both the areas yields superb damping performance for frequency and tie-line power deviation. From the simulation results it is further revealed that inclusion of SSSC is not viable from both technical as well as economical point of view as no considerable improvement in transient performance is noted with its inclusion in the tie-line of the studied power system model. The results presented in this paper demonstrate the potential of the proposed QOHS algorithm and show its effectiveness and robustness for solving frequency and power drift problems of the studied power systems. Binary coded genetic algorithm is taken for sake of comparison.
Integrated Stirling Convertor and Hall Thruster Test Conducted
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2002-01-01
An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the Hall thruster discharge circuit operating at 115 Vdc and 0.9 A. Testing planned for late 2001 will examine the possibility of directly driving the Hall thruster discharge circuit using rectified and filtered output from the Stirling alternator.
Operating health analysis of electric power systems
NASA Astrophysics Data System (ADS)
Fotuhi-Firuzabad, Mahmud
The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation. A procedure is illustrated to determine the well-being indices of the overall interconnected system. Under normal operating conditions, the system may also be able to carry a limited amount of interruptible load on top of its firm load without violating the operating criterion. An energy based approach is presented to determine the optimum interruptible load carrying capability in both the isolated and interconnected systems. Composite system spinning reserve assessment and composite system well-being are also examined in this research work. The impacts on the composite well-being of operating reserve considerations such as stand-by units, interruptible loads and the physical locations of these resources are illustrated. It is expected that the well-being framework and the concepts developed in this research work will prove extremely useful in the new competitive utility environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2013-01-01
Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of themore » day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.« less
Space shuttle orbiter auxiliary power unit development challenges
NASA Technical Reports Server (NTRS)
Lance, R.; Weary, D.
1985-01-01
When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.
NASA Astrophysics Data System (ADS)
Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.
2016-08-01
In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.
Short-term load forecasting of power system
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.
Program Predicts Nonlinear Inverter Performance
NASA Technical Reports Server (NTRS)
Al-Ayoubi, R. R.; Oepomo, T. S.
1985-01-01
Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
2016-06-24
The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianzhong, L.; Xiang, Z.; Junhu, Z.
1999-07-01
The No.2 unit (670/H, 200MW) at Hebi Wanhe Power Generation C o. Ltd., was put into use in 1992. This is a coal-fired boiler with tangential fired method. The design coal is Hebi lean coal. To stabilize the combustion without oil at low load, eight original designed burners placed to No. 2 and 3 level on the No.2 boiler were replaced with the controllable pulverized rich/lean ones developed by the Institute for Thermal Power Engineering (ITPE) of Zhejiang University. The practice of successive operation shows that stable combustion can be achieved at 50% load without support oil, even at 45%more » load. The combustible matter in fly ash decreased to 1.12% and 1.17% from 1.83% and 1.32%, respectively at full load (200MW) and half load (100MW). The application has obvious economic benefits.« less
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
14 CFR 27.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... service to essential or emergency loads. (ii) It remains powered for as long as possible without... combination unit, no single electrical failure external to the recorder may disable both the cockpit voice... or by any other loss of power to the electrical power bus. (e) The record container must be located...
14 CFR 29.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... without jeopardizing service to essential or emergency loads. (ii) It remains powered for as long as... boxes or in a combination unit, no single electrical failure external to the recorder may disable both... shutdown or by any other loss of power to the electrical power bus. (e) The record container must be...
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.
2017-06-01
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.
Design of BLDCM emulator for transmission control units
NASA Astrophysics Data System (ADS)
Liu, Chang; He, Yongyi; Zhang, Bodong
2018-04-01
According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.
A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty
NASA Astrophysics Data System (ADS)
Ohmi, Masataro; Mori, Hiroyuki
In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.
Spinning Reserve From Hotel Load Response: Initial Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueck, John D; Kirby, Brendan J
2008-11-01
This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less
The flow field investigations of no load conditions in axial flow fixed-blade turbine
NASA Astrophysics Data System (ADS)
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines
Presas, Alexandre; Valero, Carme; Egusquiza, Eduard
2018-01-01
Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512
Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.
Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard
2018-03-30
Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
NASA Astrophysics Data System (ADS)
Kaszeta, W. J.
1982-12-01
One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.
NASA Technical Reports Server (NTRS)
Kaszeta, W. J.
1982-01-01
One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
Multi-Channel, Constant-Current Power Source for Aircraft Applications
2017-03-01
Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight
NASA Astrophysics Data System (ADS)
Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian
2017-05-01
The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.
The effect of inertial loading on wrist postural tremor in essential tremor.
Héroux, M E; Pari, G; Norman, K E
2009-05-01
Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.
Performance Assessment of Flashed Steam Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, Theodore E.
1980-12-01
Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less
NASA Astrophysics Data System (ADS)
Jaszczuk, Marek; Pawlikowski, Arkadiusz
2017-12-01
The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs' reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).
NASA Astrophysics Data System (ADS)
Szega, Marcin; Nowak, Grzegorz Tadeusz
2013-12-01
In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.
2005-01-01
The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.
A coordinated MIMO control design for a power plant using improved sliding mode controller.
Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi
2014-03-01
For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.
The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less
Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...
2017-04-18
The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less
Dynamic stresses in a Francis model turbine at deep part load
NASA Astrophysics Data System (ADS)
Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri
2017-04-01
A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.
Space station automation of common module power management and distribution
NASA Technical Reports Server (NTRS)
Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.
1989-01-01
The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.
Grid impacts of wind power: a summary of recent studies in the United States
NASA Astrophysics Data System (ADS)
Parsons, Brian; Milligan, Michael; Zavadil, Bob; Brooks, Daniel; Kirby, Brendan; Dragoon, Ken; Caldwell, Jim
2004-04-01
Several detailed technical investigations of grid ancillary service impacts of wind power plants in the United States have recently been performed. These studies were applied to Xcel Energy (in Minnesota) and PacifiCorp and the Bonneville Power Administration (both in the northwestern United States). Although the approaches vary, three utility time frames appear to be most at issue: regulation, load following and unit commitment. This article describes and compares the analytic frameworks from recent analysis and discusses the implications and cost estimates of wind integration. The findings of these studies indicate that relatively large-scale wind generation will have an impact on power system operation and costs, but these impacts and costs are relatively low at penetration rates that are expected over the next several years. Published in 2004 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
NASA Astrophysics Data System (ADS)
Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.
2009-12-01
Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.
77 FR 13193 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... bracket. This AD requires modifying the mounting adapters of the power control unit (PCU). We are issuing this AD to prevent loss of both rudder PCU actuators which could result in free play of the rudder... static and endurance loading conditions. The failure of the mounting brackets that attach the power...
A 2000 ton crawler/transporter for operation in Prudhoe Bay, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trask, W.H.; Trask, J.L.; Crane, T.
1986-01-01
Recently designed and fabricated in Kennewick, Washington, a pair of 2000 ton capacity crawler/transporters has been used in moving refinery modules to permanent installations on Alaska's North Slope. Vehicle design features include four corner chain-driven, track driving sprockets (tumblers), resilient track roller suspensions, elevating load platform (hereinafter ''bolsters''), dynamic braking, diesel/torque converter power, automatic lubrication and electro-pneumatic controls. Four independent power units provide 1400 horse-power per crawler and over two million pounds of drawbar pull at converter stall. Weighing 300 tons, the pin-connected crawler dissembles for highway transport into loads of under 95,000 pounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian
The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unitmore » and the photovoltaic energy source.« less
NASA Technical Reports Server (NTRS)
Wessel, Frank J. (Inventor); Hancock, Donald J. (Inventor)
1987-01-01
Power-processing unit uses AC buses (30, 32) to supply all current dependent needs such as connections (54, 56) to an ion thruster through an inductor (88) and the primary of a transformer (90), to assure limited currents to such loads. Where temperature control is also required, such as to the main discharge vaporizer heater connection (36, 38), switches (100, 102) are serially connected with inductor (96) and the primary of transformer (98). Temperature sensor (104) controls the switches (100, 102) for temperature regulation.
NASA Astrophysics Data System (ADS)
Tai, Wei; Abbasi, Mortez; Ricketts, David S.
2018-01-01
We present the analysis and design of high-power millimetre-wave power amplifier (PA) systems using zero-degree combiners (ZDCs). The methodology presented optimises the PA device sizing and the number of combined unit PAs based on device load pull simulations, driver power consumption analysis and loss analysis of the ZDC. Our analysis shows that an optimal number of N-way combined unit PAs leads to the highest power-added efficiency (PAE) for a given output power. To illustrate our design methodology, we designed a 1-W PA system at 45 GHz using a 45 nm silicon-on-insulator process and showed that an 8-way combined PA has the highest PAE that yields simulated output power of 30.6 dBm and 31% peak PAE.
49 CFR 232.103 - General requirements for all train brake systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the air compressor governor starting or loading pressure. (l) Except as otherwise provided in this... equipment” means equipment left standing and unmanned in such a manner that the brake system of the... unit of the equipment left unattended. (3) Except for distributed power units, the following...
46 CFR 161.002-10 - Automatic fire detecting system control unit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that part of the supply circuit on the load side of the battery transfer switch and fuses. On a system supplied by a branch circuit the “normal source” shall be construed to mean the load side of any... fire alarm shall be electrically supervised. (d) Power failure alarms—(1) Loss of potential. The loss...
Solar thermal plant impact analysis and requirements definition
NASA Technical Reports Server (NTRS)
Gupta, Y. P.
1980-01-01
Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.
NASA Technical Reports Server (NTRS)
Turnquist, S. R.; Twombly, M.; Hoffman, D.
1989-01-01
A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.
Economic environmental dispatch using BSA algorithm
NASA Astrophysics Data System (ADS)
Jihane, Kartite; Mohamed, Cherkaoui
2018-05-01
Economic environmental dispatch problem (EED) is an important issue especially in the field of fossil fuel power plant system. It allows the network manager to choose among different units the most optimized in terms of fuel costs and emission level. The objective of this paper is to minimize the fuel cost with emissions constrained; the test is conducted for two cases: six generator unit and ten generator unit for the same power demand 1200Mw. The simulation has been computed in MATLAB and the result shows the robustness of the Backtracking Search optimization Algorithm (BSA) and the impact of the load demand on the emission.
Operations Studies of the Gyrotrons on DIII-D
NASA Astrophysics Data System (ADS)
Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio
2017-10-01
The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less
Digital Systems Validation Handbook. Volume 2
1989-02-01
power. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case. 4. A wire from circuit to structure. 5. Shield...RETURN. (11) 1. Structure, for power, fault, and "discrete" circuits. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit load back to...TV (14) Television TWTD (13) Thin Wire Time Domain TX (5) Transmit U.K. (13,141 United Kingdom U.S. (14) United States UART (15) Universal Asynchronous
Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin
2015-04-28
We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.
Linear control of a boiler-turbine unit: analysis and design.
Tan, Wen; Fang, Fang; Tian, Liang; Fu, Caifen; Liu, Jizhen
2008-04-01
Linear control of a boiler-turbine unit is discussed in this paper. Based on the nonlinear model of the unit, this paper analyzes the nonlinearity of the unit, and selects the appropriate operating points so that the linear controller can achieve wide-range performance. Simulation and experimental results at the No. 4 Unit at the Dalate Power Plant show that the linear controller can achieve the desired performance under a specific range of load variations.
Power Converters Maximize Outputs Of Solar Cell Strings
NASA Technical Reports Server (NTRS)
Frederick, Martin E.; Jermakian, Joel B.
1993-01-01
Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.
1995-10-20
Onboard Space Shuttle Columbia (STS-73) Payload Specialist Albert Sacco loads autoclaves using a power screwdriver into the Zeolite Crystal Growth (ZCG) experiment in the middeck for the United States Microgravity Laboratory 2 (USML-2) Spacelab mission.
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
Low-NOx burner and SNCR retrofit experience at New England Power Salem Harbor Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartucy, G.; Sload, A.; Fynan, G.
New England Power has recently installed Riley-Stoker low-NO{sub x} burners (LNB) and Nalco Fuel Tech urea-based selective non-catalytic NO{sub x} reduction (SNCR) systems on Units 1 and 3 at its Salem Harbor generating station. In addition, Unit 3 was also retrofit with a two-level overfire air (OFA) system. These two coal-fired units are front wall-fired with unequal burner spacing and have uncontrolled full-load NO{sub x} emissions of nominally 750 ppm (1.1 lb/MMBtu). Unit 1 is rated at 86 MW and has 12 burners, while Unit 3 is rated at 155 MW and has 16 burners. NO{sub x} reduction performance ofmore » the LNB, OFA and SNCR systems has been characterized both independently and in combination during the test programs while firing low-sulfur coals. Unit 1 tests showed that the LNBs provided NO{sub x} reductions of approximately 50 percent at loads above 60 MW using narrow angle coal spreaders. Corresponding ash carbon at these NO{sub x} levels varied between 16 and 35 percent. The SNCR system provided an additional 40 percent NO{sub x} reduction from the LNB baseline at a molar N/NO ratio of 1.2. The corresponding NH{sub 3} slip levels were less than 10 ppm. On Unit 3, LNB tests showed that NO{sub x} reductions of nominally 10 percent were achieved with the burners alone, using wide angle coal spreaders. The use of OFA, at design levels, provided additional NO{sub x} reductions ranging from 42 percent at full load to 4 percent a minimum load relative to the LNB baseline. Ash carbon levels doubled to levels above 30 percent when the OFA system was operated at design conditions at loads above 110 MW. The SNCR system provided NO{sub x} reductions of 33 percent relative to the LNB/OFA baseline of 0.55 lb/MMBtu, at a molar N/NO ratio of 1.3. Ammonia slip for these conditions was less than 5 ppm.« less
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car
NASA Astrophysics Data System (ADS)
Boretti, Albert
2017-12-01
We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability
NASA Astrophysics Data System (ADS)
Zhao-xia, Xiao; Hong-wei, Fang
Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.
Tornado and extreme wind design criteria for nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-12-01
Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less
A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain
NASA Astrophysics Data System (ADS)
Hongfei, Yao; Yuxiong, Cao; Danyu, Wu; Xiaoxi, Ning; Yongbo, Su; Zhi, Jin
2013-07-01
A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.
This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less
Electric power supply and demand for the contiguous United States, 1981 - 1990
NASA Astrophysics Data System (ADS)
1981-07-01
The outlook for electric power supply and demand in the United States decade 1981 to 1990 is reviewed from the perspective of reliability and adequacy of service. Electric power supply adequacy as projected for the nine Regional Reliability Council areas of the contiguous United States is reported as well as interruptible load data reported by the Councils. cogeneration is discussed. Each of the 27 electric regions (sub-areas of the nine Council areas) in the contiguous US are studied. A glossary of terms is given. Appendices describe the Council structure, and include a copy of the ERA-411 Manual, which contains all the items to which the Councils were asked to respond. The utilities with included data, the Staff Report, Estimated Electric Demand and Supply for Summer 1981, Contiguous United States dated May 1981 are included.
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...
2017-11-17
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
Fault Diagnosis of Power Systems Using Intelligent Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Oliver, Walter E. , Jr.
1996-01-01
The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mechanical Engineers (ASME PTC 4.1—1964): Test Code for Steam Generating Units, Power Test Code 4.1-1964... of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You....archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (4) Design, construct...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, H.G.; Reilly, B.P.
1995-03-01
The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallerman, G.; Gray, R.J.
An instrument for crushing-strength determinations of uncoated and pyrolytic-carbon-coated fuel particles (50 to 500 mu in diameter) was developed to relate the crushing strength of the particles to their fabricability. The instrument consists of a loading mechanism, load cell, and a power supply-readout unit. The information that can be obtained by statistical methods of the data analysis is illustrated by results on two batches of fuel particles. (auth)
Performance of bed load transport equations in mountain gravel-bed rivers: A re-analysis
Jeffrey J. Barry; John M. Buffington; John G. King; Peter Goodwin
2006-01-01
Our recent examination of bed load transport data from mountain gravel-bed rivers in the western United States shows that the data can be fit by a simple power function of discharge, with the coefficient being a function of drainage area (a surrogate for basin sediment supply) and the exponent being a function of supply-related channel armoring (transport capacity in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia
Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.
Design of RF energy harvesting platforms for power management unit with start-up circuits
NASA Astrophysics Data System (ADS)
Costanzo, Alessandra; Masotti, Diego
2013-12-01
In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksandrovskii, A. Yu., E-mail: ayaleksand@mail.ru; Soldatkin, A. Yu.; Volkov, D. M.
The capability is studied of improving the investment potential of the Evenkiiskaya HPP by using the power it generates in the United Power System of the European part of Russia by transitioning to a compensated electrical regime of water reservoir resource usage. A quantitative assessment of Evenkiiskaya HPP usage is presented using daily load demand. Increasing the guaranteed HPP power is proposed as an alternative to new nuclear power stations.
Analysis methods for wind turbine control and electrical system dynamics
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1995-01-01
The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.
Power quality improvement of a stand-alone power system subjected to various disturbances
NASA Astrophysics Data System (ADS)
Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din
In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.
NASA Astrophysics Data System (ADS)
Khroustalev, V. A.; Simonyan, A. A.
2017-11-01
There was carried out an analysis of technical characteristics of boiler houses in a number of Russian NPPs. We justified the possibility of their usage for autonomous generation of electrical energy and improvement of maneuvering properties of power complexes as a single object of regulation, as well as the possibility of increasing the total generation capacity of NPP power units during peak hours. Then the selection of the main equipment of house boiler for its autonomous work was done. There were composed basic thermal diagrams of the power complex on the basis of NPP start-up boiler (SUB) and the satellite turbine. The article also considers some options of reconstruction of SUB into the heat-recovery boiler. The developed power complexes are designed to be used on the basis of the two-loop NPP with pressurized power reactors (PWR). They can be applied with serial and projected domestic NPP units with the aim of getting more power, improving the plant capacity factor (PCF), as well as with the aim of NPP participation in the regulation of the load curve above the nominal value with partial replacement of new construction. The power complexes can be a relevant solution in the light of the energy strategy of the Russian Federation, which is aimed at, firstly, further improvement of efficiency and safety at the NPP, and, secondly, solving the problem of adequate maneuverability and ensuring the adjustment range limits in power systems with high share of nuclear power plants. Implementation of new hybrid thermal diagrams allows simultaneous increase in the safety of NPP, and usage of nuclear power plants emergency frequency control in power systems by fast load drop and rise by -4÷+2 % of the nominal value. Due to the usage of different fuels in power complexes, uranium loading in the core of reactor facilities and gas in SUB, there was proposed and formalized the criterion of “thermoeconomic index”. This criterion represents the ratio of the gross receipt from the sale of electricity to the total cost of fuel of all kinds, spent on ensuring power efficiency.
A folded waveguide ICRF antenna for PBX-M and TFTR
NASA Astrophysics Data System (ADS)
Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.
1996-02-01
The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.
Load shifting with the use of home energy management system implemented in FPGA
NASA Astrophysics Data System (ADS)
Bazydło, Grzegorz; Wermiński, Szymon
2017-08-01
The increases for power demand in the Electrical Power System (EPS) causes a significant increase of power in daily load curve and transmission line overload. The large variability in energy consumption in EPS combined with unpredictable weather events can lead to a situation in which to save the stability of the EPS, the power limits must be introduced or even industrial customers in a given area have to be disconnected, which causes financial losses. Nowadays, a Transmission System Operator is looking for additional solutions to reduce peak power, because existing approaches (mainly building new intervention power unit or tariff programs) are not satisfactory due to the high cost of services in combination with insufficient power reduction effect. The paper presents an approach to load shifting with the use of home Energy Management System (EMS) installed at small end-users. The home energy management algorithm, executed by EMS controller, is modeled using Unified Modeling Language (UML). Then, the UML model is translated into Verilog description, and is finally implemented in the Field Programmable Gate Arrays. The advantages of the proposed approach are the relatively low cost of reduction service, small loss of end-users' comfort, and the convenient maintenance of EMS. A practical example illustrating the proposed approach and calculation of potential gains from its implementation are also presented.
Improving flexibility characteristics of 200 MW unit
NASA Astrophysics Data System (ADS)
Taler, Jan; Trojan, Marcin; Taler, Dawid; Dzierwa, Piotr; Kaczmarski, Karol
2017-03-01
Calculations were performed of the thermal system of a power plant with installed water pressure tanks. The maximum rise in the block electric power resulting from the shut-off of low-pressure regenerative heaters is determined. At that time, the boiler is fed with hot water from water pressure tanks acting as heat accumulators. Accumulation of hot water in water tanks is also proposed in the periods of the power unit small load. In order to lower the plant electric power in the off-peak night hours, water heated in low-pressure regenerative heaters and feed water tank to the nominal temperature is directed to water pressure tanks. The water accumulated during the night is used to feed the boiler during the period of peak demand for electricity. Drops in the power block electric power were determined for different capacities of the tanks and periods when they are charged. A financial and economic profitability analysis (of costs and benefits) is made of the use of tanks for a 200 MW power unit. Operating in the automatic system of frequency and power control, the tanks may also be used to ensure a sudden increase in the electric power of the unit. The results of the performed calculations and analyses indicate that installation of water pressure tanks is well justified. The investment is profitable. Water pressure tanks may not only be used to reduce the power unit power during the off-peak night hours and raise it in the periods of peak demand, but also to increase the power capacity fast at any time. They may also be used to fill the boiler evaporator with hot water during the power unit start-up from the cold state.
INPIStron switched pulsed power for dense plasma pinches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Lee, Ja H.
1993-01-01
The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.
NASA Astrophysics Data System (ADS)
Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun
2015-11-01
A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.
Approaches to Enable Demand Response by Industrial Loads for Ancillary Services Provision
NASA Astrophysics Data System (ADS)
Zhang, Xiao
Demand response has gained significant attention in recent years as it demonstrates potentials to enhance the power system's operational flexibility in a cost-effective way. Industrial loads such as aluminum smelters, steel manufacturers, and cement plants demonstrate advantages in supporting power system operation through demand response programs, because of their intensive power consumption, already existing advanced monitoring and control infrastructure, and the strong economic incentive due to the high energy costs. In this thesis, we study approaches to efficiently integrate each of these types of manufacturing processes as demand response resources. The aluminum smelting process is able to change its power consumption both accurately and quickly by controlling the pots' DC voltage, without affecting the production quality. Hence, an aluminum smelter has both the motivation and the ability to participate in demand response. First, we focus on determining the optimal regulation capacity that such a manufacturing plant should provide. Next, we focus on determining its optimal bidding strategy in the day-ahead energy and ancillary services markets. Electric arc furnaces (EAFs) in steel manufacturing consume a large amount of electric energy. However, a steel plant can take advantage of time-based electricity prices by optimally arranging energy-consuming activities to avoid peak hours. We first propose scheduling methods that incorporate the EAFs' flexibilities to reduce the electricity cost. We then propose methods to make the computations more tractable. Finally, we extend the scheduling formulations to enable the provision of spinning reserve. Cement plants are able to quickly adjust their power consumption rate by switching on/off the crushers. However, switching on/off the loading units only achieves discrete power changes, which restricts the load from offering valuable ancillary services such as regulation and load following, as continuous power changes are required for these services. We propose methods that enable these services with the support of an on-site energy storage device. As demonstrated by the case studies, the proposed approaches are effective and can generate practical production instructions for the industrial loads. This thesis not only provides methods to enable demand response by industrial loads but also potentially encourages industrial loads to be active in electricity markets.
Use of a turboexpander in steam power units for heat energy recovery in heat supply systems
NASA Astrophysics Data System (ADS)
Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.
2016-05-01
A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.
Controlled release of free-falling test models
NASA Technical Reports Server (NTRS)
Fife, W. J.; Holway, H. P.
1970-01-01
Releasing device, powered by a drill motor through an adjustable speed reducer, has a spinning release head with three retractable spring-loaded fingers. The fingers are retracted by manual triggering of a cable at the motor end of the unit.
High Performance Auxiliary Power Unit Technology Demonstrator.
1980-12-01
aft bearings 1.13 P3 - Power producer CDP 1.14 DPHE - Lube pressure drop at heat exchanger 1.15 POFP - Load airflow orifice pressure 1.16 DPOFP - Load...PI -PSI G PEBL -PSIG P2 -PS.IG DPHE -PID POFP -F Iu 0. 022±_ 77. 3478 6o5. 6 4±4 ±8L-. 4852 19. 51-17.4 DPOFP -PSID Ni -,. N2-i -RPM NSATM -FPM...28. 0250 83. 3505 29. 861 1:9. 7680 PGi -PSIG PEBL -PSIG P3 -PSIG DPHE -PSID POFP -PSIG 0. 0100 77. 9199 72.4862 17. 25 ±19. 4122 1= DPOFP -PSID NI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
The effects of carbohydrate loading on repetitive jump squat power performance.
Hatfield, Disa L; Kraemer, William J; Volek, Jeff S; Rubin, Martyn R; Grebien, Bianca; Gómez, Ana L; French, Duncan N; Scheett, Timothy P; Ratamess, Nicholas A; Sharman, Matthew J; McGuigan, Michael R; Newton, Robert U; Häkkinen, Keijo
2006-02-01
The beneficial role of carbohydrate (CHO) supplementation in endurance exercise is well documented. However, only few data are available on the effects of CHO loading on resistance exercise performance. Because of the repetitive use of high-threshold motor units, it was hypothesized that the power output (power-endurance) of multiple sets of jump squats would be enhanced following a high-CHO (6.5 g CHO kg body mass(-1)) diet compared to a moderate-CHO (4.4 g CHO kg body mass(-1)) diet. Eight healthy men (mean +/- SD: age 26.3 +/- 2.6 years; weight 73.0 +/- 6.3 kg; body fat 13.4 +/- 5.0%; height 178.2 +/- 6.1 cm) participated in 2 randomly assigned counterbalanced supplementation periods of 4 days after having their free-living habitual diet monitored. The resistance exercise test consisted of 4 sets of 12 repetitions of maximal-effort jump squats using a Plyometric Power System unit and a load of 30% of 1 repetition maximum (1RM). A 2-minute rest period was used between sets. Immediately before and after the exercise test, a blood sample was obtained to determine the serum glucose and blood lactate concentrations. No significant difference in power performance existed between the 2 diets. As expected, there was a significant (p = 0.05) decrease in power performance between the repetitions in every set. Blood lactate concentrations were significantly higher postexercise with both the high-CHO and the moderate- or lower-CHO diet, but there were no differences between conditions. The results indicated that the power output during multiple sets of maximal jump squats was not enhanced following a higher-CHO diet compared to a moderate- or lower-CHO diet. These data show that elevated carbohydrate intake is not needed to optimize a repetitive power-endurance performance when it is done as the first exercise in a workout.
Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Onar, Omer C; DeVault, Robert C
2011-09-01
Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The powermore » system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications for the residential sector. The purpose is to cover the gaps that exist in the information captured by the sensors for energy management system to be able to provide demand response and load factor control. The vision is the development of an energy management system or other controlling enterprise hardware and software that is not only able to control loads, PHEVs, and renewable generation for demand response and load factor control, but also to do so with consumer comforts in mind and in an optimal fashion.« less
Relationships between training load, injury, and fitness in sub-elite collision sport athletes.
Gabbett, Tim J; Domrow, Nathan
2007-11-01
The purpose of this study was to develop statistical models that estimate the influence of training load on training injury and physical fitness in collision sport athletes. The incidence of training injuries was studied in 183 rugby league players over two competitive seasons. Participants were assessed for height, body mass, skinfold thickness, vertical jump, 10-m, 20-m and 40-m sprint time, agility, and estimated maximal aerobic power in the off-season, pre-season, mid-season, and end-season. Training load and injury data were summarised into pre-season, early-competition, and late-competition training phases. Individual training load, fitness, and injury data were modelled using a logistic regression model with a binomial distribution and logit link function, while team training load and injury data were modelled using a linear regression model. While physical fitness improved with training, there was no association (P=0.16-0.99) between training load and changes in physical fitness during any of the training phases. However, increases in training load during the early-competition training phase decreased (P= 0.04) agility performance. A relationship (P= 0.01-0.04) was observed between the log of training load and odds of injury during each training phase, resulting in a 1.50 - 2.85 increase in the odds of injury for each arbitrary unit increase in training load. Furthermore, during the pre-season training phase there was a relationship (P= 0.01) between training load and injury incidence within the training load range of 155 and 590 arbitrary units. During the early and late-competition training phases, increases in training load of 175-620 arbitrary units and 145-410 arbitrary units, respectively, resulted in no further increase in injury incidence. These findings demonstrate that increases in training load, particularly during the pre-season training phase, increase the odds of injury in collision sport athletes. However, while increases in training load from 175 to 620 arbitrary units during the early-competition training phase result in no further increase in injury incidence, marked reductions in agility performances can occur. These findings suggest that reductions in training load during the early-competition training phase can reduce the odds of injury without compromising agility performances in collision sport athletes.
Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters
NASA Astrophysics Data System (ADS)
Schaefer, John F.
An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.
Peak power, force, and velocity during jump squats in professional rugby players.
Turner, Anthony P; Unholz, Cedric N; Potts, Neill; Coleman, Simon G S
2012-06-01
Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η² = 0.915); peak VGRF (p < 0.001, partial η² = 0.854); and peak BV (p < 0.001, partial η² = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.
Decrease of dynamic loads in mobile energy means
NASA Astrophysics Data System (ADS)
Polivaev, O. I.; Gorban, L. K.; Vorohobin, A. V.; Vedrinsky, O. S.
2018-03-01
The increase in the productivity of machine and tractor units is possible due to the increase in operating speeds, this leads to the emergence of increased dynamic loads in the system “engine-transmission-propulsion unit-soil”, which worsens the performance of machine-tractor aggregates. To reduce fluctuations in the “engine-transmission” system, special vibration dampers are used, which installed in close proximity to the engine and protect well the transmission from uneven engine operation; however, such dampers practically do not eliminate the oscillations of external loads. Reducing dynamic loads on the transmission and the mobile power engine (MPE) is an important issue directly related to improving the performance, reliability and durability of the tractor, as well as reducing the slippage of the drive wheels. In order to reduce effectively dynamic loads on the transmission and on the MPE, it is necessary to introduce resilient damping elements closer to the sources of oscillations, namely, to the driving wheels. At the same time, the elastic-damping element should provide accumulation of vibration energy caused by external influences and have a large energy capacity. The installation of an elastic-damping element in the final link of the tractor transmission ensures a reduction in the magnitude of external influences, thereby protecting the engine and transmission from large dynamic loads, and allows one to reduce the slippage of the propellers, which has a positive effect on the traction and energy characteristics of the tractor. Traction tests of the LTP-55 tractor on a concrete road showed that the use of an elasto-damping drive makes it possible to increase the maximum tractive power from 33.5 to 35.3 kW and to reduce the slipping of propellers by 12-30%, the specific fuel consumption by 6-10%. When driving on stubble, the use of an elastic-damping drive increases the maximum tractive power from 25 to 26 kW, reduces the skidding of propellers by 10-28%, and the specific fuel consumption by 10-12.5%.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
NASA Astrophysics Data System (ADS)
Bao, Dechun; Luo, Lichuan; Zhang, Zhaohua; Ren, Tianling
2017-09-01
Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 k {{Ω }} are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.
The Importance of Muscular Strength: Training Considerations.
Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H
2018-04-01
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
Space Station Freedom secondary power wiring requirements
NASA Technical Reports Server (NTRS)
Sawyer, C. R.
1994-01-01
Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.
Real time simulation application to monitor the stability limit of power system
NASA Astrophysics Data System (ADS)
Hartono, Kuo, Ming-Tse
2017-06-01
If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on the schematic rays of the source and node load stability was examined by using Gaussian elimination algorithm [1, 2, 3], then on the basis of ray diagrams the construction work, allowed domain of spare capacity load capacity in space and storage stability for the load button were determined. The GS-ODT program was built on the basis of Gaussian elimination algorithm and stable domain construction work algorithm for Masonic load button by dQ/dU pragmatic criteria. The GS-ODT program has a simple interface and easy to use with the main function is to identify the allowed domain for the load button and thus can assess visually stable reserve still according to the load capacity of the nodes of the IEEE 39 nodes power system in real-time.
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
Ferroresonant Flux-Coupled Battery Charger
NASA Technical Reports Server (NTRS)
Mclyman, C. W.
1986-01-01
Portable battery charger operates at about 20 kHz to take advantage of relatively low weight and low acoustical noise of ferroresonant circuits operating in this frequency range. Charger split into stationary unit connected to powerline and mobile unit connected to battery or other load. Power transferred to mobile unit by magnetic coupling between mating transformer halves. Advantage where sparking at electrical connection might pose explosion hazard or where operator disabled and cannot manipulate plug into wall outlet. Likely applications for charger include wheelchairs and robots.
AC Resonant charger with charge rate unrelated to primary power frequency
Watson, Harold
1982-01-01
An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Ac resonant charger with charge rate unrelated to preimary power requency
Not Available
1979-12-07
An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Cantin, Luc; Deschenes, Mario; D'Amours, Mario
1995-08-15
A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.
NASA Astrophysics Data System (ADS)
Sinaga, R. H. M.; Darmanto, P. S.
2016-09-01
Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.
Major design issues of molten carbonate fuel cell power generation unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.P.
1996-04-01
In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less
NASA Astrophysics Data System (ADS)
Lazzari, R.; Parma, C.; De Marco, A.; Bittanti, S.
2015-07-01
In this paper, we describe a control strategy for a photovoltaic (PV) power plant equipped with an energy storage system (ESS), based on lithium-ion battery. The plant consists of the following units: the PV generator, the energy storage system, the DC-bus and the inverter. The control, organised in a hierarchical manner, maximises the self-consumption of the local load unit. In particular, the ESS action performs power balance in case of low solar radiation or surplus of PV generation, thus managing the power exchange variability at the plant with the grid. The implemented control strategy is under testing in RSE pilot test facility in Milan, Italy.
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh
2015-08-18
Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.
Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System
NASA Astrophysics Data System (ADS)
Zhilenkov, A.; Efremov, A.
2017-01-01
A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.
The design of photovoltaic plants - An optimization procedure
NASA Astrophysics Data System (ADS)
Bartoli, B.; Cuomo, V.; Fontana, F.; Serio, C.; Silvestrini, V.
An analytical model is developed to match the components and overall size of a solar power facility (comprising photovoltaic array), maximum-power tracker, battery storage system, and inverter) to the load requirements and climatic conditions of a proposed site at the smallest possible cost. Input parameters are the efficiencies and unit costs of the components, the load fraction to be covered (for stand-alone systems), the statistically analyzed meteorological data, and the cost and efficiency data of the support system (for fuel-generator-assisted plants). Numerical results are presented in graphs and tables for sites in Italy, and it is found that the explicit form of the model equation is independent of locality, at least for this region.
NASA Astrophysics Data System (ADS)
Goyal, R.; Gandhi, B. K.; Cervantes, M. J.
2018-06-01
Increased penetration of solar and the wind impels the designers of the hydroelectric power generation unit to provide more flexibility in operation for the stability of the grid. The power generating unit includes turbine which needs to sustain sudden change in its operating conditions. Thus, the hydraulic turbine experiences more transients per day which result in chronic problems such as fatigue to the runner, instrument malfunctioning, vibrations, wear and tear etc. This paper describes experiments performed on a high model (1.5:1) Francis turbine for load acceptances from the minimum load. The experiments presented in the paper are the part of Francis-99 workshop which aims to determine the performance of numerical models in simulations of model Francis turbine under steady and transient operating conditions. The aim of the paper is to present the transient pressure variation in the vaneless space of a Francis turbine where high-frequency pulsations are normally expected. For this, two pressure sensors, VL1 and VL2, are mounted at the vaneless space, one near the beginning of the spiral casing and the other before the end of the spiral casing. Both are used to capture the unsteady pressure field developed in the space between guide vanes and runner inlet. The time-resolved pressure signals are analyzed and presented during the transient to observe the pressure variation and dominant frequencies of pulsations.
Cutting planes for the multistage stochastic unit commitment problem
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
2016-04-20
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Cutting planes for the multistage stochastic unit commitment problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Analysis and Research on the effect of the Operation of Small Hydropower in the Regional Power Grid
NASA Astrophysics Data System (ADS)
Ang, Fu; Guangde, Dong; Xiaojun, Zhu; Ruimiao, Wang; Shengyi, Zhu
2018-03-01
The analysis of reactive power balance and voltage of power network not only affects the system voltage quality, but also affects the economic operation of power grid. In the calculation of reactive power balance and voltage analysis in the past, the problem of low power and low system voltage has been the concern of people. When small hydropower stations in the wet period of low load, the analysis of reactive power surplus and high voltage for the system, if small hydropower unit the capability of running in phase is considered, it can effectively solve the system low operation voltage of the key point on the high side.
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
GT200 getting better than 34% efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, R.
1980-01-01
Design features are described for the GT200, a 50-Hz machine blend of high temperature advanced aircraft rotating components and heavy frame industrial gas turbine structure. It includes a twin spool as generator with a two-stage power turbine giving nominal performance of 85,000 kW ISO peak output with a 10,120 Btu per kW-h heat rate on LHV distillate. It is desgined for base, intermediate, or peak load operation simple or combined cycle. Stal-Laval in Sweden developed it and sold the first unit to the Swedish State Power Board in July 1977. The unit was installed at the Stallbocka Station.
Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization
NASA Astrophysics Data System (ADS)
Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar
2017-04-01
Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.
Impacts of demand response and renewable generation in electricity power market
NASA Astrophysics Data System (ADS)
Zhao, Zhechong
This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating explicit LMP formulations and consumer payment requirements into the network-constrained unit commitment (NCUC) problem. The proposed model determines the proper amount of DR loads to be shifted from peak hours to off-peaks under ISO's direct load control, for reducing the operation cost and ensuring that consumer payments of DR loads will not deteriorate significantly after load shifting. Both MINLP and MILP models are discussed, and improved formulation strategies are presented.
Integration issues of a plasma contactor Power Electronics Unit
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.
1995-01-01
A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
NASA Astrophysics Data System (ADS)
Sinaga, R. H. M.; Manik, Y.
2018-03-01
Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.
W5″ Test: A simple method for measuring mean power output in the bench press exercise.
Tous-Fajardo, Julio; Moras, Gerard; Rodríguez-Jiménez, Sergio; Gonzalo-Skok, Oliver; Busquets, Albert; Mujika, Iñigo
2016-11-01
The aims of the present study were to assess the validity and reliability of a novel simple test [Five Seconds Power Test (W5″ Test)] for estimating the mean power output during the bench press exercise at different loads, and its sensitivity to detect training-induced changes. Thirty trained young men completed as many repetitions as possible in a time of ≈5 s at 25%, 45%, 65% and 85% of one-repetition maximum (1RM) in two test sessions separated by four days. The number of repetitions, linear displacement of the bar and time needed to complete the test were recorded by two independent testers, and a linear encoder was used as the criterion measure. For each load, the mean power output was calculated in the W5″ Test as mechanical work per time unit and compared with that obtained from the linear encoder. Subsequently, 20 additional subjects (10 training group vs. 10 control group) were assessed before and after completing a seven-week training programme designed to improve maximal power. Results showed that both assessment methods correlated highly in estimating mean power output at different loads (r range: 0.86-0.94; p < .01) and detecting training-induced changes (R(2): 0.78). Good to excellent intra-tester (intraclass correlation coefficient (ICC) range: 0.81-0.97) and excellent inter-tester (ICC range: 0.96-0.99; coefficient of variation range: 2.4-4.1%) reliability was found for all loads. The W5″ Test was shown to be a valid, reliable and sensitive method for measuring mean power output during the bench press exercise in subjects who have previous resistance training experience.
77 FR 76542 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... cable insulation and limited floor based combustibles. The licensee also stated that two of the fire... are provided with ionization smoke detectors. The licensee stated that the smoke and heat detection... combustible loading that predominantly consists of cable insulation and that potential ignition sources for...
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
A direct methanol fuel cell system to power a humanoid robot
NASA Astrophysics Data System (ADS)
Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong
In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yishen; Zhou, Zhi; Liu, Cong
2016-08-01
As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less
Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System
NASA Astrophysics Data System (ADS)
Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.
2016-12-01
The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.
Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints
NASA Astrophysics Data System (ADS)
Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin
2017-05-01
Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.
DOT National Transportation Integrated Search
2016-06-01
An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...
Measuring techniques in the measuring program for the windpowered unit GROWIAN
NASA Astrophysics Data System (ADS)
Koerber, F.
1984-02-01
The measuring strategy in the GROWIAN program and the measuring systems are presented. Power, load, and behavior during operation were checked. The determining physical characteristics, mainly mechanical and electrical, are obtained with 200 measuring points; they are recorded and evaluated by a data processing system.
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
49 CFR 393.95 - Emergency equipment on all power units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... relative to the motor vehicle. (5) Extinguishing agents. The fire extinguisher must use an extinguishing agent that does not need protection from freezing. Extinguishing agents must comply with the toxicity... transportation of Division 2.1 (flammable gas) or Class 3 (flammable liquid) hazardous materials whether loaded...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Jacob; Fleming, Paul; Pao, Lucy Y.
As wind energy generation becomes more prevalent in some regions, there is increased demand for wind power plants to provide ancillary services, which are essential for grid reliability. This paper compares two different wind turbine control methodologies to provide active power control (APC) ancillary services, which include derating or curtailing power generation, providing automatic generation control (AGC), and providing primary frequency control (PFC). The torque APC controller provides all power control through the power electronics whereas the pitch APC controller uses the blade pitch actuators as the primary means of power control. These controllers are simulated under various wind conditionsmore » with different derating set points and AGC participation levels. The metrics used to compare their performance are the damage equivalent loads (DELs) induced on the structural components and AGC performance metrics, which are used to determine the payments for AGC services by system operators in the United States. The simulation results show that derating the turbine reduces structural loads for both control methods, with the APC pitch control providing larger reductions in DELs, lower AGC performance scores, and higher root-mean-square pitch rates. Providing AGC increases the structural loads when compared to only derating the turbine, but even the AGC DELs are generally lower than those of the baseline control system. The torque APC control methodology also allows for more sustained PFC responses under certain derating conditions.« less
Flywheel energy storage for electromechanical actuation systems
NASA Technical Reports Server (NTRS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
1991-01-01
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Flywheel energy storage for electromechanical actuation systems
NASA Astrophysics Data System (ADS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
NASA Astrophysics Data System (ADS)
Nagarajan, Adarsh; Shireen, Wajiha
2013-06-01
This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments
Space Electronic Test Engineering
NASA Technical Reports Server (NTRS)
Chambers, Rodney D.
2004-01-01
The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower the voltage signal down low enough so that it is harmless to a computer. Along with my involvement in the Space Power and Propulsion Test Engineering Branch, I am obligated to assist all other members of the branch in their work. This will help me to strengthen and extend my knowledge of Electrical Engineering.
A drive unit for the instrument pointing system
NASA Technical Reports Server (NTRS)
Birner, R.; Roth, M.
1981-01-01
The requirements, capabilities, and unique design features of the instrument pointing system drive units (DU) are presented. The DU's are identical for all three gimbal axes (elevation, cross elevation, and azimuth) and provide alternating rotation of shaft versus the housing of + or - 180 deg. The design features include: two ball bearing cartridges using cemented carbide balls coated with TiC a layer; redundant brushless torque motors and resolvers; a load by-pass mechanism driven by a dc torque motor to off-load the bearings during ascent/descent, ground transportation, and to provide an emergency breaking capability; and cabling over each gimbal axis by means of cable follow-up consisting of 13 signal and 15 power flat band cable loops. Test results of disturbance torque characteristics are presented.
Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON
Wang, Liqian; Zhang, Zhiguo; Chen, Xue
2014-01-01
Energy consumption in optical access networks costs carriers substantial operational expense (OPEX) every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON), a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs) can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS) guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain. PMID:25177727
2017-01-01
Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load. PMID:28426739
Bozkurt, Ömer Özgür; Biricik, Göksel; Tayşi, Ziya Cihan
2017-01-01
Load information plays an important role in deregulated electricity markets, since it is the primary factor to make critical decisions on production planning, day-to-day operations, unit commitment and economic dispatch. Being able to predict the load for a short term, which covers one hour to a few days, equips power generation facilities and traders with an advantage. With the deregulation of electricity markets, a variety of short term load forecasting models are developed. Deregulation in Turkish Electricity Market has started in 2001 and liberalization is still in progress with rules being effective in its predefined schedule. However, there is a very limited number of studies for Turkish Market. In this study, we introduce two different models for current Turkish Market using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative performances. Building models that cope with the dynamic nature of deregulated market and are able to run in real-time is the main contribution of this study. We also use our ANN based model to evaluate the effect of several factors, which are claimed to have effect on electrical load.
Economically dispatching cogeneration facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, E.
Economic dispatching has been used by utilities to meet the energy demands of their customers for decades. The objective was to first load those units which cost the least to run and slowly increase the loading of more expensive units as the incremental energy price increased. Although this concept worked well for utility based systems where incremental costs rose with peak demand, the independent power producers(IPPs) and the power purchase agreements (PPAs) have drastically changed this notion. Most PPAs structured for the IPP environment have negotiated rates which remain the same during peak periods and base their electrical generation onmore » specific process steam requirements. They also must maintain the required production balance of process steam and electrical load in order to qualify as a Public Utility Regulatory Policies Act (PURPA) facility. Consequently, economically dispatching Cogeneration facilities becomes an exercise in adhering to contractual guidelines while operating the equipment in the most efficient manner possible for the given condition. How then is it possible to dispatch a Cogeneration facility that maintains the electrical load demand of JFK Airport while satisfying all of its heating and cooling needs? Contractually, Kennedy International Airport Cogen (KIAC) has specific obligations concerning electrical and thermal energy exported to JFK Airport. The facility`s impressive array of heating and cooling apparatuses together with the newly installed cogen fulfilled the airport`s needs by utilizing an endless combination of new and previously installed equipment. Moreover, in order to economically operate the plant a well structured operating curriculum was necessary.« less
Detection and analysis of part load and full load instabilities in a real Francis turbine prototype
NASA Astrophysics Data System (ADS)
Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme
2017-04-01
Francis turbines operate in many cases out of its best efficiency point, in order to regulate their output power according to the instantaneous energy demand of the grid. Therefore, it is of paramount importance to analyse and determine the unstable operating points for these kind of units. In the framework of the HYPERBOLE project (FP7-ENERGY-2013-1; Project number 608532) a large Francis unit was investigated numerically, experimentally in a reduced scale model and also experimentally and numerically in the real prototype. This paper shows the unstable operating points identified during the experimental tests on the real Francis unit and the analysis of the main characteristics of these instabilities. Finally, it is shown that similar phenomena have been identified on previous research in the LMH (Laboratory for Hydraulic Machines, Lausanne) with the reduced scale model.
Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karanjit; Zhang, Wei; Lian, Jianming
2013-10-30
With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system atmore » an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.« less
Development in helicopter tail boom strake applications in the US
NASA Technical Reports Server (NTRS)
Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.
1988-01-01
The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.
Phase I Development of Neutral Beam Injector Solid-State Power System
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth
2017-10-01
Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.
Flywheel Energy Storage Technology Workshop
NASA Astrophysics Data System (ADS)
Okain, D.; Howell, D.
Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.
Oilwell Power Controller (OPC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less
Thermal energy storage for power generation applications
NASA Astrophysics Data System (ADS)
Drost, M. K.; Antoniak, Zen I.; Brown, D. R.
1990-03-01
Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.
Development of a microprocessor controller for stand-alone photovoltaic power systems
NASA Technical Reports Server (NTRS)
Millner, A. R.; Kaufman, D. L.
1984-01-01
A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.
Load power device, system and method of load control and management employing load identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
Data feature: 1996 world nuclear electricity production
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
Detailed data on electricity supplied by nuclear power reactors in 1996 are provided. Figures from the International Atomic Energy Agency indicate that a total of 32 countries worldwide were operating 441 nuclear power plants with an installed capacity of 350,411 GWe, and that 36 commercial nuclear power plant units in 14 different countries with an aggregate installed capacity of 27,928 GWe were under construction. Worldwide nuclear generated electricity increased by 3.6% from 1995 to 1996, providing 17.3% of the world`s electricity production. Data for individual countries and regional totals, including generation and consumption data by source, are provided for Westernmore » Europe, Eastern Europe, the Commonwealth of Independent States, the Far East, Canada, and the United States. Other information provided includes 1996 commercial startups, decommissioning, reactor load factors, imports and exports, and gross electricity production.« less
NASA Technical Reports Server (NTRS)
Redwine, W. J.
1979-01-01
A timeline containing altitude, control surface deflection rates and angles, hinge moment loads, thrust vector control gimbal rates, and main throttle settings is used to derive the model. The timeline is constructed from the output of one or more trajectory simulation programs.
Hydroelectric System Response to Part Load Vortex Rope Excitation
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.
2016-11-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
Operational Results From a High Power Alternator Test Bed
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.
NASA Technical Reports Server (NTRS)
1982-01-01
Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.
Load controller and method to enhance effective capacity of a photovoltaic power supply
Perez, Richard
2000-01-01
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasasso, M.; Runyan, B.; Napoli, J.
1995-06-01
This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over amore » specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.« less
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Efremov, A. A.
2017-02-01
A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on the condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of a gas-diesel engine may be reduced 25-30 times in case of optimal settings of the controller in the whole power range. The results of modelling showing a considerable quality improvement of transient processes in the investigated system during a sharp change of loading are presented in this article.
Solid State Remote Power Controllers for high voltage DC distribution systems
NASA Technical Reports Server (NTRS)
Billings, W. W.; Sundberg, G. R.
1977-01-01
Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.
Next generation information communication infrastructure and case studies for future power systems
NASA Astrophysics Data System (ADS)
Qiu, Bin
As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective is to shed the load in the limited area with minimum disturbance.
NASA Astrophysics Data System (ADS)
Mysore, Abhishek Arun Babu
A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.
Rotor instability due to a gear coupling connected to a bearingless sun wheel of a planetary gear
NASA Technical Reports Server (NTRS)
Buehlmann, E. T.; Luzi, A.
1989-01-01
A 21 MW electric power generating unit comprises a gas turbine, a planetary gear, and a generator connected together by gear couplings. For simplicity of the design and high performance the pinion of the gear has no bearing. It is centered by the planet wheels only. The original design showed a strong instability and a natural frequency increasing with the load between 2 and 6.5 MW. In this operating range the natural frequency was below the operating speed of the gas turbine, n sub PT = 7729 RPM. By shortening the pinion shaft and reduction of its moment of inertia the unstable natural frequency was shifted well above the operating speed. With that measure the unit now operates with stability in the entire load range.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
Near-term implications of a ban on new coal-fired power plants in the United States.
Newcomer, Adam; Apt, Jay
2009-06-01
Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.
Superconducting Magnetic Energy Storage (SMES) Program
NASA Astrophysics Data System (ADS)
Rogers, J. D.
1985-05-01
The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Interites. The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. It was shown that the Pacific ac Interite has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. The reliability of the SMES subsystems with a narrow band noise input was assessed. Parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system is concluded.
Restrictive loads powered by separate or by common electrical sources
NASA Technical Reports Server (NTRS)
Appelbaum, J.
1989-01-01
In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.
Perez, Richard
2005-05-03
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.
Use of circulating-fluidized-bed combustors in compressed-air energy storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.
1990-07-01
This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less
Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Robynne; Ordonez-Sanchez, Stephanie; Porter, Kate E.
Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towingmore » tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.« less
Modeling and control of fuel cell based distributed generation systems
NASA Astrophysics Data System (ADS)
Jung, Jin Woo
This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.
The Meteosat Second Generation (MSG) power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, J.E.; Levins, D.; Robben, A.
1997-12-31
Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less
Solving large scale unit dilemma in electricity system by applying commutative law
NASA Astrophysics Data System (ADS)
Legino, Supriadi; Arianto, Rakhmat
2018-03-01
The conventional system, pooling resources with large centralized power plant interconnected as a network. provides a lot of advantages compare to the isolated one include optimizing efficiency and reliability. However, such a large plant need a huge capital. In addition, more problems emerged to hinder the construction of big power plant as well as its associated transmission lines. By applying commutative law of math, ab = ba, for all a,b €-R, the problem associated with conventional system as depicted above, can be reduced. The idea of having small unit but many power plants, namely “Listrik Kerakyatan,” abbreviated as LK provides both social and environmental benefit that could be capitalized by using proper assumption. This study compares the cost and benefit of LK to those of conventional system, using simulation method to prove that LK offers alternative solution to answer many problems associated with the large system. Commutative Law of Algebra can be used as a simple mathematical model to analyze whether the LK system as an eco-friendly distributed generation can be applied to solve various problems associated with a large scale conventional system. The result of simulation shows that LK provides more value if its plants operate in less than 11 hours as peaker power plant or load follower power plant to improve load curve balance of the power system. The result of simulation indicates that the investment cost of LK plant should be optimized in order to minimize the plant investment cost. This study indicates that the benefit of economies of scale principle does not always apply to every condition, particularly if the portion of intangible cost and benefit is relatively high.
Direct drive options for electric propulsion systems
NASA Technical Reports Server (NTRS)
Hamley, John A.
1995-01-01
Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
NASA Astrophysics Data System (ADS)
Bass, Jeremy Hugh
Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.
Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match
USDA-ARS?s Scientific Manuscript database
Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Environmental Assessment and Finding of No Significant Impact. FOR FURTHER INFORMATION CONTACT: B. Jennifer... for FPL to use Amendment 1 to CoC 1030 for their ISFSI loading campaign. Environmental Impacts of the... be no significant environmental impact if the exemption is granted. The staff has determined that the...
NASA Astrophysics Data System (ADS)
Xu, Jun
Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.
Swarm based mean-variance mapping optimization (MVMOS) for solving economic dispatch
NASA Astrophysics Data System (ADS)
Khoa, T. H.; Vasant, P. M.; Singh, M. S. Balbir; Dieu, V. N.
2014-10-01
The economic dispatch (ED) is an essential optimization task in the power generation system. It is defined as the process of allocating the real power output of generation units to meet required load demand so as their total operating cost is minimized while satisfying all physical and operational constraints. This paper introduces a novel optimization which named as Swarm based Mean-variance mapping optimization (MVMOS). The technique is the extension of the original single particle mean-variance mapping optimization (MVMO). Its features make it potentially attractive algorithm for solving optimization problems. The proposed method is implemented for three test power systems, including 3, 13 and 20 thermal generation units with quadratic cost function and the obtained results are compared with many other methods available in the literature. Test results have indicated that the proposed method can efficiently implement for solving economic dispatch.
Research on power source structure optimization for East China Power Grid
NASA Astrophysics Data System (ADS)
Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da
2017-05-01
The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2013-10-01 2013-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2014-10-01 2014-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2012-10-01 2012-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2011-10-01 2011-10-01 false Loads on systems without a temporary emergency power...
46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2010-10-01 2010-10-01 false Loads on systems without a temporary emergency power...
Perez, Richard
2003-04-01
A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.
Entropy production and optimization of geothermal power plants
NASA Astrophysics Data System (ADS)
Michaelides, Efstathios E.
2012-09-01
Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
Load power device and system for real-time execution of hierarchical load identification algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh
A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.
A Hybrid Demand Response Simulator Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-05-02
A hybrid demand response simulator is developed to test different control algorithms for centralized and distributed demand response (DR) programs in a small distribution power grid. The HDRS is designed to model a wide variety of DR services such as peak having, load shifting, arbitrage, spinning reserves, load following, regulation, emergency load shedding, etc. The HDRS does not model the dynamic behaviors of the loads, rather, it simulates the load scheduling and dispatch process. The load models include TCAs (water heaters, air conditioners, refrigerators, freezers, etc) and non-TCAs (lighting, washer, dishwasher, etc.) The ambient temperature changes, thermal resistance, capacitance, andmore » the unit control logics can be modeled for TCA loads. The use patterns of the non-TCA can be modeled by probability of use and probabilistic durations. Some of the communication network characteristics, such as delays and errors, can also be modeled. Most importantly, because the simulator is modular and greatly simplified the thermal models for TCA loads, it is very easy and fast to be used to test and validate different control algorithms in a simulated environment.« less
Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning.
Liu, Weirong; Zhuang, Peng; Liang, Hao; Peng, Jun; Huang, Zhiwu; Weirong Liu; Peng Zhuang; Hao Liang; Jun Peng; Zhiwu Huang; Liu, Weirong; Liang, Hao; Peng, Jun; Zhuang, Peng; Huang, Zhiwu
2018-06-01
Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.
PSO Algorithm for an Optimal Power Controller in a Microgrid
NASA Astrophysics Data System (ADS)
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Characteristics and Energy Use of Volume Servers in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, H.; Shehabi, A.; Ganeshalingam, M.
Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less
OA-7 Final "Powered" Cargo Loading and Closeouts Banner Installation
2017-03-06
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians perform final cargo and power installation in the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station
Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test
NASA Technical Reports Server (NTRS)
Jevitt, S. J.
1973-01-01
A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.
Smart Inverter Control and Operation for Distributed Energy Resources
NASA Astrophysics Data System (ADS)
Tazay, Ahmad F.
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter
2009-05-01
The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p < 0.05). No significant differences were found in P01. The men had significantly higher P02 at all loads except 75% BW). Maximum P was reached at light loads (men at 25% BW and women at 0% BW), and P decreased uniformly thereafter. Individual power-load curves show a deflection point. It is proposed that the load where the power-load deflection point occurs be used as the power training load and not the load at which maximum P is reached. It is also proposed that loads not be described in %1-repetition maximum (RM), but as %BW. This system can be used to safely assess and train power with loaded jumps and free weights.
Modeling, analysis and control of fuel cell hybrid power systems
NASA Astrophysics Data System (ADS)
Suh, Kyung Won
Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise due to the conflicting objectives. The compromise can be mitigated by augmenting the fuel cell power system with an energy buffer such as a battery. We consider two different and popular ways of connecting the battery and the fuel cell to the load and we refer to them as electric architectures. Various controller gains are used to span the fuel cell operation from load-following to load-leveling, and hence, to determine adequate fuel cell-battery sizing (hybridization level) and the associated trends in the system efficiency.
Biobatteries and biofuel cells with biphenylated carbon nanotubes
NASA Astrophysics Data System (ADS)
Stolarczyk, Krzysztof; Kizling, Michał; Majdecka, Dominika; Żelechowska, Kamila; Biernat, Jan F.; Rogalski, Jerzy; Bilewicz, Renata
2014-03-01
Single-walled carbon nanotubes (SWCNTs) covalently biphenylated are used for the construction of cathodes in a flow biobattery and in flow biofuel cell. Zinc covered with a hopeite layer is the anode in the biobattery and glassy carbon electrode covered with bioconjugates of single-walled carbon nanotubes with glucose oxidase and catalase is the anode of the biofuel cell. The potentials of the electrodes are measured vs. the Ag/AgCl reference electrode under changing loads of the fuel cell/biobattery. The power density of the biobattery with biphenylated nanotubes at the cathode is ca. 0.6 mW cm-2 and the open circuit potential is ca. 1.6 V. In order to obtain larger power densities and voltages three biobatteries are connected in a series which leads to the open circuit potential of ca. 4.8 V and power density 2.1 mW cm-2 at 3.9 V under 100 kΩ load. The biofuel cell shows power densities of ca. 60 μW cm-2 at 20 kΩ external resistance but the open circuit potential for such biofuel cell is only 0.5 V. The biobattery showing significantly larger power densities and open circuit voltages are especially useful for testing novel cathodes and applications such as powering units for clocks and sensing devices.
Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-08-01
This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.
Shock and vibration tests of a SNAP-8 NaK pump
NASA Technical Reports Server (NTRS)
Stromquist, A. J.; Nelson, R. B.; Hibben, L.
1971-01-01
The pump used for reactor cooling in the SNAP 8 space power system was subjected to the expected vehicle launch vibration, and shock loading in accordance with the SNAP 8 environmental specification. Subsequent disassembly revealed damage to the thrust bearing pins, which should be redesigned and strengthened. The unit was operational, however, when run in a test loop after reassembly.
NASA Astrophysics Data System (ADS)
Szurgacz, Dawid
2018-01-01
The article discusses basic functions of a powered roof support in a longwall unit. The support function is to provide safety by protecting mine workings against uncontrolled falling of rocks. The subject of the research includes the measures to shorten the time of roof support shifting. The roof support is adapted to transfer, in hazard conditions of rock mass tremors, dynamic loads caused by mining exploitation. The article presents preliminary research results on the time reduction of the unit advance to increase the extraction process and thus reduce operating costs. Conducted stand tests showed the ability to increase the flow for 3/2-way valve cartridges. The level of fluid flowing through the cartridges is adequate to control individual actuators.
Near-term implications of a ban on new coal-fired power plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Newcomer; Jay Apt
2009-06-15
Large numbers of proposed new coal power generators in the United States have been cancelled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO{sub 2} emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changesmore » in dispatch order, CO{sub 2} emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO{sub 2} reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies. 50 refs., 5 figs., 4 tabs.« less
SSV Launch Monitoring Strategies: HGDS Design Implementation Through System Maturity
NASA Technical Reports Server (NTRS)
Shoemaker, Marc D.; Crimi, Thomas
2010-01-01
With over 500,000 gallons of liquid hydrogen and liquid oxygen, it is of vital importance to monitor the space shuttle vehicle (SSV) from external tank (ET) load through launch. The Hazardous Gas Detection System (HGDS) was installed as the primary system responsible for monitoring fuel leaks within the orbiter and ET. The HGDS was designed to obtain the lowest possible detection limits with the best resolution while monitoring the SSV for any hydrogen, helium, oxygen, or argon as the main requirement. The HGDS is a redundant mass spectrometer used for real-time monitoring during Power Reactant Storage and Distribution (PRSD) load and ET load through launch or scrub. This system also performs SSV processing leak checks of the Tail Service Mast (TSM) umbilical quick disconnects (QD's), Ground Umbilical Carrier Plate (GUCP) QD's and supports auxiliary power unit (APU) system tests. From design to initial implementation and operations, the HGDS has evolved into a mature and reliable launch support system. This paper will discuss the operational challenges and lessons learned from facing design deficiencies, validation and maintenance efforts, life cycle issues, and evolving requirements
MEMS electromagnetic energy harvesters with multiple resonances
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan R.; Gray, Robert
2014-06-01
There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.
Nindl, Bradley C; Jones, Bruce H; Van Arsdale, Stephanie J; Kelly, Karen; Kraemer, William J
2016-01-01
This article summarizes presentations from a 2014 United States Department of Defense (DoD) Health Affairs Women in Combat symposium addressing physiological, musculoskeletal injury, and optimized physical training considerations from the operational physical performance section. The symposium was held to provide a state-of-the-science meeting on the U.S. DoD's rescinding of the ground combat exclusion policy opening up combat-centric occupations to women. Physiological, metabolic, body composition, bone density, cardiorespiratory fitness, and thermoregulation differences between men and women were briefly reviewed. Injury epidemiological data are presented within military training and operational environments demonstrating women to be at a higher risk for musculoskeletal injuries than men. Physical training considerations for improved muscle strength and power, occupational task performance, load carriage were also reviewed. Particular focus of this article was given to translating physiological and epidemiological findings from the literature on these topics toward actionable guidance and policy recommendations for military leaders responsible for military physical training doctrine: (1) inclusion of resistance training with special emphasis on strength and power development (i.e., activation of high-threshold motor units and recruitment of type II high-force muscle fibers), upper-body strength development, and heavy load carriage, (2) moving away from "field expediency" as the major criteria for determining military physical training policy and training implementation, (3) improvement of load carriage ability with emphasis placed on specific load carriage task performance, combined with both resistance and endurance training, and (4) providing greater equipment resources, coaching assets, and increased training time dedicated to physical readiness training. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama
2014-04-01
In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.
Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng
2018-05-01
The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak
2010-02-01
This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.
Smart Grid Integrity Attacks: Characterizations and Countermeasures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annarita Giani; Eilyan Bitar; Miles McQueen
2011-10-01
Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacksmore » [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.« less
Options for near-term phaseout of CO(2) emissions from coal use in the United States.
Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward
2010-06-01
The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future.
NASA Astrophysics Data System (ADS)
Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.
2014-09-01
A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.
Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.
2009-01-01
Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
O'Sullivan, G.A.; O'Sullivan, J.A.
1999-07-27
In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.
O'Sullivan, George A.; O'Sullivan, Joseph A.
1999-01-01
In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.
Facing technological challenges of Solar Updraft Power Plants
NASA Astrophysics Data System (ADS)
Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.
2015-01-01
The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.
NASA Technical Reports Server (NTRS)
2001-01-01
Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
Creation of Power Reserves Under the Market Economy Conditions
NASA Astrophysics Data System (ADS)
Mahnitko, A.; Gerhards, J.; Lomane, T.; Ribakov, S.
2008-09-01
The main task of the control over an electric power system (EPS) is to ensure reliable power supply at the least cost. In this case, requirements to the electric power quality, power supply reliability and cost limitations on the energy resources must be observed. The available power reserve in an EPS is the necessary condition to keep it in operation with maintenance of normal operating variables (frequency, node voltage, power flows via the transmission lines, etc.). The authors examine possibilities to create power reserves that could be offered for sale by the electric power producer. They consider a procedure of price formation for the power reserves and propose a relevant mathematical model for a united EPS, the initial data being the fuel-cost functions for individual systems, technological limitations on the active power generation and consumers' load. As the criterion of optimization the maximum profit for the producer is taken. The model is exemplified by a concentrated EPS. The computations have been performed using the MATLAB program.
Advanced batteries for load-leveling - The utility perspective on system integration
NASA Astrophysics Data System (ADS)
Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.
1982-09-01
Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
USDA-ARS?s Scientific Manuscript database
The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...
NASA Technical Reports Server (NTRS)
Hamilton, M. L.; Burriss, W. L.
1972-01-01
Numerous candidate APU concepts, each meeting the space shuttle APU problem statement are considered. Evaluation of these concepts indicates that the optimum concept is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads.
Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Harrington, R.M.; Greene, S.R.
1981-11-01
This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less
Compressed Natural Gas Technology for Alternative Fuel Power Plants
NASA Astrophysics Data System (ADS)
Pujotomo, Isworo
2018-02-01
Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.
14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CATEGORY AIRPLANES Structure Ground Loads § 23.511 Ground load; unsymmetrical loads on multiple-wheel units... coefficient of friction of 0.8 applied to the main gear and its supporting structure. (b) Unequal tire loads... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...
Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg
2007-06-01
Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
Connection technology of HPTO type WECs and DC nano grid in island
NASA Astrophysics Data System (ADS)
Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin
2016-07-01
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.
Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan
2012-07-01
In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.
NASA Astrophysics Data System (ADS)
Radziszewska, Weronika; Nahorski, Zbigniew
An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.
Augusteyn, Robert C; Mohamed, Ashik; Nankivil, Derek; Veerendranath, Pesala; Arrieta, Esdras; Taneja, Mukesh; Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie
2011-01-01
The purpose of this study was to study the age-dependence of the optomechanical properties of human lenses during simulated disaccommodation in a mechanical lens stretcher, designed to determine accommodative forces as a function of stretch distance, to compare the results with in vivo disaccommodation and to examine whether differences exist between eyes harvested in the USA and India. Post-mortem human eyes obtained in the USA (n=46, age = 6 to 83 years) and India (n=91, age = 1 day to 85 years) were mounted in an optomechanical lens stretching system and dissected to expose the lens complete with its accommodating framework, including zonules, ciliary body, anterior vitreous and a segmented rim of sclera. Disaccommodation was simulated through radial stretching of the sectioned globe by 2 mm in increments of 0.25 mm. The load, inner ciliary ring diameter, lens equatorial diameter, central thickness and power were measured at each step. Changes in these parameters were examined as a function of age, as were the dimension/load and power/load responses. Unstretched lens diameter and thickness increased over the whole age range examined and were indistinguishable from those of in vivo lenses as well as those of in vitro lenses freed from zonular attachments. Stretching increased the diameter and decreased the thickness in all lenses examined but the amount of change decreased with age. Unstretched lens power decreased with age and the accommodative amplitude decreased to zero by age 45-50. The load required to produce maximum stretch was independent of age (median 80 mN) whereas the change in lens diameter and power per unit load decreased significantly with age. The age related changes in the properties of human lenses, as observed in the lens stretching device, are similar to those observed in vivo and are consistent with the classical Helmholtz theory of accommodation. The response of lens diameter and power to disaccommodative (stretching) forces decreases with age, consistent with lens nuclear stiffening. PMID:21658404
Green Application for Space Power
NASA Technical Reports Server (NTRS)
Robinson, Joel
2015-01-01
Most space vehicle auxiliary power units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel that requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants (less toxic) that could enable their use in APUs. The Swedish government, in concert with the Swedish Space Corporation, has developed a propellant based on ammonium dinitramide (LMP-103S) that was flown on the Prisma spacecraft in 2010. The United States Air Force (USAF) has been developing a propellant based on hydroxylammonium nitrate (AFM315E) that is scheduled to fly on the Green Propellant Infusion Mission in the spring of 2016 to demonstrate apogee and reaction control thrusters. However, no one else in the Agency is currently pursuing use of green propellants for application to the APUs. Per the TA-01 Launch Propulsion Roadmap, the Space Technology Mission Directorate had identified the need to have a green propellant APU by 2015. This is our motivation for continuing activities.
Graphite fiber polyimide composites for spherical bearings to 340 C (650 F)
NASA Technical Reports Server (NTRS)
Sliney, H. E.; Johnson, R. L.
1972-01-01
Journal bearings with self-alining spherical elements of graphite-fiber-reinforced-polyimide composites were tested from 24 to 340 C (75 to 650 F) at unit loads up to 3.5 times 10 to the 7th power N/sq m (5000 psi). The journal oscillated in the cylindrical bore of the composite element + or - 15 deg at 1 hertz. Outer races and journals were metal hardened of Rockwell C-32 and finished to 10 to the minus 7th power m. A 45 wt. percent graphite-fiber composite gave low friction (0.08 to 0.13), low wear, and almost no plastic deformation under any of the test conditions. Composites with 15 and 25 wt. percent graphite fiber failed by plastic deformation at 315 C (600 F) and 3.5 times 10 to the 7th power N/sq m (5000 psi). A composite with 60 wt. percent graphite fiber failed by brittle fracture under the same conditions, but had very low friction coefficients (0.05 to 0.10) and may be a good bearing material at lighter loads.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Divers muscle Fitzpatrick`s mussels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, B.; Kahabka, J.
1996-01-01
This article describes how an effective manual cleaning technique has helped rid submerged intake structures of this passive-aggressive pest. The New York Power Authority`s (NYPA) James A. Fitzpatrick (JAF) Nuclear Power Plant is located in Lycoming, NY, on the southeast shore of Lake Ontario. An 850-MWe, GE-design boiling water reactor (BWR), the unit has been in service since 1975. Water drawn from the Lake supplies cooling to plant loads via the circulating water system and three service water systems. These share a common intake system consisting of an offshore cap (crib), horizontal intake tunnel, two vertical risers and forebay/screenwell area.
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
Robust Features Of Surface Electromyography Signal
NASA Astrophysics Data System (ADS)
Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.
2013-12-01
Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show the linear relationship with torque experience by elbow joint to lift different load.
International Space Station Solar Array Wing On-Orbit Electrical Performance Degradation Measured
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Kerslake, Thomas W.
2004-01-01
The port-side photovoltaic power module (P6) was activated on the International Space Station in December 2000. P6 provides electrical power to channels 2B and 4B to operate ISS power loads. A P6 is shown in the preceding photograph. This article highlights the work done at the NASA Glenn Research Center to calculate the on-orbit degradation of the P6 solar array wings (SAWs) using on-orbit data from December 2000 to February 2003. During early ISS operations, the 82 strings of photovoltaic cells that make up a SAW can provide much more power than is necessary to meet the demand. To deal with excess power, a sequential shunt unit successively shunts the current from the strings. This shunt current was the parameter chosen for the SAW performance degradation study for the following reasons: (1) it is based on a direct shunt current measurement in the sequential shunt unit, (2) the shunt current has a low temperature dependence that reduces the data correction error from using a computationally derived array temperature, and (3) the SSU shunt current is essentially the same as the SAW short-circuit current on a per-string basis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2013 CFR
2013-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2014 CFR
2014-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Code of Federal Regulations, 2011 CFR
2011-01-01
... power supply borrowers and by distribution borrowers required to maintain an approved load forecast on... forecasts by power supply borrowers and by distribution borrowers required to maintain an approved load forecast on an ongoing basis. All load forecasts submitted by power supply borrowers and by distribution...
Performance analysis and an assessment of operational issues of Ya-21U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramonov, D.V.; El-Genk, M.S.
1996-03-01
Extensive testing of the Soviet made TOPAZ-II space nuclear power system unit designated {open_quote}{open_quote}Ya-21U{close_quote}{close_quote} was conducted both in the USSR (1989{endash}1990) and in the US (August 1993 to March 1995). The unit underwent a total of 15 tests for a cumulative test/operation time of almost 8000 hours. These tests included steady-state operation at different power levels, fast startups and power optimizations. Leaks were detected in some of the Thermionic Fuel Elements (TFEs) after the first test in the US. These leaks that facilitated air incursion into the interelectrode gap caused operational changes in both electric power and conversion efficiency andmore » changed the optimum cesium pressure and load voltage. Additional changes in operational performance were detected following shock and vibration tests performed in August 1994. Test data was examined and analyzed to assess the performance of not only individual TFEs, and also the whole Ya-21U unit, and identify causes for measured operational performance changes; most probable causes were identified and discussed. The Ya-21U unit remained operational throughout extensive testing for 8000 hours at conditions far exceeding the design limits of the TOPAZ-II system. No single TFE was damaged during testing and measured operational performance changes were uniform among working section TFEs. In addition to providing a unique knowledge base for future development and operation of thermionic power systems, the test results testify to the reliability and ruggedness of the TOPAZ-II system design. {copyright} {ital 1996 American Institute of Physics.}« less
Green Propellant Demonstration with Hydrazine Catalyst of F-16 Emergency Power Unit
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Brechbill, Shawn
2015-01-01
Some space vehicle and aircraft Auxiliary Power Units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel which requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants that could enable their use in APU's: the Swedish LMP-103S and the Air Force Research Laboratory (AFRL) AF-M315E. While there has been work on development of these propellants for thruster applications (Prisma and Green Propulsion Infusion Mission, respectively), there has been less focus on the application to power units. Beginning in 2012, an effort was started by the Marshall Space Flight Center (MSFC) on the APU application. The MSFC plan was to demonstrate green propellants with residual Space Shuttle hardware. The principal investigator was able to acquire a Solid Rocket Booster gas generator and an Orbiter APU. Since these test assets were limited in number, an Air Force equivalent asset was identified: the F-16 Emergency Power Unit (EPU). In June 2013, two EPU's were acquired from retired aircraft located at Davis Monthan Air Force Base. A gas generator from one of these EPU's was taken out of an assembly and configured for testing with a version of the USAF propellant with a higher water content (AF-M315EM) to reduce decomposition temperatures. Testing in November 2014 has shown that this green propellant is reactive with the Hydrazine catalyst (Shell 405) generating 300 psi of pressure with the existing F-16 EPU configuration. This paper will highlight the results of MSFC testing in collaboration with AFRL.
Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin
2015-01-01
We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.
Effect of External Loading on Force and Power Production During Plyometric Push-ups.
Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi
2018-04-01
Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.
NASA Astrophysics Data System (ADS)
Mohamed, Ahmed
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
The effects of load on system and lower-body joint kinetics during jump squats.
Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A
2012-11-01
To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.
Evaluation of parasitic consumption for a CSP plant
NASA Astrophysics Data System (ADS)
Ramorakane, Relebohile John; Dinter, Frank
2016-05-01
With the continuous development and desire to build alternative effective and efficient power plants, Concentrated Solar Power (CSP) plants (and more specifically the Parabolic Trough CSP Plants) have proven to be one of the alternative energy resources for the future. On this regard more emphasis and research is being employed to better this power plant technology, where one of the main challenges to these plants is to improve their efficiency by optimizing the parasitic load, wherein one of the major causes of the power plants' reduced overall efficiency arises from their parasitic load consumption. This project is therefore aimed at evaluating the parasitic load on Andasol 3 Power Plant, which is a 50 MW Parabolic Trough Power Plant with a 7.5 hours of full load storage system. It was hence determined that the total power plant's parasitic load consumption is about 12% in summer season and between 16% and 24% in winter season. In an effort to improve the power plant's efficiency, a couple of measures to reduce the parasitic load consumption were recommended, and also an alternative and cheaper source of parasitic load feeding plant, during the day (when the parasitic load consumption is highest) was proposed/recommended.
Control circuit maintains unity power factor of reactive load
NASA Technical Reports Server (NTRS)
Kramer, M.; Martinage, L. H.
1966-01-01
Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.
Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark F.; Lunacek, Monte S.; Jones, Birk
To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to windmore » and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate multiple control strategies.« less
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Hardware Assessment in Support of the Dynamic Power Convertor Development Effort
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Oriti, Sal M.; Schifer, Nicholas A.
2017-01-01
Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.
Study on power grid characteristics in summer based on Linear regression analysis
NASA Astrophysics Data System (ADS)
Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi
2018-05-01
The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.
NASA Astrophysics Data System (ADS)
Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph
2015-11-01
Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.
Analysis of dynamic requirements for fuel cell systems for vehicle applications
NASA Astrophysics Data System (ADS)
Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen
Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative to conventional combustion engines, as long as there is a sufficient amount of power output from the fuel cell available for low operating temperatures. An optimized air supply system meets the requirements for transient operation in vehicles; however, specially designed machines are necessary-in particular smaller, integrated units. The electrical storage device helps to minimize fuel cell system response times for transient operation. An even more important point is that the fuel cell can be downsized. Utilizing this potential can reduce cost, space and weight. Fuel processing is preferable for auxiliary power units, since they have to operate in vehicles that use either gasoline or diesel fuel. High losses during the start-up phase can be avoided by using a battery to buffer the highly fluctuating power demands. Only advanced control methods are acceptable for controlling the operation of a fuel cell system with several components. Fuel cell systems can be developed and precisely optimized through the use of simulation tools, within an accelerated development process.
NASA Astrophysics Data System (ADS)
Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj
2012-05-01
For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
Rate modulation of human anconeus motor units during high-intensity dynamic elbow extensions.
Cowling, Brianna L; Harwood, Brad; Copithorne, David B; Rice, Charles L
2016-08-01
Investigations of high-intensity isometric fatiguing protocols report decreases in motor unit firing rates (MUFRs), but little is known regarding changes in MUFRs following fatigue induced by high-intensity dynamic contractions. Our purpose was to evaluate MUFRs of the anconeus (an accessory elbow extensor) and elbow extension power production as a function of time to task failure (TTF) during high-velocity fatiguing concentric contractions against a moderately heavy resistance. Fine-wire intramuscular electrode pairs were inserted into the anconeus to record MUs in 12 male participants (25 ± 3 yr), over repeated sessions on separate days. MUs were tracked throughout a three-stage, varying load dynamic elbow extension protocol designed to extend the task duration for >1 min thereby inducing substantial fatigue. Mean MUFRs and peak power were calculated for three relative time ranges: 0-15% TTF (beginning), 45-60% TTF (middle) and 85-100% TTF (end). Mean duration of the overall fatigue protocol was ∼80 s. Following the protocol, isometric maximum voluntary contraction (MVC), highest velocity at 35% MVC load, and peak power decreased 37, 60, and 64% compared with baseline, respectively. Data from 20 anconeus MUs tracked successfully throughout the protocol indicated a reduction in MUFRs in relation to power loss from 36 Hz/160 W (0-15% TTF) to 28 Hz/97 W (45-60% TTF) to 23 Hz/43 W (85-100% TTF). During these high-intensity maximal effort concentric contractions, anconeus MUFRs decreased substantially (>35%). Although the absolute MUFRs were higher in the present study than those reported previously for other muscles during sustained high-intensity isometric tasks, the relative decrease in MUFRs was similar between the two tasks. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Lipirodjanapong, Sumate; Namboonruang, Weerapol
2017-07-01
This paper presents the analysis of potential wind speed of electrical power generating using for agriculture in Ratchaburi province, Thailand. The total area is 1,900 square kilometers. First of all, the agriculture electrical load (AEL) data was investigated from all farming districts in Ratchaburi. Subsequently, the load data was analyzed and classified by the load power and energy consumption at individual district. The wind turbine generator (WTG) at capacity rate of 200w, 500w, 1,000w, and 2,000w were adopted to implement for the AEL in each area at wind speed range of 3 to 6 m/s. This paper shows the approach based on the wind speed at individual district to determine the capacity of WTG using the capacitor factor (CF) and the cost of energy (COE) in baht per unit under different WTG value rates. Ten locations for wind station installations are practical investigated. Results show that for instance, the Damnoen Sa-duak (DN-04) one of WTG candidate site is identically significant for economic investment of installing rated WTG. The results of COE are important to determine whether a wind site is good or not.
Lead-free multilayer piezoelectric transformer.
Guo, Mingsen; Jiang, X P; Lam, K H; Wang, S; Sun, C L; Chan, Helen L W; Zhao, X Z
2007-01-01
In this article, a multilayer piezoelectric transformer based on lead-free Mn-doped 0.94(Bi(12)Na(12))TiO(3)-0.06BaTiO(3) ceramics is presented. This piezoelectric transformer, with a multilayered construction in the thickness direction, is 8.3 mm long, 8.3 mm wide, and 2.3 mm thick. It operates in the second thickness extensional vibration mode. For a temperature rise of 20 degrees C, the transformer has an output power of >0.3 W. With a matching load resistance of 10 Omega, its maximum efficiency approaches 81.5%, and the maximum voltage gain is 0.14. It has potential to be used in low voltage power supply units such as low power adapter and other electronic circuits.
International Space Station Nickel-Hydrogen Battery Startup and Initial Performance
NASA Technical Reports Server (NTRS)
Dalton, Penni; Cohen, Fred; Hajela, Gyan
2002-01-01
The Battery Orbital Replacement Unit (ORU) was designed to meet the following requirements: a 6.5-year design life, 38,000 charge/discharge Low Earth Orbit cycles, 81-Amp-hr nameplate capacity, 4 kWh nominal storage capacity, contingency orbit capability, an operating temperature of 5 +/- 5 C standard orbit and 5+5/-10 C contingency orbit, a non-operating temperature of -25 to +30 C, a five-year Mean Time between failure, an on-orbit replacement using ISS robotic interface, and one launch to orbit and one return to ground. The ISS electrical power system is successfully maintaining power for all on-board loads. ISS Eclipse power is currently supplied by six Ni-H2 batteries (12 ORUs), which are operating nominally.
Modeling a constant power load for nickel-hydrogen battery testing using SPICE
NASA Technical Reports Server (NTRS)
Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.
1990-01-01
The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.
NASA Astrophysics Data System (ADS)
Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro
2018-04-01
In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.
RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid
NASA Astrophysics Data System (ADS)
Taylor, Zachariah David
In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.
Optimal load scheduling in commercial and residential microgrids
NASA Astrophysics Data System (ADS)
Ganji Tanha, Mohammad Mahdi
Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.
Development of a valved non-lubricated linear compressor for compact 2K Gifford-McMahon cryocoolers
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.; Bao, Q.; Xu, M.
2017-02-01
Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI) [1]. It was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel SSPD system in which two or more channels were mounted on a GM cryocooler, and achieved a world-top-class performance [2]. However, the applications of such SSPD system were restricted due to its relatively large size and power consumption compared with a semiconductor system. Owing to the development of an SSPD system with a portable cryocooler system which can be installed in a vehicle, it is possible to apply such system to the optical communication of AdHoc [3], and to flexibly construct a large capacity optical line in a time of disaster. For such system, the size and power consumption reduction becomes indispensable. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. In 2015, Hiratsuka reported that a new valved non-lubricated compressor was developed for a 2K GM cryocooler [4]. The cooling performance of a 2K GM expander operated by an experimental unit of the linear compressor was measured, and preliminary experiments were conducted. No-load temperature was 2.19 K, with 1 W and 14 mW heat load, the temperature was 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 kW. After that, the compressor efficiency has been improved by reducing losses, and the compressor input power has been reduced by 25%. The detailed experimental results are discussed in this paper.
NASA Technical Reports Server (NTRS)
Press, Harry; Mazelsky, Bernard
1954-01-01
The applicability of some results from the theory of generalized harmonic analysis (or power-spectral analysis) to the analysis of gust loads on airplanes in continuous rough air is examined. The general relations for linear systems between power spectrums of a random input disturbance and an output response are used to relate the spectrum of airplane load in rough air to the spectrum of atmospheric gust velocity. The power spectrum of loads is shown to provide a measure of the load intensity in terms of the standard deviation (root mean square) of the load distribution for an airplane in flight through continuous rough air. For the case of a load output having a normal distribution, which appears from experimental evidence to apply to homogeneous rough air, the standard deviation is shown to describe the probability distribution of loads or the proportion of total time that the load has given values. Thus, for airplane in flight through homogeneous rough air, the probability distribution of loads may be determined from a power-spectral analysis. In order to illustrate the application of power-spectral analysis to gust-load analysis and to obtain an insight into the relations between loads and airplane gust-response characteristics, two selected series of calculations are presented. The results indicate that both methods of analysis yield results that are consistent to a first approximation.
McNulty, P A; Cresswell, A G
2004-06-01
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.
NASA Astrophysics Data System (ADS)
Chemekov, V. V.; Kharchenko, V. V.
2013-03-01
Matters concerned with setting up environmentally clean supply of heat to dwelling houses in the resort zone of the Russian Black Sea coast on the basis of air-water type heat pumps powered from wind power installations are discussed. The investigations were carried out as applied to the system supplying heat for an individual dwelling house with an area of around 300 m2 situated in the Tuapse city. The design heat load of the building's heating system is around 8.3 kW. The Viessmann Vitocal 300 AW pump is chosen as the main source of heat supply, and a 4-kW electric heater built into a storage tank is chosen as a standby source. The selected wind power installation (the EuroWind 10 unit) has a power capacity of 13 kWe.
Results of the harmonics measurement program at the John F. Long photovoltaic house
NASA Astrophysics Data System (ADS)
Campen, G. L.
1982-03-01
Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.
Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter
NASA Astrophysics Data System (ADS)
Ahmed, Eshita
The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Parallel kinematic mechanisms for distributed actuation of future structures
NASA Astrophysics Data System (ADS)
Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.
2016-09-01
Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.
A Game Changer: Electrifying Remote Communities by Using Isolated Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Wang, Jianhui
Microgrids, as self-contained entities, are of increasing interest in modern electric grids. Microgrids provide a sustainable solution to aggregate distributed energy resources (DERs) [e.g., photovoltaics (PVs), wind turbines], energy storage, and loads in a localized manner, especially in distribution systems. As a controllable unit, a microgrid can manage and balance the source and load power inside it to ensure stable and reliable operation. Moreover, through coordination with upper-level control systems, it can be dispatched and respond to the control commands issued by the central controller in the distribution system-in other words, a system that is effectively a distribution management systemmore » (DMS).« less
NASA Astrophysics Data System (ADS)
Kosovic, B.; Bryan, G. H.; Haupt, S. E.
2012-12-01
Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine would encounter under hurricane strength winds. These flow fields can be used to estimate wind turbine loads and responses with AeroDyn (http://wind.nrel.gov/designcodes/simulators/aerodyn/) and FAST (http://wind.nrel.gov/designcodes/simulators/fast/) codes also developed by NREL.
Multicoil resonance-based parallel array for smart wireless power delivery.
Mirbozorgi, S A; Sawan, M; Gosselin, B
2013-01-01
This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.
Aerodynamic Heat-Power Engine Operating on a Closed Cycle
NASA Technical Reports Server (NTRS)
Ackeret, J.; Keller, D. C.
1942-01-01
Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
Intelligent power consumption with two-way shift able feature and its implementation
NASA Astrophysics Data System (ADS)
Xu, Jing; Liu, Youwei
2017-10-01
This paper proposes an intelligent power consumption system with two-way shift able feature and its implementation. Based on power consumption information of standby load and load in working state, a dispatching system decomposes load regulation demand top-down to smart appliances and makes them response orderly as required. It designs a code-based representation method for power consumption information and takes account of standby load, which lays the information foundation for load increment. It also presents a shift able index, which can be used to comprehensively reflect feature of electrical equipment and users and provides a basis for load priority.
NASA Technical Reports Server (NTRS)
Riester, Peter; Ellis, Colleen; Wagner, Michael; Orren, Scott; Smith, Byron; Skelly, Michael; Zgraggen, Craig; Webber, Matt
1992-01-01
The world is rapidly changing from one with two military superpowers, with which most countries were aligned, to one with many smaller military powers. In this environment, the United States cannot depend on the availability of operating bases from which to respond to crises requiring military intervention. Several studies (e.g. the SAB Global Reach, Global Power Study) have indicated an increased need to be able to rapidly transport large numbers of troops and equipment from the continental United States to potential trouble spots throughout the world. To this end, a request for proposals (RFP) for the concept design of a large aircraft capable of 'projecting' a significant military force without reliance on surface transportation was developed. These design requirements are: minimum payload of 400,000 pounds at 2.5 g maneuver load factor; minimum unfueled range of 6,000 nautical miles; and aircraft must operate from existing domestic air bases and use existing airbases or sites of opportunity at the destination.
NASA Technical Reports Server (NTRS)
Hamilton, M. L.; Burriss, W. L.
1972-01-01
Detailed cycle steady-state performance data are presented for the final auxiliary power unit (APU) system configuration. The selection configuration is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads. The data are given in the form of computer printouts and provide the following: (1) verification of the adequacy of the design to meet the problem statement for steady-state performance; (2) overall system performance data for the vehicle system analyst to determine propellant consumption and hydraulic fluid temperature as a function for varying mission profiles, propellant inlet conditions, etc.; and (3) detailed component performance and cycle state point data to show what is happening in the cycle as a function of the external forcing functions.
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.
2004-01-01
The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.
Space Station laboratory module power loading analysis
NASA Astrophysics Data System (ADS)
Fu, S. J.
1994-07-01
The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.
7 CFR 1710.202 - Requirement to prepare a load forecast-power supply borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 11 2011-01-01 2011-01-01 false Requirement to prepare a load forecast-power supply...—power supply borrowers. (a) A power supply borrower with a total utility plant of $500 million or more... be prepared pursuant to the approved load forecast work plan. (b) A power supply borrower that is a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Orwig, K.
2013-10-01
Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather predictionmore » model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.« less
A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-01-01
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670
A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-02-19
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.
Determining the optimal load for jump squats: a review of methods and calculations.
Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U
2004-08-01
There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.
Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
2004-01-01
Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.
Comparative Assessment of Models and Methods To Calculate Grid Electricity Emissions.
Ryan, Nicole A; Johnson, Jeremiah X; Keoleian, Gregory A
2016-09-06
Due to the complexity of power systems, tracking emissions attributable to a specific electrical load is a daunting challenge but essential for many environmental impact studies. Currently, no consensus exists on appropriate methods for quantifying emissions from particular electricity loads. This paper reviews a wide range of the existing methods, detailing their functionality, tractability, and appropriate use. We identified and reviewed 32 methods and models and classified them into two distinct categories: empirical data and relationship models and power system optimization models. To illustrate the impact of method selection, we calculate the CO2 combustion emissions factors associated with electric-vehicle charging using 10 methods at nine charging station locations around the United States. Across the methods, we found an up to 68% difference from the mean CO2 emissions factor for a given charging site among both marginal and average emissions factors and up to a 63% difference from the average across average emissions factors. Our results underscore the importance of method selection and the need for a consensus on approaches appropriate for particular loads and research questions being addressed in order to achieve results that are more consistent across studies and allow for soundly supported policy decisions. The paper addresses this issue by offering a set of recommendations for determining an appropriate model type on the basis of the load characteristics and study objectives.
An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON
NASA Astrophysics Data System (ADS)
Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny
2016-07-01
Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.
1991-01-01
During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.
Study on load forecasting to data centers of high power density based on power usage effectiveness
NASA Astrophysics Data System (ADS)
Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.
2016-08-01
There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George A. Marchetti
1999-12-15
Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.
Analysis about modeling MEC7000 excitation system of nuclear power unit
NASA Astrophysics Data System (ADS)
Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming
2018-02-01
Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.
Measurements on Noise from Reflex Oscillators
1945-12-21
power potat«, In ooloaaa three to fir«. Colaaa all gives »*•« high /low r-tlo and ««v«n the powar output la allllwatt«. lart wo hare I0. the...ef the aed« at Hatched load. Tha aaabara give nolaa power la arbitrary unit«. Aa alght ba ear:-»etad fei- ao’.* s 1« least for light loada aad...ON NOISE FROM REFLEX OSCILLATORS REPORT 872 tf . s eix IM ML Lrtc. D Rec. Nav. A.D. .S.U. «• DM You« »it« hgc. A iron Wo. 0’ily Mill
Lämmle, K; Schwarz, A; Wiesendanger, R
2010-05-01
Here, we present a very small evaporator unit suitable to deposit molecules onto a sample in a cryogenic environment. It can be transported in an ultrahigh vacuum system and loaded into Omicron-type cantilever stages. Thus, molecule deposition inside a low temperature force microscope is possible. The design features an insulating base plate with two embedded electrical contacts and a crucible with low power consumption, which is thermally well isolated from the surrounding. The current is supplied via a removable power clip. Details of the manufacturing process as well as the used material are described. Finally, the performance of the whole setup is demonstrated.
14 CFR 29.511 - Ground load: unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2010 CFR
2010-01-01
... gear units, 60 percent of the total ground reaction for the gear unit must be applied to one wheel and... specified load for the gear unit must be applied to either wheel except that the vertical ground reaction...
14 CFR 29.511 - Ground load: unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... gear units, 60 percent of the total ground reaction for the gear unit must be applied to one wheel and... specified load for the gear unit must be applied to either wheel except that the vertical ground reaction...
Bogdanis, Gregory; Papaspyrou, Aggeliki; Lakomy, Henryk; Nevill, Mary
2008-11-01
Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g x kg(-1) body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15-20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 +/- 2.2% vs. 23.1 +/- 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 +/- 3.1% and 21.2 +/- 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.
Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship
Jandačka, Daniel; Beremlijski, Petr
2011-01-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484
Determination of strength exercise intensities based on the load-power-velocity relationship.
Jandačka, Daniel; Beremlijski, Petr
2011-06-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.
Bulk Superconductors in Mobile Application
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
NASA Astrophysics Data System (ADS)
Barnawi, Abdulwasa Bakr
Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of uncertainty and perform energy trading between the hybrid grid utility and main grid utility in addition to the designed uncertainty factor. After the generation unit planning was carried out and component sizing was determined, adequacy evaluation was conducted by calculating the loss of load expectation adequacy index for different contingency criteria considering probability of equipment failure. Finally, a microgrid planning was conducted by finding the proper size and location to install distributed generation units in a radial distribution network.
McBride, Jeffrey M; Haines, Tracie L; Kirby, Tyler J
2011-08-01
Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.
Automatic load sharing in inverter modules
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.
Velocity- and power-load relationships of the bench pull vs. bench press exercises.
Sánchez-Medina, L; González-Badillo, J J; Pérez, C E; Pallarés, J G
2014-03-01
This study compared the velocity- and power-load relationships of the antagonistic upper-body exercises of prone bench pull (PBP) and bench press (BP). 75 resistance-trained athletes performed a progressive loading test in each exercise up to the one-repetition maximum (1RM) in random order. Velocity and power output across the 30-100% 1RM were significantly higher for PBP, whereas 1RM strength was greater for BP. A very close relationship was observed between relative load and mean propulsive velocity for both BP (R2=0.97) and PBP (R2=0.94) which enables us to estimate %1RM from velocity using the obtained prediction equations. Important differences in the load that maximizes power output (Pmax) and the power profiles of both exercises were found according to the outcome variable used: mean (MP), peak (PP) or mean propulsive power (MPP). When MP was considered, the Pmax load was higher (56% BP, 70% PBP) than when PP (37% BP, 41% PBP) or MPP (37% BP, 46% PBP) were used. For each variable there was a broad range of loads at which power output was not significantly different. The differing velocity- and power-load relationships between PBP and BP seem attributable to the distinct muscle architecture and moment arm levers involved in these exercises. © Georg Thieme Verlag KG Stuttgart · New York.
Radio frequency power load and associated method
NASA Technical Reports Server (NTRS)
Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)
2010-01-01
A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.
NASA Astrophysics Data System (ADS)
Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.
2014-03-01
Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.
Power control system and method
Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY
2008-02-19
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Power control system and method
Steigerwald, Robert Louis; Anderson, Todd Alan
2006-11-07
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Augmentation of the space station module power management and distribution breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Hall, David K.; Lollar, Louis F.
1991-01-01
The space station module power management and distribution (SSM/PMAD) breadboard models power distribution and management, including scheduling, load prioritization, and a fault detection, identification, and recovery (FDIR) system within a Space Station Freedom habitation or laboratory module. This 120 VDC system is capable of distributing up to 30 kW of power among more than 25 loads. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level consists of fast, simple (from a computing standpoint) switchgear that is capable of quickly safing the system. At the next level are local load center processors, (LLP's) which execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. Above the LLP's are three cooperating artificial intelligence (AI) systems which manage load prioritizations, load scheduling, load shedding, and fault recovery and management. Recent upgrades to hardware and modifications to software at both the LLP and AI system levels promise a drastic increase in speed, a significant increase in functionality and reliability, and potential for further examination of advanced automation techniques. The background, SSM/PMAD, interface to the Lewis Research Center test bed, the large autonomous spacecraft electrical power system, and future plans are discussed.
Muscle fibre conduction velocity during a 30-s Wingate anaerobic test.
Stewart, David; Farina, Dario; Shen, Chao; Macaluso, Andrea
2011-06-01
Ten male volunteers (age 29.2 ± 5.2 years, mean ± SD) were recruited to test the hypothesis that muscle fibre conduction velocity (MFCV) would decrease with power output during a 30-s Wingate test on a mechanically-braked cycle ergometer. Prior to the main test, the optimal pre-fixed load corresponding to the highest power output was selected following a random series of six 10-s sprints. Surface electromyographic (EMG) signals were detected from the right vastus lateralis with linear adhesive arrays of eight electrodes. Power output decreased significantly from 6-s until the end of the test (860.9 ± 207.8 vs. 360.9 ± 11.4 W, respectively) and was correlated with MFCV (R=0.543, P<0.01), which also declined significantly by 26.8 ± 11% (P<0.05). There was a tendency for the mean frequency of the EMG power spectrum (MNF) to decrease, but average rectified values (ARV) remained unchanged throughout the test. The parallel decline of MFCV with power output suggests changes in fibre membrane properties. The unaltered ARV, together with the declined MFCV, would indicate either a decrease in discharge rate, de-recruitment of fatigued motor units or elongation of still present motor unit action potentials. Copyright © 2011 Elsevier Ltd. All rights reserved.
Breaking Barriers to Low-Cost Modular Inverter Production & Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdan Borowy; Leo Casey; Jerry Foshage
2005-05-31
The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less
Electrical distribution studies for the 200 Area tank farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisler, J.B.
1994-08-26
This is an engineering study providing reliability numbers for various design configurations as well as computer analyses (Captor/Dapper) of the existing distribution system to the 480V side of the unit substations. The objective of the study was to assure the adequacy of the existing electrical system components from the connection at the high voltage supply point through the transformation and distribution equipment to the point where it is reduced to its useful voltage level. It also was to evaluate the reasonableness of proposed solutions of identified deficiencies and recommendations of possible alternate solutions. The electrical utilities are normally considered themore » most vital of the utility systems on a site because all other utility systems depend on electrical power. The system accepts electric power from the external sources, reduces it to a lower voltage, and distributes it to end-use points throughout the site. By classic definition, all utility systems extend to a point 5 feet from the facility perimeter. An exception is made to this definition for the electric utilities at this site. The electrical Utility System ends at the low voltage section of the unit substation, which reduces the voltage from 13.8 kV to 2,400, 480, 277/480 or 120/208 volts. These transformers are located at various distances from existing facilities. The adequacy of the distribution system which transports the power from the main substation to the individual area substations and other load centers is evaluated and factored into the impact of the future load forecast.« less
Tantawi, Sami G.; Vlieks, Arnold E.
1998-09-01
A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.
Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J
2014-10-01
There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (<3°). Surface EMG increased more in medial gastrocnemius than in the other recorded muscles. At initial recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.
Fernandes, John F T; Lamb, Kevin L; Twist, Craig
2018-05-01
Fernandes, JFT, Lamb, KL, and Twist, C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during 3 popular resistance exercises. J Strength Cond Res 32(5): 1440-1447, 2018-This study examined the load-velocity and load-power relationships among 20 young (age 21.0 ± 1.6 years) and 20 middle-aged (age 42.6 ± 6.7 years) resistance-trained males. Participants performed 3 repetitions of bench press, squat, and bent-over-row across a range of loads corresponding to 20-80% of 1 repetition maximum (1RM). Analysis revealed effects (p < 0.05) of group and load × group on barbell velocity for all 3 exercises, and interaction effects on power for squat and bent-over-row (p < 0.05). For bench press and bent-over-row, the young group produced higher barbell velocities, with the magnitude of the differences decreasing as load increased (ES; effect size 0.0-1.7 and 1.0-2.0, respectively). Squat velocity was higher in the young group than the middle-aged group (ES 1.0-1.7) across all loads, as was power for each exercise (ES 1.0-2.3). For all 3 exercises, both velocity and 1RM were correlated with optimal power in the middle-aged group (r = 0.613-0.825, p < 0.05), but only 1RM was correlated with optimal power (r = 0.708-0.867, p < 0.05) in the young group. These findings indicate that despite their resistance training, middle-aged males were unable to achieve velocities at low external loads and power outputs as high as the young males across a range of external resistances. Moreover, the strong correlations between 1RM and velocity with optimal power suggest that middle-aged males would benefit from training methods which maximize these adaptations.
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Menendez, Michael; Minei, Brenden; Wong, Kyle; Gabrick, Caton; Thornton, Matsu; Ghorbani, Reza
2016-04-01
This paper explains the development of smart nanogrid systems for disaster mitigation employing deployable renewable energy harvesting, or Deployable Disaster Devices (D3), where wind turbines and solar panels are developed in modular forms, which can be tied together depending on the needed power. The D3 packages/units can be used: (1) as a standalone unit in case of a disaster where no source of power is available, (2) for a remote location such as a farm, camp site, or desert (3) for a community that converts energy usage from fossil fuels to Renewable Energy (RE) sources, or (4) in a community system as a source of renewable energy for grid-tie or off-grid operation. In Smart D3 system, the power is generated (1) for consumer energy needs, (2) charge storage devices (such as batteries, capacitors, etc.), (3) to deliver power to the network when the smart D3 nano-grid is tied to the network and when the power generation is larger than consumption and storage recharge needs, or (4) to draw power from the network when the smart D3 nano-grid is tied to the network and when the power generation is less than consumption and storage recharge needs. The power generated by the Smart D3 systems are routed through high efficiency inverters for proper DC to DC or DC to AC for final use or grid-tie operations. The power delivery from the D3 is 220v AC, 110v AC and 12v DC provide proper power for most electrical and electronic devices worldwide. The power supply is scalable, using a modular system that connects multiple units together. This are facilitated through devices such as external Input-Output or I/O ports. The size of the system can be scaled depending on how many accessory units are connected to the I/O ports on the primary unit. The primary unit is the brain of the system allowing for smart switching and load balancing of power input and smart regulation of power output. The Smart D3 systems are protected by ruggedized weather proof casings allowing for operation in a variety of extreme environments and can be parachuted into the needed locations. The Smart Nanogrid Systems will have sensors that will sense the environmental conditions for the wind turbines and solar panels for maximum energy harvesting as well as identifying the appliances in use. These signal will be sent to a control system to send signal to the energy harvester actuators to maximize the power generation as well as regulating the power, i.e., either send the power to the appliances and consumer devices or send the power to the batteries and capacitors for energy storage, if the power is being generated but there are no consumer appliances in use, making it a "smart nanogrid deployable renewable energy harvesting system."
A Unique Power System For The ISS Fluids And Combustion Facility
NASA Technical Reports Server (NTRS)
Fox, David A.; Poljak, Mark D.
2001-01-01
Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.
Hourly disaggregation of industrial CO2 emissions from Shenzhen, China.
Ma, Li; Cai, Bofeng; Wu, Feng; Zeng, Hui
2018-05-01
Shenzhen's total industrial CO 2 emission was calculated using the IPCC recommended bottom-up approach and data obtained from the China High Resolution Emission Gridded Data (CHRED). Monthly product yield was then used as the proxy to disaggregate a facility's total emission into monthly emissions. Since a thermal power unit's emission changes with daily and hourly power loads, typical power load curves were used as the proxy to disaggregate the monthly emissions on a daily and hourly basis. The daily and hourly emissions of other facilities were calculated according to two specially designed models: the "weekdays + Spring Festival holidays" model for February and the "weekdays + weekends" model for non-February months. The uncertainty ranges associated with the process of the total amount calculation, monthly disaggregation, daily disaggregation and hourly disaggregation were quantitatively estimated. The total combined uncertainty of the hourly disaggregation of "weekdays + weekends" mode was ±26.19%, and that of the "weekdays + Spring Festival holidays" mode was ±33.06%. These temporal-disaggregation methods and uncertainty estimate approaches could also be used for the industrial air pollutant emission inventory and easily reproduced in the whole country. Copyright © 2018 Elsevier Ltd. All rights reserved.
U.S. Air Force Live | The Official Blog of the United States Air Force
. Christopher Uecker, 25th Aircraft Maintenance Unit weapons load crew team chief, tightens a guided bomb unit Uecker, 25th Aircraft Maintenance Unit weapons load crew team chief, tightens a guided bomb unit onto an Maintenance Unit load munitions onto an A-10 Thunderbolt II during the Vigilant Ace 16 exercise on Osan Air
Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments
Spielman, R. B.; Froula, D. H.; Brent, G.; ...
2017-06-21
We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less
Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spielman, R. B.; Froula, D. H.; Brent, G.
We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less
Load Modeling and Calibration Techniques for Power System Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, Forrest S.; Mayhorn, Ebony T.; Elizondo, Marcelo A.
2011-09-23
Load modeling is the most uncertain area in power system simulations. Having an accurate load model is important for power system planning and operation. Here, a review of load modeling and calibration techniques is given. This paper is not comprehensive, but covers some of the techniques most commonly found in the literature. The advantages and disadvantages of each technique are outlined.
Influence of load by high power on the optical coupler
NASA Astrophysics Data System (ADS)
Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir
2016-12-01
Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.
Parametric design studies of toroidal magnetic energy storage units
NASA Astrophysics Data System (ADS)
Herring, J. Stephen
Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.
Evaluating the impacts of real-time pricing on the usage of wind generation
Sioshansi, Ramteen; Short, Walter
2009-02-13
One of the impediments to large-scale use of wind generation within power systems is its nondispatchability and variable and uncertain real-time availability. Operating constraints on conventional generators such as minimum generation points, forbidden zones, and ramping limits as well as system constraints such as power flow limits and ancillary service requirements may force a system operator to curtail wind generation in order to ensure feasibility. Furthermore, the pattern of wind availability and electricity demand may not allow wind generation to be fully utilized in all hours. One solution to these issues, which could reduce these inflexibilities, is the use ofmore » real-time pricing (RTP) tariffs which can both smooth-out the diurnal load pattern in order to reduce the impact of binding unit operating and system constraints on wind utilization, and allow demand to increase in response to the availability of costless wind generation. As a result, we use and analyze a detailed unit commitment model of the Texas power system with different estimates of demand elasticities to demonstrate the potential increases in wind generation from implementing RTP.« less
A diesel fuel processor for fuel-cell-based auxiliary power unit applications
NASA Astrophysics Data System (ADS)
Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef
2017-07-01
Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.
Load-Following Power Timeline Analyses for the International Space Station
NASA Technical Reports Server (NTRS)
Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey
1996-01-01
Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
NASA Astrophysics Data System (ADS)
Pham, John Dinh Chuong
In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.
NASA Technical Reports Server (NTRS)
Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel
2017-01-01
Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical interactions between as many as 3 radioisotope power generators, associated control strategies, and typical electric system loads. The first phase of testing included a DASCS which was developed by Johns Hopkins UniversityApplied Physics Laboratory and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. Testing included the following spacecraft electrical energy storage configurations: capacitive, battery, and supercapacitor. Testing of the DASCS and ACU in each energy storage configuration included simulation of a typical mission profile, and transient voltage and current data during load turn-on/turn-off. Testing for these devices also included the initiation of several system faults such as short circuits, electrical bus over-voltage, under-voltage and a dead bus recovery to restore normal power operations. The goal of this testing was to verify operation of the ACU(s) when connected to a spacecraft electrical bus.
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhang, Bu-han; Zhang, Zhe; Yin, Xiang-gen; Wang, Bo
2011-11-01
Most existing research on the vulnerability of power grids based on complex networks ignores the electrical characteristics and the capacity of generators and load. In this paper, the electrical betweenness is defined by considering the maximal demand of load and the capacity of generators in power grids. The loss of load, which reflects the ability of power grids to provide sufficient power to customers, is introduced to measure the vulnerability together with the size of the largest cluster. The simulation results of the IEEE-118 bus system and the Central China Power Grid show that the cumulative distributions of node electrical betweenness follow a power-law and that the nodes with high electrical betweenness play critical roles in both topological structure and power transmission of power grids. The results prove that the model proposed in this paper is effective for analyzing the vulnerability of power grids.
Power load prediction based on GM (1,1)
NASA Astrophysics Data System (ADS)
Wu, Di
2017-05-01
Currently, Chinese power load prediction is highly focused; the paper deeply studies grey prediction and applies it to Chinese electricity consumption during the recent 14 years; through after-test test, it obtains grey prediction which has good adaptability to medium and long-term power load.
NASA Astrophysics Data System (ADS)
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
Bulb turbine operating at medium head: XIA JIANG case study
NASA Astrophysics Data System (ADS)
Loiseau, F.; Desrats, C.; Petit, P.; Liu, J.
2012-11-01
With lots of references for 4-blade bulb turbines, such as these of Wu Jin Xia (4 units - 36.1 MW per unit - 9.2 m rated head), Chang Zhou (15 units - 46.7 MW per unit - 9.5 m rated head) and Tong Wan (4 units - 46.2 MW per unit - 11 m rated head), ALSTOM Power Hydro is one of the major suppliers of bulb turbines operating under medium head for the Chinese market. ALSTOM Power Hydro has been awarded in November 2010 a contract by Jiang Xi Province Xia Jiang Water Control Project Headquarters to equip Xia Jiang's new hydropower plant. The power dam is located on the Gan Jiang river, at about 160 km away from Nan Chang town in South Eastern China. The supply will consist in 5 bulb units including the furniture of both the turbine and its generator, for a total capacity of 200 MW, under a rated net head of 8.6 m. The prototype turbine is a 7.8 m diameter runner, rotating at 71.4 rpm speed. For this project, ALSTOM has proposed a fully new design of 4-blade bulb runner. This paper outlines the main steps of the hydraulic development. First of all, a fine tuning of the blade geometry was performed to enhance the runner behaviour at high loads and low heads, so that to fulfill the demanding requirements of efficiencies and maximum output. The challenge was also to keep an excellent cavitation behaviour, especially at the outer blade diameter in order to avoid cavitation erosion on the prototype. The shape of the blade was optimized by using the latest tools in computational fluid dynamics. Steady state simulations of the distributor and the runner were performed, in order to simulate more accurately the pressure fields on the blade and the velocity distribution at the outlet of the runner. Moreover, draft tube computations have been performed close to the design point and at higher loads. Then, a model fully homologous with the prototype was manufactured and tested at ALSTOM's laboratory in Grenoble (France). The model test results confirmed the predicted ones: the expected weighted average efficiency is higher than the guaranteed value and the maximum output was reached with a comfortable safety margin. A comparison of the experimental and numerical velocity probings under the runner is also proposed as an insight into the prediction of flow behaviour at the inlet of the draft tube.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
Allocation of Load-Loss Cost Caused by Voltage Sag
NASA Astrophysics Data System (ADS)
Gao, X.
2017-10-01
This paper focuses on the allocation of load-loss cost caused by voltage sag in the environment of electricity market. To compensate the loss of loads due to voltage sags, the load-loss cost is allocated to both sources and power consumers. On the basis of Load Drop Cost (LDC), a quantitative evaluation index of load-loss cost caused by voltage sag is identified. The load-loss cost to be allocated to power consumers themselves is calculated according to load classification. Based on the theory of power component the quantitative relation between sources and loads is established, thereby a quantitative calculation method for load-loss cost allocated to each source is deduced and the quantitative compensation from individual source to load is proposed. A simple five-bus system illustrates the main features of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.L.; Hooper, M.
This report summarizes the activities and results for the second testing phase (Phase 2) of an Innovative Clean Coal Technology (ICCT) demonstration of advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. All three levels of Asea Brown Boveri Combustion Engineering Service`s (ABB CE`s) Low-NO{sub x} Concentric Firing System (LNCFS) are being demonstrated during this project. The primary goal of this project is to demonstrate the NO{sub x} emissions characteristics of these technologies when operated under normal load dispatched conditions. The equipment is being tested at Gulf Power Company`s Plant Lansing Smith Unitmore » 2 in Lynn Haven, Florida. The long-term NO{sub x} emission trends were documented while the unit was operating under normal load dispatch conditions with the LNCFS Level II equipment. Fifty-five days of long-term data were collected. The data included the effects of mill patterns, unit load, mill outages, weather, fuel variability, and load swings. Test results indicated full-load (180 MW) NO{sub x} emissions of 0.39 lb/MBtu, which is about equal to the short-term test results. At 110 MW, long-term NO{sub x} emissions increased to 0.42 lb/MBtu, which are slightly higher than the short-term data. At 75 MW, NO{sub x} emissions were 0.51 lb/MBtu, which is significantly higher than the short-term data. The annual and 30-day average achievable NOx emissions were determined to be 0.41 and 0.45 lb/MBtu, respectively, for long-term testing load scenarios. NO{sub x} emissions were reduced by a maximum of 40 percent when compared to the baseline data collected in the previous phase. The long-term NO{sub x} reduction at full load (180 MW) was 37 percent while NO{sub x} reduction at low load was minimal.« less
Mechanics of collective unfolding
NASA Astrophysics Data System (ADS)
Caruel, M.; Allain, J.-M.; Truskinovsky, L.
2015-03-01
Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and the structure of the folding-unfolding energy barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which persists in the continuum limit. We argue that both, the synchronization and the non-equivalence of the mechanical responses in hard and soft devices, have their origin in the dominance of long-range interactions. We then apply our minimal model to skeletal muscles where the power-stroke in acto-myosin crossbridges can be interpreted as passive folding. A quantitative analysis of the muscle model shows that the relative rigidity of myosin backbone provides the long-range interaction mechanism allowing the system to effectively synchronize the power-stroke in individual crossbridges even in the presence of thermal fluctuations. In view of the prototypical nature of the proposed model, our general conclusions pertain to a variety of other biological systems where elastic interactions are mediated by effective backbones.
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi
In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.
Development of a linear compressor for compact 2 K Gifford- McMahon cryocoolers
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.
2015-12-01
Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed at Sumitomo Heavy Industries, Ltd. (SHI) [1, 2]. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. Although optimization of the internal components is one way to miniaturize the volume of the compressor unit, major design changes are required because the volume of the adsorber and the oil separator is almost the same as the volume of the compressor capsule. Thus, one approach is to develop a non-lubricated compressor, such as a valved linear compressor. An experimental unit of a valved linear compressor was designed and built, and preliminary experiments were conducted. Under no-load condition, a low temperature of 2.19 K has been achieved. With 1 W and 14 mW heat load, the temperature is 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 KW. The detailed experimental results will be discussed in this paper.
Applications of the DOE/NASA wind turbine engineering information system
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Spera, D. A.
1981-01-01
A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.
Effect of present technology on airship capabilities
NASA Technical Reports Server (NTRS)
Madden, R. T.
1975-01-01
The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.
Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000
NASA Technical Reports Server (NTRS)
Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.
1977-01-01
A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, Dheepak
This paper is an overview of Power System Simulation Toolbox (psst). psst is an open-source Python application for the simulation and analysis of power system models. psst simulates the wholesale market operation by solving a DC Optimal Power Flow (DCOPF), Security Constrained Unit Commitment (SCUC) and a Security Constrained Economic Dispatch (SCED). psst also includes models for the various entities in a power system such as Generator Companies (GenCos), Load Serving Entities (LSEs) and an Independent System Operator (ISO). psst features an open modular object oriented architecture that will make it useful for researchers to customize, expand, experiment beyond solvingmore » traditional problems. psst also includes a web based Graphical User Interface (GUI) that allows for user friendly interaction and for implementation on remote High Performance Computing (HPCs) clusters for parallelized operations. This paper also provides an illustrative application of psst and benchmarks with standard IEEE test cases to show the advanced features and the performance of toolbox.« less
Common source-multiple load vs. separate source-individual load photovoltaic system
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph
1989-01-01
A comparison of system performance is made for two possible system setups: (1) individual loads powered by separate solar cell sources; and (2) multiple loads powered by a common solar cell source. A proof for resistive loads is given that shows the advantage of a common source over a separate source photovoltaic system for a large range of loads. For identical loads, both systems perform the same.
Solar powered actuator with continuously variable auxiliary power control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.
2013-12-01
Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3.2 MW), to another FLIR deployed with an oblique view from atop a 36 m boom lift (2.1 MW), demonstrated reasonable agreement. Unit-level estimates of FRE will also be compared to estimates of surface fuel consumption (~5 Mg/ha) that were summarized at the unit level from pre- and post-fire clip plots of surface fuel biomass. At AGU, we will also compare predictions of surface fuel loads to estimates of energy release, as mapped at 3 m resolution from these independent remotely sensed data sources. These results will serve to demonstrate our ability to remotely measure and relate fuel loads to fire behavior at a landscape level.
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Feyereisen, G. W.; Lall, U.; Jones, J. W.; Bosch, D. D.; Lowrance, R.
2010-02-01
SummaryAs climate variability increases, it is becoming increasingly critical to find predictable patterns that can still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern. Its global effects on weather, hydrology, ecology and human health have been well documented. Climate variability manifested through ENSO has strong effects in the southeast United States, seen in precipitation and stream flow data. However, climate variability may also affect water quality in nutrient concentrations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen in a shared 3-7 year mode of variability for precipitation, stream flow, and nutrient load time series. Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation, stream flow, NO 3 concentration and load time series from the watershed was used to identify common signals. Shared 3-7 year modes of variability were seen in all variables, most strongly in precipitation, stream flow and nutrient load in strong El Niño years. The significance of shared 3-7 year periodicity over red noise with 95% confidence in SST and precipitation, stream flow, and NO 3 load time series was confirmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-variance were computed for each set of data. The strongest 3-7 year shared power was seen in SST and stream flow data, while the strongest co-variance was seen in SST and NO 3 load data. The strongest cross-correlation was seen as a positive value between the NINO 3.4 and NO 3 load with a three-month lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow, and NO 3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate variability, facilitating management in high risk seasons.
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
NASA Astrophysics Data System (ADS)
Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang
2010-09-01
A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.
NASA Astrophysics Data System (ADS)
Telang, Aparna S.; Bedekar, P. P.
2017-09-01
Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.
Optimizing Aggregation Scenarios for Integrating Renewable Energy into the U.S. Electric Grid
NASA Astrophysics Data System (ADS)
Corcoran, B. A.; Jacobson, M. Z.
2010-12-01
This study is an analysis of 2006 and 2007 electric load data, wind speed and solar irradiance data, and existing hydroelectric, geothermal, and other power plant data to quantify benefits of aggregating clean electric power from various Federal Energy Regulatory Commission (FERC) regions in the contiguous United States. First, various time series, statistics, and probability methods are applied to the electric load data to determine if there are any desirable demand-side results—specifically reducing variability and/or coincidence of peak events, which could reduce the amount of required carbon-based generators—in combining the electricity demands from geographically and temporally diverse areas. Second, an optimization algorithm is applied to determine the least-cost portfolio of energy resources to meet the electric load for a range of renewable portfolio standards (RPS’s) for each FERC region and for various aggregation scenarios. Finally, the installed capacities, ramp rates, standard deviation, and corresponding generator requirements from these optimization test runs are compared against the transmission requirements to determine the most economical organizational structure of the contiguous U.S. electric grid. Ideally, results from this study will help to justify and identify a possible structure of a federal RPS and offer insight into how to best organize regions for transmission planning.
Quantifying impacts of heat waves on power grid operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Xinda; Wu, Di; Rice, Jennie S.
Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the impacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reducemore » the output capacity and efficiency of gas fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature dependent load model. The coupled system has the ability to represent the impacts of hourly temperatures on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reliability and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation.« less
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross
2011-01-01
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Astrophysics Data System (ADS)
Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.
The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme
NASA Astrophysics Data System (ADS)
Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi
2015-10-01
This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
Application of the mobility power flow approach to structural response from distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The problem of the vibration power flow through coupled substructures when one of the substructures is subjected to a distributed load is addressed. In all the work performed thus far, point force excitation was considered. However, in the case of the excitation of an aircraft fuselage, distributed loading on the whole surface of a panel can be as important as the excitation from directly applied forces at defined locations on the structures. Thus using a mobility power flow approach, expressions are developed for the transmission of vibrational power between two coupled plate substructures in an L configuration, with one of the surfaces of one of the plate substructures being subjected to a distributed load. The types of distributed loads that are considered are a force load with an arbitrary function in space and a distributed load similar to that from acoustic excitation.
NASA Astrophysics Data System (ADS)
Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.
2018-05-01
Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.
NASA Astrophysics Data System (ADS)
Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki
Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles
NASA Technical Reports Server (NTRS)
Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.
2015-01-01
Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.
Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market
NASA Astrophysics Data System (ADS)
Gillenwater, Michael Wayne
In the United States, electricity consumers are told that they can "buy" electricity from renewable energy projects, versus fossil fuel-fired facilities, through participation in a voluntary green power program. The marketing messages communicate to consumers that their participation and premium payments for a green label will cause additional renewable energy generation and thereby allow them to claim they consume electricity that is absent pollution as well as reduce pollutant emissions. Renewable Energy Certificates (RECs) and wind energy are the basis for the majority of the voluntary green power market in the United States. This dissertation addresses the question: Do project developers respond to the voluntary REC market in the United States by altering their decisions to invest in wind turbines? This question is investigated by modeling and probabilistically quantifying the effect of the voluntary REC market on a representative wind power investor in the United States using data from formal expert elicitations of active participants in the industry. It is further explored by comparing the distribution of a sample of wind power projects supplying the voluntary green power market in the United States against an economic viability model that incorporates geographic factors. This dissertation contributes the first quantitative analysis of the effect of the voluntary REC market on project investment. It is found that 1) RECs should be not treated as equivalent to emission offset credits, 2) there is no clearly credible role for voluntary market RECs in emissions trading markets without dramatic restructuring of one or both markets and the environmental commodities they trade, and 3) the use of RECs in entity-level GHG emissions accounting (i.e., "carbon footprinting") leads to double counting of emissions and therefore is not justified. The impotence of the voluntary REC market was, at least in part, due to the small magnitude of the REC price signal and lack of long-term contracts that would reduce the risk of relying on revenue the voluntary green power market. Although no simple solutions are identified, a proposal for integrating RECs into a load based cap-and-trade system is presented. Keywords: Renewable Energy Certificate (REC); Renewable Portfolio Standard (RPS); emission offset; additionality; attributes
Energy management system turns data into market info
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, P.J.; Ackerman, W.J.
1996-09-01
The designers claim that Wisconsin Power & Light Co`s new energy management system is the first system of its type in the world in terms of the comprehensiveness and scope of its stored and retrievable data. Furthermore, the system`s link to the utility`s generating assets enables powerplant management to dispatch generation resources based on up-to-date unit characteristics. That means that the new system gives WP&L a competitive tool to optimize operations as well as fine-tune its EMS based on timely load and unit response information. Additionally, the EMS gives WP&L insight into the complex issues related to the unbundling ofmore » generation resources.« less
Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Short Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-08-01
This report presents the a brief overview of the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems. A full report of thismore » case study is also available.« less
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.
2016-07-01
The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The prices in the electricity market change every five minutes. The prices in peak demand hours can be four or five times more than the prices in normal off peak hours. Renewable energy such as wind power has zero marginal cost and a large percentage of wind energy in a power grid can reduce the price significantly. The variability of wind power prevents it from being constantly available in peak hours. The price differentials between off-peak and on-peak hours due to wind power variations provide an opportunity for a storage device owner to buy energy at a low price and sell it in high price hours. In a large and complex power grid, there are many locations for installation of a storage device. Storage device owners prefer to install their device at locations that allow them to maximize profit. Market participants do not possess much information about the system operator's dispatch, power grid, competing generators and transmission system. The publicly available data from the system operator usually consists of Locational Marginal Prices (LMP), load, reserve prices and regulation prices. In this thesis, we develop a method to find the optimum location of a storage device without using the grid, transmission or generator data. We formulate and solve an optimization problem to find the most profitable location for a storage device using only the publicly available market pricing data such as LMPs, and reserve prices. We consider constraints arising due to storage device operation limitations in our objective function. We use binary optimization and branch and bound method to optimize the operation of a storage device at a given location to earn maximum profit. We use two different versions of our method and optimize the profitability of a storage unit at each location in a 36 bus model of north eastern United States and south eastern Canada for four representative days representing four seasons in a year. Finally, we compare our results from the two versions of our method with a multi period stochastically optimized economic dispatch of the same power system with storage device at locations proposed by our method. We observe a small gap in profit values arising due to the effect of storage device on market prices. However, we observe that the ranking of different locations in terms of profitability remains almost unchanged. This leads us to conclude that our method can successfully predict the optimum locations for installation of storage units in a complex grid using only the publicly available electricity market data.
Optimal Scheduling of Time-Shiftable Electric Loads in Expeditionary Power Grids
2015-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDITIONARY POWER GRIDS by John G...to 09-25-2015 4. TITLE AND SUBTITLE OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDI- TIONARY POWER GRIDS 5. FUNDING NUMBERS 6. AUTHOR(S...eliminate unmanaged peak demand, reduce generator peak-to-average power ratios, and facilitate a persistent shift to higher fuel efficiency. Using
Estimating Energy Consumption of Mobile Fluid Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Lauren; Zigler, Bradley T.
This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less
The 10 kW power electronics for hydrogen arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Hill, Gerald M.
1992-01-01
A combination of emerging mission considerations such as 'launch on schedule', resource limitations, and the development of higher power spacecraft busses has resulted in renewed interest in high power hydrogen arcjet systems with specific impulses greater than 1000 s for Earth-space orbit transfer and maneuver applications. Solar electric propulsion systems with about 10 kW of power appear to offer payload benefits at acceptable trip times. This work outlines the design and development of 10 kW hydrogen arcjet power electronics and results of arcjet integration testing. The power electronics incorporated a full bridge switching topology similar to that employed in state of the art 5 kW power electronics, and the output filter included an output current averaging inductor with an integral pulse generation winding for arcjet ignition. Phase shifted, pulse width modulation with current mode control was used to regulate the current delivered to arcjet, and a low inductance power stage minimized switching transients. Hybrid power Metal Oxide Semiconductor Field Effect Transistors were used to minimize conduction losses. Switching losses were minimized using a fast response, optically isolated, totem-pole gate drive circuit. The input bus voltage for the unit was 150 V, with a maximum output voltage of 225 V. The switching frequency of 20 kHz was a compromise between mass savings and higher efficiency. Power conversion efficiencies in excess of 0.94 were demonstrated, along with steady state load current regulation of 1 percent. The power electronics were successfully integrated with a 10 kW laboratory hydrogen arcjet, and reliable, nondestructive starts and transitions to steady state operation were demonstrated. The estimated specific mass for a flight packaged unit was 2 kg/kW.
Fuel-cell based power generating system having power conditioning apparatus
Mazumder, Sudip K.; Pradhan, Sanjaya K.
2010-10-05
A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.
NASA Astrophysics Data System (ADS)
van Ness, Katherine; Hill, Craig; Aliseda, Alberto; Polagye, Brian
2017-11-01
Experimental measurements of a 0.45-m diameter, variable-pitch marine hydrokinetic (MHK) turbine were collected in a tow tank at different tip speed ratios and blade pitch angles. The coefficients of power and thrust are computed from direct measurements of torque, force and angular speed at the hub level. Loads on individual blades were measured with a six-degree of freedom load cell mounted at the root of one of the turbine blades. This information is used to validate the performance predictions provided by blade element model (BEM) simulations used in the turbine design, specifically the open-source code WTPerf developed by the National Renewable Energy Lab (NREL). Predictions of blade and hub loads by NREL's AeroDyn are also validated for the first time for an axial-flow MHK turbine. The influence of design twist angle, combined with the variable pitch angle, on the flow separation and subsequent blade loading will be analyzed with the complementary information from simulations and experiments. Funding for this research was provided by the United States Naval Facilities Engineering Command.
The Effect of the Number of Sets on Power Output for Different Loads
Morales-Artacho, Antonio J.; Padial, Paulino; García-Ramos, Amador; Feriche, Belén
2015-01-01
There is much debate concerning the optimal load (OL) for power training. The purpose of this study was to investigate the effect of the number of sets performed for a given load on mean power output (Pmean). Fourteen physically active men performed 3 sets of 3 bench-press repetitions with 30, 40 and 50 kg. The highest mean power value (Pmax) across all loads and Pmean were compared when data were taken from the first set at each absolute load vs. from the best of three sets performed. Pmean increased from the first to the third set (from 5.99 ± 0.81 to 6.16 ± 0.96 W·kg−1, p = 0.017), resulting in a main effect of the set number (p < 0.05). At the 30 kg load Pmean increased from the first to the third set (from 6.01 ± 0.75 to 6.35 ± 0.85 W·kg−1; p < 0.01). No significant effect was observed at 40 and 50 kg loads (p > 0.05). Pmax and velocity were significantly affected by the method employed to determine Pmean at each load (p < 0.05). These results show a positive effect of the number of sets per load on Pmean, affecting Pmax, OL and potentially power training prescription. PMID:26240658
NASA Astrophysics Data System (ADS)
Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.
2017-11-01
In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.
Shimer, D.W.; Lange, A.C.
1995-05-23
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.
Shimer, Daniel W.; Lange, Arnold C.
1995-01-01
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Power quality load management for large spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Lollar, Louis F.
1988-01-01
In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.
Roy, Abhishek; Klinefelter, Alicia; Yahya, Farah B; Chen, Xing; Gonzalez-Guerrero, Luisa Patricia; Lukas, Christopher J; Kamakshi, Divya Akella; Boley, James; Craig, Kyle; Faisal, Muhammad; Oh, Seunghyun; Roberts, Nathan E; Shakhsheer, Yousef; Shrivastava, Aatmesh; Vasudevan, Dilip P; Wentzloff, David D; Calhoun, Benton H
2015-12-01
This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
NASA Astrophysics Data System (ADS)
Tanjung, Abrar; Monice
2017-12-01
Electricity in Bagan Siapi city fire is channeled through a feeder distribution system of 20 kV. The main supply of Bagan Siapi-api city comes from PLTD unit Bagan Siapi fire which is  ± 1.5 kms from the load center and Duri Substation is  ± 102 kms from Bagan Siapi-api city through Hubung Ujung Tanjung. The long distances between the Duri Mainstation and Bagan Siapiapi city resulted in a 14.85 kV end-voltage and a 988.7 kW loss. Voltage losses resulted in ineffective service to the consumer and large network power losses being uneconomical for power delivery operations. The result of end voltage calculation is 10.42 kV and the power loss is 988.7 kW. After the New Substation operates, reconfiguration-1 produces the lowest end-voltage calculation of 16.21 kV and a power loss of 136.59 kW, while reconfiguration-2 produces a low end stress calculation of 17.37 kV and a power loss of 56.93 kW.
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-02-27
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.
Load Forecasting of Central Urban Area Power Grid Based on Saturated Load Density Index
NASA Astrophysics Data System (ADS)
Huping, Yang; Chengyi, Tang; Meng, Yu
2018-03-01
In the current society, coordination between urban power grid development and city development has become more and more prominent. Electricity saturated load forecasting plays an important role in the planning and development of power grids. Electricity saturated load forecasting is a new concept put forward by China in recent years in the field of grid planning. Urban saturation load forecast is different from the traditional load forecasting method for specific years, the time span of it often relatively large, and involves a wide range of aspects. This study takes a county in eastern Jiangxi as an example, this paper chooses a variety of load forecasting methods to carry on the recent load forecasting calculation to central urban area. At the same time, this paper uses load density index method to predict the Longterm load forecasting of electric saturation load of central urban area lasted until 2030. And further study shows the general distribution of the urban saturation load in space.
Performance simulation of a plasma magnetohydrodynamic power generator
NASA Astrophysics Data System (ADS)
Huang, Hulin; Li, Linyong; Zhu, Guiping
2018-05-01
The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.
Power Controller 28VDC Load Switching (N.O. SPST).
1980-01-21
34111111CATION0 TS PAGE (W~ Ow at~ eal________________ REPORT DOCUMENTATION PAGE ______________aINGFORK 1 . REPORT HM1119ER 12. Govt ACCESSION NO: L...ackin N 62269-77-C-0413 1 9. 109111ORMrNG ORGANIZATION NAME AMCO AOORESS 10-O PROGRAM ELEMENT. PROJECT. TASK Govenmen Comuniatio SysemsARA A WORK UNIT...DATE Naval Air Development center (AVTD-P) 21 January1980 Iwarminster, Pennsylvania 18974I&HM114OiPA9 1 ,L WMNITORINO AGENCY MNMG ADDRESS4I dfeel aeet
2013-02-01
offutt.af.mil Designation: Final Environmental Assessment (EA) with attached Finding of No Significant Impact (FONSI) Abstract: OPPD needs a new...Evaluation 6 2.5 Summary of Potential Impacts 7 3.0 AFFECTED ENVIRONMENT 8 3.1 Location 8 3.2 History and Current Mission of Installation 8...4.2.10 Energy Usage and Alternative Energy Sources 19 4.1.11 Cultural Resources 19 4.3 Cumulative Impacts 19 5.0
4. Main Control Switchboard (south end rear), view to the ...
4. Main Control Switchboard (south end rear), view to the north, with item 2 (the load frequency control panel) visible in right foreground, through item 7 (generator Unit 4 control panel) obliquely visible on left side of the photograph. Part of item 1 (the synchronization monitor) is visible behind the phone on right side of photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
2013-02-01
Biological Resources The area around and encompassing Offutt AFB is the western edge of the Eastern Deciduous Forest and borders on the ecotone...that separates the Eastern Deciduous Forest from the Tall and Mid Grass Prairies. Early photos of the Offutt AFB area indicate that it was grassland...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubrawa, P.; Barthelmie, R. J.; Wang, H.
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less
Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...
2016-10-03
The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less
Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea
2014-05-01
Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.
Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi
NASA Astrophysics Data System (ADS)
Tridianto, E.; Permatasari, P. D.; Ali, I. R.
2018-03-01
Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.
Liew, Bernard X W; Morris, Susan; Netto, Kevin
2016-06-01
Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.
Ocean power technology design optimization
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...
2017-07-18
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Ocean power technology design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in twomore » phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.« less
Analysis of optimal design of low temperature economizer
NASA Astrophysics Data System (ADS)
Song, J. H.; Wang, S.
2017-11-01
This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.
NASA Astrophysics Data System (ADS)
Singla, Rohit; Chowdhury, Kanchan
2017-02-01
Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.
Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)
2013-07-01
2 Figure 2. A 2-GHz load-pull simulation of output power (Pcomp-6 x 65 µm PHEMT). ..............2 Figure 3. A 2-GHz load-pull simulation of PAE (6...5. MMIC 1–5 GHz output power and PAE performance simulation (1, 2, 3, and 4 GHz...load-pull simulation of PAE (6 x 50 µm PHEMT). .......................................7 Figure 9. MMIC 10–19 GHz broadband power amplifier linear
Common drive to the upper airway muscle genioglossus during inspiratory loading
Woods, Michael J.; Nicholas, Christian L.; Semmler, John G.; Chan, Julia K. M.; Jordan, Amy S.
2015-01-01
Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0–5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect. PMID:26378207
7 CFR 1710.209 - Approval requirements for load forecast work plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) In addition to the approved load forecast required under §§ 1710.202 and 1710.203, any power supply... that are members of a power supply borrower with a total utility plant of $500 million or more must cooperate in the preparation of and submittal of the load forecast work plan of their power supply borrower...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aminov, R. Z.; Pron’, D. M.
2014-01-15
The use of hydrogen technologies as a controlled-load consumer based on the newly commissioned base-load nuclear power plants to level out the daily load profile is justified for the Unified Power System (UPS) of the Central Region of Russia, as an example, for the period till 2020.