Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor
NASA Astrophysics Data System (ADS)
PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu
2018-03-01
In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.
2016-01-01
Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented could be applied to understand other tasks or larger multiarticular MTUs. PMID:27764110
Honert, Eric C; Zelik, Karl E
2016-01-01
Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented could be applied to understand other tasks or larger multiarticular MTUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Stirling System Modeling for Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Johnson, Paul K.
2008-01-01
A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.
Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Lu, Shuai; Singh, Ruchi
2011-09-23
Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimatemore » parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.« less
Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response
NASA Astrophysics Data System (ADS)
Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei
2018-01-01
Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.
A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yang, Fufeng; Rui, Xiaoting
2017-12-01
The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.
Analysis of economic benefit of wind power based on system dynamics
NASA Astrophysics Data System (ADS)
Zhao, Weibo; Han, Yaru; Niu, Dongxiao
2018-04-01
The scale of renewable power generation, such as wind power, has increased gradually in recent years. Considering that the economic benefits of wind farms are affected by many dynamic factors. The dynamic simulation model of wind power economic benefit system is established based on the system dynamics method. By comparing the economic benefits of wind farms under different setting scenarios through this model, the impact of different factors on the economic benefits of wind farms can be reflected.
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
NASA Astrophysics Data System (ADS)
Zhou, Zongchuan; Dang, Dongsheng; Qi, Caijuan; Tian, Hongliang
2018-02-01
It is of great significance to make accurate forecasting for the power consumption of high energy-consuming industries. A forecasting model for power consumption of high energy-consuming industries based on system dynamics is proposed in this paper. First, several factors that have influence on the development of high energy-consuming industries in recent years are carefully dissected. Next, by analysing the relationship between each factor and power consumption, the system dynamics flow diagram and equations are set up to reflect the relevant relationships among variables. In the end, the validity of the model is verified by forecasting the power consumption of electrolytic aluminium industry in Ningxia according to the proposed model.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
NASA Astrophysics Data System (ADS)
Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Jin, Shuangshuang; Chen, Yousu
This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less
Punctuated equilibrium and power law in economic dynamics
NASA Astrophysics Data System (ADS)
Gupta, Abhijit Kar
2012-02-01
This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called 'feedback' was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of 'fitness' and 'selection' in the present model of economic evolution.
NASA Astrophysics Data System (ADS)
Blumberga, Andra; Timma, Lelde; Blumberga, Dagnija
2015-12-01
When the renewable energy is used, the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover, the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.
GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, M.; Min, L.
The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.
Dynamic intersectoral models with power-law memory
NASA Astrophysics Data System (ADS)
Tarasova, Valentina V.; Tarasov, Vasily E.
2018-01-01
Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.
Study on dynamic performance of SOFC
NASA Astrophysics Data System (ADS)
Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai
2017-05-01
In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.
Phase change energy storage for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Chiaramonte, F. P.; Taylor, J. D.
1992-01-01
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Phase change energy storage for solar dynamic power systems
NASA Astrophysics Data System (ADS)
Chiaramonte, F. P.; Taylor, J. D.
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
NASA Astrophysics Data System (ADS)
Juromskiy, V. M.
2016-09-01
It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.
76 FR 66220 - Automatic Underfrequency Load Shedding and Load Shedding Plans Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
..., EPRI Power Systems Dynamics Tutorial, Chapter 4 at page 4-78 (2009), available at http://www.epri.com.... Power systems consist of static components (e.g., transformers and transmission lines) and dynamic... decisions on simulations, both static and dynamic, using area power system models to meet requirements in...
Simulation of Power Collection Dynamics for Simply Supported Power Rail
DOT National Transportation Integrated Search
1972-11-01
The mathematical model of a sprung mass moving along a simply supported beam is used to analyze the dynamics of a power-collection system. A computer simulation of one-dimensional motion is used to demonstrate the phenomenon of collector-power rail i...
Understanding human dynamics in microblog posting activities
NASA Astrophysics Data System (ADS)
Jiang, Zhihong; Zhang, Yubao; Wang, Hui; Li, Pei
2013-02-01
Human activity patterns are an important issue in behavior dynamics research. Empirical evidence indicates that human activity patterns can be characterized by a heavy-tailed inter-event time distribution. However, most researchers give an understanding by only modeling the power-law feature of the inter-event time distribution, and those overlooked non-power-law features are likely to be nontrivial. In this work, we propose a behavior dynamics model, called the finite memory model, in which humans adaptively change their activity rates based on a finite memory of recent activities, which is driven by inherent individual interest. Theoretical analysis shows a finite memory model can properly explain various heavy-tailed inter-event time distributions, including a regular power law and some non-power-law deviations. To validate the model, we carry out an empirical study based on microblogging activity from thousands of microbloggers in the Celebrity Hall of the Sina microblog. The results show further that the model is reasonably effective. We conclude that finite memory is an effective dynamics element to describe the heavy-tailed human activity pattern.
Seol, Ye-In; Kim, Young-Kuk
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.
2014-01-01
Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126
Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants
NASA Astrophysics Data System (ADS)
Moreira, C.; Fulgêncio, N.; Silva, B.; Nicolet, C.; Béguin, A.
2017-04-01
This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.
A fragmentation model of earthquake-like behavior in internet access activity
NASA Astrophysics Data System (ADS)
Paguirigan, Antonino A.; Angco, Marc Jordan G.; Bantang, Johnrob Y.
We present a fragmentation model that generates almost any inverse power-law size distribution, including dual-scaled versions, consistent with the underlying dynamics of systems with earthquake-like behavior. We apply the model to explain the dual-scaled power-law statistics observed in an Internet access dataset that covers more than 32 million requests. The non-Poissonian statistics of the requested data sizes m and the amount of time τ needed for complete processing are consistent with the Gutenberg-Richter-law. Inter-event times δt between subsequent requests are also shown to exhibit power-law distributions consistent with the generalized Omori law. Thus, the dataset is similar to the earthquake data except that two power-law regimes are observed. Using the proposed model, we are able to identify underlying dynamics responsible in generating the observed dual power-law distributions. The model is universal enough for its applicability to any physical and human dynamics that is limited by finite resources such as space, energy, time or opportunity.
Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study
2017-01-01
The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant. PMID:28413256
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation
NASA Astrophysics Data System (ADS)
Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi
2016-09-01
We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.
Power law versus exponential state transition dynamics: application to sleep-wake architecture.
Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T
2010-12-02
Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.
Evaluation of the power consumption of a high-speed parallel robot
NASA Astrophysics Data System (ADS)
Han, Gang; Xie, Fugui; Liu, Xin-Jun
2018-06-01
An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.
Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.
Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha
2017-09-01
Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan
Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codesmore » or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.« less
Guo, Xiaopeng; Ren, Dongfang; Guo, Xiaodan
2018-06-01
Recently, Chinese state environmental protection administration has brought out several PM10 reduction policies to control the coal consumption strictly and promote the adjustment of power structure. Under this new policy environment, a suitable analysis method is required to simulate the upcoming major shift of China's electric power structure. Firstly, a complete system dynamics model is built to simulate China's evolution path of power structure with constraints of PM10 reduction considering both technical and economical factors. Secondly, scenario analyses are conducted under different clean-power capacity growth rates to seek applicable policy guidance for PM10 reduction. The results suggest the following conclusions. (1) The proportion of thermal power installed capacity will decrease to 67% in 2018 with a dropping speed, and there will be an accelerated decline in 2023-2032. (2) The system dynamics model can effectively simulate the implementation of the policy, for example, the proportion of coal consumption in the forecast model is 63.3% (the accuracy rate is 95.2%), below policy target 65% in 2017. (3) China should promote clean power generation such as nuclear power to meet PM10 reduction target.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
NASA Astrophysics Data System (ADS)
Matsypura, Dmytro
In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following coauthored papers: Nagurney, Cruz, and Matsypura (2003), Nagurney and Matsypura (2004, 2005, 2006), Matsypura and Nagurney (2005), Matsypura, Nagurney, and Liu (2006).
Advanced and innovative wind energy concept development: Dynamic inducer system
NASA Astrophysics Data System (ADS)
Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B. H.
1981-05-01
The performance benefits of the dynamic inducer tip vane system was demonstrated Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor show that a dynamic inducer can achieve a power coefficient (based pon power blade swept area) of 0.5, which exceeds that of a plain rotor by about 35%. Wind tunnel tests conducted on a one-third scale model of the dynamic inducer achieved a power coefficient of 0.62 which exceeded that of a plain rotor by about 70%. The dynamic inducer substantially improves the performance of conventional rotors and indications are that higher power coefficients can be achieved through additional aerodynamic optimization.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
A Computer Model for Teaching the Dynamic Behavior of AC Contactors
ERIC Educational Resources Information Center
Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.
2010-01-01
Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…
NASA Astrophysics Data System (ADS)
Stockton, Gregory R.
2011-05-01
Over the last 10 years, very large government, military, and commercial computer and data center operators have spent millions of dollars trying to optimally cool data centers as each rack has begun to consume as much as 10 times more power than just a few years ago. In fact, the maximum amount of data computation in a computer center is becoming limited by the amount of available power, space and cooling capacity at some data centers. Tens of millions of dollars and megawatts of power are being annually spent to keep data centers cool. The cooling and air flows dynamically change away from any predicted 3-D computational fluid dynamic modeling during construction and as time goes by, and the efficiency and effectiveness of the actual cooling rapidly departs even farther from predicted models. By using 3-D infrared (IR) thermal mapping and other techniques to calibrate and refine the computational fluid dynamic modeling and make appropriate corrections and repairs, the required power for data centers can be dramatically reduced which reduces costs and also improves reliability.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
Comparative analysis of existing models for power-grid synchronization
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2015-01-01
The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Sanchez, Travis
2005-02-06
The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less
Solar Dynamic Power System Stability Analysis and Control
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?
NASA Astrophysics Data System (ADS)
Lague, D.; Davy, P.
2008-12-01
Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width without discharge variability does not induce a significant difference in the predicted long-term incision law and scaling of relief with incision rate at steady-state. We conclude that the simple stream power law models currently in use are false, and that details of short-term fluvial dynamics must make their way into long-term evolution models to avoid oversimplifying the coupled dynamics between erosion, tectonics and climate.
Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Y. H.
2013-01-01
The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.
Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.
2011-01-01
We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788
Overview of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2004-01-01
A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.
Development of a Stirling System Dynamic Model With Enhanced Thermodynamics
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.
2005-01-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
Development of a Stirling System Dynamic Model with Enhanced Thermodynamics
NASA Astrophysics Data System (ADS)
Regan, Timothy F.; Lewandowski, Edward J.
2005-02-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
NASA Astrophysics Data System (ADS)
Liu, Zugang
Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New England electric power supply chain consisting of 6 states, 5 fuel types, 82 power generators, with a total of 573 generating units, and 10 demand markets. The empirical case study demonstrates that the regional electricity prices simulated by the model match very well the actual electricity prices in New England. I also utilize the model to study interactions between electric power supply chains and energy fuel markets.
ERIC Educational Resources Information Center
Gindlesparger, Kathryn Johnson
2010-01-01
This ethnographic study argues that reciprocity--the attempt to equalize the power dynamics that occur in working relationships--is a way to counteract the widely-used but rarely-critiqued deficit models that dominate the nonprofit landscape. If community work is not done with a near constant attention to power dynamics, programming that is…
Dynamic Modeling and Grid Interaction of a Tidal and River Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Donegan, James
This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.
NASA Astrophysics Data System (ADS)
Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan
2016-10-01
This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.
Weblog patterns and human dynamics with decreasing interest
NASA Astrophysics Data System (ADS)
Guo, J.-L.; Fan, C.; Guo, Z.-H.
2011-06-01
In order to describe the phenomenon that people's interest in doing something always keep high in the beginning while gradually decreases until reaching the balance, a model which describes the attenuation of interest is proposed to reflect the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, which is a power law with an exponential cutoff. After that, we collect blogs in ScienceNet.cn and carry on empirical study on the interarrival time distribution. The empirical results agree well with the theoretical analysis, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model by providing an evidence for a new class of phenomena in human dynamics. It can be concluded that besides power-law distributions, there are other distributions in human dynamics. These findings demonstrate the variety of human behavior dynamics.
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS
Purcell, Braden A.; Palmeri, Thomas J.
2016-01-01
Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584
Dynamic analysis of a pumped-storage hydropower plant with random power load
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia
2018-02-01
This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.
Dynamically induced cascading failures in power grids.
Schäfer, Benjamin; Witthaut, Dirk; Timme, Marc; Latora, Vito
2018-05-17
Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.
Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus
2017-01-01
All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130
Markov switching of the electricity supply curve and power prices dynamics
NASA Astrophysics Data System (ADS)
Mari, Carlo; Cananà, Lucianna
2012-02-01
Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1979-01-01
A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.
The impact of model detail on power grid resilience measures
NASA Astrophysics Data System (ADS)
Auer, S.; Kleis, K.; Schultz, P.; Kurths, J.; Hellmann, F.
2016-05-01
Extreme events are a challenge to natural as well as man-made systems. For critical infrastructure like power grids, we need to understand their resilience against large disturbances. Recently, new measures of the resilience of dynamical systems have been developed in the complex system literature. Basin stability and survivability respectively assess the asymptotic and transient behavior of a system when subjected to arbitrary, localized but large perturbations in frequency and phase. To employ these methods that assess power grid resilience, we need to choose a certain model detail of the power grid. For the grid topology we considered the Scandinavian grid and an ensemble of power grids generated with a random growth model. So far the most popular model that has been studied is the classical swing equation model for the frequency response of generators and motors. In this paper we study a more sophisticated model of synchronous machines that also takes voltage dynamics into account, and compare it to the previously studied model. This model has been found to give an accurate picture of the long term evolution of synchronous machines in the engineering literature for post fault studies. We find evidence that some stable fix points of the swing equation become unstable when we add voltage dynamics. If this occurs the asymptotic behavior of the system can be dramatically altered, and basin stability estimates obtained with the swing equation can be dramatically wrong. We also find that the survivability does not change significantly when taking the voltage dynamics into account. Further, the limit cycle type asymptotic behaviour is strongly correlated with transient voltages that violate typical operational voltage bounds. Thus, transient voltage bounds are dominated by transient frequency bounds and play no large role for realistic parameters.
A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design
NASA Technical Reports Server (NTRS)
Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming
2006-01-01
As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.
Development of a solid propellant viscoelastic dynamic model
NASA Technical Reports Server (NTRS)
Hufferd, W. L.; Fitzgerald, J. E.
1976-01-01
The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.
Electrical Power Distribution and Control Modeling and Analysis
NASA Technical Reports Server (NTRS)
Fu, Johnny S.; Liffring, Mark; Mehdi, Ishaque S.
2001-01-01
This slide presentation reviews the use of Electrical Power Distribution and Control (EPD&C) Modeling and how modeling can support analysis. The presentation discusses using the EASY5 model to simulate and analyze the Space Shuttle Electric Auxiliary Power Unit. Diagrams of the model schematics are included, as well as graphs of the battery cell impedance, hydraulic load dynamics, and EPD&C response to hydraulic load variations.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles
NASA Astrophysics Data System (ADS)
Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie
2018-01-01
In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Ollis, Thomas B.; Xiao, Bailu
Here, this paper proposes a Mixed Integer Conic Programming (MICP) model for community microgrids considering the network operational constraints and building thermal dynamics. The proposed optimization model optimizes not only the operating cost, including fuel cost, purchasing cost, battery degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation from the set point, but also several performance indices, including voltage deviation, network power loss and power factor at the Point of Common Coupling (PCC). In particular, the detailed thermal dynamic model of buildings is integrated into the distribution optimal power flow (D-OPF)more » model for the optimal operation of community microgrids. The heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently to reduce the electricity cost while maintaining the indoor temperature in the comfort range set by customers. Numerical simulation results show the effectiveness of the proposed model and significant saving in electricity cost could be achieved with network operational constraints satisfied.« less
Liu, Guodong; Ollis, Thomas B.; Xiao, Bailu; ...
2017-10-10
Here, this paper proposes a Mixed Integer Conic Programming (MICP) model for community microgrids considering the network operational constraints and building thermal dynamics. The proposed optimization model optimizes not only the operating cost, including fuel cost, purchasing cost, battery degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation from the set point, but also several performance indices, including voltage deviation, network power loss and power factor at the Point of Common Coupling (PCC). In particular, the detailed thermal dynamic model of buildings is integrated into the distribution optimal power flow (D-OPF)more » model for the optimal operation of community microgrids. The heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently to reduce the electricity cost while maintaining the indoor temperature in the comfort range set by customers. Numerical simulation results show the effectiveness of the proposed model and significant saving in electricity cost could be achieved with network operational constraints satisfied.« less
Modeling of dynamic effects of a low power laser beam
NASA Technical Reports Server (NTRS)
Lawrence, George N.; Scholl, Marija S.; Khatib, AL
1988-01-01
Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.
A large-signal dynamic simulation for the series resonant converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1983-01-01
A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less
Estimating Power System Dynamic States Using Extended Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw
2014-10-31
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less
Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.
2013-01-01
This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550
A self-sensing magnetorheological damper with power generation
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-02-01
Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less
Research on H2 speed governor for diesel engine of marine power station
NASA Astrophysics Data System (ADS)
Huang, Man-Lei
2007-09-01
The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.
Reliability Analysis of the Space Station Freedom Electrical Power System
1989-08-01
Cleveland, Ohio, who assisted in obtaining related research materials and provided feedback on our efforts to produce a dynamic analysis tool useful to...System software that we used to do our analysis of the electrical power system. Thanks are due to Dr. Vira Chankong, my thesis advisor, for his...a frequency duration analysis . Using a transition rate matrix with a model of the photovoltaic and solar dynamic systems, they have one model that
Energy evaluation of protection effectiveness of anti-vibration gloves.
Hermann, Tomasz; Dobry, Marian Witalis
2017-09-01
This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.
Criticality in conserved dynamical systems: experimental observation vs. exact properties.
Marković, Dimitrije; Gros, Claudius; Schuelein, André
2013-03-01
Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.
The dynamic and steady state behavior of a PEM fuel cell as an electric energy source
NASA Astrophysics Data System (ADS)
Costa, R. A.; Camacho, J. R.
The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.
Dynamic Analysis and Test Results for an STC Stirling Generator
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.
2004-02-01
Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.
Income dynamics with a stationary double Pareto distribution.
Toda, Alexis Akira
2011-04-01
Once controlled for the trend, the distribution of personal income appears to be double Pareto, a distribution that obeys the power law exactly in both the upper and the lower tails. I propose a model of income dynamics with a stationary distribution that is consistent with this fact. Using US male wage data for 1970-1993, I estimate the power law exponent in two ways--(i) from each cross section, assuming that the distribution has converged to the stationary distribution, and (ii) from a panel directly estimating the parameters of the income dynamics model--and obtain the same value of 8.4.
Modeling and design of Galfenol unimorph energy harvesters
NASA Astrophysics Data System (ADS)
Deng, Zhangxian; Dapino, Marcelo J.
2015-12-01
This article investigates the modeling and design of vibration energy harvesters that utilize iron-gallium (Galfenol) as a magnetoelastic transducer. Galfenol unimorphs are of particular interest; however, advanced models and design tools are lacking for these devices. Experimental measurements are presented for various unimorph beam geometries. A maximum average power density of 24.4 {mW} {{cm}}-3 and peak power density of 63.6 {mW} {{cm}}-3 are observed. A modeling framework with fully coupled magnetoelastic dynamics, formulated as a 2D finite element model, and lumped-parameter electrical dynamics is presented and validated. A comprehensive parametric study considering pickup coil dimensions, beam thickness ratio, tip mass, bias magnet location, and remanent flux density (supplied by bias magnets) is developed for a 200 Hz, 9.8 {{m}} {{{s}}}-2 amplitude harmonic base excitation. For the set of optimal parameters, the maximum average power density and peak power density computed by the model are 28.1 and 97.6 {mW} {{cm}}-3, respectively.
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
NASA Technical Reports Server (NTRS)
Evans, Austin Lewis
1988-01-01
The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.
Diffusion models for innovation: s-curves, networks, power laws, catastrophes, and entropy.
Jacobsen, Joseph J; Guastello, Stephen J
2011-04-01
This article considers models for the diffusion of innovation would be most relevant to the dynamics of early 21st century technologies. The article presents an overview of diffusion models and examines the adoption S-curve, network theories, difference models, influence models, geographical models, a cusp catastrophe model, and self-organizing dynamics that emanate from principles of network configuration and principles of heat diffusion. The diffusion dynamics that are relevant to information technologies and energy-efficient technologies are compared. Finally, principles of nonlinear dynamics for innovation diffusion that could be used to rehabilitate the global economic situation are discussed.
Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking
NASA Astrophysics Data System (ADS)
Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice
2017-11-01
Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.
Dynamical features of an anisotropic cosmological model
NASA Astrophysics Data System (ADS)
Mishra, B.; Tarai, Sankarsan; Tripathy, S. K.
2018-04-01
The dynamical features of Bianchi type VI_h (BVI_h) universe are investigated in f(R, T) theory of gravity. The field equations and the physical properties of the model are derived considering a power law expansion of the universe. The effect of anisotropy on the dynamics of the universe as well as on the energy conditions are studied. The assumed anisotropy of the model is found to have substantial effects on the energy conditions and dynamical parameters.
The Discrepancy between Einstein Mass and Dynamical Mass for SIS and Power-law Mass Models
NASA Astrophysics Data System (ADS)
Li, Rui; Wang, Jiancheng; Shu, Yiping; Xu, Zhaoyi
2018-03-01
We investigate the discrepancy between the two-dimensional projected lensing mass and the dynamical mass for an ensemble of 97 strong gravitational lensing systems discovered by the Sloan Lens ACS Survey, the BOSS Emission-Line Lens Survey (BELLS), and the BELLS for GALaxy-Lyα EmitteR sYstems Survey. We fit the lensing data to obtain the Einstein mass and use the velocity dispersion of the lensing galaxies provided by the Sloan Digital Sky Survey to get the projected dynamical mass within the Einstein radius by assuming the power-law mass approximation. The discrepancy is found to be obvious and quantified by Bayesian analysis. For the singular isothermal sphere mass model, we obtain that the Einstein mass is 20.7% more than the dynamical mass, and the discrepancy increases with the redshift of the lensing galaxies. For the more general power-law mass model, the discrepancy still exists within a 1σ credible region. We suspect the main reason for this discrepancy is mass contamination, including all invisible masses along the line of sight. In addition, the measurement errors and the approximation of the mass models could also contribute to the discrepancy.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.
Modeling and simulation of consumer response to dynamic pricing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenzuela, J.; Thimmapuram, P.; Kim, J
2012-08-01
Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets.more » We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.« less
Dynamic Modeling Using MCSim and R (SOT 2016 Biological Modeling Webinar Series)
MCSim is a stand-alone software package for simulating and analyzing dynamic models, with a focus on Bayesian analysis using Markov Chain Monte Carlo. While it is an extremely powerful package, it is somewhat inflexible, and offers only a limited range of analysis options, with n...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietzcker, Robert C.; Ueckerdt, Falko; Carrara, Samuel
Mitigation-Process Integrated Assessment Models (MP-IAMs) are used to analyze long-term transformation pathways of the energy system required to achieve stringent climate change mitigation targets. Due to their substantial temporal and spatial aggregation, IAMs cannot explicitly represent all detailed challenges of integrating the variable renewable energies (VRE) wind and solar in power systems, but rather rely on parameterized modeling approaches. In the ADVANCE project, six international modeling teams have developed new approaches to improve the representation of power sector dynamics and VRE integration in IAMs. In this study, we qualitatively and quantitatively evaluate the last years' modeling progress and study themore » impact of VRE integration modeling on VRE deployment in IAM scenarios. For a comprehensive and transparent qualitative evaluation, we first develop a framework of 18 features of power sector dynamics and VRE integration. We then apply this framework to the newly-developed modeling approaches to derive a detailed map of strengths and limitations of the different approaches. For the quantitative evaluation, we compare the IAMs to the detailed hourly-resolution power sector model REMIX. We find that the new modeling approaches manage to represent a large number of features of the power sector, and the numerical results are in reasonable agreement with those derived from the detailed power sector model. Updating the power sector representation and the cost and resources of wind and solar substantially increased wind and solar shares across models: Under a carbon price of 30$/tCO2 in 2020 (increasing by 5% per year), the model-average cost-minimizing VRE share over the period 2050-2100 is 62% of electricity generation, 24%-points higher than with the old model version.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
GPS synchronized power system phase angle measurements
NASA Astrophysics Data System (ADS)
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flueck, Alex
The “High Fidelity, Faster than RealTime Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of largescale power system dynamics simulation, including (1) a validated faster than real time simulation of both stable and unstable transient dynamics in a largescale positive sequence transmission grid model, (2) a threephase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled singlephase static var compensators (SVCs), (3) the world’s first high fidelity threephase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a firstofits kind implementation of a singlephase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the longterm, the simulator will form the backbone of the newly conceived hybrid realtime protection and control architecture that will coordinate local controls, widearea measurements, widearea controls and advanced realtime prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the fasterthanrealtime simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three phase unbalanced simulator’s ability to model threephase and single phase networks and devices.« less
A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design
NASA Technical Reports Server (NTRS)
Kopasakis, George; Brinson, Thomas; Credle, Sydni
2008-01-01
As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.
Control-structure interaction study for the Space Station solar dynamic power module
NASA Technical Reports Server (NTRS)
Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.
1991-01-01
The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.
Thrust Control Loop Design for Electric-Powered UAV
NASA Astrophysics Data System (ADS)
Byun, Heejae; Park, Sanghyuk
2018-04-01
This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.
Evaluation of dynamical models: dissipative synchronization and other techniques.
Aguirre, Luis Antonio; Furtado, Edgar Campos; Tôrres, Leonardo A B
2006-12-01
Some recent developments for the validation of nonlinear models built from data are reviewed. Besides giving an overall view of the field, a procedure is proposed and investigated based on the concept of dissipative synchronization between the data and the model, which is very useful in validating models that should reproduce dominant dynamical features, like bifurcations, of the original system. In order to assess the discriminating power of the procedure, four well-known benchmarks have been used: namely, Duffing-Ueda, Duffing-Holmes, and van der Pol oscillators, plus the Hénon map. The procedure, developed for discrete-time systems, is focused on the dynamical properties of the model, rather than on statistical issues. For all the systems investigated, it is shown that the discriminating power of the procedure is similar to that of bifurcation diagrams--which in turn is much greater than, say, that of correlation dimension--but at a much lower computational cost.
Lu, Zhixin; Squires, Shane; Ott, Edward; Girvan, Michelle
2016-12-01
We study the firing dynamics of a discrete-state and discrete-time version of an integrate-and-fire neuronal network model with both excitatory and inhibitory neurons. When the integer-valued state of a neuron exceeds a threshold value, the neuron fires, sends out state-changing signals to its connected neurons, and returns to the resting state. In this model, a continuous phase transition from non-ceaseless firing to ceaseless firing is observed. At criticality, power-law distributions of avalanche size and duration with the previously derived exponents, -3/2 and -2, respectively, are observed. Using a mean-field approach, we show analytically how the critical point depends on model parameters. Our main result is that the combined presence of both inhibitory neurons and integrate-and-fire dynamics greatly enhances the robustness of critical power-law behavior (i.e., there is an increased range of parameters, including both sub- and supercritical values, for which several decades of power-law behavior occurs).
A simple orbit-attitude coupled modelling method for large solar power satellites
NASA Astrophysics Data System (ADS)
Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi
2018-04-01
A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.
NASA Astrophysics Data System (ADS)
Zhang, Ming
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model
NASA Technical Reports Server (NTRS)
Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.
2005-01-01
Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.
A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Lijun
2017-11-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Liu, L.
2017-12-01
Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.
On the origin of bursts and heavy tails in animal dynamics
NASA Astrophysics Data System (ADS)
Reynolds, A. M.
2011-01-01
Over recent years there has been an accumulation of evidence that many animal behaviours are characterised by common scale-invariant patterns of switching between two contrasting activities over a period of time. This is evidenced in mammalian wake-sleep patterns, in the intermittent stop-start locomotion of Drosophila fruit flies, and in the Lévy walk movement patterns of a diverse range of animals in which straight-line movements are punctuated by occasional turns. Here it is shown that these dynamics can be modelled by a stochastic variant of Barabási’s model [A.-L. Barabási, The origin of bursts and heavy tails in human dynamics, Nature 435 (2005) 207-211] for bursts and heavy tails in human dynamics. The new model captures a tension between two competing and conflicting activities. The durations of one type of activity are distributed according to an inverse-square power-law, mirroring the ubiquity of inverse-square power-law scaling seen in empirical data. The durations of the second type of activity follow exponential distributions with characteristic timescales that depend on species and metabolic rates. This again is a common feature of animal behaviour. Bursty human dynamics, on the other hand, are characterised by power-law distributions with scaling exponents close to -1 and -3/2.
NASA Astrophysics Data System (ADS)
Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu
2017-06-01
Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).
Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika
2018-01-01
Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.
Aerodynamic analysis of the Darrieus wind turbines including dynamic-stall effects
NASA Astrophysics Data System (ADS)
Paraschivoiu, Ion; Allet, Azeddine
Experimental data for a 17-m wind turbine are compared with aerodynamic performance predictions obtained with two dynamic stall methods which are based on numerical correlations of the dynamic stall delay with the pitch rate parameter. Unlike the Gormont (1973) model, the MIT model predicts that dynamic stall does not occur in the downwind part of the turbine, although it does exist in the upwind zone. The Gormont model is shown to overestimate the aerodynamic coefficients relative to the MIT model. The MIT model is found to accurately predict the dynamic-stall regime, which is characterized by a plateau oscillating near values of the experimental data for the rotor power vs wind speed at the equator.
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
NASA Astrophysics Data System (ADS)
Wang, Jing; Qi, Zhaohui; Wang, Gang
2017-10-01
The dynamic analysis of cable-pulley systems is investigated in this paper, where the time-varying length characteristic of the cable as well as the coupling motion between the cable and the pulleys are considered. The dynamic model for cable-pulley systems are presented based on the principle of virtual power. Firstly, the cubic spline interpolation is adopted for modeling the flexible cable elements and the virtual 1powers of tensile strain, inertia and gravity forces on the cable are formulated. Then, the coupled motions between the cable and the movable or fixed pulley are described by the input and output contact points, based on the no-slip assumption and the spatial description. The virtual powers of inertia, gravity and applied forces on the contact segment of the cable, the movable and fixed pulleys are formulated. In particular, the internal node degrees of freedom of spline cable elements are reduced, which results in that only the independent description parameters of the nodes connected to the pulleys are included in the final governing dynamic equations. At last, two cable-pulley lifting mechanisms are considered as demonstrative application examples where the vibration of the lifting process is investigated. The comparison with ADAMS models is given to prove the validity of the proposed method.
Stochastic queueing-theory approach to human dynamics
NASA Astrophysics Data System (ADS)
Walraevens, Joris; Demoor, Thomas; Maertens, Tom; Bruneel, Herwig
2012-02-01
Recently, numerous studies have shown that human dynamics cannot be described accurately by exponential laws. For instance, Barabási [Nature (London)NATUAS0028-083610.1038/nature03459 435, 207 (2005)] demonstrates that waiting times of tasks to be performed by a human are more suitably modeled by power laws. He presumes that these power laws are caused by a priority selection mechanism among the tasks. Priority models are well-developed in queueing theory (e.g., for telecommunication applications), and this paper demonstrates the (quasi-)immediate applicability of such a stochastic priority model to human dynamics. By calculating generating functions and by studying them in their dominant singularity, we prove that nonexponential tails result naturally. Contrary to popular belief, however, these are not necessarily triggered by the priority selection mechanism.
THYME: Toolkit for Hybrid Modeling of Electric Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro Kalyan Perumalla, James Joseph
2011-01-01
THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.
Modeling the Hydrogen Bond within Molecular Dynamics
ERIC Educational Resources Information Center
Lykos, Peter
2004-01-01
The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.
Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E
2007-06-01
We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Tähtinen, Matti
2016-05-01
Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.
Grid Modeling Tools | Grid Modernization | NREL
integrates primary frequency response (turbine governor control) with secondary frequency response (automatic generation control). It simulates the power system dynamic response in full time spectrum with variable time control model places special emphasis on electric power systems with high penetrations of renewable
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari
2017-06-01
Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.
Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission
NASA Astrophysics Data System (ADS)
Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang
2016-11-01
This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.
Detecting and disentangling nonlinear structure from solar flux time series
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1992-01-01
Interest in solar activity has grown in the past two decades for many reasons. Most importantly for flight dynamics, solar activity changes the atmospheric density, which has important implications for spacecraft trajectory and lifetime prediction. Building upon the previously developed Rayleigh-Benard nonlinear dynamic solar model, which exhibits many dynamic behaviors observed in the Sun, this work introduces new chaotic solar forecasting techniques. Our attempt to use recently developed nonlinear chaotic techniques to model and forecast solar activity has uncovered highly entangled dynamics. Numerical techniques for decoupling additive and multiplicative white noise from deterministic dynamics and examines falloff of the power spectra at high frequencies as a possible means of distinguishing deterministic chaos from noise than spectrally white or colored are presented. The power spectral techniques presented are less cumbersome than current methods for identifying deterministic chaos, which require more computationally intensive calculations, such as those involving Lyapunov exponents and attractor dimension.
Comparison of P&O and INC Methods in Maximum Power Point Tracker for PV Systems
NASA Astrophysics Data System (ADS)
Chen, Hesheng; Cui, Yuanhui; Zhao, Yue; Wang, Zhisen
2018-03-01
In the context of renewable energy, the maximum power point tracker (MPPT) is often used to increase the solar power efficiency, taking into account the randomness and volatility of solar energy due to changes in temperature and photovoltaic. In all MPPT techniques, perturb & observe and incremental conductance are widely used in MPPT controllers, because of their simplicity and ease of operation. According to the internal structure of the photovoltaic cell and the output volt-ampere characteristic, this paper established the circuit model and establishes the dynamic simulation model in Matlab/Simulink with the preparation of the s function. The perturb & observe MPPT method and the incremental conductance MPPT method were analyzed and compared by the theoretical analysis and digital simulation. The simulation results have shown that the system with INC MPPT method has better dynamic performance and improves the output power of photovoltaic power generation.
NASA Astrophysics Data System (ADS)
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
1985-06-01
STUDY OF A BRUSHLESS DC MOTOR POWER CONDITIONER FOR A CRUISE MISSILE FIN CONTROL ACTUATOR CA. by Peter Norman MacMillan June 1985 Thesis Advisor: A...TYPE OF REPORT & PERIOD COVERED A CSMP Commutation Model for Design Master’s Thesis Study of a Brushless DC Motor Power June, 1985 Conditioner for a...tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless DC motor fed ty a transistorized power conditioner
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
NASA Technical Reports Server (NTRS)
Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2018-07-01
Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.
NASA Astrophysics Data System (ADS)
James, S. C.; Jones, C.; Roberts, J.
2013-12-01
Power generation with marine hydrokinetic (MHK) turbines is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. The power-generating capacity of MHK turbines will depend, among other factors, upon the turbine type and number and the local flow velocities. There is an urgent need for deployment of practical, accessible tools and techniques to help the industry optimize MHK array layouts while establishing best sitting and design practices that minimize environmental impacts. Sandia National Laboratories (SNL) has modified the open-source flow and transport Environmental Fluid Dynamics Code (EFDC) to include the capability of simulating the effects of MHK power production. Upon removing energy (momentum) from the system, changes to the local and far-field flow dynamics can be estimated (e.g., flow speeds, tidal ranges, flushing rates, etc.). The effects of these changes on sediment dynamics and water quality can also be simulated using this model. Moreover, the model can be used to optimize MHK array layout to maximize power capture and minimize environmental impacts. Both a self-paced tutorial and in-depth training course have been developed as part of an outreach program to train academics, technology developers, and regulators in the use and application of this software. This work outlines SNL's outreach efforts using this modeling framework as applied to two specific sites where MHK turbines have been deployed.
Ghosh, Arunabha; Le, Viet Thong; Bae, Jung Jun; Lee, Young Hee
2013-01-01
Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs−1 scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model. PMID:24145831
Impact of wind generator infed on dynamic performance of a power system
NASA Astrophysics Data System (ADS)
Alam, Md. Ahsanul
Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.
Dynamics and spatial structure of ENSO from re-analyses versus CMIP5 models
NASA Astrophysics Data System (ADS)
Serykh, Ilya; Sonechkin, Dmitry
2016-04-01
Basing on a mathematical idea about the so-called strange nonchaotic attractor (SNA) in the quasi-periodically forced dynamical systems, the currently available re-analyses data are considered. It is found that the El Niño - Southern Oscillation (ENSO) is driven not only by the seasonal heating, but also by three more external periodicities (incommensurate to the annual period) associated with the ~18.6-year lunar-solar nutation of the Earth rotation axis, ~11-year sunspot activity cycle and the ~14-month Chandler wobble in the Earth's pole motion. Because of the incommensurability of their periods all four forces affect the system in inappropriate time moments. As a result, the ENSO time series look to be very complex (strange in mathematical terms) but nonchaotic. The power spectra of ENSO indices reveal numerous peaks located at the periods that are multiples of the above periodicities as well as at their sub- and super-harmonic. In spite of the above ENSO complexity, a mutual order seems to be inherent to the ENSO time series and their spectra. This order reveals itself in the existence of a scaling of the power spectrum peaks and respective rhythms in the ENSO dynamics that look like the power spectrum and dynamics of the SNA. It means there are no limits to forecast ENSO, in principle. In practice, it opens a possibility to forecast ENSO for several years ahead. Global spatial structures of anomalies during El Niño and power spectra of ENSO indices from re-analyses are compared with the respective output quantities in the CMIP5 climate models (the Historical experiment). It is found that the models reproduce global spatial structures of the near surface temperature and sea level pressure anomalies during El Niño very similar to these fields in the re-analyses considered. But the power spectra of the ENSO indices from the CMIP5 models show no peaks at the same periods as the re-analyses power spectra. We suppose that it is possible to improve modeled rhythms if the afore-mentioned external periodicities are taken in an explicit consideration in the models.
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
NASA Astrophysics Data System (ADS)
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
Vieira, Rute; McDonald, Suzanne; Araújo-Soares, Vera; Sniehotta, Falko F; Henderson, Robin
2017-09-01
N-of-1 studies are based on repeated observations within an individual or unit over time and are acknowledged as an important research method for generating scientific evidence about the health or behaviour of an individual. Statistical analyses of n-of-1 data require accurate modelling of the outcome while accounting for its distribution, time-related trend and error structures (e.g., autocorrelation) as well as reporting readily usable contextualised effect sizes for decision-making. A number of statistical approaches have been documented but no consensus exists on which method is most appropriate for which type of n-of-1 design. We discuss the statistical considerations for analysing n-of-1 studies and briefly review some currently used methodologies. We describe dynamic regression modelling as a flexible and powerful approach, adaptable to different types of outcomes and capable of dealing with the different challenges inherent to n-of-1 statistical modelling. Dynamic modelling borrows ideas from longitudinal and event history methodologies which explicitly incorporate the role of time and the influence of past on future. We also present an illustrative example of the use of dynamic regression on monitoring physical activity during the retirement transition. Dynamic modelling has the potential to expand researchers' access to robust and user-friendly statistical methods for individualised studies.
A role for low-order system dynamics models in urban health policy making.
Newell, Barry; Siri, José
2016-10-01
Cities are complex adaptive systems whose responses to policy initiatives emerge from feedback interactions between their parts. Urban policy makers must routinely deal with both detail and dynamic complexity, coupled with high levels of diversity, uncertainty and contingency. In such circumstances, it is difficult to generate reliable predictions of health-policy outcomes. In this paper we explore the potential for low-order system dynamics (LOSD) models to make a contribution towards meeting this challenge. By definition, LOSD models have few state variables (≤5), illustrate the non-linear effects caused by feedback and accumulation, and focus on endogenous dynamics generated within well-defined boundaries. We suggest that experience with LOSD models can help practitioners to develop an understanding of basic principles of system dynamics, giving them the ability to 'see with new eyes'. Because efforts to build a set of LOSD models can help a transdisciplinary group to develop a shared, coherent view of the problems that they seek to tackle, such models can also become the foundations of 'powerful ideas'. Powerful ideas are conceptual metaphors that provide the members of a policy-making group with the a priori shared context required for effective communication, the co-production of knowledge, and the collaborative development of effective public health policies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lumentut, M. F.; Howard, I. M.
2013-03-01
Power harvesters that extract energy from vibrating systems via piezoelectric transduction show strong potential for powering smart wireless sensor devices in applications of health condition monitoring of rotating machinery and structures. This paper presents an analytical method for modelling an electromechanical piezoelectric bimorph beam with tip mass under two input base transverse and longitudinal excitations. The Euler-Bernoulli beam equations were used to model the piezoelectric bimorph beam. The polarity-electric field of the piezoelectric element is excited by the strain field caused by base input excitation, resulting in electrical charge. The governing electromechanical dynamic equations were derived analytically using the weak form of the Hamiltonian principle to obtain the constitutive equations. Three constitutive electromechanical dynamic equations based on independent coefficients of virtual displacement vectors were formulated and then further modelled using the normalised Ritz eigenfunction series. The electromechanical formulations include both the series and parallel connections of the piezoelectric bimorph. The multi-mode frequency response functions (FRFs) under varying electrical load resistance were formulated using Laplace transformation for the multi-input mechanical vibrations to provide the multi-output dynamic displacement, velocity, voltage, current and power. The experimental and theoretical validations reduced for the single mode system were shown to provide reasonable predictions. The model results from polar base excitation for off-axis input motions were validated with experimental results showing the change to the electrical power frequency response amplitude as a function of excitation angle, with relevance for practical implementation.
Forces associated with pneumatic power screwdriver operation: statics and dynamics.
Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G
2003-10-10
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.
Power Laws are Disguised Boltzmann Laws
NASA Astrophysics Data System (ADS)
Richmond, Peter; Solomon, Sorin
Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, w<=wm, the distribution function tends sharply to zero. The origin of this law lies in the random multiplicative process built into the model. Whilst such results have been known since the time of Gibrat, the present framework allows for a stable power law in an arbitrary and irregular global dynamics, so long as the market is ``fair'', i.e., there is no net advantage to any particular group or individual. We further show that the dynamics of relative wealth is independent of the specific nature of the agent interactions and exhibits a universal character even though the total wealth may follow an arbitrary and complicated dynamics. In developing the theory, we draw parallels with conventional thermodynamics and derive for the system some new relations for the ``thermodynamics'' associated with the Generalized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.
Zhang, Yuan; Yu, Guangren; Yu, Liang; Siddhu, Muhammad Abdul Hanan; Gao, Mengjiao; Abdeltawab, Ahmed A; Al-Deyab, Salem S; Chen, Xiaochun
2016-03-01
Computational fluid dynamics (CFD) was applied to investigate mixing mode and power consumption in anaerobic mono- and co-digestion. Cattle manure (CM) and corn stover (CS) were used as feedstock and stirred tank reactor (STR) was used as digester. Power numbers obtained by the CFD simulation were compared with those from the experimental correlation. Results showed that the standard k-ε model was more appropriate than other turbulence models. A new index, net power production instead of gas production, was proposed to optimize feedstock ratio for anaerobic co-digestion. Results showed that flow field and power consumption were significantly changed in co-digestion of CM and CS compared with those in mono-digestion of either CM or CS. For different mixing modes, the optimum feedstock ratio for co-digestion changed with net power production. The best option of CM/CS ratio for continuous mixing, intermittent mixing I, and intermittent mixing II were 1:1, 1:1 and 1:3, respectively. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Pillado, Jose J.; Frazer, Jonathan; Sousa, Kepa
Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of power suppression in the context of the multifield landscape. Based on the assumption that our observable universe emerges from a tunnelling event and that the relevant features originate purely from inflationary dynamics, we find that the power spectrum not only contains information on single-field dynamics, but also places strong constraints on all scalar fields present in the theory. We find that the simplest single-field models giving rise to power suppression do notmore » generalise to multifield models in a straightforward way, as the resulting superhorizon evolution of the curvature perturbation tends to erase any power suppression present at horizon crossing. On the other hand, multifield effects do present a means of generating power suppression which to our knowledge has so far not been considered. We propose a mechanism to illustrate this, which we dub flume inflation.« less
Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405
Power control for direct-driven permanent magnet wind generator system with battery storage.
Guang, Chu Xiao; Ying, Kong
2014-01-01
The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.
Modeling and simulation of an unmanned ground vehicle power system
NASA Astrophysics Data System (ADS)
Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.
2014-06-01
Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.
Critical dynamics on a large human Open Connectome network
NASA Astrophysics Data System (ADS)
Ódor, Géza
2016-12-01
Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Dynamic modeling of brushless dc motors for aerospace actuation
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
NASA Astrophysics Data System (ADS)
Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang
2018-01-01
The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.
Model implementation for dynamic computation of system cost
NASA Astrophysics Data System (ADS)
Levri, J.; Vaccari, D.
The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.
Dynamic Modeling of Solar Dynamic Components and Systems
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Korakianitis, T.
1992-01-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)
NASA Astrophysics Data System (ADS)
Newman, David
2015-03-01
Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.
NASA Astrophysics Data System (ADS)
Dai, Peng; Zhang, Jisheng; Zheng, Jinhai
2017-12-01
The Taiwan Strait has recently been proposed as a promising site for dynamic tidal power systems because of its shallow depth and strong tides. Dynamic tidal power is a new concept for extracting tidal potential energy in which a coast-perpendicular dike is used to create water head and generate electricity via turbines inserted in the dike. Before starting such a project, the potential power output and hydrodynamic impacts of the dike must be assessed. In this study, a two-dimensional numerical model based on the Delft3D-FLOW module is established to simulate tides in China. A dike module is developed to account for turbine processes and estimate power output by integrating a special algorithm into the model. The domain decomposition technique is used to divide the computational zone into two subdomains with grid refinement near the dike. The hydrodynamic processes predicted by the model, both with and without the proposed construction, are examined in detail, including tidal currents and tidal energy flux. The predicted time-averaged power yields with various opening ratios are presented. The results show that time-averaged power yield peaks at an 8% opening ratio. For semidiurnal tides, the flow velocity increases in front of the head of the dike and decreases on either side. For diurnal tides, these changes are complicated by the oblique incidence of tidal currents with respect to the dike as well as by bathymetric features. The dike itself blocks the propagation of tidal energy flux.
NASA Astrophysics Data System (ADS)
Martínez-Lucas, G.; Pérez-Díaz, J. I.; Sarasúa, J. I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G.
2017-04-01
This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis.
Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid
NASA Astrophysics Data System (ADS)
Mahabal, Divya
In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of power. As the main aim of this research is to use renewable sources like PV in the system, it is advantageous to use a combination of both PV and synchronous generator in the system.
NASA Astrophysics Data System (ADS)
Wang, Wu; Huang, Wei; Zhang, Yongjun
2018-03-01
The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.
EIT Noise Resonance Power Broadening: a probe for coherence dynamics
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; O'Leary, Shannon; Snider, Charles
2012-06-01
EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeni, Lorenzo; Hesselbæk, Bo; Bech, John
This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Dynamic stresses in a Francis model turbine at deep part load
NASA Astrophysics Data System (ADS)
Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri
2017-04-01
A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.
NASA Astrophysics Data System (ADS)
MacMillan, P. N.
1985-06-01
Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower dc motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use as flight control actuators for tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless dc motor fed by a transistorized power conditioner utilizing high speed switching power transistors as final elements is presented. The influence of electronic commutation on instantaneous dynamic motor performance is particularly demonstrated and good correlation between computer simulation and typical experimentally obtained performance data is achieved. The model is implemented in CSMP language and features more accurate air gap flux representation over previous work. Hall effect sensor rotor position feedback is simulated. Both constant and variable air gap flux is modeled and the variable flux model treats the flux as a fundamental and one harmonic.
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
NASA Astrophysics Data System (ADS)
Valdivia, V.; Barrado, A.; Lazaro, A.; Rueda, P.; Tonicello, F.; Fernandez, A.; Mourra, O.
2011-10-01
Solar array simulators (SASs) are hardware devices, commonly applied instead of actual solar arrays (SAs) during the design process of spacecrafts power conditioning and distribution units (PCDUs), and during spacecrafts assembly integration and tests. However, the dynamic responses between SASs and actual SAs are usually different. This fact plays an important role, since the dynamic response of the SAS may influence significantly the dynamic behaviour of the PCDU under certain conditions, even leading to instability. This paper deals with the dynamic interactions between SASs and PCDUs. Several methods for dynamic characterization of the SASs are discussed, and the response of commercial SASs widely applied in the space industry is compared to that of actual SAs. After that, the interactions are experimentally analyzed by using a boost converter connected to the aforementioned SASs, thus demonstrating their critical importance. The interactions are first tackled analytically by means of small-signal models, and finally a black-box modelling method of SASs is proposed as a useful tool to analyze the interactions by means of simulation. The capabilities of both the analytical method and the black- box model to predict the interactions are demonstrated.
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumeyer, Charles; Goldston, Robert
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario
Neumeyer, Charles; Goldston, Robert
2016-04-28
Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less
Laser Powered Launch Vehicle Performance Analyses
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)
2001-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.
NASA Astrophysics Data System (ADS)
Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao
2017-03-01
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Effects of dynamic-demand-control appliances on the power grid frequency.
Tchuisseu, E B Tchawou; Gomila, D; Brunner, D; Colet, P
2017-08-01
Power grid frequency control is a demanding task requiring expensive idle power plants to adapt the supply to the fluctuating demand. An alternative approach is controlling the demand side in such a way that certain appliances modify their operation to adapt to the power availability. This is especially important to achieve a high penetration of renewable energy sources. A number of methods to manage the demand side have been proposed. In this work we focus on dynamic demand control (DDC), where smart appliances can delay their switchings depending on the frequency of the system. We introduce a simple model to study the effects of DDC on the frequency of the power grid. The model includes the power plant equations, a stochastic model for the demand that reproduces, adjusting a single parameter, the statistical properties of frequency fluctuations measured experimentally, and a generic DDC protocol. We find that DDC can reduce small and medium-size fluctuations but it can also increase the probability of observing large frequency peaks due to the necessity of recovering pending task. We also conclude that a deployment of DDC around 30-40% already allows a significant reduction of the fluctuations while keeping the number of pending tasks low.
Effects of dynamic-demand-control appliances on the power grid frequency
NASA Astrophysics Data System (ADS)
Tchuisseu, E. B. Tchawou; Gomila, D.; Brunner, D.; Colet, P.
2017-08-01
Power grid frequency control is a demanding task requiring expensive idle power plants to adapt the supply to the fluctuating demand. An alternative approach is controlling the demand side in such a way that certain appliances modify their operation to adapt to the power availability. This is especially important to achieve a high penetration of renewable energy sources. A number of methods to manage the demand side have been proposed. In this work we focus on dynamic demand control (DDC), where smart appliances can delay their switchings depending on the frequency of the system. We introduce a simple model to study the effects of DDC on the frequency of the power grid. The model includes the power plant equations, a stochastic model for the demand that reproduces, adjusting a single parameter, the statistical properties of frequency fluctuations measured experimentally, and a generic DDC protocol. We find that DDC can reduce small and medium-size fluctuations but it can also increase the probability of observing large frequency peaks due to the necessity of recovering pending task. We also conclude that a deployment of DDC around 30-40% already allows a significant reduction of the fluctuations while keeping the number of pending tasks low.
Modeling of Nonlinear Dynamics of a Powered Paraglider
NASA Astrophysics Data System (ADS)
Watanabe, Masahito; Ochi, Yoshimasa
This paper presents a nonlinear dynamic model of a powered paraglider (PPG). The PPG is composed of a canopy and a payload with a propelling unit. The canopy is connected with the payload at two points. The model has been derived as a state vector equation under the assumption that the canopy has six degrees of freedom (DOF) and the payload has two DOF of pitching and yawing motions relative to the canopy. Friction at the connecting points between the canopy and the payload is taken into account. Time responses of the PPG without thrust have been computed using the model and the results are compared with flight experiment data. Simulation of a level flight with thrust has also been conducted.
Intelligence by design in an entropic power grid
NASA Astrophysics Data System (ADS)
Negrete-Pincetic, Matias Alejandro
In this work, the term Entropic Grid is coined to describe a power grid with increased levels of uncertainty and dynamics. These new features will require the reconsideration of well-established paradigms in the way of planning and operating the grid and its associated markets. New tools and models able to handle uncertainty and dynamics will form the required scaffolding to properly capture the behavior of the physical system, along with the value of new technologies and policies. The leverage of this knowledge will facilitate the design of new architectures to organize power and energy systems and their associated markets. This work presents several results, tools and models with the goal of contributing to that design objective. A central idea of this thesis is that the definition of products is critical in electricity markets. When markets are constructed with appropriate product definitions in mind, the interference between the physical and the market/financial systems seen in today's markets can be reduced. A key element of evaluating market designs is understanding the impact that salient features of an entropic grid---uncertainty, dynamics, constraints---can have on the electricity markets. Dynamic electricity market models tailored to capture such features are developed in this work. Using a multi-settlement dynamic electricity market, the impact of volatility is investigated. The results show the need to implement policies and technologies able to cope with the volatility of renewable sources. Similarly, using a dynamic electricity market model in which ramping costs are considered, the impacts of those costs on electricity markets are investigated. The key conclusion is that those additional ramping costs, in average terms, are not reflected in electricity prices. These results reveal several difficulties with today's real-time markets. Elements of an alternative architecture to organize these markets are also discussed.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
The paper discusses the use of a large scale simulation model in evaluating various policy alternatives for reducing SO2 emissions from Illinois electric power plants for a broad range of nuclear power capacity addition scenarios. A dynamic simulation of a transferable discharge ...
Picking the Best from the All-Resources Menu: Advanced Tools for Resource Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan S
Introduces the wide range of electric power systems modeling types and associated questions they can help answer. The presentation focusses on modeling needs for high levels of Distributed Energy Resources (DERs), renewables, and inverter-based technologies as alternatives to traditional centralized power systems. Covers Dynamics, Production Cost/QSTS, Metric Assessment, Resource Planning, and Integrated Simulations with examples drawn from NREL's past and on-going projects. Presented at the McKnight Foundation workshop on 'An All-Resources Approach to Planning for a More Dynamic, Low-Carbon Grid' exploring grid modernization options to replace retiring coal plants in Minnesota.
NASA Astrophysics Data System (ADS)
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
Power suppression at large scales in string inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less
Power suppression at large scales in string inflation
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.
Slow synaptic dynamics in a network: From exponential to power-law forgetting
NASA Astrophysics Data System (ADS)
Luck, J. M.; Mehta, A.
2014-09-01
We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modeled from the usual Hebbian perspective, while competition is modeled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/√t relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most original and important result of our present investigations.
Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe
2012-01-01
The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom. PMID:22670147
Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe
2012-01-01
The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.
Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower
NASA Astrophysics Data System (ADS)
Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel
2017-04-01
The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.
A novel method for predicting the power outputs of wave energy converters
NASA Astrophysics Data System (ADS)
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian
2017-11-01
An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.
CSMP (Continuous System Modeling Program) Modeling of Brushless DC Motors.
1984-09-01
Characteristics of Fifteen HP Samarium Cobalt and Ferrite Based brushless DC Ictcrs j. Operated by the Same Power Conditioner ," IEEE Transactions on Pcwer stenM...paratus and Systeis, v. P -Ii-- -ry Demerdash, N.A. and Nehl.T.W., Dynamic Modeling cf Brushless DC Motor-Power Conditioner U if-- fo -- Iec tro me...III _J- _ o 0 NAVAL POSTGRADUATE SCHOOL Monterey, California •S THETIS CSMP MODEL{ING OF BRUSHLESS DC MOTORS by DTIC
Application of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G. (Technical Monitor)
2004-01-01
The GRC Stirling Convertor System Dynamic Model (SDM) has been developed to simulate dynamic performance of power systems incorporating free-piston Stirling convertors. This paper discusses its use in evaluating system dynamics and other systems concerns. Detailed examples are provided showing the use of the model in evaluation of off-nominal operating conditions. The many degrees of freedom in both the mechanical and electrical domains inherent in the Stirling convertor and the nonlinear dynamics make simulation an attractive analysis tool in conjunction with classical analysis. Application of SDM in studying the relationship of the size of the resonant circuit quality factor (commonly referred to as Q) in the various resonant mechanical and electrical sub-systems is discussed.
Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
2017-10-19
Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less
NASA Astrophysics Data System (ADS)
Derieppe, M.; Bos, C.; de Greef, M.; Moonen, C.; de Senneville, B. Denis
2016-01-01
We have previously demonstrated the feasibility of monitoring ultrasound-mediated uptake of a hydrophilic model drug in real time with dynamic confocal fluorescence microscopy. In this study, we evaluate and correct the impact of photobleaching to improve the accuracy of pharmacokinetic parameter estimates. To model photobleaching of the fluorescent model drug SYTOX Green, a photobleaching process was added to the current two-compartment model describing cell uptake. After collection of the uptake profile, a second acquisition was performed when SYTOX Green was equilibrated, to evaluate the photobleaching rate experimentally. Photobleaching rates up to 5.0 10-3 s-1 were measured when applying power densities up to 0.2 W.cm-2. By applying the three-compartment model, the model drug uptake rate of 6.0 10-3 s-1 was measured independent of the applied laser power. The impact of photobleaching on uptake rate estimates measured by dynamic fluorescence microscopy was evaluated. Subsequent compensation improved the accuracy of pharmacokinetic parameter estimates in the cell population subjected to sonopermeabilization.
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
Investigations of Few-Nucleon System Dynamics in Medium Energy Domain
NASA Astrophysics Data System (ADS)
Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Wrońska, A.; Zejma, J.
2013-08-01
Precise and large set of cross sections, vector A x , A y and tensor A xx , A xy , A yy analyzing powers for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon (3N) system dynamics. The calculations are based on different two-nucleon (2N) potentials which can be combined with models of the three-nucleon force (3NF) and other pieces of the dynamics can also be included like the Coulomb interaction and relativistic effects. The cross sections data reveal seizable 3NF and Coulomb force influence. In case of analyzing powers very low sensitivity to the effects was found and the data are well describe by 2N models only. At 130 MeV for A xy serious disagreements appear when 3NF models are included into calculations.
Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-Huxley neurons.
Yu, Theodore; Cauwenberghs, Gert
2009-01-01
We study synaptic dynamics in a biophysical network of four coupled spiking neurons implemented in an analog VLSI silicon microchip. The four neurons implement a generalized Hodgkin-Huxley model with individually configurable rate-based kinetics of opening and closing of Na+ and K+ ion channels. The twelve synapses implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The implemented models on the chip are fully configurable by 384 parameters accounting for conductances, reversal potentials, and pre/post-synaptic voltage-dependence of the channel kinetics. We describe the models and present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. The 3mm x 3mm microchip consumes 1.29 mW power making it promising for applications including neuromorphic modeling and neural prostheses.
Valley dynamics of intravalley and intervalley multiexcitonic states in monolayer WS2
NASA Astrophysics Data System (ADS)
Fu, Jiyong; Bezerra, Andre; Qu, Fanyao
2018-03-01
We present a comprehensive model comprising of a complete set of rate equations, which account for charge transfer among multiexcitonic channels including excitons, trions, and biexcitons, to investigate valley (locked with spin) dynamics in monolayer WS2. The steady-state photoluminescence (PL) spectra, underlying the laser power dependence of excitonic populations, are also determined. Our computed PL for all excitonic states agrees with the experimental data of Paradisanos et al. [Appl. Phys. Lett. 110, 193102 (2017), 10.1063/1.4983285]. We find that the relative weight of PL, stemmed from different excitonic channels, strongly depends on the laser power even under dynamical conditions. Remarkably, the biexciton channel, having the weakest PL intensity at low laser powers, tends to prevail in PL over other excitonic states as the power strengthens. In addition, by accounting for intervalley scatterings, which enable transfer of excitonic states from one valley to the other, we determine the valley polarization, which strongly depends on intervalley scatterings and the exciton generation rates in the two valleys. On the other hand, the valley polarization for all excitonic channels is found almost independent of the laser power, consistent with experimental measurements as well. Finally, the valley dynamics involving both intra- and intervalley trions is discussed. Our model and numerical outcome should be beneficial to experiments especially featuring the interplay of multiexcitonic channels in, e.g., elucidating experimental data, estimating central excitonic quantities including recombination times and transition rates, and in widening possible new experimental scopes.
NASA Astrophysics Data System (ADS)
Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka
2015-04-01
A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.
Scaling behavior in the dynamics of citations to scientific journals
NASA Astrophysics Data System (ADS)
Picoli, S., Jr.; Mendes, R. S.; Malacarne, L. C.; Lenzi, E. K.
2006-08-01
We analyze a database comprising the impact factor (citations per recent items published) of scientific journals for a 13-year period (1992 2004). We find that i) the distribution of impact factors follows asymptotic power law behavior, ii) the distribution of annual logarithmic growth rates has an exponential form, and iii) the width of this distribution decays with the impact factor as a power law with exponent β simeq 0.22. The results ii) and iii) are surprising similar to those observed in the growth dynamics of organizations with complex internal structure suggesting the existence of common mechanisms underlying the dynamics of these systems. We propose a general model for such systems, an extension of the simplest model for firm growth, and compare their predictions with our empirical results.
ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G., E-mail: bge@us.ibm.com
2015-12-01
A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less
Stability of power systems coupled with market dynamics
NASA Astrophysics Data System (ADS)
Meng, Jianping
This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal power flow constraints, allowing study of the so-called congestion problem. These studies show that understanding of potential modes of instability in such coupled systems is of crucial importance both in designing suitable rules for power markets, and in designing physical generator controls that are complementary to market-based dispatch.
Phasor Measurement Unit and Its Application in Modern Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang
2010-06-01
The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less
Transistor analogs of emergent iono-neuronal dynamics.
Rachmuth, Guy; Poon, Chi-Sang
2008-06-01
Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.
1993-01-01
This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.
The influence of local majority opinions on the dynamics of the Sznajd model
NASA Astrophysics Data System (ADS)
Crokidakis, Nuno
2014-03-01
In this work we study a Sznajd-like opinion dynamics on a square lattice of linear size L. For this purpose, we consider that each agent has a convincing power C, that is a time-dependent quantity. Each high convincing power group of four agents sharing the same opinion may convince its neighbors to follow the group opinion, which induces an increase of the group's convincing power. In addition, we have considered that a group with a local majority opinion (3 up/1 down spins or 1 up/3 down spins) can persuade the agents neighboring the group with probability p, since the group's convincing power is high enough. The two mechanisms (convincing powers and probability p) lead to an increase of the competition among the opinions, which avoids dictatorship (full consensus, all spins parallel) for a wide range of model's parameters, and favors the occurrence of democratic states (partial order, the majority of spins pointing in one direction). We have found that the relaxation times of the model follow log-normal distributions, and that the average relaxation time τ grows with system size as τ ~ L5/2, independent of p. We also discuss the occurrence of the usual phase transition of the Sznajd model.
Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid
NASA Astrophysics Data System (ADS)
Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco
2013-03-01
A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.
The dynamic simulation of the Progetto Energia combined cycle power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, R.; Cerabolini, M.; Pisacane, F.
1996-12-31
Over the next four years, the Progetto Energia project is building several cogeneration plants to satisfy the increasing demands of Italy`s industrial complex and the country`s demand for electrical power. Located at six different sites within Italy`s borders these Combined Cycle Cogeneration Plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50 MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipmentmore » performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam de-superheating performance. Simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The paper discusses the Combined Cycle plant configuration, its operating modes and control system, the dynamic model representation, the simulation results and project benefits.« less
Smart caching based on mobile agent of power WebGIS platform.
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved.
NASA Astrophysics Data System (ADS)
Su, Yanzhao; Hu, Minghui; Su, Ling; Qin, Datong; Zhang, Tong; Fu, Chunyun
2018-07-01
The fuel economy of the hybrid electric vehicles (HEVs) can be effectively improved by the mode transition (MT). However, for a power-split powertrain whose power-split transmission is directly connected to the engine, the engine ripple torque (ERT), inconsistent dynamic characteristics (IDC) of engine and motors, model estimation inaccuracies (MEI), system parameter uncertainties (SPU) can cause jerk and vibration of transmission system during the MT process, which will reduce the driving comfort and the life of the drive parts. To tackle these problems, a dynamic coordinated control strategy (DCCS), including a staged engine torque feedforward and feedback estimation (ETFBC) and an active damping feedback compensation (ADBC) based on drive shaft torque estimation (DSTE), is proposed. And the effectiveness of this strategy is verified using a plant model. Firstly, the powertrain plant model is established, and the MT process and problems are analyzed. Secondly, considering the characteristics of the engine torque estimation (ETE) model before and after engine ignition, a motor torque compensation control based on the staged ERT estimation is developed. Then, considering the MEI, SPU and the load change, an ADBC based on a real-time nonlinear reduced-order robust observer of the DSTE is designed. Finally, the simulation results show that the proposed DCCS can effectively improve the driving comfort.
NASA Astrophysics Data System (ADS)
Simakin, A.; Ghassemi, A.
2005-03-01
A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.
NASA Astrophysics Data System (ADS)
Avila, Ricardo E.
The process of Friction Stir Welding (FSW) 6061 aluminum alloy is investigated, with focus on the forces and power being applied in the process and the material response. The main objective is to relate measurements of the forces and power applied in the process with mechanical properties of the material during the dynamic process, based on mathematical modeling and aided by computer simulations, using the LS-DYNA software for finite element modeling. Results of measurements of applied forces and power are presented. The result obtained for applied power is used in the construction of a mechanical variational model of FSW, in which minimization of a functional for the applied torque is sought, leading to an expression for shear stress in the material. The computer simulations are performed by application of the Smoothed Particle Hydrodynamics (SPH) method, in which no structured finite element mesh is used to construct a spatial discretization of the model. The current implementation of SPH in LS-DYNA allows a structural solution using a plastic kinematic material model. This work produces information useful to improve understanding of the material flow in the process, and thus adds to current knowledge about the behavior of materials under processes of severe plastic deformation, particularly those processes in which deformation occurs mainly by application of shear stress, aided by thermoplastic strain localization and dynamic recrystallization.
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
Noise effects in bacterial motor switch
NASA Astrophysics Data System (ADS)
Tu, Yuhai
2006-03-01
The clockwise (CW) or counter clockwise (CCW) spinning of bacterial flagellar motors is controlled by the concentration of a phosphorylated protein CheY-P. In this talk, we represent the stochastic switching behavior of a bacterial flagellar motor by a dynamical two-state (CW and CCW) model, with the energy levels of the two states fluctuating in time according to the variation of the CheY-P concentration in the cell. We show that with a generic normal distribution and a modest amplitude for CheY-P concentration fluctuations, the dynamical two-state model is capable of generating a power-law distribution (as opposed to an exponential Poisson-like distribution) for the durations of the CCW states, in agreement with recent experimental observations of Korobkova et al (Nature, 428, 574(2004)). In addition, we show that the power spectrum for the flagellar motor switching time series is not determined solely by the power-law duration distribution, but also by the temporal correlation between the duration times of different CCW intervals. We point out the intrinsic connection between anomalously large fluctuations of the motor output and the overall high gain of the bacterial chemotaxis system. Suggestions for experimental verification of the dynamical two-state model will also be discussed.
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh
2011-05-27
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.
Ablation dynamics - from absorption to heat accumulation/ultra-fast laser matter interaction
NASA Astrophysics Data System (ADS)
Kramer, Thorsten; Remund, Stefan; Jäggi, Beat; Schmid, Marc; Neuenschwander, Beat
2018-05-01
Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10-100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.
NASA Technical Reports Server (NTRS)
Rapp, Richard H.
1998-01-01
This paper documents the development of a degree 360 expansion of the dynamic ocean topography (DOT) of the POCM_4B ocean circulation model. The principles and software used that led to the final model are described. A key principle was the development of interpolated DOT values into land areas to avoid discontinuities at or near the land/ocean interface. The power spectrum of the POCM_4B is also presented with comparisons made between orthonormal (ON) and spherical harmonic magnitudes to degree 24. A merged file of ON and SH computed degree variances is proposed for applications where the DOT power spectrum from low to high (360) degrees is needed.
Money-center structures in dynamic banking systems
NASA Astrophysics Data System (ADS)
Li, Shouwei; Zhang, Minghui
2016-10-01
In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Börries, Stefan; Bornholdt, Stefan
2015-07-01
The average economic agent is often used to model the dynamics of simple markets, based on the assumption that the dynamics of a system of many agents can be averaged over in time and space. A popular idea that is based on this seemingly intuitive notion is to dampen electric power fluctuations from fluctuating sources (as, e.g., wind or solar) via a market mechanism, namely by variable power prices that adapt demand to supply. The standard model of an average economic agent predicts that fluctuations are reduced by such an adaptive pricing mechanism. However, the underlying assumption that the actions of all agents average out on the time axis is not always true in a market of many agents. We numerically study an econophysics agent model of an adaptive power market that does not assume averaging a priori. We find that when agents are exposed to source noise via correlated price fluctuations (as adaptive pricing schemes suggest), the market may amplify those fluctuations. In particular, small price changes may translate to large load fluctuations through catastrophic consumer synchronization. As a result, an adaptive power market may cause the opposite effect than intended: Power demand fluctuations are not dampened but amplified instead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kengne, Jacques; Kenmogne, Fabien
2014-12-15
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less
Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller
2018-02-01
Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.
Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb
2014-03-01
In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
On the probability distribution of stock returns in the Mike-Farmer model
NASA Astrophysics Data System (ADS)
Gu, G.-F.; Zhou, W.-X.
2009-02-01
Recently, Mike and Farmer have constructed a very powerful and realistic behavioral model to mimick the dynamic process of stock price formation based on the empirical regularities of order placement and cancelation in a purely order-driven market, which can successfully reproduce the whole distribution of returns, not only the well-known power-law tails, together with several other important stylized facts. There are three key ingredients in the Mike-Farmer (MF) model: the long memory of order signs characterized by the Hurst index Hs, the distribution of relative order prices x in reference to the same best price described by a Student distribution (or Tsallis’ q-Gaussian), and the dynamics of order cancelation. They showed that different values of the Hurst index Hs and the freedom degree αx of the Student distribution can always produce power-law tails in the return distribution fr(r) with different tail exponent αr. In this paper, we study the origin of the power-law tails of the return distribution fr(r) in the MF model, based on extensive simulations with different combinations of the left part L(x) for x < 0 and the right part R(x) for x > 0 of fx(x). We find that power-law tails appear only when L(x) has a power-law tail, no matter R(x) has a power-law tail or not. In addition, we find that the distributions of returns in the MF model at different timescales can be well modeled by the Student distributions, whose tail exponents are close to the well-known cubic law and increase with the timescale.
Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems
NASA Astrophysics Data System (ADS)
Sieniutycz, Stanislaw
2010-03-01
We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Quantitative Biofractal Feedback Part II ’Devices, Scalability & Robust Control’
2008-05-01
in the modelling of proton exchange membrane fuel cells ( PEMFC ) may work as a powerful tool in the development and widespread testing of alternative...energy sources in the next decade [9], where biofractal controllers will be used to control these complex systems. The dynamic model of PEMFC , is...dynamic response of the PEMFC . In the Iftukhar model, the fuel cell is represented by an equivalent circuit, whose components are identified with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.
2013-11-07
Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors inmore » equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.« less
Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.
de Buyl, Pierre; Kapral, Raymond
2013-02-21
The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.
Generalized priority-queue network dynamics: Impact of team and hierarchy
NASA Astrophysics Data System (ADS)
Cho, Won-Kuk; Min, Byungjoon; Goh, K.-I.; Kim, I.-M.
2010-06-01
We study the effect of team and hierarchy on the waiting-time dynamics of priority-queue networks. To this end, we introduce generalized priority-queue network models incorporating interaction rules based on team-execution and hierarchy in decision making, respectively. It is numerically found that the waiting-time distribution exhibits a power law for long waiting times in both cases, yet with different exponents depending on the team size and the position of queue nodes in the hierarchy, respectively. The observed power-law behaviors have in many cases a corresponding single or pairwise-interacting queue dynamics, suggesting that the pairwise interaction may constitute a major dynamic consequence in the priority-queue networks. It is also found that the reciprocity of influence is a relevant factor for the priority-queue network dynamics.
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong
2018-05-01
This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.
Transition from Exponential to Power Law Income Distributions in a Chaotic Market
NASA Astrophysics Data System (ADS)
Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo
Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.
1982-01-01
Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.
NASA Astrophysics Data System (ADS)
Liu, Zhijian; Yin, Donghui; Yan, Jun
2017-05-01
Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.
NASA Astrophysics Data System (ADS)
Wang, Lei; Fan, Youping; Zhang, Dai; Ge, Mengxin; Zou, Xianbin; Li, Jingjiao
2017-09-01
This paper proposes a method to simulate a back-to-back modular multilevel converter (MMC) HVDC transmission system. In this paper we utilize an equivalent networks to simulate the dynamic power system. Moreover, to account for the performance of converter station, core components of model of the converter station gives a basic model of simulation. The proposed method is applied to an equivalent real power system.
The social architecture of capitalism
NASA Astrophysics Data System (ADS)
Wright, Ian
2005-02-01
A dynamic model of the social relations between workers and capitalists is introduced. The model self-organises into a dynamic equilibrium with statistical properties that are in close qualitative and in many cases quantitative agreement with a broad range of known empirical distributions of developed capitalism, including the power-law firm size distribution, the Laplace firm and GDP growth distribution, the lognormal firm demises distribution, the exponential recession duration distribution, the lognormal-Pareto income distribution, and the gamma-like firm rate-of-profit distribution. Normally these distributions are studied in isolation, but this model unifies and connects them within a single causal framework. The model also generates business cycle phenomena, including fluctuating wage and profit shares in national income about values consistent with empirical studies. The generation of an approximately lognormal-Pareto income distribution and an exponential-Pareto wealth distribution demonstrates that the power-law regime of the income distribution can be explained by an additive process on a power-law network that models the social relation between employers and employees organised in firms, rather than a multiplicative process that models returns to investment in financial markets. A testable consequence of the model is the conjecture that the rate-of-profit distribution is consistent with a parameter-mix of a ratio of normal variates with means and variances that depend on a firm size parameter that is distributed according to a power-law.
Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi
2016-01-01
The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, Martijn; Zehe, Erwin; Archambeau, Pierre; Dewals, Benjamin
2016-04-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in an inverse manner such that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporations, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the - with the maximum power principle optimized - model with the asymptotes of the Budyko curve we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
Does the Budyko curve reflect a maximum-power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.
2016-01-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving run-off and evaporation for a simple one-box model. We did this in an inverse manner such that, when the conductances are optimized with the maximum-power principle, the steady-state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporation, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the model that has been optimized with the maximum-power principle with the asymptotes of the Budyko curve, we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
NASA Astrophysics Data System (ADS)
Sabanskis, A.; Virbulis, J.
2018-05-01
Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.
Cognitive Aspects of Power in a Two-Level Game
NASA Astrophysics Data System (ADS)
Juvina, Ion; Lebiere, Christian; Martin, Jolie; Gonzalez, Cleotilde
The Intergroup Prisoner's Dilemma with Intragroup Power Dynamics (IPD^2) is a new game paradigm for studying human behavior in conflict situations. IPD^2 adds the concept of intragroup power to an intergroup version of the standard Iterated Prisoner's Dilemma game. We conducted an exploratory laboratory study in which individual human participants played the game against computer strategies of various complexities. We also developed a cognitive model of human decision making in this game. The model was run in place of the human participant under the same conditions as in the laboratory study. Results from the human study and the model simulations are presented and discussed, emphasizing the value of including intragroup power in game theoretic models of conflict.
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
A Design of a Network Model to the Electric Power Trading System Using Web Services
NASA Astrophysics Data System (ADS)
Maruo, Tomoaki; Matsumoto, Keinosuke; Mori, Naoki; Kitayama, Masashi; Izumi, Yoshio
Web services are regarded as a new application paradigm in the world of the Internet. On the other hand, many business models of a power trading system has been proposed to aim at load reduction by consumers cooperating with electric power suppliers in an electric power market. Then, we propose a network model of power trading system using Web service in this paper. The adaptability of Web services to power trading system was checked in the prototype of our network model and we got good results for it. Each server provides functions as a SOAP server, and it is coupled loosely with each other through SOAP. Storing SOAP message in HTTP packet can establish the penetration communication way that is not conscious of a firewall. Switching of a dynamic server is possible by means of rewriting the server point information on WSDL at the time of obstacle generating.
Lucea, Marguerite B; Hindin, Michelle J; Kub, Joan; Campbell, Jacquelyn C
2012-01-01
A person's ability to minimize HIV risk is embedded in a complex, multidimensional context. In this study, we tested a model of how relationship power impacts IPV victimization, which in turn impacts HIV risk behaviors. We analyzed data from 474 young adult women (aged 15-31) in Cebu Province, Philippines, using structural equation modeling, and demonstrated good fit for the models. High relationship power is directly associated with increased IPV victimization, and IPV victimization is positively associated with increased HIV risk. We highlight in this article the complex dynamics to consider in HIV risk prevention among these young women.
LUCEA, MARGUERITE B.; HINDIN, MICHELLE J.; KUB, JOAN; CAMPBELL, JACQUELYN C.
2012-01-01
A person’s ability to minimize HIV risk is embedded in a complex, multidimensional context. In this study, we tested a model of how relationship power impacts IPV victimization, which in turn impacts HIV risk behaviors. We analyzed data from 474 young adult women (aged 15–31) in Cebu Province, Philippines, using structural equation modeling, and demonstrated good fit for the models. High relationship power is directly associated with increased IPV victimization, and IPV victimization is positively associated with increased HIV risk. We highlight in this article the complex dynamics to consider in HIV risk prevention among these young women. PMID:22420674
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
van der Kruk, E; Schwab, A L; van der Helm, F C T; Veeger, H E J
2018-03-01
In gait studies body pose reconstruction (BPR) techniques have been widely explored, but no previous protocols have been developed for speed skating, while the peculiarities of the skating posture and technique do not automatically allow for the transfer of the results of those explorations to kinematic skating data. The aim of this paper is to determine the best procedure for body pose reconstruction and inverse dynamics of speed skating, and to what extend this choice influences the estimation of joint power. The results show that an eight body segment model together with a global optimization method with revolute joint in the knee and in the lumbosacral joint, while keeping the other joints spherical, would be the most realistic model to use for the inverse kinematics in speed skating. To determine joint power, this method should be combined with a least-square error method for the inverse dynamics. Reporting on the BPR technique and the inverse dynamic method is crucial to enable comparison between studies. Our data showed an underestimation of up to 74% in mean joint power when no optimization procedure was applied for BPR and an underestimation of up to 31% in mean joint power when a bottom-up inverse dynamics method was chosen instead of a least square error approach. Although these results are aimed at speed skating, reporting on the BPR procedure and the inverse dynamics method, together with setting a golden standard should be common practice in all human movement research to allow comparison between studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic electrical response of solar cells
NASA Technical Reports Server (NTRS)
Catani, J. P.
1981-01-01
The dynamic response of a solar generator is of primary importance as much for the design and development of electrical power conditioning hardware as for the analysis of electromagnetic compatibility. A mathematical model of photo-batteries was developed on the basis of impedance measurements performed under differing conditions of temperature, light intensity, before and after irradiation. This model was compared with that derived from PN junction theory and to static measurements. These dynamic measurements enabled the refinement of an integration method capable of determining, under normal laboratory conditions, the dynamic response of a generator to operational lighting conditions.
Computational neuropharmacology: dynamical approaches in drug discovery.
Aradi, Ildiko; Erdi, Péter
2006-05-01
Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems
NASA Astrophysics Data System (ADS)
Wang, Caisheng
Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power management strategy is effective and the power flows among the different energy sources and the load demand is balanced successfully. The DG's impacts on the existing power system are also investigated in this dissertation. Analytical methods for finding optimal sites to deploy DG sources in power systems are presented and verified with simulation studies.
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
Smart Caching Based on Mobile Agent of Power WebGIS Platform
Wang, Xiaohui; Wu, Kehe; Chen, Fei
2013-01-01
Power information construction is developing towards intensive, platform, distributed direction with the expansion of power grid and improvement of information technology. In order to meet the trend, power WebGIS was designed and developed. In this paper, we first discuss the architecture and functionality of power WebGIS, and then we study caching technology in detail, which contains dynamic display cache model, caching structure based on mobile agent, and cache data model. We have designed experiments of different data capacity to contrast performance between WebGIS with the proposed caching model and traditional WebGIS. The experimental results showed that, with the same hardware environment, the response time of WebGIS with and without caching model increased as data capacity growing, while the larger the data was, the higher the performance of WebGIS with proposed caching model improved. PMID:24288504
Concepts and tools for predictive modeling of microbial dynamics.
Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F
2004-09-01
Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.
Nonlinear neural control with power systems applications
NASA Astrophysics Data System (ADS)
Chen, Dingguo
1998-12-01
Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.
Dynamic impedance compensation for wireless power transfer using conjugate power
NASA Astrophysics Data System (ADS)
Liu, Suqi; Tan, Jianping; Wen, Xue
2018-02-01
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Moriarty, P. J.; Hao, Y.
The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanicalmore » loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.« less
Ultrasound acoustic wave energy transfer and harvesting
NASA Astrophysics Data System (ADS)
Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper
2014-04-01
This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.
Dynamic contraction behaviour of pneumatic artificial muscle
NASA Astrophysics Data System (ADS)
Doumit, Marc D.; Pardoel, Scott
2017-07-01
The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.
Dynamics of a split torque helicopter transmission
NASA Technical Reports Server (NTRS)
Rashidi, Majid; Krantz, Timothy
1992-01-01
A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.
NASA Technical Reports Server (NTRS)
Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.
2016-01-01
Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.
Dynamical Correlation In Some Liquid Alkaline Earth Metals Near Melting
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Jani, A. R.
2010-12-01
The study of dynamical variables: velocity autocorrelation function (VACF) and power spectrum of liquid alkaline earth metals (Ca, Sr, and Ba) have been presented based on the static harmonic well approximation. The effective interatomic potential for liquid metals is computed using our well recognized model potential with the exchange correlation functions due to Hartree, Taylor, Ichimaru and Utsumi, Farid et al. and Sarkar et al. It is observed that the VACF computed using Sarkar et al. gives the good agreement with available molecular dynamics simulation (MD) results [Phys Rev. B 62, 14818 (2000)]. The shoulder of the power spectrum depends upon the type of local field correlation function used.
NASA Astrophysics Data System (ADS)
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
Public-Private Leadership Forum; 21st Century Power Partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The PPLF convenes stakeholders from across the power sector, spanning electricity supply, delivery, and end-use, and plays a key role in guiding the strategic direction of the Power Partnership. In addition, PPLF members support the implementation of activities set out in the Power Partnership Program of Work. Taken together, the activities of the PPLF span the dynamic landscape of power challenges and opportunities, with a focus on business models, ?nancial tools, and regulatory frameworks.
INTEGRATED PLANNING MODEL - EPA APPLICATIONS
The Integrated Planning Model (IPM) is a multi-regional, dynamic, deterministic linear programming (LP) model of the electric power sector in the continental lower 48 states and the District of Columbia. It provides forecasts up to year 2050 of least-cost capacity expansion, elec...
Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...
Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor
NASA Astrophysics Data System (ADS)
Qi, Guoyuan; Hu, Jianbing
2017-12-01
The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.
Kaman 40 kW wind turbine generator - control system dynamics
NASA Technical Reports Server (NTRS)
Perley, R.
1981-01-01
The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.
The effects of psammophilous plants on sand dune dynamics
NASA Astrophysics Data System (ADS)
Bel, Golan; Ashkenazy, Yosef
2014-07-01
Mathematical models of sand dune dynamics have considered different types of sand dune cover. However, despite the important role of psammophilous plants (plants that flourish in moving-sand environments) in dune dynamics, the incorporation of their effects into mathematical models of sand dunes remains a challenging task. Here we propose a nonlinear physical model for the role of psammophilous plants in the stabilization and destabilization of sand dunes. There are two main mechanisms by which the wind affects these plants: (i) sand drift results in the burial and exposure of plants, a process that is known to result in an enhanced growth rate, and (ii) strong winds remove shoots and rhizomes and seed them in nearby locations, enhancing their growth rate. Our model describes the temporal evolution of the fractions of surface cover of regular vegetation, biogenic soil crust, and psammophilous plants. The latter reach their optimal growth under either (i) specific sand drift or (ii) specific wind power. The model exhibits complex bifurcation diagrams and dynamics, which explain observed phenomena, and it predicts new dune stabilization scenarios. Depending on the climatological conditions, it is possible to obtain one, two, or, predicted here for the first time, three stable dune states. Our model shows that the development of the different cover types depends on the precipitation rate and the wind power and that the psammophilous plants are not always the first to grow and stabilize the dunes.
Robustness of a cellular automata model for the HIV infection
NASA Astrophysics Data System (ADS)
Figueirêdo, P. H.; Coutinho, S.; Zorzenon dos Santos, R. M.
2008-11-01
An investigation was conducted to study the robustness of the results obtained from the cellular automata model which describes the spread of the HIV infection within lymphoid tissues [R.M. Zorzenon dos Santos, S. Coutinho, Phys. Rev. Lett. 87 (2001) 168102]. The analysis focused on the dynamic behavior of the model when defined in lattices with different symmetries and dimensionalities. The results illustrated that the three-phase dynamics of the planar models suffered minor changes in relation to lattice symmetry variations and, while differences were observed regarding dimensionality changes, qualitative behavior was preserved. A further investigation was conducted into primary infection and sensitiveness of the latency period to variations of the model’s stochastic parameters over wide ranging values. The variables characterizing primary infection and the latency period exhibited power-law behavior when the stochastic parameters varied over a few orders of magnitude. The power-law exponents were approximately the same when lattice symmetry varied, but there was a significant variation when dimensionality changed from two to three. The dynamics of the three-dimensional model was also shown to be insensitive to variations of the deterministic parameters related to cell resistance to the infection, and the necessary time lag to mount the specific immune response to HIV variants. The robustness of the model demonstrated in this work reinforce that its basic hypothesis are consistent with the three-stage dynamic of the HIV infection observed in patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbus, David A; Jacobson, Mark D; Tan, Jin
As the deployment of wind and solar technologies increases at an unprecedented rate across the United States and in many world markets, the variability of power output from these technologies expands the need for increased power system flexibility. Energy storage can play an important role in the transition to a more flexible power system that can accommodate high penetrations of variable renewable technologies. This project focuses on how ternary pumped storage hydropower (T-PSH) coupled with dynamic transmission can help this transition by defining the system-wide benefits of deploying this technology in specific U.S. markets. T-PSH technology is the fastest respondingmore » pumped hydro technology equipment available today for grid services. T-PSH efficiencies are competitive with lithium-ion (Li-ion) batteries, and T-PSH can provide increased storage capacity with minimal degradation during a 50-year lifetime. This project evaluates T-PSH for grid services ranging from fast frequency response (FFR) for power system contingency events and enhanced power system stability to longer time periods for power system flexibility to accommodate ramping from wind and solar variability and energy arbitrage. In summary, this project: Compares power grid services and costs, including ancillary services and essential reliability services, for T-PSH and conventional pumped storage hydropower (PSH) - Evaluates the dynamic response of T-PSH and PSH technologies and their contribution to essential reliability services for grid stability by developing new power system model representations for T-PSH and performing simulations in the Western Interconnection - Evaluates production costs, operational impacts, and energy storage revenue streams for future power system scenarios with T-PSH focusing on time frames of 5 minutes and more - Assesses the electricity market-transforming capabilities of T-PSH technology coupled with transmission monitoring and dynamic control. This paper presents an overview of the methodology and initial, first-year preliminary findings of a 2-year in-depth study into how advanced PSH and dynamic transmission contribute to the transformation and modernization of the U.S. electric grid. This project is part of the HydroNEXT Initiative funded by the U.S. Department of Energy (DOE) that is focused on the development of innovative technologies to advance nonpowered dams and PSH. The project team consists of the National Renewable Energy Laboratory (project lead), Absaroka Energy, LLC (Montana-based PSH project developer), GE Renewable Energy (PSH pump/turbine equipment supplier), Grid Dynamics, and Auburn University (lead for NREL/Auburn dynamic modeling team).« less
Modeling the expenditure and reconstitution of work capacity above critical power.
Skiba, Philip Friere; Chidnok, Weerapong; Vanhatalo, Anni; Jones, Andrew M
2012-08-01
The critical power (CP) model includes two constants: the CP and the W' [P = (W' / t) + CP]. The W' is the finite work capacity available above CP. Power output above CP results in depletion of the W' complete depletion of the W' results in exhaustion. Monitoring the W' may be valuable to athletes during training and competition. Our purpose was to develop a function describing the dynamic state of the W' during intermittent exercise. After determination of V˙O(2max), CP, and W', seven subjects completed four separate exercise tests on a cycle ergometer on different days. Each protocol comprised a set of intervals: 60 s at a severe power output, followed by 30-s recovery at a lower prescribed power output. The intervals were repeated until exhaustion. These data were entered into a continuous equation predicting balance of W' remaining, assuming exponential reconstitution of the W'. The time constant was varied by an iterative process until the remaining modeled W' = 0 at the point of exhaustion. The time constants of W' recharge were negatively correlated with the difference between sub-CP recovery power and CP. The relationship was best fit by an exponential (r = 0.77). The model-predicted W' balance correlated with the temporal course of the rise in V˙O(2) (r = 0.82-0.96). The model accurately predicted exhaustion of the W' in a competitive cyclist during a road race. We have developed a function to track the dynamic state of the W' during intermittent exercise. This may have important implications for the planning and real-time monitoring of athletic performance.
A locomotive-track coupled vertical dynamics model with gear transmissions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-02-01
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.
On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic
Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less
Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue
NASA Astrophysics Data System (ADS)
Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku
2018-02-01
Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.
NASA Astrophysics Data System (ADS)
Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian
2017-09-01
Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; ...
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less
Simulation of noisy dynamical system by Deep Learning
NASA Astrophysics Data System (ADS)
Yeo, Kyongmin
2017-11-01
Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.
1997 Technology Applications Report,
1997-01-01
handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases
Evidence of Chinese income dynamics and its effects on income scaling law
NASA Astrophysics Data System (ADS)
Xu, Yan; Wang, Yougui; Tao, Xiaobo; Ližbetinová, Lenka
2017-12-01
With personal annual income data of 5 consecutive years (1998-2002) from CHIPS, dynamic characteristics of Chinese income are studied, especially two hypotheses of time reversal symmetry and independent growth rate are tested. In high income regions, an increasing trend of the standard deviation of income growth rate is observed, which means independent growth rate hypothesis fails to hold. This empirical finding is designed as a new mechanism and added into Gibrat's model, which yields a distribution with a power-law tail. Our model's simulation result shows that increasing variance of income growth rates for higher income regions is the key ingredient to get the power-law tail.
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622
Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems
NASA Astrophysics Data System (ADS)
Parolari, A.; Katul, G. G.; Porporato, A. M.
2015-12-01
The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.
Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue
2016-01-01
To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to seizure occurrence.
Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.
Albatsh, Fadi M.; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M. A.
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches. PMID:25874560
NASA Technical Reports Server (NTRS)
Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.
1963-01-01
A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.
NASA Astrophysics Data System (ADS)
Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.
2016-05-01
This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.
NASA Technical Reports Server (NTRS)
Garrison, Charlie C.
1949-01-01
A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.
Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.
Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588
Personalized Medicine Enrichment Design for DHA Supplementation Clinical Trial.
Lei, Yang; Mayo, Matthew S; Carlson, Susan E; Gajewski, Byron J
2017-03-01
Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level of confirmation in identifying and making treatment recommendations for subgroups, when the risk levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a DHA (docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational age<37 weeks) rate. We performed a meta-analysis to obtain informative prior distributions and simulated operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different models: independent, hierarchical, and dynamic linear models. We performed simulations and sensitivity analysis to examine the subgroup power of models and compared results to a chi-square test. We performed simulations under two hypotheses: a large overall treatment effect and a small overall treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat, dynamic linear model appeared to be the most powerful method to identify the subgroups with a treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall treatment effect is small, hierarchical model and chi-square test did better. Compared to independent and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the control arm has ordinal risk subgroups.
Use of System Dynamics Modeling in Medical Education and Research Projects.
Bozikov, Jadranka; Relic, Danko; Dezelic, Gjuro
2018-01-01
The paper reviews experiences and accomplishments in application of system dynamics modeling in education, training and research projects at the Andrija Stampar School of Public Health, a branch of the Zagreb University School of Medicine, Croatia. A number of simulation models developed over the past 40 years are briefly described with regard to real problems concerned, objectives and modeling methods and techniques used. Many of them have been developed as the individual students' projects as a part of their graduation, MSc or PhD theses and subsequently published in journals or conference proceedings. Some of them were later used in teaching and simulation training. System dynamics modeling proved to be not only powerful method for research and decision making but also a useful tool in medical and nursing education enabling better understanding of dynamic systems' behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Borkowski, C.A.; Huang, C.
1998-01-01
AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less
Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.
Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A
2015-11-01
We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
Jennifer.Vanrij@nrel.gov | 303-384-7180 Jennifer's expertise is in developing computational modeling methods for collaboratively developing numerical modeling methods to simulate the hydrodynamic, structural dynamic, power -elastic interactions. Her other diverse work experiences include developing numerical modeling methods for
from Colorado School of Mines. His research interests include optical modeling, computational fluid dynamics, and heat transfer. His work involves optical performance modeling of concentrating solar power experience includes developing thermal and optical models of CSP components at Norwich Solar Technologies
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
NASA Astrophysics Data System (ADS)
Gallego, C.; Costa, A.; Cuerva, A.
2010-09-01
Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Schubert, G.
1976-01-01
Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.
Grindon, Christina; Harris, Sarah; Evans, Tom; Novik, Keir; Coveney, Peter; Laughton, Charles
2004-07-15
Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.
NASA Astrophysics Data System (ADS)
Lyutyy, T. V.; Hryshko, O. M.; Kovner, A. A.
2018-01-01
The coupled magnetic and mechanical motion of a ferromagnetic nanoparticle in a viscous fluid is considered within the dynamical approach. The equation based on the total momentum conservation law is used for the description of the mechanical rotation, while the modified Landau-Lifshitz-Gilbert equation is utilized for the description of the internal magnetic dynamics. The exact expressions for the particles trajectories and the power loss are obtained in the linear approximation. The comparison with the results of other widespread approaches, such as the model of fixed particle and the model of rigid dipole, is performed. It is established that in the small oscillations mode the damping precession of the nanoparticle magnetic moment is the main channel of energy dissipation, but the motion of the nanoparticle easy axis can significantly influence the value of the resulting power loss.
Dynamic temperature response of electrocaloric multilayer capacitors
NASA Astrophysics Data System (ADS)
Kwon, Beomjin; Roh, Im-Jun; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang; Kang, Chong-Yun
2014-05-01
We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-03-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
NASA Astrophysics Data System (ADS)
Hefni, Baligh El; Bourdil, Charles
2017-06-01
Molten salt technology represents nowadays the most cost-effective technology for electricity generation for solar power plant. The molten salt tower receiver is based on a field of individually sun-tracking mirrors (heliostats) that reflect the incident sunshine to a receiver at the top of a centrally located tower. The objective of this study is to assess the impact of several transients issued from different scenarios (failure or normal operation mode) on the receiver dynamic behavior. A dynamic detailed model of Solar Two molten salt central receiver has been developed. The component model is meant to be used for receiver modeling with the ThermoSysPro library, developed by EDF. The paper also gives the results of the dynamic simulation for the selected scenarios on Solar Two receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Chavarría-Miranda, Daniel
Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimation. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. High performance computing holds the promise of faster analysis of more contingency cases for the purpose of safe and reliable operation of today’s power grids with less operating margin and more intermittent renewable energy sources. This paper evaluates the performance of counter-based dynamic load balancing schemes for massive contingency analysis under different computing environments. Insights frommore » the performance evaluation can be used as guidance for users to select suitable schemes in the application of massive contingency analysis. Case studies, as well as MATLAB simulations, of massive contingency cases using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing with counter-based dynamic load balancing schemes.« less
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.
2015-08-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in such a way that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the Budyko curve. Subsequently we derived gradients that, under constant forcing, resulted in a Budyko curve following the asymptotes closely. With these gradients we explored the sensitivity of dry spells and dynamics in actual evaporation. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves derived with dynamics in rainfall and evaporation. This indicates that the maximum power principle may be used (i) to derive the Budyko curve and (ii) to move away from the empiricism in free parameters present in many Budyko functions. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
SiC-VJFETs power switching devices: an improved model and parameter optimization technique
NASA Astrophysics Data System (ADS)
Ben Salah, T.; Lahbib, Y.; Morel, H.
2009-12-01
Silicon carbide junction field effect transistor (SiC-JFETs) is a mature power switch newly applied in several industrial applications. SiC-JFETs are often simulated by Spice model in order to predict their electrical behaviour. Although such a model provides sufficient accuracy for some applications, this paper shows that it presents serious shortcomings in terms of the neglect of the body diode model, among many others in circuit model topology. Simulation correction is then mandatory and a new model should be proposed. Moreover, this paper gives an enhanced model based on experimental dc and ac data. New devices are added to the conventional circuit model giving accurate static and dynamic behaviour, an effect not accounted in the Spice model. The improved model is implemented into VHDL-AMS language and steady-state dynamic and transient responses are simulated for many SiC-VJFETs samples. Very simple and reliable optimization algorithm based on the optimization of a cost function is proposed to extract the JFET model parameters. The obtained parameters are verified by comparing errors between simulations results and experimental data.
NASA Astrophysics Data System (ADS)
Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.
A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.
Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
Dynamic emulation modelling for the optimal operation of water systems: an overview
NASA Astrophysics Data System (ADS)
Castelletti, A.; Galelli, S.; Giuliani, M.
2014-12-01
Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.
NASA Astrophysics Data System (ADS)
Dong, Hao; Hu, Yahui
2018-04-01
The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.
Global dynamics and diffusion in triaxial galactic models
NASA Astrophysics Data System (ADS)
Papaphilippou, Y.
We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.
Predictive power of food web models based on body size decreases with trophic complexity.
Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo
2018-05-01
Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2 = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.
Short-ranged memory model with preferential growth
NASA Astrophysics Data System (ADS)
Schaigorodsky, Ana L.; Perotti, Juan I.; Almeira, Nahuel; Billoni, Orlando V.
2018-02-01
In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.
Short-ranged memory model with preferential growth.
Schaigorodsky, Ana L; Perotti, Juan I; Almeira, Nahuel; Billoni, Orlando V
2018-02-01
In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.
Price dynamics in political prediction markets
Majumder, Saikat Ray; Diermeier, Daniel; Rietz, Thomas A.; Amaral, Luís A. Nunes
2009-01-01
Prediction markets, in which contract prices are used to forecast future events, are increasingly applied to various domains ranging from political contests to scientific breakthroughs. However, the dynamics of such markets are not well understood. Here, we study the return dynamics of the oldest, most data-rich prediction markets, the Iowa Electronic Presidential Election “winner-takes-all” markets. As with other financial markets, we find uncorrelated returns, power-law decaying volatility correlations, and, usually, power-law decaying distributions of returns. However, unlike other financial markets, we find conditional diverging volatilities as the contract settlement date approaches. We propose a dynamic binary option model that captures all features of the empirical data and can potentially provide a tool with which one may extract true information events from a price time series. PMID:19155442
Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth
Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip
2014-01-01
Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199
Classical mathematical models for description and prediction of experimental tumor growth.
Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M L; Hlatky, Lynn; Hahnfeldt, Philip
2014-08-01
Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.
Hardware Model of a Shipboard Generator
2009-05-19
controller output PM motor power RM motor resistance Td derivative time constant Tf1 fuel valve time constant Tg1 governor time constant Tg2 governor...in speed, sending a response signal to the fuel valve that regulates gas turbine power. At this point, there is an inherent variation between the...basic response analysis [5]. 29 Electrical Power Rotor Inertia Amplifiers Fuel Valve Turbine Dynamics Rotational Friction and Windage
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Dynamic power balance analysis in JET
NASA Astrophysics Data System (ADS)
Matthews, G. F.; Silburn, S. A.; Challis, C. D.; Eich, T.; Iglesias, D.; King, D.; Sieglin, B.; Contributors, JET
2017-12-01
The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms.
Transitioning of power flow in beam models with bends
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1990-01-01
The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.
Using trading strategies to detect phase transitions in financial markets.
Forró, Z; Woodard, R; Sornette, D
2015-04-01
We show that the log-periodic power law singularity model (LPPLS), a mathematical embodiment of positive feedbacks between agents and of their hierarchical dynamical organization, has a significant predictive power in financial markets. We find that LPPLS-based strategies significantly outperform the randomized ones and that they are robust with respect to a large selection of assets and time periods. The dynamics of prices thus markedly deviate from randomness in certain pockets of predictability that can be associated with bubble market regimes. Our hybrid approach, marrying finance with the trading strategies, and critical phenomena with LPPLS, demonstrates that targeting information related to phase transitions enables the forecast of financial bubbles and crashes punctuating the dynamics of prices.
Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture.
Barés, J; Hattali, M L; Dalmas, D; Bonamy, D
2014-12-31
The temporal evolution of mechanical energy and spatially averaged crack speed are both monitored in slowly fracturing artificial rocks. Both signals display an irregular burstlike dynamics, with power-law distributed fluctuations spanning a broad range of scales. Yet, the elastic power released at each time step is proportional to the global velocity all along the process, which enables defining a material-constant fracture energy. We characterize the intermittent dynamics by computing the burst statistics. This latter displays the scale-free features signature of crackling dynamics, in qualitative but not quantitative agreement with the depinning interface models derived for fracture problems. The possible sources of discrepancies are pointed out and discussed.
Using trading strategies to detect phase transitions in financial markets
NASA Astrophysics Data System (ADS)
Forró, Z.; Woodard, R.; Sornette, D.
2015-04-01
We show that the log-periodic power law singularity model (LPPLS), a mathematical embodiment of positive feedbacks between agents and of their hierarchical dynamical organization, has a significant predictive power in financial markets. We find that LPPLS-based strategies significantly outperform the randomized ones and that they are robust with respect to a large selection of assets and time periods. The dynamics of prices thus markedly deviate from randomness in certain pockets of predictability that can be associated with bubble market regimes. Our hybrid approach, marrying finance with the trading strategies, and critical phenomena with LPPLS, demonstrates that targeting information related to phase transitions enables the forecast of financial bubbles and crashes punctuating the dynamics of prices.
Full State Feedback Control for Virtual Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Tillay
This report presents an object-oriented implementation of full state feedback control for virtual power plants (VPP). The components of the VPP full state feedback control are (1) objectoriented high-fidelity modeling for all devices in the VPP; (2) Distribution System Distributed Quasi-Dynamic State Estimation (DS-DQSE) that enables full observability of the VPP by augmenting actual measurements with virtual, derived and pseudo measurements and performing the Quasi-Dynamic State Estimation (QSE) in a distributed manner, and (3) automated formulation of the Optimal Power Flow (OPF) in real time using the output of the DS-DQSE, and solving the distributed OPF to provide the optimalmore » control commands to the DERs of the VPP.« less
A fully dynamic magneto-rheological fluid damper model
NASA Astrophysics Data System (ADS)
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
NASA Astrophysics Data System (ADS)
Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko
The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.
Induced Power of the Helicopter Rotor
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.
2004-01-01
A simplified rotor model was used to explore fundamental behavior of lifting rotor induced power at moderate and high advance ratios. Several rotor inflow theories, including dynamic inflow theory and prescribed-wake vortex theory, together with idealized notional airfoil stall models were employed. A number of unusual results were encountered at high advance ratios including trim control reversal and multiple trim solutions. Significant increases in rotor induced power (torque) above the ideal minimum were observed for moderately high advance ratio. Very high induced power was observed near and above unity advance ratio. The results were sensitive to the stall characteristics of the airfoil models used. An equivalent wing analysis was developed to determine induced power from Prandtl lifting line theory and help interpret the rotor induced power behavior in terms of the spanwise airload distribution. The equivalent wing approach was successful in capturing the principal variations of induced power for different configurations and operating conditions. The effects blade root cutout were found to have a significant effect on rotor trim and induced power at high advance ratios.
NASA Technical Reports Server (NTRS)
Demerdash, Nabeel A. O.; Wang, Ren-Hong
1988-01-01
The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.
Investigation of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction
NASA Astrophysics Data System (ADS)
Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.
2014-08-01
Precise and large sets of cross section, vector A x , A y and tensor A xx , A xy , A yy analyzing power data for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the SALAD and BINA detectors at KVI and the Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon system dynamics. The cross section data reveal a sizable three-nucleon force (3NF) and Coulomb force influence. In case of the analyzing powers very low sensitivity to these effects was found and the data are well describe by 2N models only. For A xy at 130 MeV, serious disagreements were observed when 3NF models are included in the calculations.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
NASA Astrophysics Data System (ADS)
Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.
2017-12-01
In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents a starting point for a continued research agenda that incorporates social dynamics into FEW system resilience and management.
Unifying role of dissipative action in the dynamic failure of solids
NASA Astrophysics Data System (ADS)
Grady, Dennis E.
2015-04-01
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
ERIC Educational Resources Information Center
Raven, Bertram H.
The history and background of the analysis of the basis of power is examined, beginning with its origins in the works of Kurt Lewin and his followers at the Research Center for Group dynamics. The original French and Raven (1959) bases of power model posited six bases of power: reward, coercion, legitimate, expert, referent, and informational (or…
Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer.
Roberts, James A; Friston, Karl J; Breakspear, Michael
2017-04-01
Biological phenomena arise through interactions between an organism's intrinsic dynamics and stochastic forces-random fluctuations due to external inputs, thermal energy, or other exogenous influences. Dynamic processes in the brain derive from neurophysiology and anatomical connectivity; stochastic effects arise through sensory fluctuations, brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems composed of both dynamic and random effects can be studied with stochastic dynamic models (SDMs). This article, Part I of a two-part series, offers a primer of SDMs and their application to large-scale neural systems in health and disease. The companion article, Part II, reviews the application of SDMs to brain disorders. SDMs generate a distribution of dynamic states, which (we argue) represent ideal candidates for modeling how the brain represents states of the world. When augmented with variational methods for model inversion, SDMs represent a powerful means of inferring neuronal dynamics from functional neuroimaging data in health and disease. Together with deeper theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational psychiatry, unifying empirical observations with models of perception and behavior. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Control of thermal therapies with moving power deposition field.
Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B
2006-03-07
A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.
Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.
Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N
2017-01-01
The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
Diffusion with stochastic resetting at power-law times.
Nagar, Apoorva; Gupta, Shamik
2016-06-01
What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael
2014-05-01
In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.
Dynamic modeling and parameter estimation of a radial and loop type distribution system network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Qui; Heng Chen; Girgis, A.A.
1993-05-01
This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.
Ocean power technology design optimization
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...
2017-07-18
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Ocean power technology design optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen
For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less
Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Dickeson, Jeffrey James
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R
2013-01-01
This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.
Closed Brayton cycle power conversion systems for nuclear reactors :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.
2006-04-01
This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors,more » reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.« less
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
NASA Astrophysics Data System (ADS)
Alawasa, Khaled Mohammad
Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.
Models, Entropy and Information of Temporal Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Márton; Bianconi, Ginestra
Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.
Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H
2017-03-20
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
NASA Astrophysics Data System (ADS)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-03-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-01-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835
Merica, Helli; Fortune, Ronald D.
2011-01-01
Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) – in fitting the data well – successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for timing the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the pattern of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1–4, using data from 30 healthy subjects aged 20–30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG. PMID:21886801
ERIC Educational Resources Information Center
Cameron, Lynne
2015-01-01
Complex dynamic systems (CDS) theory offers a powerful metaphorical model of applied linguistic processes, allowing holistic descriptions of situated phenomena, and addressing the connectedness and change that often characterise issues in our field. A recent study of Kenyan conflict transformation illustrates application of a CDS perspective. Key…
NASA Astrophysics Data System (ADS)
Hoepfer, Matthias
Over the last two decades, computer modeling and simulation have evolved as the tools of choice for the design and engineering of dynamic systems. With increased system complexities, modeling and simulation become essential enablers for the design of new systems. Some of the advantages that modeling and simulation-based system design allows for are the replacement of physical tests to ensure product performance, reliability and quality, the shortening of design cycles due to the reduced need for physical prototyping, the design for mission scenarios, the invoking of currently nonexisting technologies, and the reduction of technological and financial risks. Traditionally, dynamic systems are modeled in a monolithic way. Such monolithic models include all the data, relations and equations necessary to represent the underlying system. With increased complexity of these models, the monolithic model approach reaches certain limits regarding for example, model handling and maintenance. Furthermore, while the available computer power has been steadily increasing according to Moore's Law (a doubling in computational power every 10 years), the ever-increasing complexities of new models have negated the increased resources available. Lastly, modern systems and design processes are interdisciplinary, enforcing the necessity to make models more flexible to be able to incorporate different modeling and design approaches. The solution to bypassing the shortcomings of monolithic models is cosimulation. In a very general sense, co-simulation addresses the issue of linking together different dynamic sub-models to a model which represents the overall, integrated dynamic system. It is therefore an important enabler for the design of interdisciplinary, interconnected, highly complex dynamic systems. While a basic co-simulation setup can be very easy, complications can arise when sub-models display behaviors such as algebraic loops, singularities, or constraints. This work frames the co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.
Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid
NASA Astrophysics Data System (ADS)
Nair S, Gayathri; Senroy, Nilanjan
2016-02-01
Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.
NASA Astrophysics Data System (ADS)
Irawati, Rina
2018-02-01
Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers' Association (EEA).
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Technical Reports Server (NTRS)
Fincannon, James
1995-01-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems
NASA Astrophysics Data System (ADS)
Fincannon, James
1995-05-01
The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other vehicles). The geometric models of the MIR with a solar dynamic power unit that were used in performing shadowing analyses are described. Also presented in this paper are results for individual orbits for several flight attitude cases which include assessments of the shadowing impacts upon the solar dynamic unit and the solar arrays. These cases depict typical MIR flight attitudes likely to have shadowing impact. Because of the time varying nature of the Mir orientation with respect to the Sun and the lack of knowledge of the precise timing of the attitude changes, strategies must be devised to assess and depict the shadowing impacts on power generation throughout the year. To address this, the best, nominal and worst impacts of shadowing considering a wide possible range of parameter changes for typical mission operation period are shown.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Cota, Wesley; Ferreira, Silvio C; Ódor, Géza
2016-03-01
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space λ(1)<λ<λ(2), suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at λ(2). We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths effects loose their relevancy and have a conventional critical point at λ(c)=0. Since many real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our analysis of independent and finite networks can play an important role for the deeper understanding of such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Lu, Shuai; Zhou, Ning
In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highestmore » similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.« less
Incorporating Eco-Evolutionary Processes into Population Models:Design and Applications
Eco-evolutionary population models are powerful new tools for exploring howevolutionary processes influence plant and animal population dynamics andvice-versa. The need to manage for climate change and other dynamicdisturbance regimes is creating a demand for the incorporation of...
Collective dynamics of 'small-world' networks.
Watts, D J; Strogatz, S H
1998-06-04
Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...
2017-03-20
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Optimum Heart Rate to Minimize Pulsatile External Cardiac Power
NASA Astrophysics Data System (ADS)
Pahlevan, Niema; Gharib, Morteza
2011-11-01
The workload on the left ventricle is composed of steady and pulsatile components. Clinical investigations have confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF). The pulsatile load is the result of the complex dynamics of wave propagation and reflection in the compliant arterial vasculature. We hypothesize that aortic waves can be optimized to reduce the left ventricular (LV) pulsatile load. We used an in-vitro experimental approach to investigate our hypothesis. A unique hydraulic model was used for in-vitro experiments. This model has physical and dynamical properties similar to the heart-aorta system. Different compliant models of the artificial aorta were used to test the hypothesis under various aortic rigidities. Our results indicate that: i) there is an optimum heart rate that minimizes LV pulsatile power (this is in agreement with our previous computational study); ii) introducing an extra reflection site at the specific location along the aorta creates constructive wave conditions that reduce the LV pulsatile power.
NASA Astrophysics Data System (ADS)
Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki
Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.
Modelling, simulation and applications of longitudinal train dynamics
NASA Astrophysics Data System (ADS)
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Investigation of hydraulic transmission noise sources
NASA Astrophysics Data System (ADS)
Klop, Richard J.
Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.
Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor
NASA Astrophysics Data System (ADS)
Paraschivoiu, I.; Desy, P.; Masson, C.
1988-02-01
The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.
NASA Astrophysics Data System (ADS)
Blinov, V. N.; Shalay, V. V.; Vavilov, I. S.; Kositsin, V. V.; Ruban, V. I.; Lykyanchik, A. I.; Yachmenev, P. S.; Vlasov, A. S.
2017-06-01
This paper is devoted to development and approbation of the gas dynamic model of ammonia thruster with low power consumption and ultra small thrust for picosatellite weighing up to 5 kg and possibility of applying microwave heating of a working fluid. It is shown, that simplest electrothermal thruster consisting of propellant tank, solenoid valve, expension cavity and heating chamber can provide ultra small trust due to gas dynamic processes and small heat supply. The results of the study set tasks for further design of small spacecrafts microwave generators.
Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; ...
2017-12-15
This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine
This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun
2016-11-01
The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.
Programmable, automated transistor test system
NASA Technical Reports Server (NTRS)
Truong, L. V.; Sundburg, G. R.
1986-01-01
A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
Optimization of fuel-cell tram operation based on two dimension dynamic programming
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu
2018-02-01
This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.
Dynamic tensile fracture of mortar at ultra-high strain-rates
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.; Chanal, P.-Y.
2013-12-01
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longcope, D. W.; Klimchuk, J. A.
Aspects of solar flare dynamics, such as chromospheric evaporation and flare light curves, have long been studied using one-dimensional models of plasma dynamics inside a static flare loop, subjected to some energy input. While extremely successful at explaining the observed characteristics of flares, all such models so far have specified energy input ad hoc, rather than deriving it self-consistently. There is broad consensus that flares are powered by magnetic energy released through reconnection. Recent work has generalized Petschek’s basic reconnection scenario, topological change followed by field line retraction and shock heating, to permit its inclusion in a one-dimensional flare loop model. Heremore » we compare the gas dynamics driven by retraction and shocking to those from more conventional static loop models energized by ad hoc source terms. We find significant differences during the first minute, when retraction leads to larger kinetic energies and produces higher densities at the loop top, while ad hoc heating tends to rarify the loop top. The loop-top density concentration is related to the slow magnetosonic shock, characteristic of Petschek’s model, but persists beyond the retraction phase occurring in the outflow jet. This offers an explanation for observed loop-top sources of X-ray and EUV emission, with advantages over that provided by ad hoc heating scenarios. The cooling phases of the two models are, however, notably similar to one another, suggesting that observations at that stage will yield little information on the nature of energy input.« less
Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?
Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim
2009-10-09
We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.
NASA Astrophysics Data System (ADS)
Lima, L. S.; Miranda, L. L. B.
2018-01-01
We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.
A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description
1974-11-01
3. Fatigue buildup curve. The common requirement of all tests on the Dynamic Strength factor is for the muscles involved to propel, support, or...move the body repeatedly or to support it continuously over time. The tests of our Static Strength factor emphasize the lifting power of the muscles ...or the pounds of pressure which the muscles can exert. ... In contrast to Dynamic Strength the force exerted is against external objects, rather
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
Finite driving rate and anisotropy effects in landslide modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piegari, E.; Cataudella, V.; Di Maio, R.
2006-02-15
In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non-power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors ismore » presented.« less
NASA Astrophysics Data System (ADS)
Zai, Wenjiao; Wang, Bo; Liu, Jichun; Shi, Haobo; Zeng, Pingliang
2018-02-01
The investment decision model of trans-regional transmission network in the context of Global Energy Internet was studied in this paper. The key factors affecting the trans-regional transmission network investment income: the income tax rate, the loan interest rate, the expected return on investment of the investment subject, the per capita GDP and so on were considered in the transmission network investment income model. First, according to the principle of system dynamics, the causality diagram of key factors was constructed. Then, the dynamic model of transmission investment decision was established. A case study of the power transmission network between China and Mongolia, through the simulation of the system dynamic model, the influence of the above key factors on the investment returns was analyzed, and the feasibility and effectiveness of the model was proved.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.
Modeling temperature and humidity profiles within forest canopies
USDA-ARS?s Scientific Manuscript database
Physically-based models are a powerful tool to help understand interactions of vegetation, atmospheric dynamics, and hydrology, and to test hypotheses regarding the effects of land cover, management, hydrometeorology, and climate variability on ecosystem processes. The purpose of this paper is to f...
Extracting Damping Ratio from Dynamic Data and Numerical Solutions
NASA Technical Reports Server (NTRS)
Casiano, M. J.
2016-01-01
There are many ways to extract damping parameters from data or models. This Technical Memorandum provides a quick reference for some of the more common approaches used in dynamics analysis. Described are six methods of extracting damping from data: the half-power method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fitting method, a frequency response fitting method, a random decrement fitting method, and a newly developed half-quadratic gain method. Additionally, state-space models and finite element method modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via complex frequency. Each method has its advantages which are briefly noted. There are also likely many other advanced techniques in extracting damping within the operational modal analysis discipline, where an input excitation is unknown; however, these approaches discussed here are objective, direct, and can be implemented in a consistent manner.
Saeedi, Alireza; Jannesari, Mostafa; Gharibzadeh, Shahriar; Bakouie, Fatemeh
2018-04-01
Self-organized criticality (SOC) and stochastic oscillations (SOs) are two theoretically contradictory phenomena that are suggested to coexist in the brain. Recently it has been shown that an accumulation-release process like sandpile dynamics can generate SOC and SOs simultaneously. We considered the effect of the network structure on this coexistence and showed that the sandpile dynamics on a small-world network can produce two power law regimes along with two groups of SOs-two peaks in the power spectrum of the generated signal simultaneously. We also showed that external stimuli in the sandpile dynamics do not affect the coexistence of SOC and SOs but increase the frequency of SOs, which is consistent with our knowledge of the brain.
BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hetrick, D.L.; Sowers, G.W.
1978-06-01
This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. Amore » list of variable names and a listing for BRENDA are included as appendices.« less
Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis
2008-01-01
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Integrated energy balance analysis for Space Station Freedom
NASA Technical Reports Server (NTRS)
Tandler, John
1991-01-01
An integrated simulation model is described which characterizes the dynamic interaction of the energy transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated energy transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S.; Narumanchi, S.; Moreno, G.
Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and weremore » used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.« less
Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Gregory Francis; Zhang, Jinghe
2014-06-10
Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less
A Method to Capture Macroslip at Bolted Interfaces [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Ronald Neil; Heitman, Lili Anne Akin
2016-01-01
Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includesmore » both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.« less
Model reduction for agent-based social simulation: coarse-graining a civil violence model.
Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Model reduction for agent-based social simulation: Coarse-graining a civil violence model
NASA Astrophysics Data System (ADS)
Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suk Kim, Jong; McKellar, Michael; Bragg-Sitton, Shannon M.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the HTSE process that requires higher temperature input. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES. A natural-gas fired GTPP has been proposed as a secondary energy supply to be included in an N-R HES. This auxiliary generator could be used to cover rapid dynamics in grid demand that cannot be met by the remainder of the N-R HES. To evaluate the operability and controllability of the proposed process during transients between load (demand) levels, the dynamic model and control design were developed. Special attention was given to the design of feedback controllers to regulate the power frequency, and exhaust gas and turbine firing temperatures. Several case studies were performed to investigate the system responses to the major disturbance (power load demand) in such a control system. The simulation results show that the performance of the proposed control strategies was satisfactory under each test when the GTPP experienced high rapid variations in the load.« less
Dynamics of isolated quantum systems: many-body localization and thermalization
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.
2016-05-01
We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.
Medium-term electric power demand forecasting based on economic-electricity transmission model
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui
2018-06-01
Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.
NASA Astrophysics Data System (ADS)
Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer
2017-11-01
In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.
Structure and Dynamics of the Solar Chromosphere
NASA Technical Reports Server (NTRS)
Kalkofen, Wolfgang
1998-01-01
The problem of chromospheric dynamics and heating consists of two problems: one, concerning the magnetic network on the boundary of supergranulation cells (CB), where the oscillation period is seven minutes, and the other, concerning the cell interior (CI), where the oscillation period is three minutes. The observational data on the oscillations and the emission of radiation can be used to determine the structure and dynamics of the atmosphere provided answers are known to three critical questions, concerning: the nature of the waves powering the bright points, the origin of the observed oscillation periods and the mechanism of chromospheric heating. The recent modeling of the dynamics of the CI, which combines a sophisticated treatment of gas dynamics and radiative transfer in a one-dimensional model with empirical velocity input from the observations, answered the first of these questions: the waves powering K(sub 2upsilon), bright points are propagating acoustic waves. This firm conclusion declares invalid the model of Leibacher & Stein, which explains the observed period with standing acoustic waves in a chromospheric cavity. On the third question, the heating of the chromosphere in the CI, their model predicts that the temperature in the chromosphere is declining in the outward direction up to a height of at least I Mm most of the time, so even the time-average temperature is dropping monotonically in the outward direction, implying that lines formed in the chromosphere up to a height of at least 1 Mm appear in absorption most of the time and everywhere in the CI. The problem of the CI can be resolved with a two-component model, which combines a model for K(sub 2upsilon), bright points with a model for the background. The bright point model has the same aims as the CS94 model, except that the empirical driving from the LRK93 observations is replaced by impulsive excitation, as suggested by the properties of the Klein-Gordon equation.
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.
1980-01-01
Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.
1980-01-01
An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, H.; Eki, Y.; Kaji, A.
1993-12-01
An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.
Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line
NASA Astrophysics Data System (ADS)
Fernandes, H. A.; da Silva, R.; Caparica, A. A.; de Felício, J. R. Drugowich
2017-04-01
We investigate the short-time universal behavior of the two-dimensional Ashkin-Teller model at the Baxter line by performing time-dependent Monte Carlo simulations. First, as preparatory results, we obtain the critical parameters by searching the optimal power-law decay of the magnetization. Thus, the dynamic critical exponents θm and θp, related to the magnetic and electric order parameters, as well as the persistence exponent θg, are estimated using heat-bath Monte Carlo simulations. In addition, we estimate the dynamic exponent z and the static critical exponents β and ν for both order parameters. We propose a refined method to estimate the static exponents that considers two different averages: one that combines an internal average using several seeds with another, which is taken over temporal variations in the power laws. Moreover, we also performed the bootstrapping method for a complementary analysis. Our results show that the ratio β /ν exhibits universal behavior along the critical line corroborating the conjecture for both magnetization and polarization.
Inertance Tube Modeling and the Effects of Temperature
2010-01-01
fluid dynamics. In one application in multistage cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One... cryocoolers , the performance of inertance tubes at the cryogenic temperatures is of interest. One purpose of this paper is to understand how...acoustic power. KEYWORDS: Inertance tube, cryocoolers , pulse tube refrigerators, oscillating flow, computational fluid dynamics INTRODUCTION Pulse
Bimolecular dynamics by computer analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.
Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.
Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M
2014-08-29
We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR
NASA Astrophysics Data System (ADS)
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2016-08-01
Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeown, J.; Labrie, J.P.
1983-08-01
A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less
Design of a High-Energy, Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Thio, Y. C. F.; Cassibry, J. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Design details of a proposed high-energy (approx. 50 kJ/pulse), two-stage pulsed plasma thruster are presented. The long-term goal of this project is to develop a high-power (approx. 500 kW), high specific impulse (approx. 7500 s), highly efficient (approx. 50%),and mechanically simple thruster for use as primary propulsion in a high-power nuclear electric propulsion system. The proposed thruster (PRC-PPT1) utilizes a valveless, liquid lithium-fed thermal plasma injector (first stage) followed by a high-energy pulsed electromagnetic accelerator (second stage). A numerical circuit model coupled with one-dimensional current sheet dynamics, as well as a numerical MHD simulation, are used to qualitatively predict the thermal plasma injection and current sheet dynamics, as well as to estimate the projected performance of the thruster. A set of further modelling efforts, and the experimental testing of a prototype thruster, is suggested to determine the feasibility of demonstrating a full scale high-power thruster.
NASA Astrophysics Data System (ADS)
Sornette, Didier; Zhou, Wei-Xing
2006-10-01
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.
NASA Astrophysics Data System (ADS)
O'Connor, S. C.; Robinson, P. A.
2004-07-01
Corticothalamic dynamics are investigated using a model in which spatial nonuniformities are incorporated via the coupling of spatial eigenmodes. Comparison of spectra generated using the nonuniform analysis with those generated using a uniform one demonstrates that, for most frequencies, local activity is only weakly dependent on activity elsewhere in the cortex; however, dispersion of low-wave-number activity ensures that distant dynamics influence local dynamics at low frequencies (below approximately 2Hz ), and at the alpha frequency (approximately 10Hz ), where propagating signals are inherently weakly damped, and wavelengths are large. When certain model parameters have similar spatial profiles, as is expected from physiology, the low-frequency discrepancies tend to cancel, and the uniform analysis with local parameter values is an adequate approximation to the full nonuniform one across the whole spectrum, at least for large-scale nonuniformities. After comparing the uniform and nonuniform analyses, we consider one possible application of the nonuniform analysis: studying the phenomenon of occipital alpha dominance, whereby the alpha frequency and power are greater at the back of the head (occipitally) than at the front. In order to infer realistic nonuniformities in the model parameters, the uniform version of the model is first fitted to data recorded from 98 normal subjects in a waking, eyes-closed state. This yields a set of parameters at each of five electrode sites along the midline. The inferred parameter nonuniformities are consistent with anatomical and physiological constraints. Introducing these spatial profiles into the full nonuniform model then quantitatively reproduces observed site-dependent variations in the alpha power and frequency. The results confirm that the frequency shift is mainly due to a decrease in the corticothalamic propagation delay, but indicate that the delay nonuniformity cannot account for the observed occipital increase in alpha power; the occipital alpha dominance is due to decreased cortical gains and increased thalamic gains in occipital regions compared to frontal ones.
Small Stirling dynamic isotope power system for robotic space missions
NASA Technical Reports Server (NTRS)
Bents, D. J.
1992-01-01
The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.
NASA Astrophysics Data System (ADS)
Hedman, Mojdeh Khorsand
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
Situating Power Potentials and Dynamics of Learners and Tutors within Self-Assessment Models
ERIC Educational Resources Information Center
Taras, Maddalena
2016-01-01
Many twenty-first century educational discourses focus on including and empowering independent learners. Within the context of five self-assessment models, this article evaluates how these practices relate to the realities of student involvement, empowerment and voice. A proposed new classification of these self-assessment models is presented and…
Modelling and Control of Robotic Leg as Assistive Device
NASA Astrophysics Data System (ADS)
Jingye, Yee; Zain, Badrul Aisham bin Md
2017-10-01
The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.
NASA Astrophysics Data System (ADS)
Crane, D. T.
2011-05-01
High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.
NASA Astrophysics Data System (ADS)
Arib Rejab, M. N.; Shukor, S. A. Abdul; Sofian, M. R. Mohd; Inayat-Hussain, J. I.; Nazirah, A.; Asyraf, I.
2017-10-01
This paper presents the results of an experimental work to determine the dynamic stiffness and loss factor of elastomeric mounts. It also presents the results of theoretical analysis to determine the transmissibility and vibration power flow of these mounts, which are associated with their contribution to structure-borne noise. Four types of elastomeric mounts were considered, where three of them were made from green natural rubber material (SMR CV60, Ekoprena and Pureprena) and one made from petroleum based synthetic rubber (EPDM). In order to determine the dynamic stiffness and loss factor of these elastomeric mounts, dynamic tests were conducted using MTS 830 Elastomer Test System. Dynamic stiffness and loss factor of these mounts were measured for a range of frequency between 5 Hz and 150 Hz, and with a dynamic amplitude of 0.2 mm (p-p). The transmissibility and vibration power flow were determined based on a simple 2-Degree-of-Freedom model representing a vibration isolation system with a flexible receiver. This model reprsents the three main parts of a vehicle, which are the powertrain and engine mounting, the flexible structure and the floor of the vehicle. The results revealed that synthetic rubber (EPDM) was only effective at high frequency region. Natural rubber (Ekoprena), on the other hand, was found to be effective at both low and high frequency regions due to its low transmissibility at resonant frequency and its ability to damp the resonance. The estimated structure-borne noise emission showed that Ekoprena has a lower contribution to structure-borne noise as compared to the other types of elastomeric mounts.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria
2017-03-01
An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.
Matching of energetic, mechanic and control characteristics of positioning actuator
NASA Astrophysics Data System (ADS)
Y Nosova, N.; Misyurin, S. Yu; Kreinin, G. V.
2017-12-01
The problem of preliminary choice of parameters of the automated drive power channel is discussed. The drive of the mechatronic complex divides into two main units - power and control. The first determines the energy capabilities and, as a rule, the overall dimensions of the complex. The sufficient capacity of the power unit is a necessary condition for successful solution of control tasks without excessive complication of the control system structure. Preliminary selection of parameters is carried out based on the condition of providing the necessary drive power. The proposed approach is based on: a research of a sufficiently developed but not excessive dynamic model of the power block with the help of a conditional test control system; a transition to a normalized model with the formation of similarity criteria; constructing the synthesis procedure.
Synchronisation of chaos and its applications
NASA Astrophysics Data System (ADS)
Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago
2017-07-01
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.
Kinetic modeling of particle dynamics in H- negative ion sources (invited)
NASA Astrophysics Data System (ADS)
Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.
2014-02-01
Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.
On the mathematical modeling of soccer dynamics
NASA Astrophysics Data System (ADS)
Machado, J. A. Tenreiro; Lopes, António M.
2017-12-01
This paper addresses the modeling and dynamical analysis of soccer teams. Two modeling perspectives based on the concepts of fractional calculus are adopted. In the first, the power law behavior and fractional-order integration are explored. In the second, a league season is interpreted in the light of a system where the teams are represented by objects (particles) that evolve in time and interact (collide) at successive rounds with dynamics driven by the outcomes of the matches. The two proposed models embed implicitly details of players and coaches, or strategical and tactical maneuvers during the matches. Therefore, the scale of observation focuses on the teams behavior in the scope of the observed variables. Data characterizing two European soccer leagues in the season 2015-2016 are adopted and processed. The model leads to the emergence of patterns that are analyzed and interpreted.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.
1981-01-01
Small-signal models are derived for the power stage of the voltage step-up (boost) and the current step-up (buck) converters. The modeling covers operation in both the continuous-mmf mode and the discontinuous-mmf mode. The power stage in the regulated current step-up converter on board the Dynamics Explorer Satellite is used as an example to illustrate the procedures in obtaining the small-signal functions characterizing a regulated converter.
NASA Technical Reports Server (NTRS)
Groom, N. J.; Woolley, C. T.; Joshi, S. M.
1981-01-01
A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.
High-Power, High-Thrust Ion Thruster (HPHTion)
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.
2015-01-01
Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389
Evaluating the Power Consumption of Wireless Sensor Network Applications Using Models
Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo
2013-01-01
Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement. PMID:23486217
Evaluating the power consumption of wireless sensor network applications using models.
Dâmaso, Antônio; Freitas, Davi; Rosa, Nelson; Silva, Bruno; Maciel, Paulo
2013-03-13
Power consumption is the main concern in developing Wireless Sensor Network (WSN) applications. Consequently, several strategies have been proposed for investigating the power consumption of this kind of application. These strategies can help to predict the WSN lifetime, provide recommendations to application developers and may optimize the energy consumed by the WSN applications. While measurement is a known and precise strategy for power consumption evaluation, it is very costly, tedious and may be unfeasible considering the (usual) large number of WSN nodes. Furthermore, due to the inherent dynamism of WSNs, the instrumentation required by measurement techniques makes difficult their use in several different scenarios. In this context, this paper presents an approach for evaluating the power consumption of WSN applications by using simulation models along with a set of tools to automate the proposed approach. Starting from a programming language code, we automatically generate consumption models used to predict the power consumption of WSN applications. In order to evaluate the proposed approach, we compare the results obtained by using the generated models against ones obtained by measurement.
A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.
Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N
2008-01-15
Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.
NASA Astrophysics Data System (ADS)
Jean-Jumeau, Rene
1993-03-01
Voltage collapse (VC) is generally caused by either of two types of system disturbances: load variations and contingencies. In this thesis, we study VC resulting from load variations. This is termed static voltage collapse. This thesis deals with this type of voltage collapse in electrical power systems by using a stationary bifurcations viewpoint by associating it with the occurrence of saddle node bifurcations (SNB) in the system. Approximate models are generically used in most VC analyses. We consider the validity of these models for the study of SNB and, thus, of voltage collapse. We justify the use of saddle node bifurcation as a model for VC in power systems. In particular, we prove that this leads to definition of a model and--since load demand is used as a parameter for that model--of a mode of parameterization of that model in order to represent actual power demand variations within the power system network. Ill-conditioning of the set of nonlinear equations defining a dynamical system is a generic occurence near the SNB point. We suggest a reparameterization of the set of nonlinear equations which allows to avoid this problem. A new indicator for the proximity of voltage collapse, the voltage collapse index (VCI), is developed. A new (n + 1)-dimensional set of characteristic equations for the computation of the exact SNB point, replacing the standard (2n + 1)-dimensional one is presented for general parameter -dependent nonlinear dynamical systems. These results are then applied to electric power systems for the analysis and prediction of voltage collapse. The new methods offer the potential of faster computation and greater flexibility. For reasons of theoretical development and clarity, the preceding methodologies are developed under the assumption of the absence of constraints on the system parameters and states, and the full differentiability of the functions defining the power system model. In the latter part of this thesis, we relax these assumptions in order to develop a framework and new formulation for application of the tools previously developed for the analysis and prediction of voltage collapse in practical power system models which include numerous constraints and discontinuities. Illustrations and numerical simulations throughout the thesis support our results.
An open-population hierarchical distance sampling model
Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,
2015-01-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
An open-population hierarchical distance sampling model.
Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott
2015-02-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Dynamic tensile fracture of mortar at ultra-high strain-rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less
The Ramifications of Meddling with Systems Governed by Self-organized Critical Dynamics
NASA Astrophysics Data System (ADS)
Carreras, B. A.; Newman, D. E.; Dobson, I.
2002-12-01
Complex natural, well as man-made, systems often exhibit characteristics similar to those seen in self-organized critical (SOC) systems. The concept of self-organized criticality brings together ideas of self-organization of nonlinear dynamical systems with the often-observed near critical behavior of many natural phenomena. These phenomena exhibit self-similarities over extended ranges of spatial and temporal scales. In those systems, scale lengths may be described by fractal geometry and time scales that lead to 1/f-like power spectra. Natural applications include modeling the motion of tectonics plates, forest fires, magnetospheric dynamics, spin glass systems, and turbulent transport. In man-made systems, applications have included traffic dynamics, power and communications networks, and financial markets among many others. Simple cellular automata models such as the running sandpile model have been very useful in reproducing the complexity and characteristics of these systems. One characteristic property of the SOC systems is that they relax through what we call events. These events can happen over all scales of the system. Examples of these events are: earthquakes in the case of plate tectonic; fires in forest evolution extinction in the co evolution of biological species; and blackouts in power transmission systems. In a time-averaged sense, these systems are subcritical (that is, they lie in an average state that should not trigger any events) and the relaxation events happen intermittently. The time spent in a subcritical state relative to the time of the events varies from one system to another. For instance, the chance of finding a forest on fire is very low with the frequency of fires being on the order of one fire every few years and with many of these fires small and inconsequential. Very large fires happen over time periods of decades or even centuries. However, because of their consequences, these large but infrequent events are the important ones to understand, control and minimize. The main thrust of this research is to understand how and when global events occur in such systems when we apply mitigation techniques and how this impacts risk assessment. As sample systems we investigate both forest fire models and electrical power transmission network models, though the results are probably applicable to a wide variety of systems. It is found, perhaps counter intuitively, that apparently sensible attempts to mitigate failures in such complex systems can have adverse effects and therefore must be approached with care. The success of mitigation efforts in SOC systems is strongly influenced by the dynamics of the system. Unless the mitigation efforts alter the self-organization forces driving the system, the system will in general be pushed toward criticality. To alter those forces with mitigation efforts may be quite difficult because the forces are an intrinsic part of the system. Moreover, in many cases, efforts to mitigate small disruptions will increase the frequency of large disruptions. This occurs because the large and small disruptions are not independent but are strongly coupled by the dynamics. Before discussing this in the more complicated case of power systems, we will illustrate this phenomenon with a forest fire model.
NASA Astrophysics Data System (ADS)
Dasgupta, Sambarta
Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei
2017-12-01
Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.
Self-calibrating models for dynamic monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin
1994-01-01
The present goal in qualitative reasoning is to develop methods for automatically building qualitative and semiquantitative models of dynamic systems and to use them for monitoring and fault diagnosis. The qualitative approach to modeling provides a guarantee of coverage while our semiquantitative methods support convergence toward a numerical model as observations are accumulated. We have developed and applied methods for automatic creation of qualitative models, developed two methods for obtaining tractable results on problems that were previously intractable for qualitative simulation, and developed more powerful methods for learning semiquantitative models from observations and deriving semiquantitative predictions from them. With these advances, qualitative reasoning comes significantly closer to realizing its aims as a practical engineering method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seo-Woo; Kim, Soree; Jung, YounJoon, E-mail: yjjung@snu.ac.kr
Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einsteinmore » relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.« less
A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming.
Wen, Yue; Si, Jennie; Gao, Xiang; Huang, Stephanie; Huang, He Helen
2017-09-01
This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices. This simulation study aimed at demonstrating the feasibility of ADP for automatic tuning of the twelve knee joint impedance parameters during a complete gait cycle to achieve balanced walking. Given that the accurate models of human walking dynamics are difficult to obtain, the model-free ADP control algorithms were considered. First, direct heuristic dynamic programming (dHDP) was applied to the control problem, and its performance was evaluated on OpenSim, an often-used dynamic walking simulator. For the comparison purposes, we selected another established ADP algorithm, the neural fitted Q with continuous action (NFQCA). In both cases, the ADP controllers learned to control the right knee joint and achieved balanced walking, but dHDP outperformed NFQCA in this application during a 200 gait cycle-based testing.
Direct mechanical torque sensor for model wind turbines
NASA Astrophysics Data System (ADS)
Kang, Hyung Suk; Meneveau, Charles
2010-10-01
A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, G.W.; Gentile, G.; Diaferio, A.
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less
Structural dynamic analysis of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.
1981-01-01
This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlyingmore » the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.« less
A simple electric circuit model for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.
Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)
NASA Technical Reports Server (NTRS)
Matalanis, Claude G.; Bowles, Patrick O.; Jee, Solkeun; Min, Byung-Young; Kuczek, Andrzej E.; Croteau, Paul F.; Wake, Brian E.; Crittenden, Thomas; Glezer, Ari; Lorber, Peter F.
2016-01-01
Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.
Testing the effects of adolescent alcohol use on adult conflict-related theta dynamics.
Harper, Jeremy; Malone, Stephen M; Iacono, William G
2017-11-01
Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished cognitive control, empirical work testing this relationship with specific cognitive control neural correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this association. In a large (N=718) population-based prospective twin sample, AAU was assessed at ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal cortex (MFC) power and medial-dorsal prefrontal cortex (MFC-dPFC) connectivity. Two complementary analytic methods (cotwin control analysis; biometric modeling) were used to disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure effects on theta dynamics. AAU was negatively associated with adult cognitive control-related theta-band MFC power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these associations. Findings provide strong evidence that genetic factors underlie the comorbidity between AAU and diminished cognitive control-related theta dynamics in adulthood. Conflict-related theta-band dynamics appear to be candidate brain-based endophenotypes/mechanisms for AAU. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Diffusion in randomly perturbed dissipative dynamics
NASA Astrophysics Data System (ADS)
Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer
2014-11-01
Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.
Clearing out a maze: A model of chemotactic motion in porous media
NASA Astrophysics Data System (ADS)
Schilling, Tanja; Voigtmann, Thomas
2017-12-01
We study the anomalous dynamics of a biased "hungry" (or "greedy") random walk on a percolating cluster. The model mimics chemotaxis in a porous medium: In close resemblance to the 1980s arcade game PAC-MA N ®, the hungry random walker consumes food, which is initially distributed in the maze, and biases its movement towards food-filled sites. We observe that the mean-squared displacement of the process follows a power law with an exponent that is different from previously known exponents describing passive or active microswimmer dynamics. The change in dynamics is well described by a dynamical exponent that depends continuously on the propensity to move towards food. It results in slower differential growth when compared to the unbiased random walk.
Human dynamics scaling characteristics for aerial inbound logistics operation
NASA Astrophysics Data System (ADS)
Wang, Qing; Guo, Jin-Li
2010-05-01
In recent years, the study of power-law scaling characteristics of real-life networks has attracted much interest from scholars; it deviates from the Poisson process. In this paper, we take the whole process of aerial inbound operation in a logistics company as the empirical object. The main aim of this work is to study the statistical scaling characteristics of the task-restricted work patterns. We found that the statistical variables have the scaling characteristics of unimodal distribution with a power-law tail in five statistical distributions - that is to say, there obviously exists a peak in each distribution, the shape of the left part closes to a Poisson distribution, and the right part has a heavy-tailed scaling statistics. Furthermore, to our surprise, there is only one distribution where the right parts can be approximated by the power-law form with exponent α=1.50. Others are bigger than 1.50 (three of four are about 2.50, one of four is about 3.00). We then obtain two inferences based on these empirical results: first, the human behaviors probably both close to the Poisson statistics and power-law distributions on certain levels, and the human-computer interaction behaviors may be the most common in the logistics operational areas, even in the whole task-restricted work pattern areas. Second, the hypothesis in Vázquez et al. (2006) [A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, A.-L. Barabási. Modeling burst and heavy tails in human dynamics, Phys. Rev. E 73 (2006) 036127] is probably not sufficient; it claimed that human dynamics can be classified as two discrete university classes. There may be a new human dynamics mechanism that is different from the classical Barabási models.
Portable Dynamic Pressure Calibrator
NASA Technical Reports Server (NTRS)
Wright, Morgan S.; Maynard, Everett (Technical Monitor)
1996-01-01
A portable, dynamic pressure calibrator was fabricated for use on wind tunnel models at NASA-Ames Research Center. The calibrator generates sine wave pressures at levels up to 1 PSIG P-P(168dB) at frequencies from 10Hz to 6KHz and .5 PSIG P.P (162dB) at frequencies from 6KHz to 20KHz. The calibrator consists of two units connected by a single cable. The handheld unit contains a pressure transducer, speaker, and deadman switch. This unit allows application of dynamic pressure to transducers/ports on installed wind tunnel models. The base unit contains all of power supplies, controls and displays. This unit allows amplitude and frequency to be set and verified at a safe location off of the model.
Molecular modeling of polycarbonate materials: Glass transition and mechanical properties
NASA Astrophysics Data System (ADS)
Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim
2017-09-01
Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
Teaching Model Building to High School Students: Theory and Reality.
ERIC Educational Resources Information Center
Roberts, Nancy; Barclay, Tim
1988-01-01
Builds on a National Science Foundation (NSF) microcomputer based laboratory project to introduce system dynamics into the precollege setting. Focuses on providing students with powerful and investigatory theory building tools. Discusses developed hardware, software, and curriculum materials used to introduce model building and simulations into…
NASA Astrophysics Data System (ADS)
Martin, E. H.; Goniche, M.; Klepper, C. C.; Hillairet, J.; Isler, R. C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; Lotte, Ph; Colledani, G.; Caughman, J. B.; Harris, J. H.; Hillis, D. L.; Shannon, S. C.; Clairet, F.; Litaudon, X.
2015-06-01
Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be an important topic, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter, a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (ELH) was announced (2013 Phys. Rev. Lett. 110 215005). This measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the analysis of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique are investigated. It was found through an analysis of numerous Tore Supra discharges that good quantitative agreement exists between the measured and full-wave modeled ELH when the launched power exceeds 0.5 MW. For low power the measurement becomes inaccurate utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
System for computer controlled shifting of an automatic transmission
Patil, Prabhakar B.
1989-01-01
In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determine from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.
Closed loop computer control for an automatic transmission
Patil, Prabhakar B.
1989-01-01
In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.
Simulative research on the anode plasma dynamics in the high-power electron beam diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Dan; Liu, Lie; Ju, Jin-Chuan
2015-07-15
Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less
Complex systems approach to fire dynamics and climate change impacts
NASA Astrophysics Data System (ADS)
Pueyo, S.
2012-04-01
I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire sizes are also well fitted by a power law. A possible interpretation is that the spatial structure of fire in savannas is strongly constrained by the spatial structure of their environment. Instead of resulting from ecosystem self-organization as in the model, in this case the scale invariance in fire events would be just a reflection of scale invariance in the environment in which the ecosystem lives. These results suggest at least three major types of fire dynamics: endogenous scaling, percolating, and exogenous scaling, in addition to intermediate options. The world's biomes can be classified based on the type of dynamics that is most likely to apply in each of them, and forecasts can be carried out with the tools developed for each of these types.
NASA Astrophysics Data System (ADS)
Wang, Kelu; Li, Xin; Zhang, Xiaobo
2018-03-01
The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.
NASA Astrophysics Data System (ADS)
Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.
2012-12-01
We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over multiple regions across the country. The regional climate and air quality effects of future large-scale solar power adoption are analyzed in the context of uncertainty quantified by the dynamic evaluation of the historical (2005 and 2008) WRF/Chem simulations.
A comparison of methods for assessing power output in non-uniform onshore wind farms
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
2017-10-02
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
A comparison of methods for assessing power output in non-uniform onshore wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
NASA Astrophysics Data System (ADS)
Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.
2016-08-01
In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.
Tachyon with an inverse power-law potential in a braneworld cosmology
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-08-01
We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.
Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.
Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao
2016-06-01
Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics.
Nonlinear Dynamics and Heterogeneous Interacting Agents
NASA Astrophysics Data System (ADS)
Lux, Thomas; Reitz, Stefan; Samanidou, Eleni
Economic application of nonlinear dynamics, microscopic agent-based modelling, and the use of artificial intelligence techniques as learning devices of boundedly rational actors are among the most exciting interdisciplinary ventures of economic theory over the past decade. This volume provides us with a most fascinating series of examples on "complexity in action" exemplifying the scope and explanatory power of these innovative approaches.
Dynamics of curved fronts in systems with power-law memory
NASA Astrophysics Data System (ADS)
Abu Hamed, M.; Nepomnyashchy, A. A.
2016-08-01
The dynamics of a curved front in a plane between two stable phases with equal potentials is modeled via two-dimensional fractional in time partial differential equation. A closed equation governing a slow motion of a small-curvature front is derived and applied for two typical examples of the potential function. Approximate axisymmetric and non-axisymmetric solutions are obtained.
ERIC Educational Resources Information Center
Shim, Jenna M.
2013-01-01
In this study, the author suggests that the current ELL parental involvement model often overlooks the structural aspects and power asymmetry of parent-teacher relationships that can hinder productive collaboration. In doing so, the author uses postcolonial theory as a conceptual lens to investigate the dynamics of ELL parent-teacher interactions…
Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D.
2017-01-01
This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets. PMID:29244814
Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D
2017-01-01
This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.
Computational analysis of nonlinearities within dynamics of cable-based driving systems
NASA Astrophysics Data System (ADS)
Anghelache, G. D.; Nastac, S.
2017-08-01
This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie
2012-01-01
Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Ultrasonic Motors (USM) - an emerging actuation technology for planetary applications
NASA Technical Reports Server (NTRS)
Bao, X.; Das, H.
2000-01-01
A hybrid model that addressed a complete ultrasonic motor as a system was developed. The model allows using powerful commercial FE package to express dynamic characteristics of the stator and the rotor in engineering practice. An analog model couples the finite element models for the stator and rotor for the stator-interface layer-rotor syste. The model provides reasonably accurate results for CAD.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Interest-Driven Model for Human Dynamics
NASA Astrophysics Data System (ADS)
Shang, Ming-Sheng; Chen, Guan-Xiong; Dai, Shuang-Xing; Wang, Bing-Hong; Zhou, Tao
2010-04-01
Empirical observations indicate that the interevent time distribution of human actions exhibits heavy-tailed features. The queuing model based on task priorities is to some extent successful in explaining the origin of such heavy tails, however, it cannot explain all the temporal statistics of human behavior especially for the daily entertainments. We propose an interest-driven model, which can reproduce the power-law distribution of interevent time. The exponent can be analytically obtained and is in good accordance with the simulations. This model well explains the observed relationship between activities and power-law exponents, as reported recently for web-based behavior and the instant message communications.
Lange, Bernd Markus; Rios-Estepa, Rigoberto
2014-01-01
The integration of mathematical modeling with analytical experimentation in an iterative fashion is a powerful approach to advance our understanding of the architecture and regulation of metabolic networks. Ultimately, such knowledge is highly valuable to support efforts aimed at modulating flux through target pathways by molecular breeding and/or metabolic engineering. In this article we describe a kinetic mathematical model of peppermint essential oil biosynthesis, a pathway that has been studied extensively for more than two decades. Modeling assumptions and approximations are described in detail. We provide step-by-step instructions on how to run simulations of dynamic changes in pathway metabolites concentrations.