Science.gov

Sample records for powered adsorption refrigerator

  1. A Case Study of a Low Power Vapour Adsorption Refrigeration System

    NASA Astrophysics Data System (ADS)

    Dinesh, Banala; Sai Manikanta, M.; Dishal Kumar, T.; Sahu, Debjyoti

    2016-09-01

    Industrial refrigeration is one of the most energy consuming sector. In conventional Vapor Compression refrigeration system, compressor is the major power consuming element. Vapor Adsorption refrigeration system is one of the best replacement for the Vapor Compression refrigeration system. Our main objective is to analyze, design and develop a Vapor Adsorption refrigeration system which is cost effective and environmental friendly. A prototype model that is capable of producing a temperature drop in closed evaporator chamber was designed, fabricated and tested. Activated carbon/Methanol pair is chosen as Adsorbent/Refrigerant pair. The system is analyzed in ANSYS 14.5 using the inlet conditions obtained from the experimental setup. The performances and effectiveness of the unit was studied by determining Refrigeration Effect (RE), Coefficient of Performance (COP) and explaining operational issues of the unit. The results obtained from the analysis and experiments have marginal difference in COP i.e. with an error percentage of 5.94%. The overall COP obtained is 0.34 through experiments and from analysis the COP obtained is approximately 0.32.

  2. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  3. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. )

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  4. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  5. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  6. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  7. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Solar Powered Refrigeration System

    NASA Astrophysics Data System (ADS)

    Ewert, Michael K.; Bergeron, David J., III

    2002-09-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  9. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  10. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  11. A miniature adsorption He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Lange, A.; Ravex, A.

    1991-12-01

    A self contained, recyclable, laboratory He-3 refrigerator is considered. The refrigerator is very compact, portable, and is designed to be safe and reliable. The unit can easily be installed in the cold plate of a superfluid He-4 cryostat. Once bolted to the cold plate, operation of the refrigerator is controlled by a single heater. In this new design the refrigerator has a cylindrical geometry. The adsorption pump is placed above the condensation point to prevent convection during the condensation phase and to improve the pumping speed. The inhibition of convection reduces the load in the He-4 bath and increases the condensation efficiency. This refrigeration technique has great potential for space applications. The absence of moving parts makes the system reliable and vibration free. Its simplicity and the absence of external components facilitate its integration on a cryostat. A rocketborne He-3 refrigerator was successfully flown and demonstrated the feasibility of this method. An orbital refrigerator that can be recycled in zero gravity was developed and is being integrated in the Infrared Telescope in Space (IRTS).

  12. ISS Update: Solar Powered Refrigerator

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot interviews Mike Ewert, Life Support and Thermal Systems Engineer. Ewert co-invented the solar powered refrigerator for stowage of medical samples, preservation ...

  13. Heat powered refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Goad, R. R.

    This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system.

  14. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  15. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  16. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  17. Solar-Powered Refrigeration System

    NASA Astrophysics Data System (ADS)

    Ewert, Michael K.; Bergeron, David J., III

    2002-10-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  18. Solar-powered jet refrigerator

    NASA Technical Reports Server (NTRS)

    Chai, V. W.; Lansing, F. L.

    1979-01-01

    Design criteria are easily evaluated by tool. Thermodynamic analysis of solar-powered vapor-jet refrigerator combines important performance parameters in nomogram that assist design of practical system. Projected coefficients of performance for difference ejector configurations, working fluids, and other design variables are easily obtained from nomogram.

  19. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene (Inventor)

    1987-01-01

    Krypton and monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an absorption type refrigerator to improve refrigeration efficiency and operational longevity.

  20. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  1. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  2. A continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers: improvements

    SciTech Connect

    Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    1999-02-01

    Spiral plate heat exchangers as adsorbers have been proposed, and a prototype heat regenerative adsorption refrigerator using activated carbon-methanol pair has been developed and tested. Various improvements have been made, the authors get a specific cooling power for 2.6 kg-ice/day-kg adsorbent at the condition of generation temperature lower than 100 C. Discussions on the arrangements of thermal cycles and influences of design are shown.

  3. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  4. Acoustic recovery of lost power in pulse tube refrigerators

    SciTech Connect

    Swift, G.W.; Gardner, D.L.; Backhaus, S.

    1999-02-01

    In an efficient Stirling-cycle cryocooler, the cold piston or displacer recovers power from the gas. This power is dissipated into heat in the orifice of an orifice pulse tube refrigerator, decreasing system efficiency. Recovery of some of this power in a pulse tube refrigerator, without sacrificing the simplicity and reliability inherent in a system with no cold moving parts, is described in this paper. In one method of such power recovery, the hot ends of both the regenerator and the pulse tube are connected to the front of the piston driving the refrigerator. Experimental data is presented demonstrating this method using a thermoacoustic driver instead of a piston driver. Control of time-averaged mass flux through the refrigerator is crucial to this power recovery, lest the refrigerator{close_quote}s cooling power be overwhelmed by a room-temperature mass flux. Two methods are demonstrated for control of mass flux: a barrier method, and a hydrodynamic method based on turbulent irreversible flow. At {minus}55{degree}C, the refrigerator provided cooling with 9{percent} of the Carnot coefficient of performance. With straightforward improvements, similar refrigerators should achieve efficiencies greater than those of prior pulse tube refrigerators and prior standing-wave thermoacoustic refrigerators, while maintaining the advantages of no moving parts. {copyright} {ital 1999 Acoustical Society of America.}

  5. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    NASA Astrophysics Data System (ADS)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  6. Photovoltaic-powered refrigerator experiment at Isle Royale National Park

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1977-01-01

    The use of a photovoltaic power system to operate an electric refrigerator at a trail construction camp at Isle Royale, Michigan is investigated. The use of P/V power for refrigeration in a remote installation is demonstrated. System design as well as predicted and measured system performance are presented.

  7. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  8. View looking to starboard of stem powered refrigeration compressor (ice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking to starboard of stem powered refrigeration compressor (ice machine); low counter at left center of photograph is a mold for making block ice. (p55) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  9. Comparison of the performance obtained in a tropical country, of a solid adsorption, solar-driven refrigerator and a photovoltaic refrigerator

    NASA Astrophysics Data System (ADS)

    Adell, A.

    A prototype solid adsorption solar refrigerator has been constructed (zeolite 13 x—water) and tested in the sun under the equatorial weather conditions of Abidjan. A commercial photovoltaic refrigerator was simultaneously tested under similar conditions. The solar coefficient of performance of these two plants was slightly better for the photovoltaic refrigerator. A detailed evaluation using irreversibilities analysis, which allows total optimization of thermodynamic and economic problems has been made.

  10. Development of an adsorption compressor for use in cryogenic refrigeration

    NASA Technical Reports Server (NTRS)

    Schember, Helen R.

    1989-01-01

    A new compressor with no moving parts has been developed which is able to supply a source of high-pressure gas to a Joule-Thompson based cryogenic refrigerator. The compressor relies on a newly implemented combination of high-surface-area Saran carbon (sorbent) and krypton gas (working fluid). In addition, an integral gas-gap heat switch is used to provide improved overall efficiency. A prototype compressor has been designed, built, and tested as a part of the Jet Propulsion Laboratory effort in sorption refrigeration. Performance data from the prototype unit described here demonstrate successful compressor performance and good agreement with theoretical predictions.

  11. Analysis of a combined refrigerator-generator space power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1973-01-01

    Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.

  12. Solar refrigeration: Evaluation of technical options and design of a solar-generator-adsorber for a novel adsorption refrigerator, volumes 1 and 2

    NASA Astrophysics Data System (ADS)

    Tabassum, Salim Abid

    Various technical options for developing a solar operated refrigerator were discussed. Their suitability for being used as a vaccine store for the conditions specified by the World Health Organization Expanded Program on Immunization (EPI) were evaluated. A model to predict the performance of a photovoltaic refrigerator was developed and used to identify factors which influence its performance. It was concluded that it can be more competitive in areas where insolation is high and sunshine hours are long. It was proposed that ice-lined refrigerators, which would run during the day, may be more economical and eliminate the need for battery storage. The option of operating an Electrolux absorption refrigerator with evacuated tube heat pipe collectors was assessed. It was concluded that the operation was not possible without a major re-design of the commercially available models. However, it was proposed that coordination of the EPI with other development programs may be useful. The building of biogas plants was proposed. Biogas can then fuel the modified burner of the kerosene fueled absorption refrigerators. This may prove to be a cheaper option. Characterization of various adsorption pairs was done using the experimental rig. The influence of various properties of adsorption pairs on the performance of an adsorption refrigeration cycle was studied. A relationship between the refrigerant properties and the generating temperature for specified operating conditions was developed. A idea of direct absorption of solar radiation into the activated carbon bed is put forward to combat the temperature differential of 24 C, in a conventional design of SGA, between the carbon and the metal contained. A new tubular design of the SGA is proposed finally which is hoped will bring improvement to the performance of the activated carbon adsorption refrigerators.

  13. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  14. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  15. Dynamic analysis of a closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs

    SciTech Connect

    Hajji, A. ); Worek, W. ); Lavan, Z. )

    1991-05-01

    In this paper a dynamic analysis of a closed-cycle, solar adsorption refrigerator is presented. The instantaneous and daily system performance are studied using two adsorbent-adsorbate pairs, Zeolite 13X-Water and Chabazite-Methanol. The effect of design and operating parameters, including inert material thermal capacitance, matrix porosity, and evaporation and condenser temperatures on the solar and cycle coefficients of performance are evaluated.

  16. Solar-based comparison of adsorption and absorption refrigerating machines

    NASA Astrophysics Data System (ADS)

    Ahachad, M.; Almers, A.; Mimet, A.; Draoui, A.

    2005-12-01

    This article attempts to carry out a computer simulation of an aqua-ammonia vapour absorption system, and an activated carbon ammonia adsorption system, with a 1m2 collector area, under climatic conditions of Tangier, north Morocco. This study is very important in order to point out the conditions that make the performance of one cycle superior to the other. The comparison of the performance of sorption cycle is still a difficult academic challenge because some part of the sorption cycle is still at the R&D stage. The effect of operating variables such as generator temperature, condenser temperature and evaporator temperature on the system performance is investigated. This study shows that, in solar applications, the adsorption system is better than the absorption system for several reasons including its efficiency, and that it is simple to operate.

  17. Experimental study on activated carbon-nitrogen pair in a prototype pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Anupam, Kumar; Palodkar, Avinash V.; Halder, G. N.

    2016-04-01

    Pressure swing adsorption of nitrogen onto granular activated carbon in the single-bed adsorber-desorber chamber has been studied at six different pressures 6-18 kgf/cm2 to evaluate their performance as an alternative refrigeration technique. Refrigerating effect showed a linear rise with an increase in the operating pressure. However, the heat of adsorption and COP exhibited initial rise with the increasing operating pressure but decreased later after reaching a maximum value. The COP initially increases with operating pressures however, with the further rise of operating pressure it steadily decreased. The highest average refrigeration, maximum heat of adsorption and optimum coefficient of performance was evaluated to be 415.38 W at 18 kgf/cm2, 92756.35 J at 15 kgf/cm2 and 1.32 at 12 kgf/cm2, respectively. The system successfully produced chilled water at 1.7 °C from ambient water at 28.2 °C.

  18. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  19. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  20. Performance study of unglazed cylindrical solar collector for adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Mahesh, A.; Kaushik, S. C.; Kumaraguru, A. K.

    2013-12-01

    In the present communication, the unglazed cylindrical solar adsorber module is suggested for refrigeration and theoretical models for the heat and mass transfer in the cylindrical adsorber with heat balance equations in the collector components have been developed. It has been found that, both the SCP and COPsolar raises with increasing the evaporation temperature and drop off with the increase of the condensation temperature. The COPsolar increased from 0.15 to 0.52 with the increase of the total solar energy absorbed by the collector while the COPcycle varied in the range of 0.57-0.73. The efficiency of unglazed solar collector varied from 36 to 44 %. The cost of current unglazed adsorption refrigeration system is compared with the glazed system, and it is 33 to 50 % less than the cost of glazed system.

  1. Computational tool for simulation of power and refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Córdoba Tuta, E.; Reyes Orozco, M.

    2016-07-01

    Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.

  2. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  3. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  4. Parametric study of a silica gel-water adsorption refrigeration cycle -- The influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density, and COP

    SciTech Connect

    Boelman, E.C.; Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    The influence of heat exchanger UA-values (adsorber/desorber, evaporator, and condenser) is investigated for an adsorption chiller, with consideration given to the thermal capacitance of the adsorber/desorber by means of a lumped-parameter cycle simulation model developed by the authors and co-workers for the single-stage silica gel-water adsorption chiller. The closed-cycle-type chiller, for use in air conditioning, is driven by low-grade waste heat (85 C [185 F]) and cooled by water at 31 C (88 F) and operates on relatively short cycle times (420 seconds adsorption/desorption; 30 second adsorber/desorber sensible cooling and heating). The results showed cycle performance to be considerably affected by the thermal capacitance and UA-value of the adsorber/desorber, which is attributed to the severe sensible cooling/heating requirements resulting from batched cycle operation. The model is also sensitive to the evaporator UA-value--but to a lesser extent. The condenser UA-value is the least sensitive parameter due to the working pair adsorption behavior in the temperature range defined for desorption and condensation.

  5. A solar powered vaccine storage refrigerator that can be powered by a single truck battery

    SciTech Connect

    Schlussler, L.

    1999-07-01

    In developing countries, kerosene powered vaccine storage refrigerators are gradually being replaced by PV powered units. The weak link in these solar powered systems is typically the deep cycle battery bank. When the batteries fail, replacements will probably have to be imported. Often the logistics of funding, recycling and transportation of these batteries may be difficult to arrange. Sun Frost has developed a vaccine refrigerator that will run on a single 100 amp battery, an automotive battery if need be. Vaccine is stored in the refrigerator section of these units, while the freezer section is used to freeze ice packs to transport the vaccine. This new dual compressor model keeps the battery bank in a shallow cycle mode by shutting off the freezer compartment when the battery is significantly discharged. The PV system can then keep the refrigerator compartment running while shallow cycling the battery even during the most severe weather conditions. The system operation has been simulated by using daily solar data. Results show that the operation of the freezer will rarely be interrupted. Another advantage is that if this system is installed in a location where insolation levels are lower than expected, the refrigerator compartment will maintain reliable operation for keeping the vaccines cold, while only the freezer's ice making capabilities would be effected.

  6. Refrigerator

    SciTech Connect

    Burke, E.J.

    1987-02-24

    A refrigerator is described comprising: (a) a housing having a vent compartment and an insulated box having a cooler compartment and a freezer compartment; (b) a thermoelectric heat pump means mounted in the housing, the heat pump means including a finned heat sink of high temperature coefficient material mounted in the vent compartment. A hot plate is attached to the heat sink. A thermopile has a hot side connected to the hot plate and a cold side, a block of high temperature coefficient material is connected to the cold side. An L-shaped bracket of high temperature coefficient material having a vertical portion attached to the block and a horizontal portion extends into the freezer compartment. A freezer compartment of high temperature coefficient material has a bottom attached to the L-shaped horizontal portion. The bottom portion has walls forming an ice cube tray receiving recess whereby the continuous structure of high temperature coefficient material exists between the thermopile and ice cube tray receiving recess to produce a sub freezing temperature in the recess; and (c) an ice cube tray having a shape corresponding to that of the ice cube tray receiving recess whereby five sides of the ice cube tray are in freezing engagement with the bottom recess forming walls for freezing ice cubes.

  7. Refrigeration system having improved heat transfer and reduce power requirement for various evaporative refrigerants

    SciTech Connect

    Miller, B.

    1980-07-01

    A description is given of an improved refrigerating system of the type which includes (A) an evaporator for circulating a fluid refrigerate therethrough to absorb heat from a refrigerating medium, whereby said medium is cooled and said refrigerant is converted from a liquid to a gas, (B) an oil lubricated compressor connected in receiving relation to said evaporator for compressing and superheating said gas, (C) a condenser connected in receiving relation to said compressor for condensing said compressed gas to form a liquid, and (D) a receiver connected in liquid receiving relation to said condenser for storing said liquid and connected in liquid supplying relation to said evaporator, the improvement comprising (E) heat exchanger means having a liquid refrigerant confining shell and a heat exchanger tube disposed in said shell, an inlet end of said tube being connected in receiving relation to said compressor for receiving said compressed, superheated gas therein, said shell having an inlet port connected in receiving relation to an outlet port of said condenser for circulating a portion of the liquid refrigerant condensed in said condenser about said tube to partially desuperheat said compressed gas, and (F) an impurity removing oil-mist separator/collector unit connected in receiving relation to an outlet end of said tube for removing impurities, including oil, from said partially desuperheated gas, said unit being connected in supplying relation to said condenser for supplying cleaned, partially desuperheated gas to said condenser.

  8. Regulation of the diurnal variation of the cold productivity of an adsorption-type solar refrigeration system

    NASA Astrophysics Data System (ADS)

    Klyshchaeva, O.; Kakabaev, A.; Redzhepov, G.

    The paper examines various modes of operation of an adsorption-type solar refrigeration system, which make it possible to extend the operation of the system, which make it possible to extend the operation of the system to periods when there is no sunlight. It is shown that the diurnal variation of cold productivity can be determined through the establishment of the time variation of the water content of the solution. Cold-productivity plots are presented for characteristic modes of operation of the system. Consideration is given to the mode of operation where the period of operation of the refrigeration part coincides with the period of sunlight.

  9. Solar powered solid adsorption cold store

    SciTech Connect

    Grenier, P.; Guilleminot, J.J.; Meunier, F.; Pons, M.

    1988-08-01

    Experimental results obtained on a 12 m/sup 3/ solar-powered solid-adsorption cold store are presented. These results are compared to the predictions of a simplified model. On the basis of this model, performance of a similar installation under various conditions (location, orientation) and other technological possibilities are given.

  10. Computational Analysis of Silica gel-Water Adsorption Refrigeration Cycle with Mass Recovery

    NASA Astrophysics Data System (ADS)

    Akahira, Akira; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The study aims at clarifying the performance of silica gel-water adsorption refrigeration cycle with mass recovery process.Two kinds of heat exchanger were examined and the performances were compared with each other. One type of heat exchanger was a spiral tube and it was immersed in a low temperature thermostatic bath. The other was coil-shaped double tube heat exchanger using two tubes. The emulsion was circulated to make ice continuously. These systems were operated under various cooling conditions (flow rates of the emulsion and brine temperatures). The effects of the tube materials (fluororesin and non-fluororesin) and thickness were also examined. Slurry ice was formed continuously without adhesion of ice to the cooling wall under certain conditions. Using the fluororesin tube prevented ice from the adhesion and it enlarged the range of the cooling conditions under which slurry ice was formed continuously. Furthermore, by making thickness of the tube thinner and increasing the heat transfer coefficient on the outside of the tube, ice was made continuously without lowering the rate of ice formation at a higher brine temperature.

  11. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    NASA Astrophysics Data System (ADS)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  12. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  13. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  14. Qualification testing of solar photovoltaic powered refrigerator freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Kaszeta, W. J.

    1982-01-01

    One of the primary obstacles to the application of vaccination in developing countries is the lack of refrigerated storage. Vaccines exposed to elevated temperatures suffer a permanent loss of potency. Photovoltaic (PV) powered refrigerator/freezer (R/F) units could surmount the problem of refrigeration in remote areas where no reliable commercial power supply is available. The performance measurements of two different models of PV powered R/F units for medical use are presented. Qualification testing consisted of four major procedures: no-load pull down, ice making, steady-state (maintenance), and holdover. Both R/F units met the major World Health Organization (WHO) requirements. However, the testing performed does not provide complete characterization of the two units; such information could be derived only from further extensive test procedures.

  15. High power thermoacoustic refrigeration. Annual summary report, 1 June 1995-31 May 1996

    SciTech Connect

    Garrett, S.L.

    1996-06-15

    The purpose of this research project is to study the fundamental physical processes which are involved in production of high cooling powers from electrically driven thermoacoustic refrigeration. The results of these experimental investigations are then utilized to produce improved designs for the next generation of high power thermoacoustic refrigerators, chillers, and air conditioners. These research objectives are achieved by an integrated combination of experimental measurements on thermoacoustic components and subsystems, as well as complete refrigeration systems. Comparison of the measured performance to analytic models based on differential equations (low amplitude) and similitude (high amplitude) and to numerical models based on the Los Alamos National Laboratory Design Environment for Low-Amplitude ThermoAcoustic Engines (DELTA-E), are then made.

  16. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  17. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture

    NASA Astrophysics Data System (ADS)

    Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

    2015-01-01

    We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

  18. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  19. Performance analysis of solar powered absorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Abu-Ein, Suleiman Qaseem; Fayyad, Sayel M.; Momani, Waleed; Al-Bousoul, Mamdouh

    2009-12-01

    The present work provides a detailed thermodynamic analysis of a 10 kW solar absorption refrigeration system using ammonia-water mixtures as a working medium. This analysis includes both first law and second law of thermodynamics. The coefficient of performance (COP), exergetic coefficient of performance (ECOP) and the exergy losses (Δ E) through each component of the system at different operating conditions are obtained. The minimum and maximum values of COP and ECOP were found to be at 110 and 200°C generator temperatures respectively. About 40% of the system exergy losses were found to be in the generator. The maximum exergy losses in the absorber occur at generator temperature of 130°C for all evaporator temperatures. A computer simulation model is developed to carry out the calculations and to obtain the results of the present study.

  20. Simulation of chip-size electrocaloric refrigerator with high cooling-power density

    NASA Astrophysics Data System (ADS)

    Gu, Haiming; Craven, Brent; Qian, Xiaoshi; Li, Xinyu; Cheng, Ailan; Zhang, Q. M.

    2013-03-01

    The large electrocaloric effect that found in ferroelectric polymers creates unique opportunity for developing high performance chip scale solid state refrigerator. This letter presents a finite volume simulation study and shows that by employing solid state regenerators and the micro-heat pumping mechanism used in the thermoacoustic cooling, a compact Electrocaloric Oscillatory Refrigeration (ECOR) device can be realized. The simulation results demonstrate that a 1 cm-long ECOR device can provide 9 W/cm3 volumetric cooling power density at 20 K temperature span. By tuning the device parameters in the model, the ECOR can reach more than 50% of the Carnot efficiency.

  1. Investigation on Nano Refrigeration

    NASA Astrophysics Data System (ADS)

    Senthil kumar, G.; Saravanan, K.; Ajay Kumar, K.

    2017-05-01

    Boiling heat transfer is imperative in the refrigeration and air conditioning systems. R22 is the mostly widely used alternative refrigerant in refrigeration equipment such as domestic refrigerators and air conditioners. Though the global warming up potential of R22is relatively high, it is affirmed that it is a long alternative refrigerant in lots of countries. By addition of nano particles to the refrigerant results in improvements in the thermo-physical properties and heat transfer characteristics of the refrigerant, thereby improving the performance of the refrigeration system. The results indicate that cuo nano refrigerant works normally and safely in the refrigeration system. The results indicate that heat transfer coefficient increases with the usage of nanocuo. Thus using cuo nano refrigerant in refrigeration system is found to be feasible. Objective of this project is to study the pre and post effects of addition of NRs in refrigeration and to predict COP and power consumption reduction.

  2. Evaluation of the Super Efficient Refrigerator Program (SERP) in the Bonneville Power Administration service territory

    SciTech Connect

    Lee, A.D.; Conger, R.L.

    1996-06-01

    The Super Efficient Refrigerator Program (SERP) is a collaborative utility program intended to transform the market for energy-efficient and environmentally friendly refrigerators. it is one of the first examples of large-scale {open_quotes}market transformation{close_quotes} energy efficiency program. This report documents the evaluation of SERP ({open_quotes}the Program{close_quotes}) in the Bonneville Power Administration`s (Bonneville`s) service territory. Pacific Northwest National Laboratory (PNNL) conducted this evaluation for Bonneville. This study includes the process evaluation, preliminary impact evaluation, and market transformation assessment. It is based on site visits and interviews with refrigerator dealers and manufacturers, industry data, and Bonneville information. Results from this study are compared with those from a parallel study that examines the Program across the 24 participating utilities.

  3. Dynamic Characteristics of Pressure Build Up Tank for HTS Power Cable Refrigeration System

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Park, Heecheol; Kim, Seokho; Jang, Hyunman; Kim, Yanghun

    HTS power cables are cooled by the forced circulation of sub-cooled liquid nitrogen to remove heat loss and maintain a cryogenic temperature. The refrigeration systems used consist of cryocoolers, a pressure build-up tank, heat exchangers, and circulation pumps. Liquid nitrogen expands or shrinks according to the temperature variation inside the fixed volume of the refrigeration system and the cable cryostat. The system pressure also changes depending on the volume change of the liquid nitrogen. The pressure of the liquid nitrogen should be kept above a certain level to ensure its dielectric strength. In addition, the pressure should be kept below the allowable pressure level considering the mechanical strength of the refrigeration system. To enhance the pressure controllability, external heating and cooling should be possible in the pressure build-up tank. For the precise modeling of the pressure build-up tank, thermal stratification and axial thermal conduction are considered. An analysis of such a refrigeration system is performed using the commercial code 'Sinda/fluint', a comprehensive finite-difference, one-dimensional, lumped parameter tool. This paper presents the transient thermo-hydraulic characteristics and the design directions of an HTS cable refrigeration system according to a variable heat load including pressure build-up tank.

  4. A study of design principles for refrigerators for low-power cryoelectronic devices

    SciTech Connect

    Zimmerman, J.E.; Sullivan, D.B.

    1982-01-01

    This report summarizes a five-year effort at NBS which has been directed toward the development of low-power cryocoolers suited to the support of super-conducting instruments. The report deals with a variety of aspects of construction and operation of refrigerators as well as with a model which allows one to optimize the design for minimum drive power. The publications generated by the program are included as an appendix.

  5. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  6. A rocket-borne He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Alsop, D.; Lange, A.; Kittel, P.

    A self-contained, recyclable He-3 refrigerator suitable for use in space has been developed. The refrigerator is compact, has no moving parts, and requires only electrical connections and thermal contact in order to operate from a 2 K cold stage. A charcoal adsorption pump is used to efficiently condense and cool the He-3. Sintered copper confines the He-3 to the evaporator in zero-gravity and, in fact, allows the refrigerator to operate upside-down in the laboratory. Mounted on a 2 K cold stage, the refrigerator provides 100 microwatts of cooling power at 346 mK, with a 7 hour hold time. On a 1.5 K cold stage, the lowest temperature achieved is 277 mK. The refrigerator has been vibration tested at 7.5 G amplitude from 30 to 400 Hz and 15 G amplitude from 400 to 2000 Hz.

  7. A rocket-borne He-3 refrigerator

    NASA Technical Reports Server (NTRS)

    Duband, L.; Alsop, D.; Lange, A.; Kittel, P.

    1990-01-01

    A self-contained, recyclable He-3 refrigerator suitable for use in space has been developed. The refrigerator is compact, has no moving parts, and requires only electrical connections and thermal contact in order to operate from a 2 K cold stage. A charcoal adsorption pump is used to efficiently condense and cool the He-3. Sintered copper confines the He-3 to the evaporator in zero-gravity and, in fact, allows the refrigerator to operate upside-down in the laboratory. Mounted on a 2 K cold stage, the refrigerator provides 100 microwatts of cooling power at 346 mK, with a 7 hour hold time. On a 1.5 K cold stage, the lowest temperature achieved is 277 mK. The refrigerator has been vibration tested at 7.5 G amplitude from 30 to 400 Hz and 15 G amplitude from 400 to 2000 Hz.

  8. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    SciTech Connect

    Chattopadhyay, S.; Mondal, P. Ghosh, S.

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  9. Performance of Generator of Absorption Refrigerating Machine Powered by Hot Water

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    For 70 kW generator of absorption refrigerating machine powered by the hot water, lifted liquid rate of the bubble lift pump has a maximum value at some vapor flow rate of refrigerant and hot water inlet temperature. This is in agreement with results of small size bubble lift pump. Maximum lifted liquid rate G0 is correlated by the equation G0 = 5, 000σ1.5, where σ is the degree of submergence. In this case, diameter of pump tube was 41.6mm, and length of it were 1,300 and 1,500mm. The range of hot water inlet temperature was 78 - 100°C. Multitube heat flux of first generator is about two times that of second generator at the same superheat.

  10. The Stirling alternative. Power systems, refrigerants and heat pumps

    SciTech Connect

    Walker, G.; Reader, G.; Fauvel, O.R.; Bingham, E.R. )

    1993-01-01

    This book provides an up-to-date reference on the technology, history, and practical applications of Stirling engines, including recent developments in the field and a convenient survey of the Stirling engine literature. The topics of the book include: fundamentals of Stirling technology, definition and terminology, thermodynamic laws and cycles: some elementary considerations, the Stirling cycle, practical regenerative cycle, theoretical aspects and computer simulation of Stirling machines, mechanical arrangements, control systems, heat exchangers, performance characteristics, working fluids, applications of Stirling machines, advantages of Stirling machines, disadvantages of Stirling machines, Stirling versus internal combustion engines, Stirling versus Rankine engines, applications for Stirling machines, Stirling power systems, the literature and sources of supply, the literature of Stirling engines, and the literature of cryocoolers.

  11. Design of an experimental solar-powered, solid-adsorption ice maker

    SciTech Connect

    Pons, M.; Guilleminot, J.J.

    1986-11-01

    Purely thermal heat pumps can be devised with adsorbate/solid adsorbent pairs, for example for refrigeration purposes. As each cycle consists of two periods, i.e., heating/desorption/condensation and cooling/adsorption/evaporation, this mode of operation is well-suited to solar energy. After experiments with the Zeolite/Water pair, a solar-powered ice maker was designed with the Activated Carbon/Methanol pair, and a prototype was built in Orsay. The solar collectors (6 m/sup 2/) contain, on the whole, 130 kg of A.C., the condensers are air-cooled, and the evaporator has a net production of 30-35 kg of ice per sunny day. The ice is easily removed, and in principle the machine could be automatically operated. The net solar C.O.P. is 0.12, which makes this machine one of the most efficient solar ice makers.

  12. Power Generation and Peltier Refrigeration by a Tubular π-Type Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Yamada, Yuka

    2015-11-01

    A tubular configuration is a practical form of thermoelectric (TE) device to generate electric power from fluid heat sources as well as to control the temperature of fluid media by Peltier effect. Here, we report the realization of a tubular π-type TE module which enables both power generation and Peltier refrigeration. The tubular module was obtained by stacking ring-shaped constituents in the axial direction, followed by simultaneous spark plasma sintering and joining processes. The experimentally-observed maximum power-density and efficiency are 0.9 kW/m2 and 2.2%, respectively, when a small temperature difference (Δ T) of 85 K was maintained using hot and cold water. Peltier refrigeration of the tube outer surface is also demonstrated. The obtained maximum Δ T and the cooling power density are Δ T = 49 K and 32.6 kW/m2, respectively. The present results indicate the high feasibility of this tube as a fluid-mediated practical TE module.

  13. User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems

    NASA Astrophysics Data System (ADS)

    Ratajczak, Anthony F.

    1987-03-01

    The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.

  14. Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

    SciTech Connect

    Cui, Jun

    2013-03-27

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  15. User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems

    NASA Technical Reports Server (NTRS)

    Ratajczak, Anthony F.

    1987-01-01

    The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.

  16. Shape Memory Alloys and their Applications in Power Generation and Refrigeration

    SciTech Connect

    Cui, Jun

    2013-07-01

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  17. Refrigeration for Cryogenic Sensors

    SciTech Connect

    Gasser, M.G.

    1983-12-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  18. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  19. The development of high cooling power and low ultimate temperature superfluid Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    Patel, Ashok B.

    The superfluid Stirling refrigerator (SSR) is a recuperative Stirling cycle refrigerator which provides cooling to below 2 K by using a liquid 3He-4He mixture as the working fluid. In 1990, Kotsubo and Swift demonstrated the first SSR, and by 1995, Brisson and Swift had developed an experimental prototype capable of reaching a low temperature of 296 mK. The goal of this thesis was to improve these capabilities by developing a better understanding of the SSR and building SSR's with higher cooling powers and lower ultimate temperatures. This thesis contains four main parts. In the first part, a numerical analysis demonstrates that the optimal design and ultimate performance of a recuperative Stirling refrigerator is fundamentally different from that of a standard regenerative Stirling refrigerator due to a mass flow imbalance within the recuperator. The analysis also shows that high efficiency recuperators remain a key to SSR performance. Due to a quantum effect called Kapitza resistance, the only realistic and economical method of creating higher efficiency recuperators for use with an SSR is to construct the heat exchangers from very thin (12 μm - 25 μm thick) plastic films. The second part of this thesis involves the design and construction of these recuperators. This research resulted in Kapton heat exchangers which are leaktight to superfluid helium and capable of surviving repeated thermal cycling. In the third part of this thesis, two different single stage SSR's are operated to test whether the plastic recuperators would actually improve SSR performance. Operating from a high temperature of 1.0 K and with 1.5% and 3.0% 3He-4He mixtures, these SSR's achieved a low temperature of 291 mK and delivered net cooling powers of 3705 μW at 750 mK, 977 μW at 500 mK, and 409 μW at 400 mK. Finally, this thesis describes the operation of three versions of a two stage SSR. Unfortunately, due to experimental difficulties, the merits of a two stage SSR were not

  20. Technical and Economical Demands on 25K - 77K Refrigerators for Future HTS — Series Products in Power Engineering

    NASA Astrophysics Data System (ADS)

    Gromoll, B.

    2004-06-01

    For the future high temperature superconductivity, HTS, series products new refrigerators are essential. Demands are made on these which are only partly fulfilled by refrigerators available in the market today. This refers to cooling power, initial cost and in particular reliability. Without proper refrigeration techniques it will be almost impossible to bring HTS products to the market. Based on the experiences made by the construction and operation of HTS prototypes within our company, like the 400 kW motor, 1.2 MVA current limiter and 1 MVA traction-transformer provided with refrigerators which are available in the market today, criteria have been established to identify the future technical and economical requirements. These criteria apply to efficiency, maintainability, operation flexibility, feasibility of integration and performance/cost ratio. For the temperature range of 20 K to 77 K cooling with Gifford-McMahon, Pulse Tube, Stirling and Mixture-Cascade refrigerators are applicable. The development potential of these processes are compared for the different applications in future series products. Presented are the necessary steps towards reliable and economic refrigerators from the viewpoint of an equipment manufacturer. These are essential for a market entry in the year 2008.

  1. New York Power Authority/New York City Housing Authority refrigerator replacement program, first program year evaluation. Final report

    SciTech Connect

    Kinney, L.F.; Lewis, G.; Pratt, R.G.; Miller, J.

    1997-08-01

    Acting as an energy services provider, the New York Power Authority (NYPA) has initiated a long-term project through which 20,000 refrigerators per year will be replaced with the most energy-efficient units possible in apartments managed by the New York City Housing Authority (NYCHA). Using bulk purchasing as an incentive to appliance manufacturers to produce energy-efficient refrigerators suitable for use in apartments, replaced in the first year of the program, which ended in December 1996. These units, kWh per year. Savings were determined by field testing and laboratory testing of 220 existing refrigerators and 56 newly-installed units. In the next program year, a 15.0-cubic-foot Maytag refrigerator, newly-designed in response to bulk purchasing incentives, is being installed. The new unit has a label rating of 437 kWh per year, 31 percent better than 1993 energy standards. Old refrigerators removed from apartments are {open_quotes}demanufactured{close_quotes} in an environmentally-appropriate way and both metals and refrigerants are recovered for reuse.

  2. Reduction in the Electric Power Consumption of a Thermoelectric Refrigerator by Experimental Optimization of the Temperature Controller

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Astrain, D.; Rodríguez, A.; Pérez, G.

    2013-07-01

    Most thermoelectric refrigerators used for food conservation are operated by on/off temperature controllers, because of their simplicity and low cost. This type of controller poses a major problem: when the inner temperature reaches the lower setpoint and the thermoelectric modules are switched off, a great amount of the heat stored in the heat exchanger at the hot end of the modules goes back into the refrigerator, by heat conduction through the modules and the heat extender. This effect significantly increases the electric power consumption of the refrigerator. This work studies experimentally the influence of different temperature control systems on the electric power consumption and coefficient of performance of a thermoelectric refrigerator: an on/off controller, a proportional-integral-derivative controller, and a novel operating system based on idling voltages. The latter provides voltage to the modules once the inner temperature reaches the lower setpoint, instead of switching them off, preventing heat from going back. A prototype has been constructed to compare these operating systems. Results prove that the controller based on idling voltages reduces the electric power consumption of the refrigerator by 32% and increases the coefficient of performance by 64%, compared with the on/off controller.

  3. Refrigerating machine oil

    SciTech Connect

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  4. Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly.

    PubMed

    McCarney, Steve; Robertson, Joanie; Arnaud, Juliette; Lorenson, Kristina; Lloyd, John

    2013-12-09

    Large areas of many developing countries have no grid electricity. This is a serious challenge that threatens the continuity of the vaccine cold chain. The main alternatives to electrically powered refrigerators available for many years--kerosene- and gas-driven refrigerators--are plagued by problems with gas supply interruptions, low efficiency, poor temperature control, and frequent maintenance needs. There are currently no kerosene- or gas-driven refrigerators that qualify under the minimum standards established by the World Health Organization (WHO) Performance, Quality, and Safety (PQS) system. Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas. Devices generally had strong laboratory performance data; however, experience in the field over the years has been mixed. Traditional solar refrigerators relied on relatively expensive battery systems, which have demonstrated short lives compared to the refrigerator. There are now alternatives to the battery-based systems and a clear understanding that solar refrigerator systems need to be designed, installed, and maintained by technicians with the necessary knowledge and training. Thus, the technology is now poised to be the refrigeration method of choice for the cold chain in areas with no electricity or extremely unreliable electricity (less than 4h per average day) and sufficient sunlight. This paper highlights some lessons learned with solar-powered refrigeration, and discusses some critical factors for successful introduction of solar units into immunization programs in the future including: •Sustainable financing mechanisms and incentives for health workers and technicians are in place to support long-term maintenance, repair, and replacement parts. •System design is carried out by qualified solar refrigerator professionals taking into account the conditions at installation sites. •Installation and

  5. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  6. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  7. Sorption Refrigeration / Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Saha, Bidyut Baran; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and use of CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons). Up to now, only the desiccant evaporative cooling system of the open type has achieved commercial use, predominantly in the United States. Closed-type adsorption refrigeration and heat pump systems are rarely seen in the market, or are still in the laboratory testing stage. Promising recent development have been made in Japan for the use of porous metal hydrides and composite adsorbents. In this paper, a short description of adsorption theories along with an overview of present status and future development trends of thermally powered adsorption refrigeration cycles are outlined putting emphasis on experimental achievements. This paper also addressed some advanced absorption cycles having relatively higher COP, and also summarizes fundamental concepts of GAX cycles and various GAX cycles developed for heat pump applications.

  8. Study of a Combined Power and Ejector Refrigeration Cycle with Low-temperature Heat Sources by Applying Various Working Fluids

    NASA Astrophysics Data System (ADS)

    Jafarmadar, S.; Habibzadeh, A.

    2017-08-01

    A power and cooling cycle which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources is discussed in this paper. Thirteen working fluids including one wet, eight dry and four isentropic fluids are studied in order to find their performances on the combined cycle. First and second law analysis has been performed by using a computer program in order to investigate various operating conditions’ effects on the proposed cycle by fixing power/refrigeration ratio and varying waste heat source and evaporator temperature. According to the results, in general, dry and isentropic ORC fluids have better performance compared with wet fluids. The increase in evaporator temperature leads to the decrease in exergy efficiency. On the other hand, exergy efficiency rises with the turbine inlet temperature decrease and an increase of heat source temperature. Rising expansion ratio and inlet temperature of the turbine causes an increase in the thermal efficiency of the cycle.

  9. Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations. Final report

    SciTech Connect

    Darkazalli, G.; Hein, G.F.

    1983-10-01

    One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.

  10. Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations

    NASA Technical Reports Server (NTRS)

    Darkazalli, G.; Hein, G. F.

    1983-01-01

    One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.

  11. Power switch and baffle assembly having unidirectional drive motor for a refrigerator

    SciTech Connect

    Linstromberg, W.J.; Janke, D.E.

    1988-03-22

    In a refrigerator having a cabinet defining a frozen food compartment and a fresh food compartment separated from each other by a divider wall, a through opening formed in the wall to enable cold air from the frozen food compartment to flow into the fresh food compartment; a baffle selectively closing the opening; a compressor; an evaporator fan for circulating chilled air within the frozen food compartment and through the opening into the fresh food compartment; temperature sensor means for measuring the temperatures of the fresh food and frozen food compartments and control means responsive to the temperatures sensor means for producing command signals indicative of the need to cool the compartments; a system for controlling the baffle, compressor and evaporator fan to maintain predetermined frozen food and fresh food compartment temperatures is described comprising: a cam having first and second control surfaces; first electrical switch means operated by movement of the first control surface to apply electricity from an external electrical power source selectively to the compressor and the defrost heater; means for coupling the cam to the baffle; motor means responsive to the command signals for moving the cam; and second electrical switch means operated by movement of the second control surface to apply feedback signals to the control means to indicate the position of the cam.

  12. Development of a 25 K Pulse Tube Refrigerator for Future HTS-Series Products in Power Engineering

    NASA Astrophysics Data System (ADS)

    Gromoll, B.; Huber, N.; Dietrich, M.; Yang, L. W.; Thummes, G.

    2006-04-01

    Demands are made on refrigerators for future HTS-series products like generators, motors, transformers, which are only partly fulfilled by commercially available refrigerators. Based on the experiences with HTS-prototypes, pulse tube refrigerators (PTRs) are considered to have the highest potential to fulfill the identified requirements. Siemens have therefore started the development of a high-performance PTR together with TransMIT Giessen. Design target is a PTR with a cooling power of 80 W near 25 K based on an oil-free CFIC — linear compressor with a power input of 2 × 5 kW. The initial tests on the first single-stage laboratory version of this PTR with stainless steel mesh regenerator revealed high regenerator losses from circulating mass flow that manifests itself in form of an azimuthal temperature asymmetry in the regenerator. The circulating flow can be greatly reduced by increasing the transverse heat conductance of the matrix by use of stacks of different materials. So far, the minimum no-load temperature of the PTR is 35 K and a cooling power of 75 W is available at 50 K with a compressor efficiency of about 80 %. Further optimization of the regenerator matrix appears to be possible.

  13. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  14. Refrigeration oils for low GWP refrigerants in various applications

    NASA Astrophysics Data System (ADS)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  15. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  16. Dynamic design of gas sorption J-T refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  17. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  18. The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation

    SciTech Connect

    Pratt, R.G.; Miller, J.D.

    1998-09-01

    This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

  19. Optimal refrigerator.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures T h and T c, respectively (θ ≡ T c/T h < 1). The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by [formula: see text] (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency [formula: see text]. The lower bound is reached in the equilibrium limit θ → 1. The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for ln n > 1. If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζ CA and converges to it for n > 1.

  20. Optimal refrigerator

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures Th and Tc , respectively (θ≡Tc/Th<1) . The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by ζCA=(1)/(1-θ)-1 (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency ζC=(1)/(1-θ)-1 . The lower bound is reached in the equilibrium limit θ→1 . The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for lnn≫1 . If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζCA and converges to it for n≫1 .

  1. Charcoal/Nitrogen Adsorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1987-01-01

    Refrigerator with no wear-related moving parts produces 0.5 W of cooling at 118 K. When fully developed, refrigerator needs no electrical power, and life expectancy of more than 10 yr, operates unattended to cool sensitive infrared detectors for long periods. Only moving parts in adsorption cryocooler are check valves. As charcoal is cooled in canister, gas pressure drops, allowing inlet check valve to open and admit more nitrogen. When canister is heated, pressure rises, closing inlet valve and eventually opening outlet valve.

  2. Oxygen chemisorption compressor study for cryogenic J-T refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary D.

    1987-01-01

    Over twenty potentially reversible heat-powered oxide reactions have been studied and/or tested to determine their potential use as thermochemical oxygen compressors for cryogenic J-T LO2 refrigerators. One gas-solid compound family, Pr(1-n)Ce(n)O(x), proved to be completely reversible with fast kinetics for all pressure ranges tested below 650 C. With a heat-powered charcoal/methane physical adsorption upper stage and a Pr(1-n)Ce(n)O(x) chemisorption lower stage, temperatures should be attainable in the 55-80 K range for less power and over five times less weight than for charcoal/nitrogen sorption refrigeration systems. Total system power requirements with a hydride chemisorption lower stage (10 K to 7 K minimum) are about three times less than any mechanical refrigerator, and spacecraft refrigeration weights are about twenty times less. Due to the lack of wear-related moving parts in sorption refrigerators, life expectancy is at least ten years, and there essentially no vibration.

  3. Oxygen chemisorption compressor study for cryogenic J-T refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary D.

    1987-01-01

    Over twenty potentially reversible heat-powered oxide reactions have been studied and/or tested to determine their potential use as thermochemical oxygen compressors for cryogenic J-T LO2 refrigerators. One gas-solid compound family, Pr(1-n)Ce(n)O(x), proved to be completely reversible with fast kinetics for all pressure ranges tested below 650 C. With a heat-powered charcoal/methane physical adsorption upper stage and a Pr(1-n)Ce(n)O(x) chemisorption lower stage, temperatures should be attainable in the 55-80 K range for less power and over five times less weight than for charcoal/nitrogen sorption refrigeration systems. Total system power requirements with a hydride chemisorption lower stage (10 K to 7 K minimum) are about three times less than any mechanical refrigerator, and spacecraft refrigeration weights are about twenty times less. Due to the lack of wear-related moving parts in sorption refrigerators, life expectancy is at least ten years, and there essentially no vibration.

  4. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  5. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  6. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  7. NICE3: Industrial Refrigeration System

    SciTech Connect

    Simon, P.

    1999-09-29

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  8. Ideal orifice pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1992-01-01

    The recent development of orifice pulse tube refrigerators has raised questions as to what limits their ultimate performance. Using an analogy to the Stirling cycle refrigerator, the efficiency (cooling power per unit input power) of an ideal orifice pulse tube refrigerator is shown to be T1/T0, the ratio of the cold temperature to the hot temperature.

  9. Vaccine refrigerator testing. Final report

    SciTech Connect

    Ventre, G.G.; Kilfoyle, D.; Marion, B.

    1990-06-01

    For the Central American Health Clinic Project initiated in 1986, Sandia National Laboratories and the Florida Solar Energy Center recognized the need for a test and evaluation program for vaccine refrigeration systems. At the Florida Solar Energy Center, side-by-side testing of three photovoltaic powered vaccine refrigerators began in 1987. The testing was expanded in 1988 to include a kerosene absorption refrigerator. This report presents observations, conclusions, and recommendations derived from testing the four vaccine refrigeration systems. Information is presented pertaining to the refrigerators, photovoltaic arrays, battery subsystems, charge controllers, and user requirements. This report should be of interest to designers, manufacturers, installers, and users of photovoltaic-powered vaccine refrigeration systems and components.

  10. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  11. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  12. Malone refrigeration

    NASA Astrophysics Data System (ADS)

    Swift, G. W.

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as the working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and we describe two Malone refrigerators. The first, which was completed several years ago, established the basic principles of use for liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  13. Malone refrigeration

    SciTech Connect

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  14. The Effect of Temperature Glide of R407C Refrigerant on the Power of Evaporator in Air Refrigerators / WPŁYW POŚLIZGU Temperatury Czynnika CHŁODNICZEGO R407C NA Moc Parownika CHŁODZIARKI Powietrza

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr

    2013-12-01

    The article discusses the effect of the phenomenon of temperature glide of zeotropic refrigerants on thermal power of an evaporator in an air compression refrigerator. Zeotropic mixtures are subject to phase transitions, the process of which significantly differs from that of homogeneous refrigerants. In contrast to homogeneous refrigerants, where boiling and condensing processes take place at a constant temperature, for the zeotropic mixtures it is essential to know the vapor quality to unambiguously determine the temperature at which the evaporation process is initiated. The R407C refrigerant serves as an example to describe the method of determining the initial temperature of the evaporation process taking into account the effect of temperature glide. The developed formula (7) has been based on a proven linear course of isobars in the two-phase region (Fig. 5) and thus determining a polynomial describing their angle of inclination (8). In addition, temperature calculation formulas (9) and specific enthalpy (10) of dry saturated vapor of the R407C refrigerant have been presented as well. This approach allows to determine the temperature of the R407C refrigerant at the inlet to the evaporator without the required knowledge of its vapor quality. The previously used simplified methods for determining the temperature of a refrigerant at the inlet to the evaporator result in considerable deviations in calculated power of the evaporator compared with its actual value. The presented calculation example involving mine air compression refrigerator of TS-450P type shows that relative deviations of the evaporator thermal power may even exceed 20%. This example compares two simplified methods for determining zeotropic evaporating temperature of a refrigerant used in comparative calculations of refrigerants with the method presented in this article. W artykule przedstawiono wpływ zjawiska poślizgu temperatury zeotropowych czynników chłodniczych na moc cieplną parownika

  15. Experimental investigation of the ecological hybrid refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  16. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-07-19

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  17. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOEpatents

    Chen, G.; Beale, W.T.

    1990-04-03

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

  18. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOEpatents

    Chen, Gong; Beale, William T.

    1990-01-01

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  19. A review of pulse tube refrigeration

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  20. A review of pulse tube refrigeration

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  1. Solar Refrigerators Store Life-Saving Vaccines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  2. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  3. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  4. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  5. Microporous Carbon Disks For Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Munukutla, Lakshmi V.; Moore, Mark R.

    1993-01-01

    Slow, carefully controlled pyrolysis found to turn polyvinylidene chloride disks into carbon disks having small pores and large surface areas. Disks exhibit high adsorptivities making them useful in krypton-sorption refrigerators. Carbons made from polyvinylidene chloride have greater adsorptive capacities. Thermal instability controlled and variability of product reduced by careful control of rates of heating, heating times, and rate of final cooling.

  6. Thermoacoustic refrigeration

    SciTech Connect

    Garrett, S.L.; Hofler, T.J. )

    1992-12-01

    Shortly after their introduction, chlorofluorocarbons (CFCs) used as working fluids in a vapor compression (Rankine) refrigeration cycle became dominant in almost all small and medium-scale food refrigerator/freezer and building/residential air-conditioning applications. That situation is about to change dramatically and, at this moment, unpredictably. Two recent events are responsible for the new era in refrigeration that will dawn before the beginning of the 21st Century. The most significant of these is the international ban on the production of CFCs which were found to be destroying the Earth's protective ozone layer. The second event was the discovery of high temperature superconductors and the development of high speed and high density electronic circuits that require active cooling. It is the purpose of this article to introduce an entirely new approach to refrigeration that was first discovered in the early 1980s. This new approach-thermoacoustic refrigeration-uses high intensity sound waves to pump heat, with inert gases as the working fluid.

  7. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  8. Dynamic considerations for composite metal-rubber laminate acoustic power coupling bellows with application to thermoacoustic refrigeration

    NASA Astrophysics Data System (ADS)

    Smith, Robert William

    Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance

  9. A helium-3 refrigerator employing capillary confinement of liquid cryogen

    NASA Technical Reports Server (NTRS)

    Ennis, D. J.; Kittel, P.; Brooks, W.; Miller, A.; Spivak, A. L.

    1983-01-01

    A condensation refrigerator suitable for operation in a zero gravity space environment was constructed. The condensed liquid refrigerant is confined by surface tension inside a porous metal matrix. Helium-4 and helium-3 gases were condensed and held in a copper matrix. Evaporative cooling of confined liquid helium-4 resulted in a temperature of 1.4K. Using a zeolite adsorption pump external to the cryostat, a temperature of 0.6 K was achieved through evaporative cooling of liquid helium-3. The amount of time required for complete evaporation of a controlled mass of liquid helium-4 contained in the copper matrix was measured as a function of the applied background power. For heating powers below 18 mW the measured times are consistent with the normal boiling of the confined volume of liquid refrigerant. At background powers above 18 mW the rapid rise in the temperature of the copper matrix the signature of the absence of confined liquid occurs in a time a factor of two shorter than that expected on the basis of an extrapolation of the low power data.

  10. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    PubMed

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  11. Supercooling Refrigerator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A Goddard/Philips research project resulted in a refrigeration system which works without seals, lubricants or bearings. The system, originally developed to cool satellite-based scientific instruments, has an extensive range of potential spinoffs. It is called the Stirling Cycle Cryogenic Cooler and eliminates friction by using electronically controlled linear magnetic bearings. Mechanical failure, contamination are eliminated.

  12. Refrigeration Servicing.

    ERIC Educational Resources Information Center

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  13. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  14. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  15. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  16. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    PubMed Central

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  17. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  18. Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)

    SciTech Connect

    Deru, M.

    2011-02-01

    This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

  19. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  20. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  1. Development of a compact dilution refrigerator for zero gravity operation

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Helvensteijn, Ben

    1990-01-01

    A compact dilution refrigerator design based on internal charcoal adsorption is being tested for operation in zero gravity. This refrigerator is self-contained with no external pumps or gas handling system and provides reliable operation since it has no moving parts. All operations are performed with heaters and are completely computer controlled. The refrigerator is capable of providing many hours of operation at very low temperature before the charcoal pumps must be recycled.

  2. Heat Power Determination of Dv-290 Refrigerator's Evaporator on the Basis of Thermodynamic Parameters of Inlet Air / Określenie Mocy Cieplnej Parownika Chłodziarki Dv-290 Na Podstawie Parametrów Termodynamicznych Powietrza Wlotowego

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Kuczera, Zbigniew

    2012-12-01

    The present paper introduces a method for calculating the thermal power of DV-290 mining air cooler's evaporator. The power usually differs from the nominal power given by the manufacturer. The thermodynamic parameters of cooled air are not obtained as a result of in situ measurements, but in indirect manner that is by determining the evaporation and condensation's pressure values of R407C refrigerant. The pressure dependencies formulated as a function of air enthalpy at the evaporator's inlet were obtained using calculations of a computer program which solves the system of equations describing heat and mass transfer in the refrigerator's compressor on the basis of previous measurements of air performed before and after its cooling. The obtained dependencies are demonstrated in a graphical (fig. 2 and fig. 3) and analytical (the regression equations (19) and (20)) manner, the values of correlation coefficients are also presented. For the known evaporation and condensation pressure values of the refrigerant, and thus for its basic physical parameters the complete thermal power of the evaporator was determined, that is its: air cooling overt power, dehumidification occult power, temperature, relative humidity and specific humidity of air after its cooling. In addition, using the mentioned method, the capacity of DV-290 refrigerator's evaporator is provided for the given thermodynamic parameters of air before cooling, along with air thermodynamic parameters after cooling.

  3. Managing Refrigerant Emissions

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  4. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  5. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  6. A COMPUTATIONAL AND EXPERIMENTAL STUDY OF METAL AND COVALENT ORGANIC FRAMEWORKS USED IN ADSORPTION COOLING

    SciTech Connect

    Jenks, Jeromy WJ; TeGrotenhuis, Ward E.; Motkuri, Radha K.; Paul, Brian; McGrail, B. Peter

    2015-07-09

    Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, power-plant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermal mass, bulkiness, complex controls, and low COP (0.2-0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).

  7. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  9. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  10. Compact refrigerant reclaim apparatus

    SciTech Connect

    Van Steenburgh, L.R. Jr.

    1991-09-24

    This patent describes an apparatus for reclaiming refrigerant. It comprises in combination, means for removing gaseous or liquid refrigerant from a container, vaporizing means for vaporizing all of the liquid refrigerant, an oil separator chamber for separating oil from the gaseous refrigerant, a compressor for receiving and compressing the gaseous refrigerant from the oil separator chamber, oil accumulator means for receiving and removing oil mist from the gaseous refrigerant before it enters the compressor, and condensor means for receiving and condensing the gaseous refrigerant from the container, wherein the oil accumulator means is located within the oil separator chamber.

  11. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  12. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  13. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-01-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. it consolidates and facilitates.access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  14. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  15. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  16. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  17. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  18. A recuperative superfluid stirling refrigerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  19. Fast, Low-Duty-Cycle Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, AL; Jones, Jack A.

    1994-01-01

    Metal hydride/hydrogen-sorption refrigerators developed to provide rapid, intermittent cooling at temperatures between 30 and 10 K. In original application, refrigerators cool infrared detectors aboard spacecraft, exhausting heat to outer space via radiators at 250 K. Modified to cool scientific instrumentation on Earth with some loss of efficiency. Require no power during quick cooldown and low heating power during relatively long recharge periods.

  20. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  1. Vaccine refrigeration: thinking outside of the box.

    PubMed

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator with a battery back-up power supply and microprocessor control system is also described.

  2. Transition to New Refrigerants

    EPA Pesticide Factsheets

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  3. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-06-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  5. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-02-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase-out of chemical compounds of environmental concern.

  6. New Rules for Refrigerants.

    ERIC Educational Resources Information Center

    Jackson, Robert

    1999-01-01

    Discusses how educational facilities can comply with new Environmental Protection Agency regulations regarding commercial refrigerants. Tips include developing a compliance plan with a manager in charge of it, and developing an accurate and complete refrigerant-systems assessment. (GR)

  7. Quantum absorption refrigerator.

    PubMed

    Levy, Amikam; Kosloff, Ronnie

    2012-02-17

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  8. Anomalous Brownian refrigerator

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-02-01

    We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.

  9. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  10. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  11. Mathematical analysis of a Vuilleumier refrigerator.

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1971-01-01

    A comprehensive analysis of the Vuilleumier refrigerator was conducted. This analysis includes the effects of nonisothermal gas heat addition and rejection, hot and cold regenerator inefficiencies, conduction losses, and gas leakage losses. A computer program was written which solves the equations resulting from the analysis. The program calculates internal pressures, temperatures, and gas flow rates as functions of refrigerator crank angle, as well as overall refrigerator cooling load and power input. Comparisons between the program results and available data show good agreement, with a marked improvement over the predictions of the ideal model.

  12. Better refrigerant exchanger design

    SciTech Connect

    Starczewski, J.

    1985-04-01

    Design methods are presented for freon refrigerant evaporators of a horizontal tubular heat exchanger type. This article is in two parts. The first part deals with refrigerants on the shell side while the second deals with refrigerants on the tube side. The currently used LMTD to calculate surface area with refrigerants boiling inside (or outside) tubes will be shown to be incorrect. Instead, a new concept of mean average heat flux is introduced. The article also proves that the boiling refrigerant heat transfer coefficient varies considerably along heat exchangers.

  13. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  14. Solar Refrigerator/Freezers For Vaccines

    NASA Technical Reports Server (NTRS)

    Ratajczak, Anthony F.

    1988-01-01

    Report presents results of field tests of solar-cell-powered refrigerator/freezers for vaccines. Covers following topics: explanation of project; descriptions of refrigerator/freezer systems; account of installation experiences; performance data for 22 systems for which field-test data reported; summary of operational reliability; comments of users of some systems tested; and recommendations for design and future use. Photovoltaic systems store vaccines in remote regions where powerlines unavailable.

  15. Solar Refrigerator/Freezers For Vaccines

    NASA Technical Reports Server (NTRS)

    Ratajczak, Anthony F.

    1988-01-01

    Report presents results of field tests of solar-cell-powered refrigerator/freezers for vaccines. Covers following topics: explanation of project; descriptions of refrigerator/freezer systems; account of installation experiences; performance data for 22 systems for which field-test data reported; summary of operational reliability; comments of users of some systems tested; and recommendations for design and future use. Photovoltaic systems store vaccines in remote regions where powerlines unavailable.

  16. Magnetic refrigeration in space - Practical considerations

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1980-01-01

    Various schemes of using adiabatic demagnetization to provide refrigeration in the 10-1000 mK range are discussed with particular reference to the requirements for use in space. The methods considered are complete demagnetization, isothermal demagnetization, moving magnet demagnetization, and continuous refrigeration. The requirements that are important for use in space are low mass, low power dissipation, high mechanical rigidity, modular design, and ease of use.

  17. Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs).

    PubMed

    Ghasemkhani, Mohammadreza; Albrecht, Alexander R; Melgaard, Seth D; Seletskiy, Denis V; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor

    2014-06-30

    A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

  18. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect

    Baxter, VAN

    2003-05-19

    refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  19. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  20. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  1. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    NASA Astrophysics Data System (ADS)

    Sand, J. R.; Rice, C. L.; Vineyard, E. A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARM's) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a 'dual-loop' concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARM's in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARM's in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  2. Mixed refrigerant Joule-Thomson sorption cryocoolers

    NASA Astrophysics Data System (ADS)

    Tzabar, Nir; Grossman, Gershon

    2014-01-01

    Joule-Thomson (JT) sorption cryocooling is the most mature technology for cooling from a normal Room-Temperature (RT) down to temperatures below 100 K in the absence of moving parts. Therefore, high reliability and no vibrations are attainable, in comparison with other cryocoolers. Cooling to 80 - 100 K with JT cryocoolers is often implemented with pure nitrogen. Alternatively, mixed refrigerants have been suggested for reducing the operating pressures to enable closed cycle cryocooling. There is a variety of publications describing nitrogen sorption cryocoolers with different configurations of sorption compressors. In the present research we suggest a novel sorption JT cryocooler that operates with a mixed refrigerant. Merging of sorption cryocooling and a mixed refrigerant enables the use of a simple, single stage compressor for cooling to 80 - 100 K, lower operating temperatures of the sorption cycle, and thus - reduced power consumption. In previous studies we have analyzed sorption compressors for mixed gases and mixed refrigerants for JT cryocoolers, separately. In this paper the option of mixed refrigerant sorption JT cryocoolers is explored. The considerations for developing mixed refrigerants to be driven by sorption compressors and to be utilized with JT cryocoolers are provided. It appears that, unlike with pure nitrogen, mixed refrigerants can be suitable for JT cryocooling with a single stage sorption compressor.

  3. Refrigeration systems program summary

    NASA Astrophysics Data System (ADS)

    1991-12-01

    In addition to saving energy, deploying advanced refrigeration technologies can substantially benefit the environment. Chlorofluorocarbons (CFCs) have been identified as a major cause of potential global climate change and about 20 pct. of the CFCs consumed by the U.S. are due to refrigeration systems. As the international Montreal Protocol will phase out CFC compounds no later than 2000, there is tremendous need to develop safe non-CFC refrigerants and working fluids, alternative refrigeration cycles, and non-CFC insulations for appliances. The U.S. Department of Energy (DOE) established the Refrigeration System Program in 1977 to lead a national effort to accelerate the deployment of cost effective and energy efficient air conditioning and refrigeration technologies. The program primarily conducts research and development on advanced refrigeration technologies. The program, managed by the Office of Building Technologies, which reports to DOE's Assistant Secretary for Conversation and Renewable Energy, encompasses several key activities such as investigating alternative refrigerants and refrigeration cycles, developing advanced technologies for future air conditioning and refrigeration equipment designs, and developing advanced appliance insulations.

  4. Superconducting tunnel-junction refrigerator

    NASA Astrophysics Data System (ADS)

    Melton, Robert G.; Paterson, James L.; Kaplan, S. B.

    1980-03-01

    The dc current through an S1-S2 tunnel junction, with Δ2 greater than Δ1, when biased with eV<Δ1+Δ2, will lower the energy in S1. This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π*~Δ1e. Tunneling calculations yield the cooling power Pc, the electrical power Pe supplied by the bias supply, and the cooling efficiency η=PcPe. The maximum cooling power is obtained for eV=+/-(Δ2-Δ1) and t1=T1Tc1~0.9. Estimates are made of the temperature difference T2-T1 achievable in Al-Pb and Sn-Pb junctions with an Al2O3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency η~=Δ1(Δ2-Δ1) which can be compared with that available in an ideal Carnot refrigerator of η=T1(T2-T1). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the Al2O3 barrier in the Al-Pb and Sn-Pb systems.

  5. Refrigerator Based on Chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1987-01-01

    Reversible chemical reaction generates pressurized oxygen for cooling. Concept for cryogenic refrigerator based on chemical absorption of oxygen by praseodymium/cerium oxide (PCO) compound. Refrigerator produces cryogenic liquid for cooling infrared sensors. Also used for liquefying air and separating oxygen from nitrogen in air. In chemisorption refrigerator, PCO alternately absorbs and desorbs oxygen depending on whether cooled or heated. One pair of compressors accepts oxygen while others releases it. Compressed oxygen liquefied when precooked and expanded.

  6. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  7. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  8. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  9. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  10. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  11. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  12. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  13. Two-statge sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  14. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  15. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  16. Halocarbon Refrigerant Detection Methods.

    DTIC Science & Technology

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for...conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act , and

  17. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  18. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  19. Magnetically suspended Stirling cryogenic space refrigerator Status report

    NASA Technical Reports Server (NTRS)

    Daniels, A.; Gasser, M.; Sherman, A.

    1982-01-01

    At the 1979 Cryogenic Engineering Conference, attention was given to conceptual designs of spaceborne cryogenic refrigeration systems which can provide long-term, unattended operation. Since that time, efforts have continued to translate one of those concepts into an engineering model. The present investigation is concerned with a refrigerator which was designed to generate 5 W of cooling power at a temperature of 65 K. The compression heat of the refrigerator is dissipated at a temperature of 300 K, and the output of the system is to be maintained reliably for a period of five years or longer. The refrigerator design is based on the Stirling cycle, which has an ideal efficiency equal to that of the Carnot cycle. Attention is given to some background information concerning a cryogenic refrigerator, the design of the refrigerator components, and the development status. The magnetic bearings and the linear motors have been tested at the component level.

  20. A novel refrigerator attaining temperature below λ point

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Xue, XiaoDai; Wang, JunJie; Gu, Chao

    2012-08-01

    The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient new refrigerator works with the Vuilleumier cycle. The novel refrigerator is driven by a thermal compressor which creatively uses mix-refrigerants J-T refrigerator alternative to liquid nitrogen as the power source. Furthermore, the Vuilleumier cycle can be used to achieve temperature below liquid helium with the improvement of the ultra-low temperature regenerator material. A new method of reaching the temperature below 1.7 K is proposed on the regenerative refrigerator, which could be an important breakthrough for the cryogenic science and technology.

  1. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  2. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  3. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  4. The toxicity of refrigerants

    SciTech Connect

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  5. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  6. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  7. Evaluation and selection of refrigeration systems for lunar surface and space applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Blount, T. D.; Williams, J. L.

    1971-01-01

    Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).

  8. The adsorption behavior of mercury on the hematite (1-102) surface from coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Jung, J. E.; Jew, A. D.; Rupp, E.; Aboud, S.; Brown, G. E.; Wilcox, J.

    2014-12-01

    One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg). Worldwide, 475 tons of Hg are released from coal-burning processes annually, comprising 24% of total anthropogenic Hg emissions. Because of the high toxicity of Hg species, US Environmental Protection Agency (EPA) proposed a standard on Hg and air toxic pollutants (Mercury and Air Toxics Standards, MATS) for new and existing coal-fired power plants in order to eliminate Hg in flue gas prior to release through the stack. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior, speciation of Hg as well as the interaction between Hg and solid materials, such as fly ash or metal oxides, in the flue gas stream. In this study, theoretical investigations using density functional theory (DFT) were carried out in conjunction with experiments to investigate the adsorption behavior of oxidized Hg on hematite (α-Fe2O3), an important mineral component of fly ash which readily sorbes Hg from flue gas. For DFT calculation, the two α-Fe2O3 (1-102) surfaces modeled consisted of two different surface terminations: (1) M2-clean, which corresponds to the oxygen-terminated surface with the first layer of cations removed and with no hydroxyl groups and (2) M2-OH2-OH, which has bihydroxylated top oxygen atoms and a second layer of hydroxylated oxygen atoms. These surface terminations were selected because both surfaces are highly stable in the temperature range of flue gases. The most probable adsorption sites of Hg, Cl and HgCl on the two α-Fe2O3 surface terminations were suggested based on calculated adsorption energies. Additionally, Bader charge and projected density of states (PDOS) analyses were conducted to characterize the oxidation state of adsorbates and their bonding interactions with the surfaces. Results indicate that oxidized Hg physically adsorbs on the M2-clean surface with a binding energy of -0.103 eV and that

  9. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  10. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  11. Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor); Gatewood, John R. (Inventor)

    1988-01-01

    A bi-directional Joule Thomson refrigerator is described, which is of simple construction at the cold end of the refrigerator. Compressed gas flowing in either direction through the Joule Thomson expander valve and becoming liquid, is captured in a container in direct continuous contact with the heat load. The Joule Thomson valve is responsive to the temperature of the working fluid near the valve, to vary the flow resistance through the valve so as to maintain a generally constant flow mass between the time that the refrigerator is first turned on and the fluid is warm, and the time when the refrigerator is near its coldest temperature and the fluid is cold. The valve is operated by differences in thermal coefficients of expansion of materials to squeeze and release a small tube which acts as the expander valve.

  12. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  13. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1977-02-01

    CO rH CO © . NBSIR 76-847 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division Institute...June 30, 1975 NBSIR 76-847 ELECTROULORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh and J.D. Siegwarth Cryogenics Division L Institute for...Field at Low Temperatures, Rev. Sei. Instrum. 42, 571 (1971). 8. Lawless, W. N., Radebaugh , R., and Soulen, R. J., Studies of a Glass- Ceramic

  14. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  15. Measurements with a recuperative superfluid Stirling refrigerator

    SciTech Connect

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1995-08-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9% {sup 3}He- {sup 4}He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed.

  16. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  17. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  18. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators... efficiency, water consumption, or water efficiency. Commercial refrigerator, freezer, and refrigerator... consists of 1 or more refrigerant compressors, refrigerant condensers, condenser fans and motors,...

  19. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  20. Sub-room Temperature Magnetic Refrigerator

    NASA Astrophysics Data System (ADS)

    Zimm, Carl

    1998-03-01

    Magnetic refrigeration has been predicted to be an efficient cooling technology because of the highly reversible nature of the magnetocaloric effect for some materials. However, cooling power and efficiency of past devices has been limited because of the difficulties in exchanging heat with the solid magnetic refrigerant. Astronautics in a joint project with Ames DOE Laboratory has constructed a regenerative magnetic refrigerator that provides cooling near room temperature using gadolinium as a refrigerant and water as a heat transfer fluid. Using a superconducting magnet at 5 T, cooling of 500 watts was obtained at coefficients of performance of 5 or more watts of cooling per watt of work input. Cooling of 150 watts was obtained using a 1.5 T field, which can be obtained from permanent magnet sources. The main losses in the present device are magnet AC losses and seal friction, although limits on temperature span may also be imposed by magnetic material properties. We have identified design, magnet, and magnetic material improvements that should reduce such losses, allowing the construction of devices whose efficiency well exceeds that obtainable from conventional technology. The fluid used in such magnetic refrigerators presents no toxicity, ozone depletion or global warming hazard. This talk will include test results and projections of the capabilities and limitations of the technology.

  1. Cycle design for the ISABELLE helium refrigerator

    SciTech Connect

    Brown, D.P.; Schlafke, A.P.; Wu, K.C.; Moore, R.W.

    1981-01-01

    The superconducting magnets for the ISABELLE storage ring/accelerator are designed to be operated at 3.8/sup 0/K using a forced-flow supercritical helium cooling system. The ISABELLE refrigerator has been designed subject to these special requirements. The design output is 13.65 KW of refrigeration below 4.2/sup 0/K (for cooling the magnet and distribution system), 55 KW at 55/sup 0/K (to cool heat shields for the whole system) and 100 g/s of liquefaction (for magnet power leads cooling). The system incorporates a subcooler section that produces liquid helium at 5.3 atm and 2.6 K and circulates it through the loads, and a Claude-type main refrigerator section. The main refrigerator section has five stages of cooling, with four of them below liquid nitrogen temperature. Liquid nitrogen precooling is not used. With 60% isothermal compressors the efficiency of the refrigerator system will be about 26% of Carnot.

  2. Cold chain: solar refrigerator field tested.

    PubMed

    1983-04-01

    The Health Ministries of Colombia and Peru, in collaboration with the Expanded Program on Immunization (EPI)/Pan American Health Organization (PAHO) and the Centers for Disease Control (CDC), have begun field testing a solar-powered vaccine refrigerator. The aim of the fields trials is to determine whether solar refrigerators can maintain the temperatures required for vaccine storage (+4-8 degrees Celsius) and produce ice at a rate of 2 kg/24 hours under different environmental conditions. these refrigerators would be particularly useful in areas that lack a consistent supply of good quality fuel or where the electrical supply is intermittent or nonexistent. Full appraisal of this technology will require 2 years of field testing; Colombia and Peru expect to complete testing in 1985. To date, 5 models have passed CDC-developed specifications, all of which are manufactured in the US. PAHO/WHO recommends that health ministries should consider the following guidelines in considering the purchase of a particular system: the initial purchase should be for a limited quantity (about 5) of refrigerators to permit field testing; solar panels should meet specific criteria; consideration should be given only to those models that have passed qualification tests; each unit should be fully equipped with monitoring devices and spare parts; and a trained refrigerator technician should be available to repair the equipment.

  3. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles

    NASA Astrophysics Data System (ADS)

    Luo, Ercang; Dai, Wei; Zhang, Yong; Ling, Hong

    2006-02-01

    Recently, considerable research efforts have been made to search substitution technologies for chlorofluorocarbon-based vapor compression cycles due to the concern over environmental issues. This letter introduces a helium-based thermoacoustic refrigeration system, which is a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine, for domestic refrigeration purpose. In the regenerators of both the refrigerator and the prime mover, helium gas experiences near to reversible high efficiency Stirling process. At the operating point with 3.0MPa mean pressure, 57.7Hz frequency, and 2.2kW heat input, the experimental cooler provides a lowest temperature of -64.4°C and 250W cooling power at -22.1°C. These results show good potential of the system to be an alternative in near future for domestic refrigeration with advantages of environment-friendliness, no moving parts, and heat driven mechanism.

  4. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  5. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M. , Great Falls, VA )

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  6. Hey you! Shut the refrigerator door!

    NASA Astrophysics Data System (ADS)

    Fay, Sarah; Portenga, Angela

    1998-09-01

    The note discusses electrical power and energy and includes possible labs to be used in a physics classroom. It is based on our experimentation with a new device called the Watt-Watt/Hour Meter, which displays instantaneous power and cumulative energy readings of household electrical devices. Our experiments utilized this meter in conjunction with various appliances and focused primarily on its use with a refrigerator.

  7. The Carnot type magnetic refrigeration below 4.2 K - Computer simulation

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Numazawa, T.; Maro, T.

    Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface.

  8. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  9. Refrigerator recycling and CFCs

    SciTech Connect

    Shepard, M.; Hawthorne, W.; Wilson, A.

    1994-12-31

    Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

  10. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given.

  11. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  12. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  13. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  14. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.; Barbour, C.B.

    1997-12-31

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  15. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOEpatents

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  16. Study of Solar Driven Silica gel-Water based Adsorption Chiller

    NASA Astrophysics Data System (ADS)

    Habib, K.; Assadi, M. K.; Zainudin, M. H. B.

    2015-09-01

    In this study, a dynamic behaviour of a solar powered single stage four bed adsorption chiller has been analysed designed for Malaysian climate. Silica gel and water have been used as adsorbent-refrigerant pair. A simulation program has been developed for modeling and performance evaluation of the chiller using the meteorological data of Kuala Lumpur. The optimum cooling capacity and coefficient of performance (COP) are calculated in terms of adsorption/desorption cycle time and regeneration temperature. Results indicate that the chiller is feasible even when low temperature heat source is available. Results also show that the adsorption cycle can achieve a cooling capacity of 14 kW when the heat source temperature is about 85°C.

  17. Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique

    NASA Astrophysics Data System (ADS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2017-01-01

    Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.

  18. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  19. Improved cryogenic refrigeration system

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  20. Education in Helium Refrigeration

    NASA Astrophysics Data System (ADS)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  1. Fundamentals of Refrigeration.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  2. Electrocaloric Refrigeration for Superconductors

    DTIC Science & Technology

    1974-12-31

    AD-A008 852 ELECTROCALORIC REFRIGERATION FOR SUPERCONDUCTORS Ray Radebaugh , et al National Bureau of Standards...for the period ending December 31, 1974 < Prepared by Ray Radebaugh , W. N. Lawless, and J. D. Slegwarth Cryogenics Division National Bureau of

  3. Education in Helium Refrigeration

    SciTech Connect

    Gistau Baguer, G. M.

    2004-06-23

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics... and so on.Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  4. Thermophysical properties of refrigerants

    SciTech Connect

    Platzer, B.; Maurer, G. ); Polt, A. )

    1990-01-01

    This book summarizes the extensive experimental results available for 16 pure and mixed halogenated hydrocarbons, important working media in organic Rankine cycles and refrigerant processes in industry. Properties like pressure-temperature-density relationship, vapour pressure, enthalphy etc. are correlated by the Bender equation of state for computerized calculations.

  5. Adsorption of mercury in coal-fired power plants gypsum slurry on TiO2/chitosan composite material

    NASA Astrophysics Data System (ADS)

    Gao, P.; Gao, B. B.; Gao, J. Q.; Zhang, K.; Chen, Y. J.; Yang, Y. P.; Chen, H. W.

    2016-07-01

    In this study, a simple method was used to prepare a chitosan adsorbent to mix with KI and TiO2. Gravimetric analysis (TG), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the samples before and after adsorption of Hg2+. A mercury adsorption experiment was also conducted in the gypsum slurry. The results show that using hydrobromic acid as a solvent of adsorbent resulted in a better adsorption effect than using acetic acid alone. Also, the sample (CS-KI/TiO2-HBr) had a maximum mercury adsorption capacity when the pH=5 and the t=50°C. The characterization experiments showed that the thermal stability of composite materials declined and the TiO2 uniformly dispersed in the surface of the samples with a lamellar structure, generating a lot of cracks and recesses that increased the reactive sites. Furthermore, when the TiO2 reacted with CS, it resulted in Ti-C, Ti-O and Ti-N bonds. The Br- can prevent the growth of TiO2 crystal grains and strengthen the ability of I- to remove mercury. The adsorption isotherm and kinetic results indicated that the adsorption behaviour of CS-KI/TiO2-HBr as it removes Hg2+ is an inhomogeneous multilayer adsorption process. The surface adsorption and intraparticle diffusion effects are both important in the Hg2+ adsorption process.

  6. Superfluid Stirling refrigerator with a counterflow regenerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1992-01-01

    The superfluid Stirling refrigerator (SSR) uses a [sup 3]He-[sup 4]He liquid mixture as a working fluid. It operates at temperatures below 2 K where the [sup 4]He component of the working fluid is superfluid. The [sup 3]He component of the working fluid, to first approximation, behaves thermodynamically like an ideal gas in the inert background of superfluid [sup 4]He. Using pistons equipped with a superleak bypass, it is possible to expand and compress the [sup 3]He solute gas.'' The SSR is a Stirling machine equipped with these superleaked'' pistons to take advantage of the properties of the [sup 3]He solute to cool below 1 K. The proof of principle was shown by Kotsubo and Swift in 1990. There are three other techniques for cooling below 1 K: (1) the [sup 3]He-[sup 4]He dilution refrigerator which utilizes the endothermic heat of mixing of [sup 3]He into [sup 4]He to reach temperatures below 0.010 K; (2) the evaporation of [sup 3]He which can reach temperatures of 0.3 K; and, (3) adiabatic demagnetization of a paramagnetic salt. There are several advantages of the SSR over each of the other techniques. The power consumption of a dilution refrigerator is typically on the order of kilowatts; whereas, the SSR consumes hundreds of watts. The SSR has the potential to cool below 0.3 K and out-perform the evaporative [sup 3]He refrigerator. Adiabatic demagnetization often requires magnetic shielding between the refrigerator and the object to be cooled; obviously, the SSR requires no such shielding. There is an interest in developing subkelvin cryocoolers for satellite-borne X-ray and infrared detectors. In space applications, the power consumption of an SSR can be reduced to tens of watts. This coupled with the SSR's insensitivity to a zero G environment makes it an attractive option to cool detectors in space.

  7. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  8. Low-Power Temperature-Swing Adsorption for Mars Atmosphere Acquisition

    NASA Technical Reports Server (NTRS)

    Finn, J. E.

    1999-01-01

    The promise of ISRU-based mission architectures for Mars surface exploration will begin to be realized during the next decade as robotic spacecraft sent to Mars carry components and whole chemical plants for producing propellants from the planet's atmosphere. These chemical plants will need to perform three primary operations: acquisition of atmospheric carbon dioxide, reactions to transform the gas into oxygen and possibly fuel, and storage of the products. This presentation focuses on development of technologies at NASA Ames Research Center for the first of these operations, carbon dioxide acquisition. The carbon dioxide acquisition component for a propellant production plant has several general, top level requirements. It has a stringent requirement for minimal power consumption; a critical need for long-term reliability over the period of time the chemical plant must operate (say, 500 days); a production rate requirement for carbon dioxide; and a state point requirement (particularly pressure) for the CO2 produced. The first two requirements help determine the best technological approach, while the latter two generally define the characteristics (e.g., size and power consumption) of the device. Mass and volume must be minimized, as usual.

  9. Two-watt, 4-Kelvin closed cycle refrigerator performance

    NASA Technical Reports Server (NTRS)

    Britcliffe, M.

    1987-01-01

    A 2-watt, 4-K helium refrigerator using the Gifford-McMahon/Joule Thomson cycle is described. The unit features a removable displacer cylinder and high-efficiency, low-pressure drop heat exchangers. These improvements result in a 100 percent increase in cooling power over the existing Deep Space Network system. The effects of the heat exchanger efficiency and Gifford-McMahon expander performance on refrigerator capacity are also discussed.

  10. Intra- and inter-unit variation in fly ash petrography and mercury adsorption: Examples from a western Kentucky power station

    USGS Publications Warehouse

    Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.

    2000-01-01

    Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.

  11. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators... efficiency, water consumption, or water efficiency. Commercial refrigerator, freezer, and refrigerator... compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories....

  12. Compatibility of refrigerants and lubricants with motor materials. Volume 1, Final report

    SciTech Connect

    Doerr, R.; Kujak, S.

    1993-05-01

    This volume contains the abstract, scope, discussion of results, charts of motor material compatibility, test procedures, material identifications, and 84 pages of data summary tables. Compatibility test results for 11 pure refrigerants and 17 refrigerant-lubricant combinations with 24 motor materials are included. The greatest effect on the motor materials was caused by adsorption followed by desorption of refrigerants at higher temperatures. High internal pressure of the adsorbed refrigerants and their tendency to evolve from the materials resulted in blisters, cracks, internal bubbles in the varnish, and delamination or bubbles in the sheet insulations. The second effect was extraction or dissolution of materials that lead to embrittlement of some sheet insulations. HCFC-22 and HCFC- 22/mineral oil had the most deleterious effects; the materials are expected to be reliable when used with most of the new refrigerants and lubricants. Tables.

  13. Hybrid driven three-terminal thermoelectric refrigerators based on resonant tunneling quantum dots

    NASA Astrophysics Data System (ADS)

    Shi, Zhicheng; Qin, Weifeng; He, Jizhou

    2016-11-01

    In this paper, we propose a pair of symmetric three-terminal refrigerator models with a hot cavity connected to two colder reservoirs via ideal tunneling quantum dots. The cooling of the refrigerators is achieved by investing thermal power from a hot reservoir and electric power from an applied voltage. Based on the model proposed, we numerically analyze the performance of the refrigerators with different half width of energy levels, and particularly discuss the coefficient of performance for zero applied voltage in the limit of a small half level width. Finally, we optimize with half width of energy levels and get the optimal region of the refrigerators.

  14. Field testing of high-efficiency supermarket refrigeration

    SciTech Connect

    Walker, D. )

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a field test to quantify the performance of high-efficiency supermarket refrigeration. The initial work on this project was presented in EPRI report CU-6268 Supermarket Refrigeration Modeling and Field Demonstration.'' The information given here was generated through continued testing at the field test site. The field test was conducted at a supermarket owned by Safeway Stores, Inc., that was located in Menlo Park, CA. Testing was performed with the existing conventional refrigeration system and a high-efficiency multiplex refrigeration system that was installed for these tests. The results of the testing showed that the high-efficiency multiplex system reduced refrigeration energy consumption by 23.9% and peak electric demand for refrigeration by 30.0%. Analyses of these savings showed that the largest portion was due to the use of high-efficiency compressors (29.5% of total saving). Floating head pressure control, ambient and mechanical subcooling, compressor multiplexing and hot gas defrost accounted for 50% of total savings. The remainder of the savings (20.5%) were attributed to the use of an evaporative condenser. Tests were also conducted with several retrofit technologies. The most promising results were obtained with external liquid-suction heat exchangers installed at the outlets of the display cases. Favorable paybacks were calculated for these exchangers when they were used with very low and low temperature refrigeration.

  15. Field testing of high-efficiency supermarket refrigeration. Final report

    SciTech Connect

    Walker, D.

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a field test to quantify the performance of high-efficiency supermarket refrigeration. The initial work on this project was presented in EPRI report CU-6268 ``Supermarket Refrigeration Modeling and Field Demonstration.`` The information given here was generated through continued testing at the field test site. The field test was conducted at a supermarket owned by Safeway Stores, Inc., that was located in Menlo Park, CA. Testing was performed with the existing conventional refrigeration system and a high-efficiency multiplex refrigeration system that was installed for these tests. The results of the testing showed that the high-efficiency multiplex system reduced refrigeration energy consumption by 23.9% and peak electric demand for refrigeration by 30.0%. Analyses of these savings showed that the largest portion was due to the use of high-efficiency compressors (29.5% of total saving). Floating head pressure control, ambient and mechanical subcooling, compressor multiplexing and hot gas defrost accounted for 50% of total savings. The remainder of the savings (20.5%) were attributed to the use of an evaporative condenser. Tests were also conducted with several retrofit technologies. The most promising results were obtained with external liquid-suction heat exchangers installed at the outlets of the display cases. Favorable paybacks were calculated for these exchangers when they were used with very low and low temperature refrigeration.

  16. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  17. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  18. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  19. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  20. Flammability Indices for Refrigerants

    NASA Astrophysics Data System (ADS)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  1. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  2. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  3. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  4. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  5. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  6. Refrigeration and Food Safety

    MedlinePlus

    ... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Food Safety / Refrigeration and Food Safety Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...

  7. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  8. Multilayer Thermionic Refrigeration

    SciTech Connect

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  9. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  10. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  11. The APL satellite refrigerator program

    NASA Astrophysics Data System (ADS)

    Leffel, C. S., Jr.; Vonbriesen, R.

    1981-07-01

    Four satellite refrigerators were built and installed on a satellite to cool gamma ray spectrometers. The p-78-1 satellite, launched on February 24, 1979, was the first satellite to carry gamma ray detectors that were cooled by mechanical refrigerators. Still operating successfully after over 18 months in orbit, this is the first satellite experiment of any kind on which mechanical refrigerators have been operated for longer than a few weeks. This report describes the selection and specifications of the refrigerators as determined by APL and Lockheed, the design and construction of the refrigerators by Philips Laboratories, the design and construction of the motor drive and instrumentation electronics by APL, the APL qualification and acceptance test programs, and the APL laboratory life test program. The orbital performance of the refrigerators is discussed.

  12. Photovoltaic refrigeration application: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Poley, W. A.; Scudder, L. R.

    1977-01-01

    This foreign and domestic market assessment was performed as part of the Tests and Applications Project being conducted by NASA-LeRC as part of the Department of Energy's (DOE) National Photovoltaic Program. One of the objectives of that program was to stimulate the demand for photovoltaic power systems so that appropriate markets would be developed in concert with the increasing photovoltaic production capacity. The refrigeration application represented a possible market for photovoltaics; hence, a brief survey of potential applications was conducted. Both refrigerators and refrigeration systems were considered in the assessment although the primary emphasis is on refrigerators of 9 cu ft of less. Three user sectors were examined: (1) government, (2) commercial/institutional, and (3) general public.

  13. The optimization of Stirling refrigerator and Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Zhu, Xin-Mei

    2007-03-01

    The optimization of an irreversible Stirling refrigerator or a Stirling heat engine is an important research subject for a long time. Taking into account of the influence of mixed thermal resistance and regeneration loss in the performance study, we have derived the optimal relation of both of them. For Stirling refrigerator, we have deduced the optimal relation between the thermal resistance coefficient and the efficiency. To the Stirling heat engine, we have deduced the optimal relation between the power output and the efficiency. The conclusions obtained mirror the observed performance of the Stirling refrigerator or the Stirling heat engine quite well. Thus, the results may provide a new theoretical guidance to the optimal design and the selection of optimal operating condition of the Stirling refrigerator or the Stirling heat engine.

  14. Supermarket refrigeration modeling and field demonstration: Interim report

    SciTech Connect

    Walker, D.H.; Deming, G.I.

    1989-03-01

    The Electric Power Research Institute (EPRI) has undertaken a project to investigate supermarket refrigeration. The objectives of this project are (1) to develop an energy use and demand model of supermarket refrigeration systems and (2) to carry out an extensive field test of such systems in an operating supermarket. To accomplish these goals, a supermarket owned by Safeway Stores, Inc., and located in Menlo Park, CA, with an existing conventional refrigeration system utilizing single compressor units, was equipped with a state-of-the-art system with multiplexed parallel compressors. The store and both refrigeration systems were thoroughly instrumented and a test schedule was prepared and executed. Presented in this report are the preliminary results of this field test along with the initial validation of the energy use and demand model. 62 figs., 47 tabs.

  15. Improving Control in a Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Borders, James; Pearson, David; Prina, Mauro

    2005-01-01

    A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.

  16. Research and Development of a Small-Scale Adsorption Cooling System

    NASA Astrophysics Data System (ADS)

    Gupta, Yeshpal

    The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for the lack of small-scale systems such as low Coefficient of Performance (COP), high capital cost, scalability, and limited performance data. A numerical model to simulate an adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70--120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation

  17. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Each refrigerator shall be equipped with a thermometer located in the warmest portion thereof. Waste water drains from ice boxes, refrigerating equipment, and refrigerated spaces shall be so installed as...

  18. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Each refrigerator shall be equipped with a thermometer located in the warmest portion thereof. Waste water drains from ice boxes, refrigerating equipment, and refrigerated spaces shall be so installed as...

  19. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Each refrigerator shall be equipped with a thermometer located in the warmest portion thereof. Waste water drains from ice boxes, refrigerating equipment, and refrigerated spaces shall be so installed as...

  20. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Each refrigerator shall be equipped with a thermometer located in the warmest portion thereof. Waste water drains from ice boxes, refrigerating equipment, and refrigerated spaces shall be so installed as...

  1. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  2. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  3. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Vineyard, E.A.; Sand, J.R.; Miller, W.A.

    1989-01-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

  4. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  5. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    NASA Astrophysics Data System (ADS)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  6. Materials and device concepts for electrocaloric refrigeration

    NASA Astrophysics Data System (ADS)

    Suchaneck, G.; Gerlach, G.

    2015-09-01

    Electrocaloric (EC) materials provide a solid-state cooling technology without polluting liquid refrigerants and noisy mechanical parts. Currently, basic research in this field is mainly focused on materials with a first-order phase transition exhibiting a large polarization change in a narrow temperature region near the phase transition point (Curie temperature) and, thus, a large EC effect. In this contribution, device operation above Curie temperature will be discussed. In this case, the polarization change originates from the temperature coefficient of the dielectric permittivity. To optimize material properties for EC refrigerator applications, we adapt the modified Curie-Weiss law describing a large class of ferroelectrics with a diffuse phase transition. Device performance will be evaluated based on the expected cooling power in dependence on thermodynamic cycle time, total thermal resistance and EC material thickness.

  7. Space-borne He-3 refrigerator

    NASA Technical Reports Server (NTRS)

    Duband, L.; Hui, L.; Lange, A.

    1990-01-01

    A space-compatible He-3 refrigerator is being developed for cooling the bolometric detectors of the Far Infrared Photometer (FIRP) in the Infrared Telescope in Space (IRTS). The refrigerator is self-contained and compact, and can be recycled in zero gravity with low power dissipation (20 mW or less). A laboratory prototype that contains 2 STP cu dm of He-3 has been successfully cycled upside-down, i.e., against gravity, thus proving the feasibility of the cycle in zero gravity. Sintered copper confines the He-3 to the evaporator during the low temperature phase. Temperatures as low as 280 mK have been achieved with this configuration. Other types of porous material which have lower mass density are currently under investigation.

  8. Performance bound for quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Adesso, Gerardo; Alonso, Daniel

    2013-04-01

    An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

  9. Space-borne He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Hui, L.; Lange, A.

    1990-03-01

    A space-compatible He-3 refrigerator is being developed for cooling the bolometric detectors of the Far Infrared Photometer (FIRP) in the Infrared Telescope in Space (IRTS). The refrigerator is self-contained and compact, and can be recycled in zero gravity with low power dissipation (20 mW or less). A laboratory prototype that contains 2 STP cu dm of He-3 has been successfully cycled upside-down, i.e., against gravity, thus proving the feasibility of the cycle in zero gravity. Sintered copper confines the He-3 to the evaporator during the low temperature phase. Temperatures as low as 280 mK have been achieved with this configuration. Other types of porous material which have lower mass density are currently under investigation.

  10. Cryogenic Optical Refrigeration

    DTIC Science & Technology

    2012-03-22

    Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009). 12. M. Sheik- Bahae and R. I . Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699...2007). Advances in Optics and Photonics 4, 78–107 (2012) doi:10.1364/AOP.4.000078 99 13. M. Sheik- Bahae and R. I . Epstein, “Laser cooling of solids...Sheik- Bahae and R. I . Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004). 18. P. Asbeck, “Self-absorption effects

  11. The refrigerator revolution

    SciTech Connect

    Ayres, E.; French, H.

    1996-09-01

    This article discusses how a simple, new technology threw the best-laid plans of the chemical and refrigerator industries into disarray-and provided a new perspective on how future environmental agreements can be reached. In recent years, a series of massive business mergers has mesmerized the industrial world. However in the early 1990s a German environmentalist, triggered global reprocussions in the wake of the mandate to phase out the use of ozone depleting substances. The economic and political background of this is explained in detail.

  12. MFTF-B refrigerator analysis

    SciTech Connect

    1995-02-10

    The purpose of this analysis was to determine the applicability of the MFTF-B helium refrigerator to the requirements of the TPX Tokomak at Princeton. The TPX requires a high pressure stream of supercritical gas to all loads rather than the liquid helium loads that the refrigerator was originally designed to support.

  13. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  14. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  15. Mass spectrometric study of N2-adsorption on copper cluster cations formed by modulated pulsed power magnetron sputtering in aggregation cell

    NASA Astrophysics Data System (ADS)

    Ohshimo, Keijiro; Mizuuchi, Isamu; Akimoto, Kengo; Tsukamoto, Keizo; Tona, Masahide; Yamamoto, Hiroaki; Nakano, Motoyoshi; Misaizu, Fuminori

    2017-08-01

    We have observed gas-phase reactions between N2 molecules and copper cluster cations, Cun+ (n = 2-17), formed by a modulated pulsed power magnetron sputtering cluster ion source. By introducing N2 gas effusively between the source and an acceleration region of a time-of-flight mass spectrometer in the vacuum chamber, N2-adsorbed copper cluster cations, CunN2+, were observed in mass spectra. The N2-adsorption reactivity of Cun+ was found to be relatively lower at n ≥ 10 than at the smaller n. The cluster-size dependence of N2-adsorption on Cun+ has a correlation with binding energies between Cun+ and N2 calculated by density functional theory.

  16. Parameter spaces and design optimization of thermoacoustic refrigerators

    SciTech Connect

    Wetzel, M.; Herman, C.

    1996-12-31

    In the last two decades thermoacoustic refrigerators were developed in research laboratories with the goal to understand the basic physics and thermodynamics of thermoacoustic heat pumping. These research efforts led to a good understanding of this new environmentally safe refrigeration technology that employs acoustic power to pump heat. Consequently the next step is to improve and optimize the performance of thermoacoustic refrigerators and seek commercial applications. For this purpose, the need for fast and simple engineering estimates arises. By implementing the simplified linear model of thermoacoustic refrigerators--the short stack boundary layer approximation--such design estimates were derived and presented in this paper in the form of a design algorithm. Calculations obtained with this algorithm predict values for the Coefficient Of Performance (COP) of the order of 5 to 6. These values cannot be achieved at this time because of loss mechanisms in key parts of the thermoacoustic refrigerator, which are not quite understood yet. Nevertheless, these values are encouraging and gaining a better understanding of these loss mechanisms will be a big step towards the commercial market for this new environmentally safe refrigeration technology.

  17. Supermarket refrigeration assessment for the Commonwealth Electric Company

    SciTech Connect

    Tsaros, T.L.; Walker, D.H. )

    1991-07-01

    The Commonwealth Electric Company (COM/Electric) has initiated an incentive program to promote electric energy conservation within its service territory. The Electric Power Research Institute (EPRI) has assisted COM/Electric in assessing the impact on the utility and its customers of implementing energy efficient supermarket refrigeration in retrofit applications. The primary task of this assessment was to contact the supermarket chains and refrigeration contractors and suppliers in the COM/Electric service territory to determine the type of refrigeration employed and standard or novel retrofit equipment implemented in supermarkets. With this information, estimates were made of the potential energy savings that COM/Electric and the supermarkets could realize if supermarkets were retrofitted with energy efficient refrigeration equipment. It was determined that the refrigerated display case features offering the greatest potential for savings through retrofit installations include doors for medium temperature multideck cases, high-efficiency fan motors, anti-sweat heater controls, and vinyl strip curtains for walk-in coolers. The retrofit components associated with the compressor machine room that offer the greatest potential for savings include the use of low heat pressure control, hot gas defrost, and external liquid-suction heat exchangers and remote evaporative subcoolers for low temperature refrigeration. 6 refs., 14 figs., 26 tabs.

  18. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  19. Characteristics of a Mixed Refrigerant Vapor Compression Cycle

    NASA Astrophysics Data System (ADS)

    Hihara, Eiji; Muneta, Yoshihiro; Saito, Takamoto

    In comparison with conventional refrigerants, the use of non-azeotropic binary mixtures of refrigerants in vapor compression refrigerating systems can result in extension of the application limits, higher reliability, and savings in power consumption. This paper discusses the high temperature heat pump system performance operating with mixed refrigerants. In order to survey the system performances with various mixtures, six kinds of mixtures are examined : R22-R1l4, R22-R11, R12-R114, R12-R11, R 12-R113, and R22-R12. Thermodynamic properties of the first five mixtures are calculated from the Peng-Robinson equation of state with the mixing rules proposed by Ototake, and R22-R12 mixtures by the BWR type equation of state proposed by Kagawa et al. When counter-flow heat exchangers with large surface areas are used for the evaporator and the condenser, the temperature differences between the refrigerant and the heat sink / source fluids can be reduced, and so the energy waste resulting from irreversible heat trasfer can be reduced. Comparing the mixed refrigerants with the pure ones by fixing the refrigerant temperature at the evaporator inlet and the dewpoint temperature at the condenser, higher coefficients of performance (COP), lower condensing pressures, and lower pressure ratios in the refrigerant compressor can be realized. But the performances of the mixtures with R114 as a less volatile component are not so good. When the heat transfer surface area is not large, the mean temperature difference becomes large. If the dewpoint temperatures at the evaporator and the condenser fixed, the range of composition for the improvement of the COP is restricted.

  20. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  1. Performance of an irreversible quantum refrigeration cycle

    NASA Astrophysics Data System (ADS)

    He, Ji-Zhou; Ouyang, Wei-Pin; Wu, Xin

    2006-01-01

    A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low ``temperatures'' of the working substances, the maximum cooling rate versus the ratio between high and low ``magnetic fields'' and the ``temperature'' ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.

  2. Improving the Performance of an Adsorption Heat Converter in Condensation and Evaporation of the Adsorbate in Sorbent Pores

    NASA Astrophysics Data System (ADS)

    Lyakh, M. Yu.; Rabinovich, O. S.; Vasiliev, L. L.; Tsitovich, A. P.

    2013-11-01

    The possibilities of raising the specific refrigerating capacity and the cooling temperature of an adsorption refrigerator through the phase transition of the adsorbate in low-temperature-sorbent pores have been investigated by the computer-modeling method. Using an adsorption refrigerator with busofite-based MnCl2 and BaCl2 sorbents (in the high-temperature and low-temperature adsorbers respectively) as an example, it has been shown that the operating regime of the refrigerator with adsorbate condensation and evaporation enables one to raise the specific capacity of the apparatus by 20% and to double the average cooling temperature.

  3. 16 CFR Appendix A2 to Part 305 - Refrigerators and Refrigerators-Freezers With Manual Defrost

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Refrigerators and Refrigerators-Freezers... ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. A2 Appendix A2 to Part 305—Refrigerators and Refrigerators-Freezers With Manual Defrost Range Information Manufacturer's Rated Total Refrigerated Volume...

  4. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  5. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... a capacity at least equal to the capacity of the largest refrigeration unit in the system. (b) For the purpose of this section, a “refrigeration unit” includes a compressor and its motors and...

  6. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  7. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... a capacity at least equal to the capacity of the largest refrigeration unit in the system. (b) For the purpose of this section, a “refrigeration unit” includes a compressor and its motors and...

  8. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  9. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  10. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  11. Life test results of hydride compressors for cryogenic refrigerators

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Golben, P. M.

    1984-01-01

    A development status assessment is made, from the viewpoint of system durability, for the hydride compressors used in such cryogenic refrigerators as that of the JPL, which has operated at 29 K for 500 hours and at lower temperatures for over 1000. Attention is given to a novel hydride compressor unit which has operated through 35,000 cycles and exhibits negligible degradation of check valves, hydride particle size, and expansion valves. The power requirement for liquid hydrogen cooling can be halved through the use of recuperative hot water heating methods, making this system comparable in power use to liquid hydrogen refrigeration systems operating on electricity. Due to the lack of moving parts in hydride refrigerator designs, potential service lifetimes of many years, and perhaps decades, are being projected.

  12. Thermal Power Of The TS-300B Refrigerator in the Aspects of Statistical Research / Moc Cieplna Chłodziarki TS-300B W Aspekcie Badań Statystycznych

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Łuczak, Rafał

    2015-09-01

    The article discusses the improvement of thermal working conditions in underground mine workings, using local refrigeration systems. It considers the efficiency of air cooling with direct action air compression refrigerator of the TS-300B type. As a result of a failure to meet the required operating conditions of the aforementioned air cooling system, frequently there are discrepancies between the predicted (and thus the expected) effects of its work and the reality. Therefore, to improve the operating efficiency of this system, in terms of effective use of the evaporator cooling capacity, quality criteria were developed, which are easy in practical application. They were obtained in the form of statistical models, describing the effect of independent variables, i.e. the parameters of the inlet air to the evaporator (temperature, humidity and volumetric flow rate), as well as the parameters of the water cooling the condenser (temperature and volumetric flow rate), on the thermal power of air cooler, treated as the dependent variable. Statistical equations describing the performance of the analyzed air cooling system were determined, based on the linear and nonlinear multiple regression. The obtained functions were modified by changing the values of the coefficients in the case of linear regression, and of the coefficients and exponents in the case of non-linear regression, with the independent variables. As a result, functions were obtained, which were more convenient in practical applications. Using classical statistics methods, the quality of fitting the regression function to the experimental data was evaluated. Also, the values of the evaporator thermal power of the refrigerator, which were obtained on the basis of the measured air parameters, were compared with the calculated ones, by using the obtained regression functions. These statistical models were built on the basis of the results of measurements in different operating conditions of the TS-300B

  13. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  14. Magnetocaloric Materials Revolutionize Refrigeration Technology

    ScienceCinema

    Momen, Ayyoub

    2016-07-12

    Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize today’s 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), they’ve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.

  15. Magnetocaloric Materials Revolutionize Refrigeration Technology

    SciTech Connect

    Momen, Ayyoub

    2016-03-15

    Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize today’s 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), they’ve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.

  16. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  17. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  18. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  19. Experimental results on a low-temperature magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Barclay, J. A.; Stewart, W. F.; Overton, W. C.; Candler, R. J.; Harkleroad, O. D.

    1985-06-01

    A Carnot-cycle magnetic refrigerator has been designed, built, and tested in the temperature range of approx. 4 K to approx. 15 K. Gadolinium gallium garnet in the rim of a wheel is the refrigerant. The wheel rim rotates through a gap between two superconducting Helmholtz coils that produce a magnetic field of up to 6 T. Helium gas is used as the heat-transfer fluid in the hot and cold regions of the wheel. The refrigerator performance has been measured in an open-cycle flow system because no suitable low-temperature helium gas pumps were available for closed loop circulation of helium gas. Over one watt of cooling power with a temperature span of several degrees was achieved. At low frequencies the cooling power and temperature changes of the refrigerator match the entropy-temperature data used in the design. Problems associated with friction and gas mixing limit the performance at frequencies above about 0.1 Hz. Separate friction measurements suggest that gas flow control is the dominant problem that needs to be solved before significant improvement in refrigerator operation can be expected. The present measured efficiency is about 20% of Carnot if the drive motor efficiency is ignored. With friction and other losses in the drive motor mechanism, the overall efficiency is approx. 1% of Carnot.

  20. Quantum refrigerators and the third law of thermodynamics.

    PubMed

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  1. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect

    Sand, J.R. ); Vineyard, E.A.; Sand, J.R.

    1989-01-01

    As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

  2. A model for exergy analysis and thermodynamic bounds of Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    Razani, A.; Dodson, C.; Roberts, T.

    2010-04-01

    A thermodynamic model based on exergy flow through a Stirling Refrigerator is developed. Important irreversibilities of the refrigerator due to external heat transfer with the reservoirs, heat leak, flow and heat transfer in regenerator are included in the model. Expansion and compression efficiencies are introduced in the model to account for the losses in these processes. The effect of a control phase shift between the mass flow rate and pressure across regenerator on the performance of the refrigerator is presented. Analytical solutions representing important quantities in the design of Stirling refrigerators such as the load curve, cooling power and efficiency in terms of basic system input parameters are developed. Thermodynamic bounds for the performance of Stirling refrigerators are obtained. Results indicating a compromise between cooling power and efficiency that are dependent on the constraint of the system are presented and discussed.

  3. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    NASA Astrophysics Data System (ADS)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  4. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  5. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators... functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water consumption, or water efficiency. Commercial refrigerator, freezer, and refrigerator-freezer...

  6. Radio-frequency single-electron refrigerator.

    PubMed

    Pekola, Jukka P; Giazotto, Francesco; Saira, Olli-Pentti

    2007-01-19

    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunneling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of approximately k(B)T x f at temperature T over a wide range of cycle frequencies f. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of approximately k(B)T/Delta, where Delta is the superconducting gap parameter. The performance is not affected significantly by nonidealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.

  7. Four-level refrigerator driven by photons

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q˙c and coefficient of performance (COP) ηCOP are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T →0 .

  8. Four-level refrigerator driven by photons.

    PubMed

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0.

  9. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  10. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  11. The APL Satellite Refrigerator Program.

    DTIC Science & Technology

    1981-07-01

    tests are of little interest in view of subsequent events. On September 3, 1975, the refrigerator was removed from the bell jar and mounted on a...revealed no crankcase lubricant, even though the bearings in the crankcase had lost a portion of their Krytox grease. The upper displacer had lost about...bake-out procedure used by Philips would not have removed all the water vapor in the refrigerator and no method was available during the life test to

  12. Mixed-Gas Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Proposed mixed-gas sorption Joule-Thomson refrigerator provides cooling down to temperature of 70 K. Includes only one stage and no mechanical compressor. Simpler, operates without vibrating, and consumes less power in producing same amount of cooling. Same sorption principle of operation applicable in compressor that chemisorbs oxygen or hydrogen from mixture with helium, neon, and/or other nonreactive gases.

  13. High temperature superconducting magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Blumenfeld, P. E.; Prenger, F. C.; Sternberg, A.; Zimm, C.

    2002-05-01

    A near-room temperature active magnetic regenerative refrigerator (AMRR) was designed and built using a high-temperature superconducting (HTS) magnet in a charge-discharge cycle and a gadolinium-packed regenerative bed as the magnetocaloric component. Current to the HTS magnet was ramped periodically from zero to 100 amperes, which generated a ramp in field strength from zero to 1.7 tesla. Water was moved periodically through the bed and through hot and cold heat exchangers to accomplish a continuous refrigeration cycle. Cycle periods as short as 30 seconds were realized. Refrigerator performance was measured in terms of cooling capacity as a function of temperature span and in terms of efficiency expressed as a percentage of maximum obtainable (Carnot) efficiency. A three-watt cooling capacity was measured over a temperature span of 15 degrees C between hot and cold end temperatures of 25 degrees C and 10 degrees C. This experiment is directed to two possible applications for magnetic refrigeration: a no-moving part cryogenic refrigerator for space applications, and a compact permanent magnet refrigerator for commercial and consumer applications.

  14. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  15. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  16. Alternatives to ozone depleting refrigerants in test equipment

    NASA Technical Reports Server (NTRS)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  17. A Case Study of a Low Powervapour Compression Refrigeration System

    NASA Astrophysics Data System (ADS)

    Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti

    2016-09-01

    Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.

  18. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    SciTech Connect

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-28

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3 deg. C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  19. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-01

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3°C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  20. Containing CFC refrigerants; The conversion to new refrigerants

    SciTech Connect

    Siebert, B. )

    1991-01-01

    This paper reports that the key equipment for air conditioning large commercial buildings is the centrifugal chiller. More than 80,000 of these chillers are in operation today in the U.S. and Canada. Some reputable scientists have concluded, however, that the refrigerant used in most of these chillers, a chlorofluorocarbon (CFC) designated CFC-11, contributes to the degradation of the earth's protective ozone layer when it is emitted, rises into the upper atmosphere, and decomposes. The evidence has spurred state, national and even international action to restrict CFCs. At conferences of the United Nations Environmental Programs, agreement was reached on a worldwide ban of CFC production by the year 2000, with severe limitations on their production before then. These include CFC-11 and CFC-12, both used in some unitary air conditioning systems. What happens now Trane, manufacturer of more than half of the centrifugal chillers operating in the United States and Canada, recommends a choice of programs that are the subject of this article. They permit either safe, continued use of present chillers and refrigerant, or an easy conversion to an ozone-friendly refrigerant in the same chillers and, later, a switch to new chiller equipment totally compatible with the new refrigerant. In the immediate future, it means preventing CFC emission releases into the atmosphere and, eventually, a carefully-prepared switchover to a new refrigerant by properly-engineered equipment modifications.

  1. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  2. Development of a high-frequency coaxial multi-bypass pulse tube refrigerator below 14 K

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Chen, Liubiao; Zhu, Xiaoshuang; Zhu, Wenxiu; Zhou, Yuan; Wang, Junjie

    2015-04-01

    A high-frequency coaxial multi-bypass pulse tube refrigerator (MBPTR) was designed, manufactured, and tested. The cold finger is driven by a linear compressor through a connection tube to reduce the vibrations coming from the compressor. The pulse tube refrigerator adopts a coaxial configuration with a double-inlet and a single multi-bypass to improve the performance. With Er3Ni spheres at the cold end of the regenerator, the refrigerator can reach a no-load temperature of 13.9 K with 250 W electric input power, which is the lowest temperature for this kind of refrigerator reported so far. Especially, the interplay of double-inlet and multi-bypass was observed experimentally. An Er3Ni spheres regenerator was found to be a potential substitution for stainless steel wire mesh (SSWM) regenerator for this kind of refrigerator.

  3. Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor.

    PubMed

    Zhao, Yayu; Deng, Ping; Nie, Yuxin; Wang, Penglei; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-07-15

    Self-powered active biosensor has been realized from ZnO nanowire (NW) nanogenerator (NG). The piezoelectric output generated by ZnO NW NG can act not only as a power source for driving the device, but also as a biosensing signal. After immersing in 10(-3) g ml(-1) human immunoglobulin G (IgG), the piezoelectric output voltage of the device under compressive deformation decreases from 0.203±0.0176 V (without IgG) to 0.038±0.0035 V. Such a self-powered biosensor has higher response than transistor-type biosensor (I-V behavior). The response of self-powered biosensor is in a linear relationship with IgG concentration (logarithm, 10(-7)-10(-3) g ml(-1)) and the limit of detection (LOD) on IgG of the device is about 6.9 ng ml(-1). The adsorption of biomolecules on the surface of ZnO NWs can modify the free-carrier density, which vary the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for actively detecting biomolecules by coupling the piezotronic and biosensing characteristics of ZnO NWs.

  4. Miscibility of lubricants with refrigerants

    SciTech Connect

    Pate, M.B.; Zoz, S.C.; Berkenbosch, L.J.

    1992-07-01

    Miscibility data is being obtained for a variety of non-CFC refrigerants and their potential lubricants. Ten different refrigerants and seven different lubricants are being investigated. Experiments are being performed in two phases: Phase I focuses on performing screening tests and Phase II consists of developing miscibility plots. The miscibility tests are being performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The bath temperature can be precisely controlled over a temperature range of -50{degrees}C to 100{degrees}C. The test cells are constructed to allow for complete visibility of lubricant-refrigerant mixtures under all test conditions. Early in this reporting period, new procedures for charging the lubricant and refrigerant into the cells for testing were adopted. All of the refrigerants and all but one of the lubricants have been received from the manufacturers. Data obtained to date includes that for R-134a, R142b, R-32, R-134, R-125, and R-143a with four lubricants, namely, two esters and two polypropylene glycols.

  5. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  6. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  7. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  8. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  9. Towards an accurate estimation of the isosteric heat of adsorption - A correlation with the potential theory.

    PubMed

    Askalany, Ahmed A; Saha, Bidyut B

    2017-03-15

    Accurate estimation of the isosteric heat of adsorption is mandatory for a good modeling of adsorption processes. In this paper a thermodynamic formalism on adsorbed phase volume which is a function of adsorption pressure and temperature has been proposed for the precise estimation of the isosteric heat of adsorption. The estimated isosteric heat of adsorption using the new correlation has been compared with measured values of prudently selected several adsorbent-refrigerant pairs from open literature. Results showed that the proposed isosteric heat of adsorption correlation fits the experimentally measured values better than the Clausius-Clapeyron equation.

  10. Cascade Joule-Thomson refrigerators

    NASA Technical Reports Server (NTRS)

    Tward, E.; Steyert, W. A.

    1983-01-01

    The design criteria for cascade Joule-Thomson refrigerators for cooling in the temperature range from 300 K to 4.2 K were studied. The systems considered use three or four refrigeration stages with various working gases to achieve the low temperatures. Each stage results in cooling to a progressively lower temperature and provides cooling at intermediate temperatures to remove the substantial amount of parasitic heat load encountered in a typical dewar. With careful dewar design considerable cooling can be achieved with moderate gas flows. For many applications, e.g., in the cooling of sensitive sensors, the fact that the refrigerator contains no moving parts and may be remotely located from the gas source is of considerable advantage. A small compressor suitable for providing the gas flows required was constructed.

  11. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  12. A historical look at chlorofluorocarbon refrigerants

    SciTech Connect

    Bhatti, M.S.

    1999-07-01

    A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.

  13. Measurement of the Space Thermoacoustic Refrigerator Performance

    DTIC Science & Technology

    1990-09-01

    the refrigerator was a requisite towards simplifying the process of selecting the operating frequency . The simplest method allowing for the most...LIST OF FIGURES I-1 Pulse Tube Refrigerator.............................. 3 1-2 Hofler Refrigerator.................................. 5 1-3 Acoustical...qualitative manner as did Rayleigh. The first example of an acoustic heat pump was the pulse - tube refrigerator in which Gifford and Longsworth, by applying

  14. Acoustic impedance measurements of pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Iwase, Takashi; Biwa, Tetsushi; Yazaki, Taichi

    2010-02-01

    Complex acoustic impedance is determined in a prototype refrigerator that can mimic orifice-type, inertance-type, and double inlet-type pulse tube refrigerators from simultaneous measurements of pressure and velocity oscillations at the cold end. The impedance measurements revealed the means by which the oscillatory flow condition in the basic pulse tube refrigerator is improved by additional components such as a valve and a tank. The working mechanism of pulse tube refrigerators is explained based on an electrical circuit analogy.

  15. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  16. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  17. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  18. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  19. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  20. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  1. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  2. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  3. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  4. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  5. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  6. Method and apparatus for desuperheating refrigerant

    DOEpatents

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  7. 77 FR 7547 - Energy Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... at http://www1.eere.energy.gov/buildings/appliance_standards/residential/refrigerators_freezers.html... for refrigerators, refrigerator-freezers, and freezers (residential refrigeration products), as well... product classes: (1) Refrigerators and refrigerator-freezers with manual defrost, (2)...

  8. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers.

    PubMed

    Huang, Zhan-Yun; Chen, Min; Pan, Shi-Rong; Chen, Di-Hu

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  9. Theory of ideal orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    David, M.; Maréchal, J.-C.; Simon, Y.; Guilpin, C.

    The main purpose of this paper is to explain the operation of the orifice pulse tube refrigerator (OPTR). An analytical model of the ideal OPT has been developed. The mechanism of heat flow at the tube ends is clearly explained as the result of the hysteretic process of the elements of gas entering and leaving the tube. The motion of the buffer gas is deduced by numerical integration and the expected balance equation for the heat flows at the hot and cold exchangers is established. A numerical calculation of the velocity profile along the pulse tube is in good agreement with hot-wire anemometry data. In working conditions, we found, for the gross refrigeration power, < q˙>, theory/experiment ratios as low as 1.2, whereas those previously reported by Storch and Radebaugh were about 3 - 5. The differences between the theory of Radebaugh et al. and our model are following: (1) Radebaugh and co-workers assume small sinusoidal oscillations of the gas pressure in the tube ( ΔP/ P¯ « 1 ) whereas we describe the gas flow in the tube for any time-dependence of the pressure oscillation P( t); (2) In our model, < q˙>, is expressed with a minimum number of independent and controlled parameters relative to the OPT. In a double inlet pulse tube configuration, our test apparatus was able to achieve a 32 K temperature limit.

  10. High Efficiency, Low Emission Refrigeration System

    SciTech Connect

    Fricke, Brian A.; Sharma, Vishaldeep

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  11. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  12. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  13. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  14. Development of a Quadcon Refrigerated Container with First Generation Prototype Solar Adsorption Refrigeration System

    DTIC Science & Technology

    2011-06-01

    liquid ammonia can be neutralized using acetic acid ( vinegar ), and disposed of as non-hazardous waste. Alternatively, follow hazardous waste...ammonia in the 55-gallon drum with vinegar .  Once the pressure reaches atmospheric pressure, close the scrubber valve and begin pumping down the

  15. Development of a Battery-Free Solar Refrigerator

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  16. Correlated versus uncorrelated noise acting on a quantum refrigerator

    NASA Astrophysics Data System (ADS)

    Karimi, Bayan; Pekola, Jukka P.

    2017-09-01

    Two qubits form a quantum four-level system. The golden-rule based transition rates between these states are determined by the coupling of the qubits to noise sources. We demonstrate that depending on whether the noise acting on the two qubits is correlated or not, these transitions are governed by different selection rules. In particular, we find that for fully correlated or anticorrelated noise, there is a protected state, and the dynamics of the system depends then on its initialization. For nearly (anti)correlated noise, there is a long time scale determining the temporal evolution of the qubits. We apply our results to a quantum Otto refrigerator based on two qubits coupled to hot and cold baths. The steady-state power does not scale with the number (=2 here) of the qubits when there is a strong correlation of noise acting on them; under driven conditions the highest cooling power of the refrigerator is achieved for fully uncorrelated baths.

  17. Commissioning of the JT-60SA helium refrigerator

    NASA Astrophysics Data System (ADS)

    Kamiya, Koji; Natsume, Kyohei; Ohtsu, Kiichi; Oishi, Makoto; Honda, Atsushi; Kashiwa, Yoshitoshi; Kizu, Kaname; Koide, Yoshihiko; Hoa, Christine; Michel, Frederic; Roussel, Pascal; Lamaison, Valerie; Bonne, Francois; Dipietro, Enrico; Cardella, Antonino; Wanner, Manfred; Legrand, Jerome; Pudys, Vincent; Langevin, Baptiste

    2017-09-01

    The JT-60SA project will use superconducting magnets to confine the plasma and achieve a plasma current with a typical flat top duration of 100 second in purely inductive mode. The helium refrigerator has an equivalent cooling power of 9 kW at 4.5 K providing 3.7 K, 4.5 K, 50 K and 80 K for the diverter cryopump, the superconducting magnets, the HTS current leads, and the thermal shields, respectively. This paper summarizes the JT-60SA helium refrigerator commissioning activities aiming at successful operation of heat load smoothing technology to manage the 12 kW heat pulses by 9 kW cooling power using a 7000 liter liquid helium.

  18. Approximate Design Method for Single Stage Pulse Tube Refrigerators

    NASA Astrophysics Data System (ADS)

    Pfotenhauer, J. M.; Gan, Z. H.; Radebaugh, R.

    2008-03-01

    An approximate design method is presented for the design of a single stage Stirling type pulse tube refrigerator. The design method begins from a defined cooling power, operating temperature, average and dynamic pressure, and frequency. Using a combination of phasor analysis, approximate correlations derived from extensive use of REGEN3.2, a few `rules of thumb,' and available models for inertance tubes, a process is presented to define appropriate geometries for the regenerator, pulse tube and inertance tube components. In addition, specifications for the acoustic power and phase between the pressure and flow required from the compressor are defined. The process enables an appreciation of the primary physical parameters operating within the pulse tube refrigerator, but relies on approximate values for the combined loss mechanisms. The defined geometries can provide both a useful starting point, and a sanity check, for more sophisticated design methodologies.

  19. Three-terminal heat engine and refrigerator based on superlattices

    NASA Astrophysics Data System (ADS)

    Choi, Yunjin; Jordan, Andrew N.

    2015-11-01

    We propose a three-terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window for allowed electron transport. We find that this device delivers a large power, nearly twice than the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk material. The direct phonon heat current is negligible at low temperatures, but dominates over the electronic at room temperature and we discuss ways to reduce it.

  20. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  1. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    NASA Astrophysics Data System (ADS)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  2. Fridge of the future: ORNL`s refrigeration R&D

    SciTech Connect

    Krause, C.

    1995-12-31

    Fears about warming the globe may change the way foods are chilled. Concern about global warming, as expressed in the President`s Climate Change Action Plan of 1993, is the latest motivation for putting future American refrigerators and freezers on a strict energy diet. A current national goal is to design an environmentally sound refrigerator-freezer by 1998 that uses half as much energy as 1993 models. Interest in designing a more energy-efficient refrigerator is not new. It first became a goal almost 20 years ago. In the 1970`s the United States was relying on increasingly unstable supplies of imported oil for fuel, and energy prices began to rise. Utilities balked at building additional power plants because of rising costs and investment risks. As a result, a premium was placed on developing energy-efficient appliances, culminating in the passage of the National Appliance Energy Conservation Act of 1987. In the late 1980`s refrigerator design was again a target of engineers because of the need to change the refrigerant and insulation used. The reason: the Montreal Protocol called for phasing out of substances containing chlorofluorocarbons (CFCs) by the year 2000 because they were thought to be destroying the earth`s stratospheric ozone layer. Ozone shields humans from solar rays that can cause skin cancer and cataracts. Among the CFCs to be phased out are common refrigerants like R-12 and the refrigerator insulation blowing agent R-11.

  3. Waste-heat-driven refrigeration plants for freezer trawlers

    SciTech Connect

    Kellen, A.D.

    1986-01-01

    An analysis is made of the possibility of utilizing waste heat from a proposed gas-turbine fishing-vessel propulsion engine to power a refrigeration plant. On the basis of superior volume, maintenance and reliability, and cost and availability, the ammonia-water absorption system is chosen over the other waste-heat-driven option considered. It is found to be comparable in volume and in maintenance and reliability to the conventional vapor-compression system.

  4. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  5. Hermetic compressor and block expansion valve in refrigeration performance

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Susilo, Didik Djoko; Tjahjana, D. D. D. P.

    2016-03-01

    Vehicle cabin in tropical countries requires the cooling during the day for comfort of passengers. Air conditioning machine is commonly driven by an internal combustion engine having a great power, which the conventional compressor is connected to crank shaft. The stage of research done is driving the hermetic compressor with an electric motor, and using block expansion valve. The HFC-134a was used as refrigerant working. The primary parameters observed during the experiment are pressure, temperature, and power consumption for different cooling capacities. The results show that the highest coefficient of performance (COP) and the electric power of system are 6.3 and 638 Watt, respectively.

  6. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  7. Adiabatic losses in Stirling refrigerators

    SciTech Connect

    Bauwens, L.

    1996-06-01

    The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature ratios of about two, which makes it less suitable for low-life refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary to reduce the volume ratio, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic Stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.

  8. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  9. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  10. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  11. Solid-State Quantum Refrigeration

    DTIC Science & Technology

    2013-03-01

    i n a l Te c h n... i c a l Re p o r t Name of Grantee: Northwestern University Grant Title: Solid-State Quantum Refrigeration Grant #: FA9550-09-1...200 -150 -100 -50 0 Anglewavelength b a c k c o u p lin g i n to th e w a v e g u id e l o s s ( d B ) Figure 8. results of a) percentage

  12. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  13. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  14. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  15. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    SciTech Connect

    Dieckmann, John

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  16. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  17. Analysis of the use of adsorption processes in trigeneration systems

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur

    2013-12-01

    The trigeneration systems for production of cold use sorption refrigeration machines: absorption and adsorption types. Absorption systems are characterized namely by better cooling coefficient of performance, while the adsorptive systems are characterized by the ability to operate at lower temperatures. The driving heat source temperature can be as low as 60-70 °C. Such temperature of the driving heat source allows to use them in district heating systems. The article focuses on the presentation of the research results on the adsorption devices designed to work in trigeneration systems.

  18. Optimum operating regimes of common paramagnetic refrigerants

    NASA Astrophysics Data System (ADS)

    Wikus, Patrick; Burghart, Gerhard; Figueroa-Feliciano, Enectalí

    2011-09-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers [1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered.

  19. Magnetic refrigeration for low-temperature applications

    NASA Astrophysics Data System (ADS)

    Barclay, J. A.

    1985-05-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  20. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  1. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  2. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1992-07-01

    Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  3. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  4. Influence of Refrigerant Oil on Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Katsuta, Masafumi

    Because of the phase-out CFC Freon series required by Montreal Protocal, the conversion to HFC alternatives for vapor compression refrigeration system have been in progress. The each component design of these system should need to be reassessed, however, to improve the performance and compactness of the evaporator, an influence of the refrigerant oil on the refrigerant side heat transfer remains as an important and unsolved subject. In this article, the previous research progresses on the thermophysical properties, two-phase flow regimes and heat transfer in evaporator tube of refrigerant and oil mixture are briefly reviewed and the ability of these results to the combination of the alternative refrigerant and oil system is discussed. According to the review, the limited quantitative agreements were obtained from the perfect miscible refrigerant and oil mixture and, in particular, the much detailed research on the heat transfer mechanisms are required in future.

  5. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy

  6. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  7. Ecological optimization for generalized irreversible Carnot refrigerators

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Xiaoqin, Zhu; Sun, Fengrui; Wu, Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators.

  8. Optimization of the performance characteristics in an irreversible regeneration magnetic Brayton refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wu, GuoXing

    2012-02-01

    A model of the irreversible regenerative Brayton refrigeration cycle working with paramagnetic materials is established, in which the regeneration problem in two constant-magnetic field processes and the irreversibility in two adiabatic processes are considered synthetically. Expressions for the COP, cooling rate, power input, the minimum ratio of the two magnetic fields, etc., are derived. It is found that the influence of the irreversibility and the regeneration on the main performance parameters of the magnetic Brayton refrigerator is remarkable. It is important that we have obtained several optimal criteria, which may provide some theoretical basis for the optimal design and operation of the Brayton refrigerator. The results obtained in the paper can provide some new theoretical information for the optimal design and performance improvement of real Brayton refrigerators.

  9. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    SciTech Connect

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  10. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    NASA Astrophysics Data System (ADS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  11. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... doors, or no doors; (6) Is designed for pull-down temperature applications or holding temperature applications; and (7) Is connected to a self-contained condensing unit or to a remote condensing unit. Commercial hybrid refrigerator, freezer, and refrigerator-freezer means a commercial refrigerator,...

  12. Advances in shell side boiling of refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube evaporators used in air conditioning and refrigeration applications is discussed. The heat exchanger geometry of interest involves evaporation or condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for shell side evaporation and for forced convection to water on the tube side. Refrigerant boiling data and forced convection refrigerant boiling correlations are described. The refrigerants of interest include R-11, 12, 22, 123, and 134a. Thermal design methods for sizing of the evaporator and condenser are outlined. A computer model for prediction of the evaporator performance is described.

  13. Heat Transfer Problems of Mixed Refrigerants

    NASA Astrophysics Data System (ADS)

    Fujii, Tetsu; Koyama, Shigeru; Goto, Masao; Takamatsu, Hiroshi

    From the point of view of the application of non-azeotropic mixed refrigerants to heat pump and refrigeration cycles, literatures on condensation and evaporation are surveyed and future problems to be studied are extracted. All researches on the relevant problems are recently started and still in developing way except for condensation on a single horizontal tube. Particularly, the studies for condensation and evaporation of mixed Freon refrigerant in a horizontal tube, which are the most important in practice, are far backward in comparison with single component refrigerant in every point of heat transfer characteristics, flow pattern and theoretical analysis.

  14. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  15. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  16. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  17. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  18. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  19. Magnetic refrigeration materials (invited)

    SciTech Connect

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1999-04-01

    Research on the magnetocaloric effect and its application for cooling near room temperature over the past few years has helped to move this phenomenon from a scientific curiosity to an emerging technology. Two of the most important advances include the demonstration which proved that it is possible to obtain significant cooling powers (600 W) at high Carnot efficiencies (60{percent}) and with a large coefficient of performance (15) near room temperature in moderately strong magnetic fields ({le}5 T); and the discovery of the giant magnetocaloric effect in the Gd{sub 5}(Si{sub x}Ge{sub 1{minus}x}){sub 4} series of alloys. Also, new knowledge about the magnetocaloric effect has been gained. This includes: the relationship between the nature of the magnetic transformation(s) and the temperature dependence of the magnetocaloric effect, the entropy utilized in the magnetocaloric process, and the role of impurities on the giant magnetocaloric effect.{copyright} {ital 1999 American Institute of Physics.}

  20. LaNi5 hydride cryogenic refrigerator test results

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    A complete LaNi5 hydrogen absorption cryogenic refrigerator system was developed. The system uses low temperature waste heat of approximately 100 C as a power source, and has no moving parts other than self operating valves. The cycle continues automatically by an electronic sequencing timing mechanism for the three compressors which are phased such that a constant supply of high pressure hydrogen gas is provided. It is indicated that with a fully clean hydrogen system, hundreds of thousand cycles should be attainable, even though some degradation may eventually occur. Simple vacuum reactivation of the hydride of moving parts, other than self operating, long life valves, the refrigerators predicted life is extremely long.

  1. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient...

  2. 46 CFR 98.25-35 - Refrigerated systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature of the liquid below atmospheric, at least two complete refrigeration plants automatically... auxiliaries for proper operation. The capacity of each refrigeration compressor shall be sufficient...

  3. Absorption-Desorption Compressor for Spaceborne/Airborne Cryogenic Refrigerators.

    DTIC Science & Technology

    Refrigerant compressors, *Refrigeration systems), Spaceborne, Airborne, Cryogenics, Gases, Absorption, Desorption, Hydrogen, Hydrides, Lanthanum compounds, Nickel alloys, Joule Thomson effect , Heat transfer

  4. Evaluations of PVE Lubricants for Refrigeration and Air Conditioning system with the Low GWP Refrigerants

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoya; Kaneko, Masato; Kawaguchi, Yasuhiro

    2017-08-01

    For the prevention of global warming, various low GWP refrigerants (R1234yf, R1234ze, R448A, R449A, R452A, R452B, R454B etc.) are proposed as the alternative of R410A and R404A for refrigeration and air conditioning system. PVE lubricants were developed for refrigeration and air-conditioning system with low GWP refrigerants. In this report, the combinations of the low GWP refrigerants and lubricant were evaluated. The evaluation items are physical properties (miscibility, solubility, viscosity, and electric insulation), thermal stability and lubricity.

  5. The effect of coolants on the performance of magnetic micro-refrigerators.

    PubMed

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. The Stirling cycle and cryogenic refrigerators

    SciTech Connect

    Louie, B.; Radebaugh, R.

    1984-08-01

    This paper reviews the principles and techniques used in cryogenic refrigeration, with particular emphasis on small cryocoolers. Several thermodynamic cycles used in cryocoolers are discussed, as are the design requirements, applications, and current areas of research. The important features of the Stirling cycle used as a prime mover or refrigerator are compared.

  9. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  10. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration...

  11. The Thermodynamics of a Refrigeration System.

    ERIC Educational Resources Information Center

    Azevedo e Silva, J. F. M.

    1991-01-01

    An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)

  12. Reusable tube piercing tool for refrigerant recovery

    SciTech Connect

    Price, L.D.; Scheiben, F.M.

    1994-01-04

    A refrigerant tube piercing tool is described capable of being removably and sealingly mounted on a refrigerant tube of copper or the like in a sealed refrigerant system to enable the recovery of refrigerant from the sealed system without discharge into the atmosphere. The tool includes a pair of clamp members one of which includes a sealing member and passageway combined with a threaded, pointed piercing member that is manually threaded into engagement with the tube for forming a hole therein and a fitting having a Schrader valve incorporated therein to which a hose leading to a recovery tank can be connected to enable refrigerant to be transferred into the recovery tank for subsequent use. The tool is reusable and can be removed after the refrigerant has been transferred into the recovery tank in order that the leak or other problem with respect to the refrigerant system can be repaired at which time the hole formed in the tube is closed by soldering or the like with the refrigerant system then being recharged. 5 figs.

  13. 2012 International Conference on Medical Physics and Biomedical Engineering Thermal Economic Analysis on LiBr Refrigeration -Heat Pump System Applied in CCHP System

    NASA Astrophysics Data System (ADS)

    Zhang, CuiZhen; Yang, Mo; Lu, Mei; Zhu, Jiaxian; Xu, Wendong

    LiBr refrigeration cooling water contains a lot of low-temperature heat source, can use this part of the heat source heat boiler feed water. This paper introduced LiBr refrigeration - heat pump system which recovery heat of the LiBr refrigeration cooling water by heat pump system to heat the feed water of boiler. Hot economic analysis on the system has been performed based on the experimental data. Results show that LiBr refrigeration-heat pump system brings 26.6 percent decrease in primary energy rate consumption comparing with the combined heat and power production system(CHP) and separate generation of cold;

  14. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  15. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1992-10-01

    Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  16. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  17. Sorption compressor/mechanical expander hybrid refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  18. Dynamic simulation of a reverse Brayton refrigerator

    SciTech Connect

    Peng, N.; Xiong, L. Y.; Dong, B.; Liu, L. Q.; Lei, L. L.; Tang, J. C.

    2014-01-29

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  19. Estimates of Refrigerator Loads in Public Housing Based on Metered Consumption Data

    SciTech Connect

    Miller, JD; Pratt, RG

    1998-09-11

    The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project to replace refrigerators in New York City public housing with new, highly energy-efficient models. This project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing authorities throughout the United States to bulk-purchase energy-efficient appliances. DOE helped develop and plan the program through the ENERGY STAR@ Partnerships program conducted by its Pacific Nofiwest National Laboratory (PNNL). PNNL was subsequently asked to conduct the savings evahations for 1996 and 1997. PNNL designed the metering protocol and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the data. The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and Miller 1997) established the need and justification for a regression-model-based approach to an energy savings estimate. The need originated in logistical difficulties associated with sampling the population and pen?orming a stratified analysis. Commonly, refrigerators[a) with high representation in the population were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the stratified anrdysis. The just{jfcation was found in the fact that strata (distinct groups of identical refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to label rating). This finding suggested a general regression model could be used to represent the consumption of all refrigerators in the population. In 1996 a simple two-coefficient regression model, a function of only the refrigerator label rating, was developed and used to represent the existing population of refrigerators. A key concept used in the 1997 study grew from findings in a small number of apartments

  20. Residual oil aerosol measurements on refrigerators and liquefiers

    NASA Astrophysics Data System (ADS)

    Pflueckhahn, D.; Anders, W.; Hellwig, A.; Knobloch, J.; Rotterdam, S.

    2014-01-01

    The purity of the process gas is essential for the reliability of refrigerators and liquefiers. Filtration and adsorption of impurities like water, nitrogen, and oil result in a major effort, cost, and maintenance in the helium process. Expensive impurity monitors for moisture, nitrogen, and hydrocarbon contents are required to identify filter failures and leakage immediately during the operation. While water and nitrogen contaminants can be detected reliably, the measurement of oil aerosols at the ppb-level is challenging. We present a novel diagnostic oil aerosol measurement system able to measure particles in the sub-μm range. This unit enabled us to evaluate and improve the oil separation system on a LINDE TCF 50 helium liquefier.

  1. Design, life testing, and future designs of cryogenic hydride refrigeration systems

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Golben, P. M.

    At the Jet Propulsion Laboratory a complete hydride refrigerator system has accumulated > 1000 h at 29 K or below (14 K minimum). At ERGENICS, a metal hydride compressor, without an attached cryogenic section, operated successfully for 35 000 cycles (5800 h). Component testing on check valves, hydride particle size, and JT expansion valves has shown negligible degradation after years of service or accelerated life. With electrical or solar heating, a combined charcoal and hydride refrigerator required power of ≈ 400 W to produce 1 W of liquid hydrogen cooling or 600 W to produce 1 W of 10 K cooling. Possible long-life additional stages to reach 4 K include adiabatic demagnetization refrigeration, helium desorption, or helium compressors with JT refrigeration. The efficiency for 10 K refrigeration is considerably better than any other mechanical refrigerator and the design is by far the simplest. Due to the lack of moving parts, its lifetime is projected to be many years, possibly decades, and there is virtually no associated magnetic field or vibration.

  2. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  3. Novel materials for laser refrigeration

    SciTech Connect

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  4. Thermofluid Analysis of Magnetocaloric Refrigeration

    SciTech Connect

    Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan; Benedict, Michael

    2014-01-01

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While the goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.

  5. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  6. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  7. ADSORPTION TECHNOLOGIES

    EPA Science Inventory

    A 45 minute PPT presentation will be given at three training courses sponsored by the OGWDW, OW, USEPA. Courses are being held at Phoenix, AZ on April 25; Sacramento, CA on April 29; and South Bend, IN on May 9.

    The presentation provides an overview of adsorptive media te...

  8. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  9. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  10. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  11. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  12. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  13. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... storage capacity if using a fluorocarbon, as a refrigerant, there must be available one pressure-demand... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  14. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... storage capacity if using a fluorocarbon, as a refrigerant, there must be available one pressure-demand... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  15. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... storage capacity if using a fluorocarbon, as a refrigerant, there must be available one pressure-demand... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  16. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required...

  17. High frequency thermoacoustic refrigerator. Annual summary report, 1 June 1994-31 May 1995

    SciTech Connect

    Symko, O.G.

    1995-08-15

    Results are presented on the development of a high frequency thermoacoustic refrigerator and its performance. The device consists of a piezoelectric driver, operated around 5kHz, which is coupled to a cylindrical resonator containing air at 1 atmosphere as the compressible fluid. For sound levels of 155dB at the stack, a maximum T of 41 C was reached across a cotton wool stack 4mm long. A cooling power of 1.2 watt was achieved with a coefficient of performance of 3. This simple and lightweight refrigerator shows promise for cooling of small samples and electronic components. The performance of this type of refrigerator at high frequencies leads to high efficiency and power density. Research is aimed at improving its performance by optimizing some of the critical parameters such as the sound level and the thermal interface between stack and heat exchangers.

  18. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    NASA Astrophysics Data System (ADS)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  19. Development and experimental test of an analytical model of the orifice pulse tube refrigerator

    NASA Technical Reports Server (NTRS)

    Storch, Peter J.; Radebaugh, Ray

    1988-01-01

    An analytical model for the orifice pulse tube is developed, in which the system is described in terms of average enthalpy flow with such simplifying assumptions as an ideal gas and sinusoidal pressure variation. Phasor analysis is used to represent temperature, pressure, and mass-flow rate waves in vector form. The model predictions, namely, that the refrigeration power of a pulse-tube refrigerator is proportional to the average pressure, the pulse frequency, the mass-flow ratio, and the square of the dynamic pressure ratio, were verified by experimental measurements. It was found that, as a result of the simplifying assumptions, the magnitudes of the refrigeration power predicted by the model were between three and five times greater than experimental values.

  20. Improvement of Dehumidification Performance on Room Air Conditioner Adopting Dehumidification Method Reheated by Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Funakoshi, Sunao; Yokoyama, Hidenori; Morimoto, Motoo; Saito, Kiyoshi

    The ways to increase dehumidification capacity during the dehumidification operation reheated by refrigeration cycle on room air conditioners using R 410A was investigated, keeping electric power consumption lower, noise level lower and outlet air temperature constant. The indoor heat exchanger is divided into a condensing part and an evaporating part by a dehumidification valve which is located between these two heat exchangers. The cooled and dehumidified indoor air is heated by the condensing part. The noise occurred from the two-phase refrigerant flow passing through this valve. So the compressor rotational speed was increased properly to increase dehumidification capacity. Moreover a new dehumidification valve was developed to reduce the refrigerant flow noise. This valve has two expansion processes and each expansion process has plural notch throttles. As the result, 1.5 times dehumidification capacity was gained, keeping lower electric power consumption, lower noise level and constant outlet air temperature.

  1. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  2. Dual-circuit, multiple-effect refrigeration system and method

    DOEpatents

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  3. Impact of operating conditions on cooling capacity for sorption systems using water as refrigerant

    NASA Astrophysics Data System (ADS)

    Tremeac, Brice; Giraud, Florine; Vallon, Pierrick

    2017-02-01

    The implementation of compact heat exchanger in sorption systems is a key factor to allow the development of these systems. The aim of this paper is to develop a statistical model with a design of experiment (DOE) methodology and use dimensionless number to evaluate and understand the influence of the height of refrigerant liquid and secondary fluid inlet temperature on cooling capacity of a compact pate-type evaporator for sorption systems working near vacuum pressure. For this purpose, an experimental campaign was conducted on a small adsorption test bench using 13X/water as working couple. Cooling capacities from 640 to 2000 W were measured. The DOE is a Doelhert type with two parameters: the inlet secondary fluid temperature (from 10 to 21 °C) and the filing level of refrigerant in the evaporator (from 6 to 24 cm). Thanks to the exploitation of the mathematical model obtained, optimal points under different constraints were found. A maximum cooling capacity of 2021 +/-75 W in the entire experimental field was predicted for a secondary fluid inlet temperature of 25°C and a height of liquid level of 19.2 cm. Bond number and modified Jacob number per the ratio Psat/Ptriple were analyzed. The dimensionless numbers are correlated to the cooling capacity as a first step for designing compact plate-type evaporator for adsorption systems using water as refrigerant.

  4. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  5. A Dynamic Model of a Vapor Compression Refrigeration Cycle using Zeotropic Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Unezaki, Fumitake; Matsuoka, Fumio

    A dynamic model is developed for a vapor compression refrigeration cycle with zeotropic refrigerant mixtures. In this model, the refrigeration cycle is represented by elements, such as a compressor and heat exchangers and connecting points of each element. The continuity equation of pressure and the conservation equation of mass and energy at each connecting point are used as the equations of the refrigeration cycle. To solve the equations, inlet pressure, inlet mass flow rate or outlet pressure of each element, enthalpy and the circulating composition of each connecting point are modified. In this way, a versatile modeling of refrigeration cycles is realized. In addition, including conservation of mass of each composition of zeotropic refrigerant mixtures in this model, dynamic characteristics of compositions are calculated.

  6. A versatile magnetic refrigeration test device.

    PubMed

    Bahl, C R H; Petersen, T F; Pryds, N; Smith, A

    2008-09-01

    A magnetic refrigeration test device has been built and tested. The device allows variation and control of many important experimental parameters, such as the type of heat transfer fluid, the movement of the heat transfer fluid, the timing of the refrigeration cycle, and the magnitude of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four different parameter variations mentioned above.

  7. Space shuttle orbiter mechanical refrigeration system

    NASA Technical Reports Server (NTRS)

    Williams, J. L.

    1974-01-01

    A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.

  8. A Ross-Stirling spacecraft refrigerator

    NASA Astrophysics Data System (ADS)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  9. Sorption cryogenic refrigeration - Status and future

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.

  10. Bearing construction for refrigeration compresssor

    DOEpatents

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  11. Ferroelectric Stirling-Cycle Refrigerator

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    A Stirling-cycle refrigerator has a three-pump configuration and pumping sequence, in which one pump serves as a compressor. one pump serves as an expander, and one pump serves as a displacer. The pumps are ferroelectrically actuated diaphragm pumps which are coordinated by synchronizing the ferroelectric-actuator voltages in such a way that the net effect of the displacer is to reduce the deleterious effect of dead space; that is, to circulate a greater fraction of the working fluid through the heat exchangers than would be possible by use of the compressor and expander alone. In addition. the displacer can be controlled separately to make the flow of working fluid in the heat exchangers turbulent (to increase the rate of transfer of heat at the cost of greater resistance to flow) or laminar (to decrease the resistance to flow at the cost of a lower heat-transfer rate).

  12. PIPER Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  13. Parametric optimization of an irreversible magnetic Ericsson refrigerator with finite heat reservoirs

    NASA Astrophysics Data System (ADS)

    Ye, X. M.; Lin, G. X.; Chen, J. C.; Brück, E.

    2007-04-01

    An irreversible cycle model of magnetic Ericsson refrigerators is established, in which the finite heat capacities of external heat reservoirs, heat-transfer irreversibility, inherent regenerative losses, additional regenerative losses due to thermal resistances and irreversibility inside the magnetic working substances are taken into account. On the basis of the thermodynamic equations of paramagnetic materials, the performance characteristics of the magnetic Ericsson refrigeration cycle are investigated. By using the method of the optimal control theory, the optimal equations between the cooling load and the coefficient of performance and between the cooling load and the power input are derived. Furthermore, the maximum cooling load and the corresponding coefficient of performance, the minimum power input and the optimally operating temperatures of the cyclic working substance are obtained. The optimal operating region of the magnetic Ericsson refrigerator is determined. The results obtained here are closer to the performance characteristics of practical magnetic refrigerators with finite heat reservoirs than those in literature and are helpful to the optimal design and performance improvement of magnetic Ericsson refrigerators.

  14. Study of mixed refrigerant undergoing pulsating flow in micro coolers with pre-cooling

    NASA Astrophysics Data System (ADS)

    Lewis, Ryan; Wang, Yunda; Schneider, Hayley; Lee, Y. C.; Radebaugh, Ray

    2013-10-01

    Micro cryogenic coolers can provide low temperatures with a smaller volumetric footprint and smaller power draw than their conventional-scale counterparts. However, they can exhibit lower-than-desired cooling power. We measure the specific cooling power of a refrigerant expanding from a high pressure of 0.6 MPa to a low pressure of 0.1 MPa, while undergoing pulsating flow in a micro cryogenic cooler with pre-cooling. We further observe that the pulses in the flow-rate occur due to a volume of liquid forming in the high-pressure coupling mini-channel. The composition of the flowing refrigerant is analyzed with gas chromatography and thermal conductivity detection (GC/TCD), showing that there is no overall composition change in the refrigerant after it enters the pre-cooling lines. A model of the cooling power under such a pulsating flow regime is developed with good agreement to measured values. An improved refrigerant mixture is designed with this model, and subsequently tested, showing increased specific cooling power.

  15. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  16. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  17. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  18. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  19. Compatibility of alternative refrigerants with varnished magnet wire

    SciTech Connect

    Doerr, R.; Kujak, S.

    1993-10-01

    The compatibility of 24 motor materials with 11 pure refrigerators and 17 refrigerant-lubricant combinations was determined. This is summary of the effect of refrigerants on varnished magnet wire. Of the refrigerants tested, exposure to HCFC-22 produced the most deleterious effects on the magnet wire insulation and varnishes. Since many of the materials tested have excellent reliability with HCFC-22 in current applications, these materials are expected to be reliable when used with new refrigerants.

  20. Stirling, near-ambient temperature refrigerators - Innovative compact designs

    NASA Astrophysics Data System (ADS)

    Walker, G.; Reader, G.; Fauvel, R.; Bingham, E. R.

    Opportunities for the development and application of 'near-ambient' temperature refrigerating systems in connection with public concern over the impact of Freon refrigerants on the earth's ozone layer are examined. Previous work is reviewed, and recent innovative concepts and designs for compact Stirling refrigerators that could be the basis for alternatives for Freon-free refrigeration are presented. The advantages offered by Stirling refrigerators are high thermodynamic performance, simplicity, compactness, low weight and low cost.

  1. Main characteristics of a Brayton refrigeration cycle of paramagnetic salt

    NASA Astrophysics Data System (ADS)

    Chen, Lixuan; Yan, Zijun

    1994-02-01

    The characteristics of a magnetic Brayton refrigeration cycle are investigated on the basis of the general equation of state of a simple paramagnetic salt. The refrigeration heat and the coefficient of performance of the magnetic Brayton refrigeration cycle are derived, and the effect of regeneration on the performance is discussed. It is expounded that the magnetic Brayton refrigeration cycle possesses both advantages of the magnetic Ericsson and the magnetic Carnot refrigeration cycles.

  2. Compatibility of refrigerants and lubricants with engineering plastics

    SciTech Connect

    Cavestri, R.C.

    1993-01-01

    Seven oil immersion studies were completed at both 20 and 60C. Test bars used in this study fall within the manufacturer specification limits of physical consistency and integrity. Refrigerant Immersion studies at ambient and 60C are also complete. Equilibrium refrigerant gas solubilities of the 32 ISO VG branched acid polyolester with all ten refrigerants have been determined and completed at 20C. Finally, the thermal aging of plastics at constant refrigerant pressure exposure with seventeen refrigerant lubricant combinations have been completed.

  3. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  4. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Astrophysics Data System (ADS)

    Hein, G. F.

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  5. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  6. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    SciTech Connect

    Hein, G.F.

    1982-09-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.

  7. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  8. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  9. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  10. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  11. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  12. Advances in refrigeration and heat transfer engineering

    SciTech Connect

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  13. Defrost Temperature Termination in Supermarket Refrigeration Systems

    SciTech Connect

    Fricke, Brian A; Sharma, Vishaldeep

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  14. Exergetic sustainability evaluation of irreversible Carnot refrigerator

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin

    2015-10-01

    Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.

  15. Enclosure for thermoelectric refrigerator and method

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); McGrath, Ralph D. (Inventor)

    1997-01-01

    An enclosed structure is provided for use with a refrigerator having a door assembly. The enclosed structure preferably contains superinsulation materials and a plurality of matching drawers. The enclosed structure preferably includes corner joints which minimize thermal energy transfer between adjacent superinsulation panels. The refrigerator may include a cooling system having a thermoelectric device for maintaining the temperature within the refrigerator at selected values. If desired, a fluid cooling system and an active gasket may also be provided between the door assembly and the enclosed structure. The fluid cooling system preferably includes a second thermoelectric device to maintain the temperature of fluid flowing through the active gasket at a selected value. The drawers associated with the refrigerator may be used for gathering, processing, shipping and storing food or other perishable items.

  16. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  17. Energy use of icemaking in domestic refrigerators

    SciTech Connect

    Meier, A.; Martinez, M.S.

    1996-02-01

    This study was designed to develop and test a procedure to measure the electrical consumption of ice making in domestic refrigerators. The Department of Energy (DOE) test procedure was modified to include the energy used for icemaking in conventional refrigerators and those equipped with automatic icemakers. The procedure assumed that 500 grams of ice would be produced daily. Using the new test procedure and the existing DOE test (as a benchmark), four refrigerators equipped with automatic icemakers were tested for ice-making energy use. With the revised test, gross electricity consumption increased about 10% (100 kWh/yr) due to automatic icemaking but about 5% (55 kWh/yr) could be attributed to the special features of the automatic icemaker. The test also confirmed the feasibility of establishing procedures for measuring energy use of specific loads and other activities related to domestic refrigerators. Field testing and subsequent retesting revealed a 14% increase in energy use.

  18. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling

    SciTech Connect

    2010-10-01

    BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

  19. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOEpatents

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  20. The Oak Ridge Refrigerant Management Program

    SciTech Connect

    Kevil, T.H.

    1995-03-01

    For many years, chlorofluorocarbons (CFC`s) have been used by the Department of Energy`s (DOE) Oak Ridge Y-12 Plant in air conditioning and process refrigeration systems. However, Title 6 of the Clean Air Act Amendments (CAAA) and Executive Order 12843 (Procurement Requirements and Policies for Federal Agencies for Ozone Depleting Substances) signed by President Clinton require that all federal agencies maximize their use of safe, alternate refrigerants and minimize, where economically practical, the use of Class 1 refrigerants. Unfortunately, many government facilities and industrial plants have no plan or strategy in place to make this changeover, even though their air conditioning and process refrigeration equipment may not be sustainable after CFC production ends December 31, 1995. The Y-12 Plant in Oak Ridge, Tennessee, has taken an aggressive approach to complying with the CAAA and is working with private industry and other government agencies to solve tough manufacturing and application problems associated with CFC and hydrochlorofluorocarbon (HCFC) alternatives. Y-12 was the first DOE Defense Program (DP) facility to develop a long-range Stratospheric Ozone Protection Plan for refrigerant management for compliance with the CAAA. It was also the first DOE DP facility to complete detailed engineering studies on retrofitting and replacing all air conditioning and process refrigeration equipment to enable operation with alternate refrigerants. The management plan and engineering studies are models for use by other government agencies, manufacturing plants, and private industry. This presentation identifies some of the hidden pitfalls to be encountered in the accelerated phaseout schedule of CFC`s and explains how to overcome and prevent these problems. In addition, it outlines the general issues that must be considered when addressing the phase-out of ozone depleting substances and gives some `lessons learned` by Y-12 from its Refrigerant Management Program.