Sample records for powerful experimental tools

  1. A Training Tool and Methodology to Allow Concurrent Multidisciplinary Experimental Projects in Engineering Education

    ERIC Educational Resources Information Center

    Maseda, F. J.; Martija, I.; Martija, I.

    2012-01-01

    This paper describes a novel Electrical Machine and Power Electronic Training Tool (EM&PE[subscript TT]), a methodology for using it, and associated experimental educational activities. The training tool is implemented by recreating a whole power electronics system, divided into modular blocks. This process is similar to that applied when…

  2. "PowerUp"!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

    ERIC Educational Resources Information Center

    Dong, Nianbo; Maynard, Rebecca

    2013-01-01

    This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and…

  3. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation.

    PubMed

    Schlötterer, C; Kofler, R; Versace, E; Tobler, R; Franssen, S U

    2015-05-01

    Evolve and resequence (E&R) is a new approach to investigate the genomic responses to selection during experimental evolution. By using whole genome sequencing of pools of individuals (Pool-Seq), this method can identify selected variants in controlled and replicable experimental settings. Reviewing the current state of the field, we show that E&R can be powerful enough to identify causative genes and possibly even single-nucleotide polymorphisms. We also discuss how the experimental design and the complexity of the trait could result in a large number of false positive candidates. We suggest experimental and analytical strategies to maximize the power of E&R to uncover the genotype-phenotype link and serve as an important research tool for a broad range of evolutionary questions.

  4. Turbomachinery

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Strazisar, Anthony J.; Sockol, Peter M.; Reid, Lonnie; Adamczyk, John J.

    1987-01-01

    The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.

  5. Thomson Parabola Spectrometer: a powerful tool to get on-line plasma information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altana, C.; Universita degli Studi di Catania - Dip.to di Fisica e Astronomia - Catania; Schillaci, F.

    2015-07-01

    In this contribution we report the results of an experimental measurement performed with a TPS developed at INFN-LNS within the ELIMED project, by means of a powerful and self-consistent technique as a diagnostic tool for the ionic acceleration study in laser-generated-plasmas. (authors)

  6. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    PubMed

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2018-04-01

    What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  7. Clover, Red (Trifolium pretense)

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  8. Computer-Aided Engineering Tools | Water Power | NREL

    Science.gov Websites

    energy converters that will provide a full range of simulation capabilities for single devices and arrays simulation of water power technologies on high-performance computers enables the study of complex systems and experimentation. Such simulation is critical to accelerate progress in energy programs within the U.S. Department

  9. Reclaiming the Central Role of Equations of State in Thermodynamics

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2006-01-01

    The power of thermodynamics as a tool to derive useful information for a variety of systems is described, stressing the central role of the measurement of thermodynamics properties having experimental physical chemistry. The strategy relies on the use of "response coefficients" that can be measured experimentally and on the systematic manipulation…

  10. Specifications of the High-Flux Solar Furnace | Concentrating Solar Power |

    Science.gov Websites

    Non-imaging compound parabolic Acceptance angle: 14 degrees Entrance diameter: 6 cm Exit diameter secondary concentrator configurations are possible depending on the experimental needs. Back to top XYZ controllers ranging from 2,000 to 30,000 sccm Exhaust hood above experimental area Drill press and hand tools

  11. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  12. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  13. Structural power flow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falter, K.J.; Keltie, R.F.

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors weremore » found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.« less

  14. Quantum cryptography: The power of independence

    NASA Astrophysics Data System (ADS)

    Ekert, Artur

    2018-02-01

    Device-independent quantum cryptography promises unprecedented security, but it is regarded as a theorist's dream and an experimentalist's nightmare. A new mathematical tool has now pushed its experimental demonstration much closer to reality.

  15. In-silico wear prediction for knee replacements--methodology and corroboration.

    PubMed

    Strickland, M A; Taylor, M

    2009-07-22

    The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).

  16. From Structure to Function: A Comprehensive Compendium of Tools to Unveil Protein Domains and Understand Their Role in Cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-01-01

    Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.

  17. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    NASA Astrophysics Data System (ADS)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  18. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  19. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    PubMed

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    NASA Astrophysics Data System (ADS)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  1. Doing accelerator physics using SDDS, UNIX, and EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.; Emery, L.; Sereno, N.

    1995-12-31

    The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinatemore » the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.« less

  2. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  3. MPD thruster research issues, activities, strategies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  4. Airfoil/Wing Flow Control Using Flexible Extended Trailing Edge

    DTIC Science & Technology

    2009-02-27

    and (b) Power spectrums of drag coefficient Figure 4. Mean velocity profiles O Baseline NACA0012. AoA 18 deg c Baseline NACA0012. AoA 20...dynamics, (a) fin amplitude and (b) power spectrum of fin amplitude Development of Computational Tools Simulations of the time-dependent deformation of...combination of experimental, computational and theoretical methods. Compared with Gurney flap and conventional flap, this device enhanced lift at a smaller

  5. A new heat transfer analysis in machining based on two steps of 3D finite element modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.

    2013-01-01

    Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.

  6. DEVELOP A CONCENTRATED SOLAR POWER-BASED THERMAL COOLING SYSTEM VIA SIMULATION AND EXPERIMENTAL STUDIES

    EPA Science Inventory

    A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.

  7. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations

    PubMed Central

    Miller, Kai J; Honey, Christopher J; Hermes, Dora; Rao, Rajesh PN; denNijs, Marcel; Ojemann, Jeffrey G

    2013-01-01

    We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naïve decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50ms, they provide a powerful and widely applicable experimental tool. PMID:24018305

  8. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    PubMed

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.

  9. Modular, Semantics-Based Composition of Biosimulation Models

    ERIC Educational Resources Information Center

    Neal, Maxwell Lewis

    2010-01-01

    Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…

  10. Sandia National Laboratories: Pulsed-Power Science and Technology

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New and diagnostic tools to analyze results from Z and other experimental platforms. The results also

  11. Science as Structured Imagination

    ERIC Educational Resources Information Center

    De Cruz, Helen; De Smedt, Johan

    2010-01-01

    This paper offers an analysis of scientific creativity based on theoretical models and experimental results of the cognitive sciences. Its core idea is that scientific creativity--like other forms of creativity--is structured and constrained by prior ontological expectations. Analogies provide scientists with a powerful epistemic tool to overcome…

  12. High pressure effects on protein structure and function.

    PubMed

    Mozhaev, V V; Heremans, K; Frank, J; Masson, P; Balny, C

    1996-01-01

    Many biochemists would regard pressure as a physical parameter mainly of theoretical interest and of rather limited value in experimental biochemistry. The goal of this overview is to show that pressure is a powerful tool for the study of proteins and modulation of enzymatic activity.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  14. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  15. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  16. The TEF modeling and analysis approach to advance thermionic space power technology

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.

    1997-01-01

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.

  17. The Shock and Vibration Digest. Volume 15, Number 7

    DTIC Science & Technology

    1983-07-01

    systems noise -- for tant analytical tool, the statistical energy analysis example, from a specific metal, chain driven, con- method, has been the subject...34Experimental Determination of Vibration Parameters Re- ~~~quired in the Statistical Energy Analysis Meth- .,i. 31. Dubowsky, S. and Morris, T.L., "An...34Coupling Loss Factors for 55. Upton, R., "Sound Intensity -. A Powerful New Statistical Energy Analysis of Sound Trans- Measurement Tool," S/V, Sound

  18. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2010-04-21

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a ''without experiments'' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were $11.9 million.« less

  19. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2011-01-11

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western whileothers resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $23 million.« less

  20. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    PubMed

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  1. Quantification of the power changes in BOLD signals using Welch spectrum method during different single-hand motor imageries.

    PubMed

    Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu

    2014-12-01

    Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan

    PubMed Central

    Whiten, Andrew

    2015-01-01

    The complexity of Stone Age tool-making is assumed to have relied upon cultural transmission, but direct evidence is lacking. This paper reviews evidence bearing on this question provided through five related empirical perspectives. Controlled experimental studies offer special power in identifying and dissecting social learning into its diverse component forms, such as imitation and emulation. The first approach focuses on experimental studies that have discriminated social learning processes in nut-cracking by chimpanzees. Second come experiments that have identified and dissected the processes of cultural transmission involved in a variety of other force-based forms of chimpanzee tool use. A third perspective is provided by field studies that have revealed a range of forms of forceful, targeted tool use by chimpanzees, that set percussion in its broader cognitive context. Fourth are experimental studies of the development of flint knapping to make functional sharp flakes by bonobos, implicating and defining the social learning and innovation involved. Finally, new and substantial experiments compare what different social learning processes, from observational learning to teaching, afford good quality human flake and biface manufacture. Together these complementary approaches begin to delineate the social learning processes necessary to percussive technologies within the Pan–Homo clade. PMID:26483537

  3. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  4. Theoretical And Experimental Investigations On The Plasma Of A CO2 High Power Laser

    NASA Astrophysics Data System (ADS)

    Abel, W.; Wallter, B.

    1984-03-01

    The CO2 high power laser is increasingly used in material processing. This application of the laser has to meet some requirements: at one hand the laser is a tool free of wastage, but at the other hand is to guarantee that the properties of that tool are constant in time. Therefore power, geometry and mode of the beam have to be stable over long intervalls, even if the laser is used in rough industrial environment. Otherwise laser material processing would not be competitive. The beam quality is affected by all components of the laser - by the CO2 plasma and its IR - amplification, by the resonator which at last generates the beam by optical feedback, and also by the electric power supply whose effects on the plasma may be measured at the laser beam. A transversal flow laser has been developed at the Technical University of Vienna in cooperation with VOest-Alpine AG, Linz (Austria). This laser produces 1 kW of beam power with unfolded resonator. It was subject to investigations presented in this paper.

  5. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  6. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  7. New Techniques for the Generation and Analysis of Tailored Microbial Systems on Surfaces.

    PubMed

    Furst, Ariel L; Smith, Matthew J; Francis, Matthew B

    2018-05-17

    The interactions between microbes and surfaces provide critically important cues that control the behavior and growth of the cells. As our understanding of complex microbial communities improves, there is a growing need for experimental tools that can establish and control the spatial arrangements of these cells in a range of contexts. Recent improvements in methods to attach bacteria and yeast to nonbiological substrates, combined with an expanding set of techniques available to study these cells, position this field for many new discoveries. Improving methods for controlling the immobilization of bacteria provides powerful experimental tools for testing hypotheses regarding microbiome interactions, studying the transfer of nutrients between bacterial species, and developing microbial communities for green energy production and pollution remediation.

  8. Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.

    PubMed

    Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B

    2016-09-14

    We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

  9. Thermoelectric Generation Of Current - Theoretical And Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Ruciński, Adam; Rusowicz, Artur

    2017-12-01

    This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

  10. Characterization of aerosols produced by surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured themore » size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.« less

  11. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    NASA Astrophysics Data System (ADS)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  12. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective

    PubMed Central

    2017-01-01

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763

  13. Wireless Network Simulation in Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  14. KETCindy--Collaboration of Cinderella and KETpic Reports on CADGME 2014 Conference Working Group

    ERIC Educational Resources Information Center

    Kaneko, Masataka; Yamashita, Satoshi; Kitahara, Kiyoshi; Maeda, Yoshifumi; Nakamura, Yasuyuki; Kortenkamp, Ulrich; Takato, Setsuo

    2015-01-01

    Dynamic Geometry Software (DGS) is a powerful tool which enables students to move geometric objects interactively. Through experimental simulations with DGS, mathematical facts and background mechanisms are accessible to students. However, especially when those facts and mechanisms are complicated, it is not so easy for some students to record and…

  15. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  16. BETA (Bitter Electromagnet Testing Apparatus) Design and Testing

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Birmingham, William; Rivera, William; Romero-Talamas, Carlos

    2016-10-01

    BETA is a 1T water cooled Bitter-type magnetic system that has been designed and constructed at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County to serve as a prototype of a scaled 10T version. Currently the system is undergoing magnetic, thermal and mechanical testing to ensure safe operating conditions and to prove analytical design optimizations. These magnets will function as experimental tools for future dusty plasma based and collaborative experiments. An overview of design methods used for building a custom made Bitter magnet with user defined experimental constraints is reviewed. The three main design methods consist of minimizing the following: ohmic power, peak conductor temperatures, and stresses induced by Lorentz forces. We will also discuss the design of BETA which includes: the magnet core, pressure vessel, cooling system, power storage bank, high powered switching system, diagnostics with safety cutoff feedback, and data acquisition (DAQ)/magnet control Matlab code. Furthermore, we present experimental data from diagnostics for validation of our analytical preliminary design methodologies and finite element analysis calculations. BETA will contribute to the knowledge necessary to finalize the 10 T magnet design.

  17. Experimental modelling of fragmentation applied to volcanic explosions

    NASA Astrophysics Data System (ADS)

    Haug, Øystein Thordén; Galland, Olivier; Gisler, Galen R.

    2013-12-01

    Explosions during volcanic eruptions cause fragmentation of magma and host rock, resulting in fragments with sizes ranging from boulders to fine ash. The products can be described by fragment size distributions (FSD), which commonly follow power laws with exponent D. The processes that lead to power-law distributions and the physical parameters that control D remain unknown. We developed a quantitative experimental procedure to study the physics of the fragmentation process through time. The apparatus consists of a Hele-Shaw cell containing a layer of cohesive silica flour that is fragmented by a rapid injection of pressurized air. The evolving fragmentation of the flour is monitored with a high-speed camera, and the images are analysed to obtain the evolution of the number of fragments (N), their average size (A), and the FSD. Using the results from our image-analysis procedure, we find transient empirical laws for N, A and the exponent D of the power-law FSD as functions of the initial air pressure. We show that our experimental procedure is a promising tool for unravelling the complex physics of fragmentation during phreatomagmatic and phreatic eruptions.

  18. Intellectual Property: a powerful tool to develop biotech research

    PubMed Central

    Giugni, Diego; Giugni, Valter

    2010-01-01

    Summary Today biotechnology is perhaps the most important technology field because of the strong health and food implications. However, due to the nature of said technology, there is the need of a huge amount of investments to sustain the experimentation costs. Consequently, investors aim to safeguard as much as possible their investments. Intellectual Property, and in particular patents, has been demonstrated to actually constitute a powerful tool to help them. Moreover, patents represent an extremely important means to disclose biotechnology inventions. Patentable biotechnology inventions involve products as nucleotide and amino acid sequences, microorganisms, processes or methods for modifying said products, uses for the manufacture of medicaments, etc. There are several ways to protect inventions, but all follow the three main patentability requirements: novelty, inventive step and industrial application. PMID:21255349

  19. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. Inmore » the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.« less

  20. Synchrotron radiation imaging is a powerful tool to image brain microvasculature.

    PubMed

    Zhang, Mengqi; Peng, Guanyun; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo

    2014-03-01

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  1. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  2. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling

    NASA Astrophysics Data System (ADS)

    Lamraoui, M.; Thomas, M.; El Badaoui, M.

    2014-02-01

    Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.

  3. Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2012-07-16

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. Thismore » study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.« less

  4. Analysis and Design of Rotors at Ultra-Low Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Kunz, Peter J.; Strawn, Roger C.

    2003-01-01

    Design tools have been developed for ultra-low Reynolds number rotors, combining enhanced actuator-ring / blade-element theory with airfoil section data based on two-dimensional Navier-Stokes calculations. This performance prediction method is coupled with an optimizer for both design and analysis applications. Performance predictions from these tools have been compared with three-dimensional Navier Stokes analyses and experimental data for a 2.5 cm diameter rotor with chord Reynolds numbers below 10,000. Comparisons among the analyses and experimental data show reasonable agreement both in the global thrust and power required, but the spanwise distributions of these quantities exhibit significant deviations. The study also reveals that three-dimensional and rotational effects significantly change local airfoil section performance. The magnitude of this issue, unique to this operating regime, may limit the applicability of blade-element type methods for detailed rotor design at ultra-low Reynolds numbers, but these methods are still useful for evaluating concept feasibility and rapidly generating initial designs for further analysis and optimization using more advanced tools.

  5. Transposons As Tools for Functional Genomics in Vertebrate Models.

    PubMed

    Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán

    2017-11-01

    Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    NASA Astrophysics Data System (ADS)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  7. A Tesla-pulse forming line-plasma opening switch pulsed power generator.

    PubMed

    Novac, B M; Kumar, R; Smith, I R

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF(6)), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  8. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  9. Experimental Semiotics: A New Approach For Studying Communication As A Form Of Joint Action

    PubMed Central

    Galantucci, Bruno

    2015-01-01

    In the last few years, researchers have begun to investigate the emergence of novel forms of human communication in the laboratory. I survey this growing line of research, which may be called experimental semiotics, from three distinct angles. First, I situate the new approach in its theoretical and historical context. Second, I review a sample of studies that exemplify experimental semiotics. Third, I present an empirical study that illustrates how the new approach can help us understand the sociocognitive underpinnings of human communication. The main conclusion of the paper will be that, by reproducing micro samples of historical processes in the laboratory, experimental semiotics offers new powerful tools for investigating human communication as a form of joint action. PMID:25164941

  10. Photonic crystal enhanced silicon cell based thermophotovoltaic systems

    DOE PAGES

    Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...

    2015-01-30

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less

  11. GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes

    PubMed Central

    Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614

  12. DoD Key Technologies Plan

    DTIC Science & Technology

    1992-07-01

    methodologies ; software performance analysis; software testing; and concurrent languages. Finally, efforts in algorithms, which are primarily designed to upgrade...These codes provide a powerful research tool for testing new concepts and designs prior to experimental implementation. DoE’s laser program has also...development, and specially designed production facilities. World leadership in bth non -fluorinated and fluorinated materials resides in the U.S. but Japan

  13. An experimental investigation of evolutionary dynamics in the Rock-Paper-Scissors game.

    PubMed

    Hoffman, Moshe; Suetens, Sigrid; Gneezy, Uri; Nowak, Martin A

    2015-03-06

    Game theory describes social behaviors in humans and other biological organisms. By far, the most powerful tool available to game theorists is the concept of a Nash Equilibrium (NE), which is motivated by perfect rationality. NE specifies a strategy for everyone, such that no one would benefit by deviating unilaterally from his/her strategy. Another powerful tool available to game theorists are evolutionary dynamics (ED). Motivated by evolutionary and learning processes, ED specify changes in strategies over time in a population, such that more successful strategies typically become more frequent. A simple game that illustrates interesting ED is the generalized Rock-Paper-Scissors (RPS) game. The RPS game extends the children's game to situations where winning or losing can matter more or less relative to tying. Here we investigate experimentally three RPS games, where the NE is always to randomize with equal probability, but the evolutionary stability of this strategy changes. Consistent with the prediction of ED we find that aggregate behavior is far away from NE when it is evolutionarily unstable. Our findings add to the growing literature that demonstrates the predictive validity of ED in large-scale incentivized laboratory experiments with human subjects.

  14. The unreasonable effectiveness of my self-experimentation.

    PubMed

    Roberts, Seth

    2010-12-01

    Over 12 years, my self-experimentation found new and useful ways to improve sleep, mood, health, and weight. Why did it work so well? First, my position was unusual. I had the subject-matter knowledge of an insider, the freedom of an outsider, and the motivation of a person with the problem. I did not need to publish regularly. I did not want to display status via my research. Second, I used a powerful tool. Self-experimentation about the brain can test ideas much more easily (by a factor of about 500,000) than conventional research about other parts of the body. When you gather data, you sample from a power-law-like distribution of progress. Most data helps a little; a tiny fraction of data helps a lot. My subject-matter knowledge and methodological skills (e.g., in data analysis) improved the distribution from which I sampled (i.e., increased the average amount of progress per sample). Self-experimentation allowed me to sample from it much more often than conventional research. Another reason my self-experimentation was unusually effective is that, unlike professional science, it resembled the exploration of our ancestors, including foragers, hobbyists, and artisans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Liquid Crystals, PIV and IR-Photography in Selected Technical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Stasiek, Jan; Jewartowski, Marcin

    2017-10-01

    Thermochromic liquid crystals (TLC), Particle Image Velocimetry (PIV), Infrared Imaging Themography (IR) and True-Colour Digital Image Processing (TDIP) have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. These four tools (based on the desktop computers) have come together during the past two decades to produce a powerful advanced experimental technique as a judgment of quality of information that cannot be obtained from any other imaging procedure. The brief summary of the history of this technique is reviewed, principal methods and tools are described and some examples are presented. With this objective, a new experimental technique have been developed and applied to the study of heat and mass transfer and for biomedical diagnosis. Automated evaluation allows determining the heat and flow visualisation and locate the area of suspicious tissue of human body.

  16. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    PubMed

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  18. Efficiency enhancement of a cantilever-based vibration energy harvester.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2013-12-23

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).

  19. An experimental tool to look in a magma chamber

    NASA Astrophysics Data System (ADS)

    Gonde, C.; Massare, D.; Bureau, H.; Martel, C.; Pichavant, M.; Clocchiatti, R.

    2005-12-01

    Understanding the physical and geochemical processes occurring in the volcanoes roots is one of the fundamental tasks of research in the experimental petrology community. This requires experimental tools able to create confining conditions appropriate for magma chambers and conduits. However, the characterization of some natural magmatic processes requires more than a blink experimental approach, to be rigorously studied. In some cases, the in situ approach is the only one issue, because it permits the observation of processes (crystallization of mineral phases, bubble growth.) and their kinetic studies. Here we present a powerful tool, a transparent internally heated autoclave. With this apparatus, pressures (up to 0.3 GPa) and temperatures (up to 900°C) appropriate for subvolcanic magma reservoirs can be obtained. Because it is equipped with transparent sapphire windows, either images or movies can be recorded during an experiment. The pressure medium is Argon, and heating is achieved by a W winding placed into the pressure vessel. Pressure and temperature are calibrated using both well known melting points (eg. salts, metals) and phase transitions (AgI), either at room temperature or at medium and high temperatures. During an experiment, the experimental charge is held between two thick windows of diamond, placed in the furnace cylinder. The experimental volume is about 1 mm3. The observation and numeric record are made along the horizontal axis, through the windows. This apparatus is currently used for studies of nucleation and growth of gas bubbles in a silicate melt. The first results will be presented at the meeting.

  20. Experimental validation of ultrasonic NDE simulation software

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.

    2016-02-01

    Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes.

  1. Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam during Water Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graziano, D. J.; Poch, L. A.; Veselka, T. D.

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year (WY) 2015. It is the seventh report in a series examining the financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined WYs 1997 to 2005 (Veselka et al. 2011); a report released in August 2011 examined WYs 2006 to 2010 (Poch et al. 2011); a report released June 2012 examined WY 2011 (Poch et al. 2012); a report released April 2013 examined WY 2012more » (Poch et al. 2013); a report released June 2014 examined WY 2013 (Graziano et al. 2014); and a report released September 2015 examined WY 2014 (Graziano et al. 2015). An experimental release may have either a positive or negative impact on the financial value of energy production. Only one experimental release was conducted at GCD in WY 2015; specifically, a high flow experimental (HFE) release conducted in November 2014. For this experimental release, financial costs of approximately $2.1 million were incurred because the HFE required sustained water releases that exceeded the powerplant’s maximum flow rate. In addition, during the month of the experiment, operators were not allowed to shape GCD power production to either follow firm power customer loads or to respond to market prices. This study identifies the main factors that contribute to HFE costs and examines the interdependencies among these factors. It applies an integrated set of tools to estimate financial impacts by simulating the GCD operations under two scenarios: (1) a baseline scenario that mimics both HFE operations during the experiment and during the rest of the year when it complies with the 1996 ROD operating criteria, and (2) a “without experiments” scenario that is identical to the baseline except it assumes that the HFE did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to simulate the dispatch of hydropower plants at GCD and other plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). The research team used extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration’s (WAPA’s) power purchase prices in the modeling process. In addition to estimating the financial impact of the HFE, the team used the GTMax model to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and WAPA operating practices.« less

  2. Text Messaging as a Tool for Behavior Change in Disease Prevention and Management

    PubMed Central

    Cole-Lewis, Heather; Kershaw, Trace

    2011-01-01

    Mobile phone text messaging is a potentially powerful tool for behavior change because it is widely available, inexpensive, and instant. This systematic review provides an overview of behavior change interventions for disease management and prevention delivered through text messaging. Evidence on behavior change and clinical outcomes was compiled from randomized or quasi-experimental controlled trials of text message interventions published in peer-reviewed journals by June 2009. Only those interventions using text message as the primary mode of communication were included. Study quality was assessed by using a standardized measure. Seventeen articles representing 12 studies (5 disease prevention and 7 disease management) were included. Intervention length ranged from 3 months to 12 months, none had long-term follow-up, and message frequency varied. Of 9 sufficiently powered studies, 8 found evidence to support text messaging as a tool for behavior change. Effects exist across age, minority status, and nationality. Nine countries are represented in this review, but it is problematic that only one is a developing country, given potential benefits of such a widely accessible, relatively inexpensive tool for health behavior change. Methodological issues and gaps in the literature are highlighted, and recommendations for future studies are provided. PMID:20354039

  3. Text messaging as a tool for behavior change in disease prevention and management.

    PubMed

    Cole-Lewis, Heather; Kershaw, Trace

    2010-01-01

    Mobile phone text messaging is a potentially powerful tool for behavior change because it is widely available, inexpensive, and instant. This systematic review provides an overview of behavior change interventions for disease management and prevention delivered through text messaging. Evidence on behavior change and clinical outcomes was compiled from randomized or quasi-experimental controlled trials of text message interventions published in peer-reviewed journals by June 2009. Only those interventions using text message as the primary mode of communication were included. Study quality was assessed by using a standardized measure. Seventeen articles representing 12 studies (5 disease prevention and 7 disease management) were included. Intervention length ranged from 3 months to 12 months, none had long-term follow-up, and message frequency varied. Of 9 sufficiently powered studies, 8 found evidence to support text messaging as a tool for behavior change. Effects exist across age, minority status, and nationality. Nine countries are represented in this review, but it is problematic that only one is a developing country, given potential benefits of such a widely accessible, relatively inexpensive tool for health behavior change. Methodological issues and gaps in the literature are highlighted, and recommendations for future studies are provided.

  4. VMS-ROT: A New Module of the Virtual Multifrequency Spectrometer for Simulation, Interpretation, and Fitting of Rotational Spectra

    PubMed Central

    2017-01-01

    The Virtual Multifrequency Spectrometer (VMS) is a tool that aims at integrating a wide range of computational and experimental spectroscopic techniques with the final goal of disclosing the static and dynamic physical–chemical properties “hidden” in molecular spectra. VMS is composed of two parts, namely, VMS-Comp, which provides access to the latest developments in the field of computational spectroscopy, and VMS-Draw, which provides a powerful graphical user interface (GUI) for an intuitive interpretation of theoretical outcomes and a direct comparison to experiment. In the present work, we introduce VMS-ROT, a new module of VMS that has been specifically designed to deal with rotational spectroscopy. This module offers an integrated environment for the analysis of rotational spectra: from the assignment of spectral transitions to the refinement of spectroscopic parameters and the simulation of the spectrum. While bridging theoretical and experimental rotational spectroscopy, VMS-ROT is strongly integrated with quantum-chemical calculations, and it is composed of four independent, yet interacting units: (1) the computational engine for the calculation of the spectroscopic parameters that are employed as a starting point for guiding experiments and for the spectral interpretation, (2) the fitting-prediction engine for the refinement of the molecular parameters on the basis of the assigned transitions and the prediction of the rotational spectrum of the target molecule, (3) the GUI module that offers a powerful set of tools for a vis-à-vis comparison between experimental and simulated spectra, and (4) the new assignment tool for the assignment of experimental transitions in terms of quantum numbers upon comparison with the simulated ones. The implementation and the main features of VMS-ROT are presented, and the software is validated by means of selected test cases ranging from isolated molecules of different sizes to molecular complexes. VMS-ROT therefore offers an integrated environment for the analysis of the rotational spectra, with the innovative perspective of an intimate connection to quantum-chemical calculations that can be exploited at different levels of refinement, as an invaluable support and complement for experimental studies. PMID:28742339

  5. Influence of Process Parameters on the Process Efficiency in Laser Metal Deposition Welding

    NASA Astrophysics Data System (ADS)

    Güpner, Michael; Patschger, Andreas; Bliedtner, Jens

    Conventionally manufactured tools are often completely constructed of a high-alloyed, expensive tool steel. An alternative way to manufacture tools is the combination of a cost-efficient, mild steel and a functional coating in the interaction zone of the tool. Thermal processing methods, like laser metal deposition, are always characterized by thermal distortion. The resistance against the thermal distortion decreases with the reduction of the material thickness. As a consequence, there is a necessity of a special process management for the laser based coating of thin parts or tools. The experimental approach in the present paper is to keep the energy and the mass per unit length constant by varying the laser power, the feed rate and the powder mass flow. The typical seam parameters are measured in order to characterize the cladding process, define process limits and evaluate the process efficiency. Ways to optimize dilution, angular distortion and clad height are presented.

  6. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammond, A. N.

    1990-01-01

    Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems.

  7. Energy Losses Estimation During Pulsed-Laser Seam Welding

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana

    2014-06-01

    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  8. Seawater Hydraulics: Development and Evaluation of an Experimental Diver Tool System.

    DTIC Science & Technology

    1984-02-01

    wrench was operated, it ran irregularly and with low power; third, the motor would not always tart when the valve was actuated . Investigation revealed...I’’r Iulticctlic.4X N (4M144 i , I1.401 . (L(It I A,-- II N1I I I \\k RI Cit I X I)H ( 4 Wit IN ( N I (41lnson. XXaisli,, iot , D)4 NI I M4 I lid. Ill...its primary distribution lists. SUBJECT CATEGORIES 28 ENERGY/POWER GENERATION 29 Thermal conservation (thermal engineering of buildings. HVAC I SHORE

  9. Mainstreaming Caenorhabditis elegans in experimental evolution.

    PubMed

    Gray, Jeremy C; Cutter, Asher D

    2014-03-07

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  10. FIST at 5: Looking Back, Looking Ahead

    DTIC Science & Technology

    2011-05-01

    Innovative Problem Solving ( TRIZ ) is a master’s class in design, with a strong em- phasis on simplicity and speed. Altshuller’s TRIZ contradiction matrix...and 40 principles are powerful, elegant, and efficient. They should be required reading across the acquisition com- munity (learn more at triz ...shortcuts. As with any tool, expertise comes from practice. Truly mastering Agile, Lean, TRIZ , or MOSA requires concentrated study, experimentation, and

  11. Taking structure searches to the next dimension.

    PubMed

    Schafferhans, Andrea; Rost, Burkhard

    2014-07-08

    Structure comparisons are now the first step when a new experimental high-resolution protein structure has been determined. In this issue of Structure, Wiederstein and colleagues describe their latest tool for comparing structures, which gives us the unprecedented power to discover crucial structural connections between whole complexes of proteins in the full structural database in real time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  13. Intellectual Property: a powerful tool to develop biotech research.

    PubMed

    Giugni, Diego; Giugni, Valter

    2010-09-01

    Today biotechnology is perhaps the most important technology field because of the strong health and food implications. However, due to the nature of said technology, there is the need of a huge amount of investments to sustain the experimentation costs. Consequently, investors aim to safeguard as much as possible their investments. Intellectual Property, and in particular patents, has been demonstrated to actually constitute a powerful tool to help them. Moreover, patents represent an extremely important means to disclose biotechnology inventions. Patentable biotechnology inventions involve products as nucleotide and amino acid sequences, microorganisms, processes or methods for modifying said products, uses for the manufacture of medicaments, etc. There are several ways to protect inventions, but all follow the three main patentability requirements: novelty, inventive step and industrial application. © 2010 The Authors; Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Experimental semiotics: a new approach for studying communication as a form of joint action.

    PubMed

    Galantucci, Bruno

    2009-04-01

    In the last few years, researchers have begun to investigate the emergence of novel forms of human communication in the laboratory. I survey this growing line of research, which may be called experimental semiotics, from three distinct angles. First, I situate the new approach in its theoretical and historical context. Second, I review a sample of studies that exemplify experimental semiotics. Third, I present an empirical study that illustrates how the new approach can help us understand the socio-cognitive underpinnings of human communication. The main conclusion of the paper will be that, by reproducing micro samples of historical processes in the laboratory, experimental semiotics offers new powerful tools for investigating human communication as a form of joint action. Copyright © 2009 Cognitive Science Society, Inc.

  15. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  16. Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry

    NASA Technical Reports Server (NTRS)

    Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.

    2014-01-01

    Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.

  17. Experimental Study of Turning Temperature and Turning Vibration for the Tool of Different Wear State

    NASA Astrophysics Data System (ADS)

    Li, Shuncai; Yu, Qiu; Yuan, Guanlei; Liang, Li

    2018-03-01

    By a vibration test device and Vib’SYS analysis system, a three-dimensional piezoelectric acceleration sensor and an infrared thermometer and its collection system, the turning experiments under different spindle speeds were carried out on three cutting tools with different wear states, and the change law of cutting temperature at the tool tip and change law of three-dimensional vibration with turning time were obtained. The results indicate that: (1) The temperature of the initial wear tool and the middle wear tool under a small turning parameter increased slowly with turning time; while under a greater turning parameter, the temperature of the middle wear tool varies significantly with time; (2) The temperature of the severe wear tool increased sharply at the later feeding stage; (3) The change laws of the tools vibration acceleration maximum with the spindle speeds are similar for the initial wear tool and the middle wear tool, which shows a trend of increasing at first and then decreasing; (4) the average value of vibration acceleration self-power spectrum of severe wear tool constantly increase with the spindle speed; (5) the maximum impact is along the radial direction for the tools of different wear state.

  18. Experimental effective shape control of a powered transfemoral prosthesis.

    PubMed

    Gregg, Robert D; Lenzi, Tommaso; Fey, Nicholas P; Hargrove, Levi J; Sensinger, Jonathon W

    2013-06-01

    This paper presents the design and experimental implementation of a novel feedback control strategy that regulates effective shape on a powered transfemoral prosthesis. The human effective shape is the effective geometry to which the biological leg conforms--through movement of ground reaction forces and leg joints--during the stance period of gait. Able-bodied humans regulate effective shapes to be invariant across conditions such as heel height, walking speed, and body weight, so this measure has proven to be a very useful tool for the alignment and design of passive prostheses. However, leg joints must be actively controlled to assume different effective shapes that are unique to tasks such as standing, walking, and stair climbing. Using our previous simulation studies as a starting point, we model and control the effective shape as a virtual kinematic constraint on the powered Vanderbilt prosthetic leg with a custom instrumented foot. An able-bodied subject used a by-pass adapter to walk on the controlled leg over ground and over a treadmill. These preliminary experiments demonstrate, for the first time, that effective shape (or virtual constraints in general) can be used to control a powered prosthetic leg.

  19. A new approach to the rationale discovery of polymeric biomaterials

    PubMed Central

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  20. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.

    PubMed

    Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán

    2011-01-01

    Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.

  1. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  2. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  3. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    PubMed Central

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-01-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this ‘critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems. PMID:28598430

  4. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    NASA Astrophysics Data System (ADS)

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-06-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this `critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  5. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis.

    PubMed

    Bhangu, Sukhvir Kaur; Gupta, Shweta; Ashokkumar, Muthupandian

    2017-01-01

    The production of biodiesel was carried out from canola oil and methanol catalysed by lipase from Candida rugosa under different ultrasonic experimental conditions using horn (20kHz) and plate (22, 44, 98 and 300kHz) transducers. The effects of experimental conditions such as horn tip diameter, ultrasonic power, ultrasonic frequency and enzyme concentrations on biodiesel yield were investigated. The results showed that the application of ultrasound decreased the reaction time from 22-24h to 1.5h with the use of 3.5cm ultrasonic horn, an applied power of 40W, methanol to oil molar ratio of 5:1 and enzyme concentration of 0.23wt/wt% of oil. Low intensity ultrasound is efficient and a promising tool for the enzyme catalysed biodiesel synthesis as higher intensities tend to inactivate the enzyme and reduce its efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation.

    PubMed

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L; van der Wal, Daphne; Herman, Peter M J; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R; Bouma, Tjeerd J

    2017-06-09

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this 'critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  7. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvin, J.P.; Blaise, P.; Lyoussi, A.

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physicsmore » calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)« less

  8. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  9. Inter-subject phase synchronization for exploratory analysis of task-fMRI.

    PubMed

    Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q

    2018-08-01

    Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. [International Classification of Public Health Nursing Practices - CIPESC®: a pedagogical tool for epidemiological studies].

    PubMed

    Nichiata, Lúcia Yasuko Izumi; Padoveze, Maria Clara; Ciosak, Suely Itsuko; Gryschek, Anna Luiza de Fátima Pinho Lins; Costa, Angela Aparecida; Takahashi, Renata Ferreira; Bertolozzi, Maria Rita; de Araújo, Núbia Virgínia D'Ávila Limeira; Pereira, Erica Gomes; Dias, Vânia Ferreira Gomes; Cubas, Marcia Regina

    2012-06-01

    The CIPESC® is a tool that informs the work of nurses in Public Health and assists in prioritizing their care in practice, management and research. It is also a powerful pedagogical instrument for the qualification of nurses within the Brazilian healthcare system. In the teaching of infectious diseases, using the CIPESC® assists in analyzing the interventions by encouraging clinical and epidemiological thinking regarding the health-illness process. With the purpose in mind of developing resources for teaching undergraduate nursing students and encouraging reflection regarding the process of nursing work, this article presents an experimental application of CIPESC®, using meningococcal meningitis as an example.

  11. Computational Methods for Stability and Control (COMSAC): The Time Has Come

    NASA Technical Reports Server (NTRS)

    Hall, Robert M.; Biedron, Robert T.; Ball, Douglas N.; Bogue, David R.; Chung, James; Green, Bradford E.; Grismer, Matthew J.; Brooks, Gregory P.; Chambers, Joseph R.

    2005-01-01

    Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications.

  12. Prospects for steady-state scenarios on JET

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bizarro, J. P. S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Lomas, P.; Rimini, F. G.; Tala, T. J. J.; Akers, R.; Andrew, Y.; Arnoux, G.; Artaud, J. F.; Baranov, Yu F.; Beurskens, M.; Brix, M.; Cesario, R.; DeLa Luna, E.; Fundamenski, W.; Giroud, C.; Hawkes, N. C.; Huber, A.; Joffrin, E.; Pitts, R. A.; Rachlew, E.; Reyes-Cortes, S. D. A.; Sharapov, S. E.; Zastrow, K. D.; Zimmermann, O.; JET EFDA contributors, the

    2007-09-01

    In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (nl ~ 4 × 1019 m-3), with ITER-relevant safety factor (q95 ~ 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (~45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (~15 MW), an upgrade of the NB power (35 MW/20 s or 17.5 MW/40 s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (~2.5 MA) and density (nl > 5 × 1019 m-3), with high βN (βN > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (~3.5 T).

  13. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model

    PubMed Central

    Moxnes, John F; Sandbakk, Øyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%–4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing. PMID:24379718

  14. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.

  15. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  16. Thermal Imaging Applied to Cryocrystallography: Cryocooling and Beam Heating (Part I)

    NASA Technical Reports Server (NTRS)

    Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark; Kazmierczak, Michael

    2006-01-01

    Thermal imaging provides a non-invasive method to study both the cryocooling process and the heating due to the X-ray beam interaction with a sample. The method has been used successfully to image cryocooling in a number of experimental situations, i.e. cooling as a function of sample volume and as a function of cryostream orientation. Although there are experimental limitations to the method, it has proved a powerful technique to aid cryocrystallography development. Due to the rapid spatial temperature information provided about the sample it is also a powerful tool in the testing of mathematical models. Recently thermal imaging has been used to measure the temperature distribution on both a model and typical crystal samples illuminated with an X-ray beam produced by an undulator. A brief overview of thermal imaging and previous results will be presented. In addition, a detailed description of the calibration and experimental aspects of the beam heating measurements will be described. This will complement the following talk on the mathematical modeling and analysis of the results.

  17. Electrical safety device

    DOEpatents

    White, David B.

    1991-01-01

    An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

  18. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  19. An open source tool for automatic spatiotemporal assessment of calcium transients and local ‘signal-close-to-noise’ activity in calcium imaging data

    PubMed Central

    Martin, Corinna; Jablonka, Sibylle

    2018-01-01

    Local and spontaneous calcium signals play important roles in neurons and neuronal networks. Spontaneous or cell-autonomous calcium signals may be difficult to assess because they appear in an unpredictable spatiotemporal pattern and in very small neuronal loci of axons or dendrites. We developed an open source bioinformatics tool for an unbiased assessment of calcium signals in x,y-t imaging series. The tool bases its algorithm on a continuous wavelet transform-guided peak detection to identify calcium signal candidates. The highly sensitive calcium event definition is based on identification of peaks in 1D data through analysis of a 2D wavelet transform surface. For spatial analysis, the tool uses a grid to separate the x,y-image field in independently analyzed grid windows. A document containing a graphical summary of the data is automatically created and displays the loci of activity for a wide range of signal intensities. Furthermore, the number of activity events is summed up to create an estimated total activity value, which can be used to compare different experimental situations, such as calcium activity before or after an experimental treatment. All traces and data of active loci become documented. The tool can also compute the signal variance in a sliding window to visualize activity-dependent signal fluctuations. We applied the calcium signal detector to monitor activity states of cultured mouse neurons. Our data show that both the total activity value and the variance area created by a sliding window can distinguish experimental manipulations of neuronal activity states. Notably, the tool is powerful enough to compute local calcium events and ‘signal-close-to-noise’ activity in small loci of distal neurites of neurons, which remain during pharmacological blockade of neuronal activity with inhibitors such as tetrodotoxin, to block action potential firing, or inhibitors of ionotropic glutamate receptors. The tool can also offer information about local homeostatic calcium activity events in neurites. PMID:29601577

  20. Analysis of Facial Injuries Caused by Power Tools.

    PubMed

    Kim, Jiye; Choi, Jin-Hee; Hyun Kim, Oh; Won Kim, Sug

    2016-06-01

    The number of injuries caused by power tools is steadily increasing as more domestic woodwork is undertaken and more power tools are used recreationally. The injuries caused by the different power tools as a consequence of accidents are an issue, because they can lead to substantial costs for patients and the national insurance system. The increase in hand surgery as a consequence of the use of power tools and its economic impact, and the characteristics of the hand injuries caused by power saws have been described. In recent years, the authors have noticed that, in addition to hand injuries, facial injuries caused by power tools commonly present to the emergency room. This study aimed to review the data in relation to facial injuries caused by power saws that were gathered from patients who visited the trauma center at our hospital over the last 4 years, and to analyze the incidence and epidemiology of the facial injuries caused by power saws. The authors found that facial injuries caused by power tools have risen continually. Facial injuries caused by power tools are accidental, and they cause permanent facial disfigurements and functional disabilities. Accidents are almost inevitable in particular workplaces; however, most facial injuries could be avoided by providing sufficient operator training and by tool operators wearing suitable protective devices. The evaluation of the epidemiology and patterns of facial injuries caused by power tools in this study should provide the information required to reduce the number of accidental injuries.

  1. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  2. Piezoelectric shunt damping of a circular saw blade with autonomous power supply for noise and vibration reduction

    NASA Astrophysics Data System (ADS)

    Pohl, Martin; Rose, Michael

    2016-01-01

    Circular saws are widespread tools for machining metal, wood or even ceramics. Due to the thin blade and excitation by the workpiece contact of the cutting edges, circular saws are prone to vibration and intense noise emission. Damping the blade will lower the hearing protection requirements of the users and possibly increase precision. Therefore a new damping concept for circular saw blades is presented in this paper. It is based on negative capacitance shunted piezoelectric transducers which are applied to the saw blade core. The required energy for the electronics is harvested from the rotation by a generator, so that no change of the machine tool is required. All components are integrated into an autonomous saw tool. Finally, the system is experimentally investigated without rotation, in idling and in cutting condition in a circular saw test stand in the Institute for Machine Tools and Production Engineering (IWF) at TU Braunschweig. The experimental investigation shows a good reduction of the vibration amplitude over a wide frequency range in the non-rotating condition. When rotating, the damping effect is lower and limited to some narrow frequency bands. The proposed reason for the reduced damping effect in rotating condition consists in the saturation of the electronic circuits due to the limited supply voltage capabilities.

  3. Historical Contributions to Vertical Flight at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.

    2016-01-01

    The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.

  4. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    PubMed

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Holostrain system: a powerful tool for experimental mechanics

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1992-09-01

    A portable holographic interferometer that can be used to measure displacements and strains in all kinds of mechanical components and structures is described. The holostrain system captures images on a TV camera that detects interference patterns produced by laser illumination. The video signals are digitized. The digitized interferograms are processed by a fast processing system. The output of the system are the strains or the stresses of the observed mechanical component or structure.

  6. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.

  7. A wireless soil moisture sensor powered by solar energy.

    PubMed

    Jiang, Mingliang; Lv, Mouchao; Deng, Zhong; Zhai, Guoliang

    2017-01-01

    In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  8. Micro-intestinal robot with wireless power transmission: design, analysis and experiment.

    PubMed

    Shi, Yu; Yan, Guozheng; Chen, Wenwen; Zhu, Bingquan

    2015-11-01

    Video capsule endoscopy is a useful tool for noninvasive intestinal detection, but it is not capable of active movement; wireless power is an effective solution to this problem. The research in this paper consists of two parts: the mechanical structure which enables the robot to move smoothly inside the intestinal tract, and the wireless power supply which ensures efficiency. First, an intestinal robot with leg architectures was developed based on the Archimedes spiral, which mimics the movement of an inchworm. The spiral legs were capable of unfolding to an angle of approximately 155°, which guaranteed stability of clamping, consistency of surface pressure, and avoided the risk of puncturing the intestinal tract. Secondly, the necessary power to operate the robot was far beyond the capacity of button batteries, so a wireless power transmission (WPT) platform was developed. The design of the platform focused on power transfer efficiency and frequency stability. In addition, the safety of human tissue in the alternating electromagnetic field was also taken into consideration. Finally, the assembled robot was tested and verified with the use of the WPT platform. In the isolated intestine, the robot system successfully traveled along the intestine with an average speed of 23 mm per minute. The obtained videos displayed a resolution of 320 × 240 and a transmission rate of 30 frames per second. The WPT platform supplied up to 500 mW of energy to the robot, and achieved a power transfer efficiency of 12%. It has been experimentally verified that the intestinal robot is safe and effective as an endoscopy tool, for which wireless power is feasible. Proposals for further improving the robot and wireless power supply are provided later in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2011-08-22

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCDmore » from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.« less

  10. Bioinformatics approach for choosing the correct reference genes when studying gene expression in human keratinocytes.

    PubMed

    Beer, Lucian; Mlitz, Veronika; Gschwandtner, Maria; Berger, Tanja; Narzt, Marie-Sophie; Gruber, Florian; Brunner, Patrick M; Tschachler, Erwin; Mildner, Michael

    2015-10-01

    Reverse transcription polymerase chain reaction (qRT-PCR) has become a mainstay in many areas of skin research. To enable quantitative analysis, it is necessary to analyse expression of reference genes (RGs) for normalization of target gene expression. The selection of reliable RGs therefore has an important impact on the experimental outcome. In this study, we aimed to identify and validate the best suited RGs for qRT-PCR in human primary keratinocytes (KCs) over a broad range of experimental conditions using the novel bioinformatics tool 'RefGenes', which is based on a manually curated database of published microarray data. Expression of 6 RGs identified by RefGenes software and 12 commonly used RGs were validated by qRT-PCR. We assessed whether these 18 markers fulfilled the requirements for a valid RG by the comprehensive ranking of four bioinformatics tools and the coefficient of variation (CV). In an overall ranking, we found GUSB to be the most stably expressed RG, whereas the expression values of the commonly used RGs, GAPDH and B2M were significantly affected by varying experimental conditions. Our results identify RefGenes as a powerful tool for the identification of valid RGs and suggest GUSB as the most reliable RG for KCs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Simulation of atmospheric PAH emissions from diesel engines.

    PubMed

    Durán, A; de Lucas, A; Carmona, M; Ballesteros, R

    2001-08-01

    Simulation of atmospheric PAH emissions in a typical European passenger car diesel engine at steady conditions or under a certification cycle is made using in-house software. It is based on neural fitting of experimental data from eight different fuels tested under five operating steady conditions (reproducing modes of the European transient urban/extraurban certification cycle). The software allows the determination of PAH emissions as a function of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulphur content) and operation conditions (torque and engine speed). The mathematical model reproduces experimental data with a maximum error of 20%. This tool is very useful, since changes in parameters can be made without experimental cost and the trend in modifications in PAH emissions is immediately obvious.

  12. Manipulating waves with LEGO bricks: A versatile experimental platform for metamaterial architectures

    NASA Astrophysics Data System (ADS)

    Celli, Paolo; Gonella, Stefano

    2015-08-01

    In this letter, we discuss a versatile, fully reconfigurable experimental platform for the investigation of phononic phenomena in metamaterial architectures. The approach revolves around the use of 3D laser vibrometry to reconstruct global and local wavefield features in specimens obtained through simple arrangements of LEGO® bricks on a thin baseplate. The agility by which it is possible to reconfigure the brick patterns into a nearly endless spectrum of topologies makes this an effective approach for rapid experimental proof of concept, as well as a powerful didactic tool, in the arena of phononic crystals and metamaterials engineering. We use our platform to provide a compelling visual illustration of important spatial wave manipulation effects (waveguiding and seismic isolation), and to elucidate fundamental dichotomies between Bragg-based and locally resonant bandgap mechanisms.

  13. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  14. Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun

    PubMed Central

    Jayakumar, Vignesh; Zechmann, Edward

    2015-01-01

    An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038

  15. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  16. Rapid Particle Patterning in Surface Deposited Micro-Droplets of Low Ionic Content via Low-Voltage Electrochemistry and Electrokinetics

    PubMed Central

    Sidelman, Noam; Cohen, Moshik; Kolbe, Anke; Zalevsky, Zeev; Herrman, Andreas; Richter, Shachar

    2015-01-01

    Electrokinetic phenomena are a powerful tool used in various scientific and technological applications for the manipulation of aqueous solutions and the chemical entities within them. However, the use of DC-induced electrokinetics in miniaturized devices is highly limited. This is mainly due to unavoidable electrochemical reactions at the electrodes, which hinder successful manipulation. Here we present experimental evidence that on-chip DC manipulation of particles between closely positioned electrodes inside micro-droplets can be successfully achieved, and at low voltages. We show that such manipulation, which is considered practically impossible, can be used to rapidly concentrate and pattern particles in 2D shapes in inter-electrode locations. We show that this is made possible in low ion content dispersions, which enable low-voltage electrokinetics and an anomalous bubble-free water electrolysis. This phenomenon can serve as a powerful tool in both microflow devices and digital microfluidics for rapid pre-concentration and particle patterning. PMID:26293477

  17. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  18. Title: Experimental and analytical study of frictional anisotropy of nanotubes

    NASA Astrophysics Data System (ADS)

    Riedo, Elisa; Gao, Yang; Li, Tai-De; Chiu, Hsiang-Chih; Kim, Suenne; Klinke, Christian; Tosatti, Erio

    The frictional properties of Carbon and Boron Nitride nanotubes (NTs) are very important in a variety of applications, including composite materials, carbon fibers, and micro/nano-electromechanical systems. Atomic force microscopy (AFM) is a powerful tool to investigate with nanoscale resolution the frictional properties of individual NTs. Here, we report on an experimental study of the frictional properties of different types of supported nanotubes by AFM. We also propose a quantitative model to describe and then predict the frictional properties of nanotubes sliding on a substrate along (longitudinal friction) or perpendicular (transverse friction) their axis. This model provides a simple but general analytical relationship that well describes the acquired experimental data. As an example of potential applications, this experimental method combined with the proposed model can guide to design better NTs-ceramic composites, or to self-assemble the nanotubes on a surface in a given direction. M. Lucas et al., Nature Materials 8, 876-881 (2009).

  19. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  20. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  1. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  2. [Caenorhabditis elegans: a powerful tool for drug discovery].

    PubMed

    Jia, Xi-Hua; Cao, Cheng

    2009-07-01

    A simple model organism Caenorhabditis elegans has contributed substantially to the fundamental researches in biology. In an era of functional genomics, nematode worm has been developed into a multi-purpose tool that can be exploited to identify disease-causing or disease-associated genes, validate potential drug targets. This, coupled with its genetic amenability, low cost experimental manipulation and compatibility with high throughput screening in an intact physiological condition, makes the model organism into an effective toolbox for drug discovery. This review shows the unique features of C. elegans, how it can play a valuable role in our understanding of the molecular mechanism of human diseases and finding drug leads in drug development process.

  3. Using the power balance model to simulate cross-country skiing on varying terrain.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  4. Phase I Development of Neutral Beam Injector Solid-State Power System

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth

    2017-10-01

    Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.

  5. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.

    PubMed

    Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib

    2017-09-12

    Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.

  6. GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes

    PubMed Central

    Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org. PMID:22479466

  7. The power and promise of RNA-seq in ecology and evolution.

    PubMed

    Todd, Erica V; Black, Michael A; Gemmell, Neil J

    2016-03-01

    Reference is regularly made to the power of new genomic sequencing approaches. Using powerful technology, however, is not the same as having the necessary power to address a research question with statistical robustness. In the rush to adopt new and improved genomic research methods, limitations of technology and experimental design may be initially neglected. Here, we review these issues with regard to RNA sequencing (RNA-seq). RNA-seq adds large-scale transcriptomics to the toolkit of ecological and evolutionary biologists, enabling differential gene expression (DE) studies in nonmodel species without the need for prior genomic resources. High biological variance is typical of field-based gene expression studies and means that larger sample sizes are often needed to achieve the same degree of statistical power as clinical studies based on data from cell lines or inbred animal models. Sequencing costs have plummeted, yet RNA-seq studies still underutilize biological replication. Finite research budgets force a trade-off between sequencing effort and replication in RNA-seq experimental design. However, clear guidelines for negotiating this trade-off, while taking into account study-specific factors affecting power, are currently lacking. Study designs that prioritize sequencing depth over replication fail to capitalize on the power of RNA-seq technology for DE inference. Significant recent research effort has gone into developing statistical frameworks and software tools for power analysis and sample size calculation in the context of RNA-seq DE analysis. We synthesize progress in this area and derive an accessible rule-of-thumb guide for designing powerful RNA-seq experiments relevant in eco-evolutionary and clinical settings alike. © 2016 John Wiley & Sons Ltd.

  8. Predicting cancerlectins by the optimal g-gap dipeptides

    NASA Astrophysics Data System (ADS)

    Lin, Hao; Liu, Wei-Xin; He, Jiao; Liu, Xin-Hui; Ding, Hui; Chen, Wei

    2015-12-01

    The cancerlectin plays a key role in the process of tumor cell differentiation. Thus, to fully understand the function of cancerlectin is significant because it sheds light on the future direction for the cancer therapy. However, the traditional wet-experimental methods were money- and time-consuming. It is highly desirable to develop an effective and efficient computational tool to identify cancerlectins. In this study, we developed a sequence-based method to discriminate between cancerlectins and non-cancerlectins. The analysis of variance (ANOVA) was used to choose the optimal feature set derived from the g-gap dipeptide composition. The jackknife cross-validated results showed that the proposed method achieved the accuracy of 75.19%, which is superior to other published methods. For the convenience of other researchers, an online web-server CaLecPred was established and can be freely accessed from the website http://lin.uestc.edu.cn/server/CalecPred. We believe that the CaLecPred is a powerful tool to study cancerlectins and to guide the related experimental validations.

  9. Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter

    2017-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.

  10. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2011-07-01 2011-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  11. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2010-07-01 2010-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  12. Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Sheng; Chen, Kuan-Ta; Hsu, Chun-Yao; Hong, Po-Da

    2018-05-01

    This paper determines the optimal settings in the deposition parameters for (AlCrNbSiTiV)N high-entropy alloy (HEAs) nitride films that are deposited on CBN cutting tools and glass substrates. We use direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS), with Ar plasma and N2 reactive gases. Experiments with the grey-Taguchi method are conducted to determine the effect of deposition parameters (deposition time, substrate DC bias, DC power and substrate temperature) on interrupted turning 50CrMo4 steel machining and the films' structural properties. Experimental result shows that the multiple performance characteristics for these (AlCrNbSiTiV)N HEAs film coatings can be improved using the grey-Taguchi method. As can be seen, the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The distribution of elements is homogeneous through the depth of the (AlCrNbSiTiV)N film, as measured by an auger electron nanoscope. After interrupted turning with an (AlCrNbSiTiV)N film coated tool, we obtain much longer tool life than when using uncoated tools. The correlation of these results with microstructure analysis and tool life indicates that HIPIMS discharge induced a higher (AlCrNbSiTiV)N film density, a smoother surface structure and a higher hardness surface.

  13. Water treatment by the AC gliding arc air plasma

    NASA Astrophysics Data System (ADS)

    Gharagozalian, Mehrnaz; Dorranian, Davoud; Ghoranneviss, Mahmood

    2017-09-01

    In this study, the effects of gliding arc (G Arc) plasma system on the treatment of water have been investigated experimentally. An AC power supply of 15 kV potential difference at 50 Hz frequency was employed to generate plasma. Plasma density and temperature were measured using spectroscopic method. The water was contaminated with staphylococcus aureus (Gram-positive) and salmonella bacteria (Gram-negative), and Penicillium (mold fungus) individually. pH, hydrogen peroxide, and nitride contents of treated water were measured after plasma treatment. Decontamination of treated water was determined using colony counting method. Results indicate that G Arc plasma is a powerful and green tool to decontaminate water without producing any byproducts.

  14. Ultrashort pulse CPA-free Ho:YLF linear amplifier

    NASA Astrophysics Data System (ADS)

    Hinkelmann, Moritz; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2018-02-01

    We present CPA-free linear amplification of 6:3 ps pulses in Ho:YLF crystals up to 100 μJ pulse energy at 10 kHz repetition rate. The seed pulses at a wavelength of 2:05 μm are provided by a Ho-based all-fiber system consisting of a soliton oscillator and a subsequent pre-amplifier followed by a free-space AOM as pulse-picker. Considering the achieved pulse peak power at MW-level, this system is a powerful tool for efficient pumping of parametric amplifiers addressing the highly demanded mid-IR spectral region. In detailed numerical simulations we verified our experimental results and discuss scaling options for pulse duration and energy.

  15. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    DTIC Science & Technology

    2012-04-01

    49 Figure 48. A side view of the elevated pressure-opposed flow rig on the test stand. The IR cutoff filter is shown in front of the...turbulent flows of mixed gasses in excited states. To perform this measurement, we have built and characterized a sensitive, selective infrared ( IR ...tool for TDLAS (Kosterev and Tittel, 2002). The QCL operates near room temperature and provides a powerful (~10 mW), stable, single-mode, mid- IR

  16. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.

  17. The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking.

    PubMed

    Biberger, Thomas; Ewert, Stephan D

    2017-08-01

    The generalized power spectrum model [GPSM; Biberger and Ewert (2016). J. Acoust. Soc. Am. 140, 1023-1038], combining the "classical" concept of the power-spectrum model (PSM) and the envelope power spectrum-model (EPSM), was demonstrated to account for several psychoacoustic and speech intelligibility (SI) experiments. The PSM path of the model uses long-time power signal-to-noise ratios (SNRs), while the EPSM path uses short-time envelope power SNRs. A systematic comparison of existing SI models for several spectro-temporal manipulations of speech maskers and gender combinations of target and masker speakers [Schubotz et al. (2016). J. Acoust. Soc. Am. 140, 524-540] showed the importance of short-time power features. Conversely, Jørgensen et al. [(2013). J. Acoust. Soc. Am. 134, 436-446] demonstrated a higher predictive power of short-time envelope power SNRs than power SNRs using reverberation and spectral subtraction. Here the GPSM was extended to utilize short-time power SNRs and was shown to account for all psychoacoustic and SI data of the three mentioned studies. The best processing strategy was to exclusively use either power or envelope-power SNRs, depending on the experimental task. By analyzing both domains, the suggested model might provide a useful tool for clarifying the contribution of amplitude modulation masking and energetic masking.

  18. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2013-01-01

    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215

  19. A general computation model based on inverse analysis principle used for rheological analysis of W/O rapeseed and soybean oil emulsions

    NASA Astrophysics Data System (ADS)

    Vintila, Iuliana; Gavrus, Adinel

    2017-10-01

    The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).

  20. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    NASA Astrophysics Data System (ADS)

    Musseau, O.; Torres, A.; Campbell, A. B.; Knudson, A. R.; Buchner, S.; Fischer, B.; Schlogl, M.; Briand, P.

    1999-12-01

    We present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. We used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a nondestructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a sudden change in the charge collection image. "Hot spots" are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.

  1. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    PubMed Central

    Lo, Yuan-Chieh; Hu, Yuh-Chung; Chang, Pei-Zen

    2018-01-01

    Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system. PMID:29473877

  2. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module.

    PubMed

    Lo, Yuan-Chieh; Hu, Yuh-Chung; Chang, Pei-Zen

    2018-02-23

    Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM) which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe). Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t|) °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time embedded system.

  3. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials

    PubMed Central

    Hobbs, Brian P.; Carlin, Bradley P.; Mandrekar, Sumithra J.; Sargent, Daniel J.

    2011-01-01

    Summary Bayesian clinical trial designs offer the possibility of a substantially reduced sample size, increased statistical power, and reductions in cost and ethical hazard. However when prior and current information conflict, Bayesian methods can lead to higher than expected Type I error, as well as the possibility of a costlier and lengthier trial. This motivates an investigation of the feasibility of hierarchical Bayesian methods for incorporating historical data that are adaptively robust to prior information that reveals itself to be inconsistent with the accumulating experimental data. In this paper, we present several models that allow for the commensurability of the information in the historical and current data to determine how much historical information is used. A primary tool is elaborating the traditional power prior approach based upon a measure of commensurability for Gaussian data. We compare the frequentist performance of several methods using simulations, and close with an example of a colon cancer trial that illustrates a linear models extension of our adaptive borrowing approach. Our proposed methods produce more precise estimates of the model parameters, in particular conferring statistical significance to the observed reduction in tumor size for the experimental regimen as compared to the control regimen. PMID:21361892

  5. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  6. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    NASA Technical Reports Server (NTRS)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  7. Advantages of Unfair Quantum Ground-State Sampling.

    PubMed

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  8. 20-W 1952-nm tandem hybrid single and double clad TDFA

    NASA Astrophysics Data System (ADS)

    Romano, Clément; Tench, Robert E.; Delavaux, Jean-Marc

    2018-02-01

    A simple engineering design is important for achieving high Thulium-doped amplifier (TDFA) performance such as good power conversion, low noise figure (NF), scalable output power, high gain, and stable operation over a large dynamic range. In this paper we report the design, performance, and simulation of two stage high-power 1952 nm hybrid single and double clad TDFAs. The first stage of our hybrid amplifier is a single clad design, and the second stage is a double clad design. We demonstrate TDFAs with an output power greater than 20 W with single-frequency narrow linewidth (i.e. MHz) input signals at both 1952 and 2004 nm. An optical 10 dB bandwidth of 80 nm is derived from the ASE spectrum. The power stage is constructed with 10 μm core active fibers showing a maximum optical slope efficiency greater than 50 %. The experimental results lead to a 1 dB agreement with our simulation tool developed for single clad and double clad TDFAs. Overall this hybrid amplifier offers versatile features with the potential of much higher output power.

  9. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case.

    PubMed

    Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C

    2011-08-22

    We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).

  10. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case

    PubMed Central

    2011-01-01

    Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449

  11. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.« less

  12. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    PubMed

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  13. 29 CFR 1926.304 - Woodworking tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.304 Woodworking tools. (a) Disconnect switches. All fixed power driven woodworking tools shall be provided with a disconnect..., power-driven circular saws shall be equipped with guards above and below the base plate or shoe. The...

  14. Using Galaxy to Perform Large-Scale Interactive Data Analyses

    PubMed Central

    Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton

    2014-01-01

    Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312

  15. Manipulating waves with LEGO{sup ®} bricks: A versatile experimental platform for metamaterial architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celli, Paolo, E-mail: pcelli@umn.edu; Gonella, Stefano, E-mail: sgonella@umn.edu

    2015-08-24

    In this letter, we discuss a versatile, fully reconfigurable experimental platform for the investigation of phononic phenomena in metamaterial architectures. The approach revolves around the use of 3D laser vibrometry to reconstruct global and local wavefield features in specimens obtained through simple arrangements of LEGO{sup ®} bricks on a thin baseplate. The agility by which it is possible to reconfigure the brick patterns into a nearly endless spectrum of topologies makes this an effective approach for rapid experimental proof of concept, as well as a powerful didactic tool, in the arena of phononic crystals and metamaterials engineering. We use ourmore » platform to provide a compelling visual illustration of important spatial wave manipulation effects (waveguiding and seismic isolation), and to elucidate fundamental dichotomies between Bragg-based and locally resonant bandgap mechanisms.« less

  16. Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience.

    PubMed

    Vuorre, Matti; Bolger, Niall

    2017-12-15

    Statistical mediation allows researchers to investigate potential causal effects of experimental manipulations through intervening variables. It is a powerful tool for assessing the presence and strength of postulated causal mechanisms. Although mediation is used in certain areas of psychology, it is rarely applied in cognitive psychology and neuroscience. One reason for the scarcity of applications is that these areas of psychology commonly employ within-subjects designs, and mediation models for within-subjects data are considerably more complicated than for between-subjects data. Here, we draw attention to the importance and ubiquity of mediational hypotheses in within-subjects designs, and we present a general and flexible software package for conducting Bayesian within-subjects mediation analyses in the R programming environment. We use experimental data from cognitive psychology to illustrate the benefits of within-subject mediation for theory testing and comparison.

  17. Integrated CFD modeling of gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Fuller, E. J.; Smith, C. E.

    1993-01-01

    3D, curvilinear, multi-domain CFD analysis is becoming a valuable tool in gas turbine combustor design. Used as a supplement to experimental testing. CFD analysis can provide improved understanding of combustor aerodynamics and used to qualitatively assess new combustor designs. This paper discusses recent advancements in CFD combustor methodology, including the timely integration of the design (i.e. CAD) and analysis (i.e. CFD) processes. Allied Signal's F124 combustor was analyzed at maximum power conditions. The assumption of turbulence levels at the nozzle/swirler inlet was shown to be very important in the prediction of combustor exit temperatures. Predicted exit temperatures were compared to experimental rake data, and good overall agreement was seen. Exit radial temperature profiles were well predicted, while the predicted pattern factor was 25 percent higher than the harmonic-averaged experimental pattern factor.

  18. Powered mobility intervention: understanding the position of tool use learning as part of implementing the ALP tool.

    PubMed

    Nilsson, Lisbeth; Durkin, Josephine

    2017-10-01

    To explore the knowledge necessary for adoption and implementation of the Assessment of Learning Powered mobility use (ALP) tool in different practice settings for both adults and children. To consult with a diverse population of professionals working with adults and children, in different countries and various settings; who were learning about or using the ALP tool, as part of exploring and implementing research findings. Classical grounded theory with a rigorous comparative analysis of data from informants together with reflections on our own rich experiences of powered mobility practice and comparisons with the literature. A core category learning tool use and a new theory of cognizing tool use, with its interdependent properties: motivation, confidence, permissiveness, attentiveness and co-construction has emerged which explains in greater depth what enables the application of the ALP tool. The scientific knowledge base on tool use learning and the new theory conveys the information necessary for practitioner's cognizing how to apply the learning approach of the ALP tool in order to enable tool use learning through powered mobility practice as a therapeutic intervention in its own right. This opens up the possibility for more children and adults to have access to learning through powered mobility practice. Implications for rehabilitation Tool use learning through powered mobility practice is a therapeutic intervention in its own right. Powered mobility practice can be used as a rehabilitation tool with individuals who may not need to become powered wheelchair users. Motivation, confidence, permissiveness, attentiveness and co-construction are key properties for enabling the application of the learning approach of the ALP tool. Labelling and the use of language, together with honing observational skills through viewing video footage, are key to developing successful learning partnerships.

  19. Lynx web services for annotations and systems analysis of multi-gene disorders.

    PubMed

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    NASA Technical Reports Server (NTRS)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  1. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  2. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  3. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  4. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  5. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  6. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  7. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  8. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  9. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  10. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  11. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  12. Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography.

    PubMed

    Resch, K J; Walther, P; Zeilinger, A

    2005-02-25

    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the Greenberger-Horne-Zeilinger state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality were extracted.

  13. Spatial cognition in a virtual reality home-cage extension for freely moving rodents

    PubMed Central

    Kaupert, Ursula; Frei, Katja; Bagorda, Francesco; Schatz, Alexej; Tocker, Gilad; Rapoport, Sophie; Derdikman, Dori

    2017-01-01

    Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals’ group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. NEW & NOTEWORTHY Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals’ group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms. PMID:28077665

  14. Decoding 2D-PAGE complex maps: relevance to proteomics.

    PubMed

    Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio

    2006-03-20

    This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).

  15. The Dream Property Scale: an exploratory English version.

    PubMed

    Takeuchi, T; Ogilvie, R D; Ferrelli, A V; Murphy, T I; Belicki, K

    2001-09-01

    Our goal is to develop an English version of the Dream Property Scale (DPS-E) based on the original normed scale in Japan (DPS-J). Factor analyses extracted four factors (Emotionality, Rationality, Activity, and Impression) and its factor structure was apparently similar to the DPS-J. The DPS-E was also shown to be related to EEG power spectral values. These results indicate that the DPS-E may provide an exploratory basis for a reliable and valid tool for capturing and quantifying the properties of dream experiences that could reflect physiological activities without the intervention of experimenters. We suggest that the DPS-E will develop into a useful tool to help clarify dream production mechanisms by further investigation. Copyright 2001 Academic Press.

  16. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    PubMed

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  17. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    NASA Astrophysics Data System (ADS)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  18. Single Molecule Fluorescence Measurements of Complex Systems

    NASA Astrophysics Data System (ADS)

    Sadegh, Sanaz

    Single molecule methods are powerful tools for investigating the properties of complex systems that are generally concealed by ensemble measurements. Here we use single molecule fluorescent measurements to study two different complex systems: 1/ƒ noise in quantum dots and diffusion of the membrane proteins in live cells. The power spectrum of quantum dot (QD) fluorescence exhibits 1/ƒ beta noise, related to the intermittency of these nanosystems. As in other systems exhibiting 1/ƒ noise, this power spectrum is not integrable at low frequencies, which appears to imply infinite total power. We report measurements of individual QDs that address this long-standing paradox. We find that the level of 1/ƒbeta noise for QDs decays with the observation time. We show that the traditional description of the power spectrum with a single exponent is incomplete and three additional critical exponents characterize the dependence on experimental time. A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized due to experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data show that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar fractal.

  19. Data management routines for reproducible research using the G-Node Python Client library

    PubMed Central

    Sobolev, Andrey; Stoewer, Adrian; Pereira, Michael; Kellner, Christian J.; Garbers, Christian; Rautenberg, Philipp L.; Wachtler, Thomas

    2014-01-01

    Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow. PMID:24634654

  20. Data management routines for reproducible research using the G-Node Python Client library.

    PubMed

    Sobolev, Andrey; Stoewer, Adrian; Pereira, Michael; Kellner, Christian J; Garbers, Christian; Rautenberg, Philipp L; Wachtler, Thomas

    2014-01-01

    Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow.

  1. Membrane proteins structures: A review on computational modeling tools.

    PubMed

    Almeida, Jose G; Preto, Antonio J; Koukos, Panagiotis I; Bonvin, Alexandre M J J; Moreira, Irina S

    2017-10-01

    Membrane proteins (MPs) play diverse and important functions in living organisms. They constitute 20% to 30% of the known bacterial, archaean and eukaryotic organisms' genomes. In humans, their importance is emphasized as they represent 50% of all known drug targets. Nevertheless, experimental determination of their three-dimensional (3D) structure has proven to be both time consuming and rather expensive, which has led to the development of computational algorithms to complement the available experimental methods and provide valuable insights. This review highlights the importance of membrane proteins and how computational methods are capable of overcoming challenges associated with their experimental characterization. It covers various MP structural aspects, such as lipid interactions, allostery, and structure prediction, based on methods such as Molecular Dynamics (MD) and Machine-Learning (ML). Recent developments in algorithms, tools and hybrid approaches, together with the increase in both computational resources and the amount of available data have resulted in increasingly powerful and trustworthy approaches to model MPs. Even though MPs are elementary and important in nature, the determination of their 3D structure has proven to be a challenging endeavor. Computational methods provide a reliable alternative to experimental methods. In this review, we focus on computational techniques to determine the 3D structure of MP and characterize their binding interfaces. We also summarize the most relevant databases and software programs available for the study of MPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Architectural-level power estimation and experimentation

    NASA Astrophysics Data System (ADS)

    Ye, Wu

    With the emergence of a plethora of embedded and portable applications and ever increasing integration levels, power dissipation of integrated circuits has moved to the forefront as a design constraint. Recent years have also seen a significant trend towards designs starting at the architectural (or RT) level. Those demand accurate yet fast RT level power estimation methodologies and tools. This thesis addresses issues and experiments associate with architectural level power estimation. An execution driven, cycle-accurate RT level power simulator, SimplePower, was developed using transition-sensitive energy models. It is based on the architecture of a five-stage pipelined RISC datapath for both 0.35mum and 0.8mum technology and can execute the integer subset of the instruction set of SimpleScalar . SimplePower measures the energy consumed in the datapath, memory and on-chip buses. During the development of SimplePower , a partitioning power modeling technique was proposed to model the energy consumed in complex functional units. The accuracy of this technique was validated with HSPICE simulation results for a register file and a shifter. A novel, selectively gated pipeline register optimization technique was proposed to reduce the datapath energy consumption. It uses the decoded control signals to selectively gate the data fields of the pipeline registers. Simulation results show that this technique can reduce the datapath energy consumption by 18--36% for a set of benchmarks. A low-level back-end compiler optimization, register relabeling, was applied to reduce the on-chip instruction cache data bus switch activities. Its impact was evaluated by SimplePower. Results show that it can reduce the energy consumed in the instruction data buses by 3.55--16.90%. A quantitative evaluation was conducted for the impact of six state-of-art high-level compilation techniques on both datapath and memory energy consumption. The experimental results provide a valuable insight for designers to develop future power-aware compilation frameworks for embedded systems.

  3. EMU battery/SMM power tool characterization study

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1982-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft was modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery was tested for the power tool application. The results are that the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  4. The power induced effects module: A FORTRAN code which estimates lift increments due to power induced effects for V/STOL flight

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Howard, Kipp E.

    1991-01-01

    A user friendly FORTRAN code that can be used for preliminary design of V/STOL aircraft is described. The program estimates lift increments, due to power induced effects, encountered by aircraft in V/STOL flight. These lift increments are calculated using empirical relations developed from wind tunnel tests and are due to suckdown, fountain, ground vortex, jet wake, and the reaction control system. The code can be used as a preliminary design tool along with NASA Ames' Aircraft Synthesis design code or as a stand-alone program for V/STOL aircraft designers. The Power Induced Effects (PIE) module was validated using experimental data and data computed from lift increment routines. Results are presented for many flat plate models along with the McDonnell Aircraft Company's MFVT (mixed flow vectored thrust) V/STOL preliminary design and a 15 percent scale model of the YAV-8B Harrier V/STOL aircraft. Trends and magnitudes of lift increments versus aircraft height above the ground were predicted well by the PIE module. The code also provided good predictions of the magnitudes of lift increments versus aircraft forward velocity. More experimental results are needed to determine how well the code predicts lift increments as they vary with jet deflection angle and angle of attack. The FORTRAN code is provided in the appendix.

  5. Research on a power management system for thermoelectric generators to drive wireless sensors on a spindle unit.

    PubMed

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-07-16

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.

  6. Modeling and design of Galfenol unimorph energy harvesters

    NASA Astrophysics Data System (ADS)

    Deng, Zhangxian; Dapino, Marcelo J.

    2015-12-01

    This article investigates the modeling and design of vibration energy harvesters that utilize iron-gallium (Galfenol) as a magnetoelastic transducer. Galfenol unimorphs are of particular interest; however, advanced models and design tools are lacking for these devices. Experimental measurements are presented for various unimorph beam geometries. A maximum average power density of 24.4 {mW} {{cm}}-3 and peak power density of 63.6 {mW} {{cm}}-3 are observed. A modeling framework with fully coupled magnetoelastic dynamics, formulated as a 2D finite element model, and lumped-parameter electrical dynamics is presented and validated. A comprehensive parametric study considering pickup coil dimensions, beam thickness ratio, tip mass, bias magnet location, and remanent flux density (supplied by bias magnets) is developed for a 200 Hz, 9.8 {{m}} {{{s}}}-2 amplitude harmonic base excitation. For the set of optimal parameters, the maximum average power density and peak power density computed by the model are 28.1 and 97.6 {mW} {{cm}}-3, respectively.

  7. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  8. Research on a Power Management System for Thermoelectric Generators to Drive Wireless Sensors on a Spindle Unit

    PubMed Central

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-01-01

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189

  9. Preliminary Development of Real Time Usage-Phase Monitoring System for CNC Machine Tools with a Case Study on CNC Machine VMC 250

    NASA Astrophysics Data System (ADS)

    Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah

    2018-03-01

    The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.

  10. High-power CO laser with RF discharge for isotope separation employing condensation repression

    NASA Astrophysics Data System (ADS)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  11. Statistical power comparisons at 3T and 7T with a GO / NOGO task.

    PubMed

    Torrisi, Salvatore; Chen, Gang; Glen, Daniel; Bandettini, Peter A; Baker, Chris I; Reynolds, Richard; Yen-Ting Liu, Jeffrey; Leshin, Joseph; Balderston, Nicholas; Grillon, Christian; Ernst, Monique

    2018-07-15

    The field of cognitive neuroscience is weighing evidence about whether to move from standard field strength to ultra-high field (UHF). The present study contributes to the evidence by comparing a cognitive neuroscience paradigm at 3 Tesla (3T) and 7 Tesla (7T). The goal was to test and demonstrate the practical effects of field strength on a standard GO/NOGO task using accessible preprocessing and analysis tools. Two independent matched healthy samples (N = 31 each) were analyzed at 3T and 7T. Results show gains at 7T in statistical strength, the detection of smaller effects and group-level power. With an increased availability of UHF scanners, these gains may be exploited by cognitive neuroscientists and other neuroimaging researchers to develop more efficient or comprehensive experimental designs and, given the same sample size, achieve greater statistical power at 7T. Published by Elsevier Inc.

  12. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  13. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  14. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  15. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors

    PubMed Central

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-01

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248

  16. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.

    PubMed

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-19

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.

  17. LOD significance thresholds for QTL analysis in experimental populations of diploid species

    PubMed

    Van Ooijen JW

    1999-11-01

    Linkage analysis with molecular genetic markers is a very powerful tool in the biological research of quantitative traits. The lack of an easy way to know what areas of the genome can be designated as statistically significant for containing a gene affecting the quantitative trait of interest hampers the important prediction of the rate of false positives. In this paper four tables, obtained by large-scale simulations, are presented that can be used with a simple formula to get the false-positives rate for analyses of the standard types of experimental populations with diploid species with any size of genome. A new definition of the term 'suggestive linkage' is proposed that allows a more objective comparison of results across species.

  18. High-resolution nuclear magnetic resonance studies of proteins.

    PubMed

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  19. Development of Asset Management Decision Support Tools for Power Equipment

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki; Takahashi, Tsuguhiro

    Development of asset management decision support tools become very intensive in order to reduce maintenance cost of power equipment due to the liberalization of power business. This article reviews some aspects of present status of asset management decision support tools development for power equipment based on the papers published in international conferences, domestic conventions, and several journals.

  20. America in Space: The First Decade - Spacecraft Power

    NASA Technical Reports Server (NTRS)

    Corliss, William R.

    1970-01-01

    Electrical power is necessary for every manned and unmanned spacecraft, with the exception of a few special-purpose Earth satellites. It is the reliable flow and availability of electrical power that allows man to extend his personal ventures safely beyond the atmosphere and keeps unmanned scientific payloads serving as useful tools for space exploration and applications. Electric power is essential to space communications, guidance, control, tracking, telemetry, life-support systems, sensors, data handling and storage, and to assure the proper functioning of countless experimental and housekeeping systems and subsystems aboard operating spacecraft. It remains the task of the National Aeronautics and Space Administration, since NASA's founding in 1958, to fully investigate the chemical, nuclear and solar sources of energy and to see how best they can be converted to reliable spacecraft power. The research and technology of power-generating systems illustrates a seldom recognized goal of NASA - to assure this Nation a freedom of choice; the choice, in this case, being that of going where we wish to go in the atmosphere or in space. Technical capability is the key to such freedom. Power requirements and profiles are reviewed and power sources, including batteries, fuel cells, solar cell, RTGs and nuclear fission power plants in space, are highlighted.

  1. Identification of pathogen genomic variants through an integrated pipeline

    PubMed Central

    2014-01-01

    Background Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. Results We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. Conclusions The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package. PMID:24589256

  2. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Seth, Ajay; Pouya, Soha; Dembia, Christopher L.; Hicks, Jennifer L.; Delp, Scott L.

    2016-01-01

    Tools have been used for millions of years to augment the capabilities of the human body, allowing us to accomplish tasks that would otherwise be difficult or impossible. Powered exoskeletons and other assistive devices are sophisticated modern tools that have restored bipedal locomotion in individuals with paraplegia and have endowed unimpaired individuals with superhuman strength. Despite these successes, designing assistive devices that reduce energy consumption during running remains a substantial challenge, in part because these devices disrupt the dynamics of a complex, finely tuned biological system. Furthermore, designers have hitherto relied primarily on experiments, which cannot report muscle-level energy consumption and are fraught with practical challenges. In this study, we use OpenSim to generate muscle-driven simulations of 10 human subjects running at 2 and 5 m/s. We then add ideal, massless assistive devices to our simulations and examine the predicted changes in muscle recruitment patterns and metabolic power consumption. Our simulations suggest that an assistive device should not necessarily apply the net joint moment generated by muscles during unassisted running, and an assistive device can reduce the activity of muscles that do not cross the assisted joint. Our results corroborate and suggest biomechanical explanations for similar effects observed by experimentalists, and can be used to form hypotheses for future experimental studies. The models, simulations, and software used in this study are freely available at simtk.org and can provide insight into assistive device design that complements experimental approaches. PMID:27656901

  3. 3D FEM Simulation of Flank Wear in Turning

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  4. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes.

    PubMed

    Grabundzija, Ivana; Messing, Simon A; Thomas, Jainy; Cosby, Rachel L; Bilic, Ilija; Miskey, Csaba; Gogol-Döring, Andreas; Kapitonov, Vladimir; Diem, Tanja; Dalda, Anna; Jurka, Jerzy; Pritham, Ellen J; Dyda, Fred; Izsvák, Zsuzsanna; Ivics, Zoltán

    2016-03-02

    Helitron transposons capture and mobilize gene fragments in eukaryotes, but experimental evidence for their transposition is lacking in the absence of an isolated active element. Here we reconstruct Helraiser, an ancient element from the bat genome, and use this transposon as an experimental tool to unravel the mechanism of Helitron transposition. A hairpin close to the 3'-end of the transposon functions as a transposition terminator. However, the 3'-end can be bypassed by the transposase, resulting in transduction of flanking sequences to new genomic locations. Helraiser transposition generates covalently closed circular intermediates, suggestive of a replicative transposition mechanism, which provides a powerful means to disseminate captured transcriptional regulatory signals across the genome. Indeed, we document the generation of novel transcripts by Helitron promoter capture both experimentally and by transcriptome analysis in bats. Our results provide mechanistic insight into Helitron transposition, and its impact on diversification of gene function by genome shuffling.

  5. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  6. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  7. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  8. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space.

    PubMed

    Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco

    2015-06-01

    The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.

  9. Non-linear wave phenomena in Josephson elements for superconducting electronics

    NASA Astrophysics Data System (ADS)

    Christiansen, P. L.; Parmentier, R. D.; Skovgaard, O.

    1985-07-01

    The long and intermediate length Josephson tunnel junction oscillator with overlap geometry of linear and circular configuration, is investigated by computational solution of the perturbed sine-Gordon equation model and by experimental measurements. The model predicts the experimental results very well. Line oscillators as well as ring oscillators are treated. For long junctions soliton perturbation methods are developed and turn out to be efficient prediction tools, also providing physical understanding of the dynamics of the oscillator. For intermediate length junctions expansions in terms of linear cavity modes reduce computational costs. The narrow linewidth of the electromagnetic radiation (typically 1 kHz of a line at 10 GHz) is demonstrated experimentally. Corresponding computer simulations requiring a relative accuracy of less than 10 to the -7th power are performed on supercomputer CRAY-1-S. The broadening of linewidth due to external microradiation and internal thermal noise is determined.

  10. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  11. MetaGenyo: a web tool for meta-analysis of genetic association studies.

    PubMed

    Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro

    2017-12-16

    Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .

  12. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation

    PubMed Central

    Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan

    2014-01-01

    The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  13. In silico modeling and experimental evidence of coagulant protein interaction with precursors for nanoparticle functionalization.

    PubMed

    Okoli, Chuka; Sengottaiyan, Selvaraj; Arul Murugan, N; Pavankumar, Asalapuram R; Agren, Hans; Kuttuva Rajarao, Gunaratna

    2013-10-01

    The design of novel protein-nanoparticle hybrid systems has applications in many fields of science ranging from biomedicine, catalysis, water treatment, etc. The main barrier in devising such tool is lack of adequate information or poor understanding of protein-ligand chemistry. Here, we establish a new strategy based on computational modeling for protein and precursor linkers that can decorate the nanoparticles. Moringa oleifera (MO2.1) seed protein that has coagulation and antimicrobial properties was used. Superparamagnetic nanoparticles (SPION) with precursor ligands were used for the protein-ligand interaction studies. The molecular docking studies reveal that there are two binding sites, one is located at the core binding site; tetraethoxysilane (TEOS) or 3-aminopropyl trimethoxysilane (APTES) binds to this site while the other one is located at the side chain residues where trisodium citrate (TSC) or Si60 binds to this site. The protein-ligand distance profile analysis explains the differences in functional activity of the decorated SPION. Experimentally, TSC-coated nanoparticles showed higher coagulation activity as compared to TEOS- and APTES-coated SPION. To our knowledge, this is the first report on in vitro experimental data, which endorses the computational modeling studies as a powerful tool to design novel precursors for functionalization of nanomaterials; and develop interface hybrid systems for various applications.

  14. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  15. Using time reversal to detect entanglement and spreading of quantum information

    NASA Astrophysics Data System (ADS)

    Gaerttner, Martin

    2017-04-01

    Characterizing and understanding the states of interacting quantum systems and their non-equilibrium dynamics is the goal of quantum simulation. For this it is crucial to find experimentally feasible means for quantifying how entanglement and correlation build up and spread. The ability of analog quantum simulators to reverse the unitary dynamics of quantum many-body systems provides new tools in this quest. One such tool is the multiple-quantum coherence (MQC) spectrum previously used in NMR spectroscopy which can now be studied in so far inaccessible parameter regimes near zero temperature in highly controllable environments. I present recent progress in relating the MQC spectrum to established entanglement witnesses such as quantum Fisher information. Recognizing the MQC as out-of-time-order correlation functions, which quantify the spreading, or scrambling, of quantum information, allows us to establish a connection between these quantities and multi-partite entanglement. I will show recent experimental results obtained with a trapped ion quantum simulator and a spinor BEC illustrating the power of time reversal protocols. Supported by: JILA-NSF-PFC-1125844, NSF-PHY-1521080, ARO, AFOSR, AFOSR-MURI, DARPA, NIST.

  16. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique.

    PubMed

    Tang, Hua; Chen, Wei; Lin, Hao

    2016-04-01

    Immunoglobulins, also called antibodies, are a group of cell surface proteins which are produced by the immune system in response to the presence of a foreign substance (called antigen). They play key roles in many medical, diagnostic and biotechnological applications. Correct identification of immunoglobulins is crucial to the comprehension of humoral immune function. With the avalanche of protein sequences identified in postgenomic age, it is highly desirable to develop computational methods to timely identify immunoglobulins. In view of this, we designed a predictor called "IGPred" by formulating protein sequences with the pseudo amino acid composition into which nine physiochemical properties of amino acids were incorporated. Jackknife cross-validated results showed that 96.3% of immunoglobulins and 97.5% of non-immunoglobulins can be correctly predicted, indicating that IGPred holds very high potential to become a useful tool for antibody analysis. For the convenience of most experimental scientists, a web-server for IGPred was established at http://lin.uestc.edu.cn/server/IGPred. We believe that the web-server will become a powerful tool to study immunoglobulins and to guide related experimental validations.

  17. Functional specifications for AI software tools for electric power applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, W.S.

    1985-08-01

    The principle barrier to the introduction of artificial intelligence (AI) technology to the electric power industry has not been a lack of interest or appropriate problems, for the industry abounds in both. Like most others, however, the electric power industry lacks the personnel - knowledge engineers - with the special combination of training and skills AI programming demands. Conversely, very few AI specialists are conversant with electric power industry problems and applications. The recent availability of sophisticated AI programming environments is doing much to alleviate this shortage. These products provide a set of powerful and usable software tools that enablemore » even non-AI scientists to rapidly develop AI applications. The purpose of this project was to develop functional specifications for programming tools that, when integrated with existing general-purpose knowledge engineering tools, would expedite the production of AI applications for the electric power industry. Twelve potential applications, representative of major problem domains within the nuclear power industry, were analyzed in order to identify those tools that would be of greatest value in application development. Eight tools were specified, including facilities for power plant modeling, data base inquiry, simulation and machine-machine interface.« less

  18. Green Power Partner Resources

    EPA Pesticide Factsheets

    EPA Green Power Partners can access tools and resources to help promote their green power commitments. Partners use these tools to communicate the benefits of their green power use to their customers, stakeholders, and the general public.

  19. Experimental validation of an integrated controls-structures design methodology for a class of flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.

    1994-01-01

    This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.

  20. Does a presentation's medium affect its message? PowerPoint, Prezi, and oral presentations.

    PubMed

    Moulton, Samuel T; Türkay, Selen; Kosslyn, Stephen M

    2017-01-01

    Despite the prevalence of PowerPoint in professional and educational presentations, surprisingly little is known about how effective such presentations are. All else being equal, are PowerPoint presentations better than purely oral presentations or those that use alternative software tools? To address this question we recreated a real-world business scenario in which individuals presented to a corporate board. Participants (playing the role of the presenter) were randomly assigned to create PowerPoint, Prezi, or oral presentations, and then actually delivered the presentation live to other participants (playing the role of corporate executives). Across two experiments and on a variety of dimensions, participants evaluated PowerPoint presentations comparably to oral presentations, but evaluated Prezi presentations more favorably than both PowerPoint and oral presentations. There was some evidence that participants who viewed different types of presentations came to different conclusions about the business scenario, but no evidence that they remembered or comprehended the scenario differently. We conclude that the observed effects of presentation format are not merely the result of novelty, bias, experimenter-, or software-specific characteristics, but instead reveal a communication preference for using the panning-and-zooming animations that characterize Prezi presentations.

  1. Does a presentation’s medium affect its message? PowerPoint, Prezi, and oral presentations

    PubMed Central

    Türkay, Selen; Kosslyn, Stephen M.

    2017-01-01

    Despite the prevalence of PowerPoint in professional and educational presentations, surprisingly little is known about how effective such presentations are. All else being equal, are PowerPoint presentations better than purely oral presentations or those that use alternative software tools? To address this question we recreated a real-world business scenario in which individuals presented to a corporate board. Participants (playing the role of the presenter) were randomly assigned to create PowerPoint, Prezi, or oral presentations, and then actually delivered the presentation live to other participants (playing the role of corporate executives). Across two experiments and on a variety of dimensions, participants evaluated PowerPoint presentations comparably to oral presentations, but evaluated Prezi presentations more favorably than both PowerPoint and oral presentations. There was some evidence that participants who viewed different types of presentations came to different conclusions about the business scenario, but no evidence that they remembered or comprehended the scenario differently. We conclude that the observed effects of presentation format are not merely the result of novelty, bias, experimenter-, or software-specific characteristics, but instead reveal a communication preference for using the panning-and-zooming animations that characterize Prezi presentations. PMID:28678855

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  3. Feasibility of Air Levitated Surface Stage for Lithography Tool

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi

    The application of light-weight drive technology into the lithography stage has been the current state of art because of minimization of power loss. The purpose of this article is to point out the so-called, "surface stage" which is composed of Lorentz forced 3 DOF (Degree Of Freedom) planar motor (x, y and theta z), air levitation (bearing) system and motor cooling system, is the most balanced concept for the next generation lithography through the verification of each component by manufacturing simple parts and test stand. This paper presents the design method and procedure, and experimental results of the air levitated surface stage which was conducted several years ago, however the author is convinced that the results are enough to adapt various developments of precision machining tool.

  4. CNTRO: A Semantic Web Ontology for Temporal Relation Inferencing in Clinical Narratives.

    PubMed

    Tao, Cui; Wei, Wei-Qi; Solbrig, Harold R; Savova, Guergana; Chute, Christopher G

    2010-11-13

    Using Semantic-Web specifications to represent temporal information in clinical narratives is an important step for temporal reasoning and answering time-oriented queries. Existing temporal models are either not compatible with the powerful reasoning tools developed for the Semantic Web, or designed only for structured clinical data and therefore are not ready to be applied on natural-language-based clinical narrative reports directly. We have developed a Semantic-Web ontology which is called Clinical Narrative Temporal Relation ontology. Using this ontology, temporal information in clinical narratives can be represented as RDF (Resource Description Framework) triples. More temporal information and relations can then be inferred by Semantic-Web based reasoning tools. Experimental results show that this ontology can represent temporal information in real clinical narratives successfully.

  5. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musseau, O.; Torres, A.; Campbell, A.B.

    The authors present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. They used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a non-destructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a suddenmore » change in the charge collection image. Hot spots are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.« less

  6. The EZ diffusion model provides a powerful test of simple empirical effects.

    PubMed

    van Ravenzwaaij, Don; Donkin, Chris; Vandekerckhove, Joachim

    2017-04-01

    Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59-108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptual discrimination, letter identification, lexical decision, recognition memory, and signal detection. Since its original inception, the model has become increasingly complex in order to account for subtle, but reliable, data patterns. The additional complexity of the diffusion model renders it a tool that is only for experts. In response, Wagenmakers et al. (Psychonomic Bulletin & Review, 14, 3-22, 2007) proposed that researchers could use a more basic version of the diffusion model, the EZ diffusion. Here, we simulate experimental effects on data generated from the full diffusion model and compare the power of the full diffusion model and EZ diffusion to detect those effects. We show that the EZ diffusion model, by virtue of its relative simplicity, will be sometimes better able to detect experimental effects than the data-generating full diffusion model.

  7. Artificial neural network optimization of Althaea rosea seeds polysaccharides and its antioxidant activity.

    PubMed

    Liu, Feng; Liu, Wenhui; Tian, Shuge

    2014-09-01

    A combination of an orthogonal L16(4)4 test design and a three-layer artificial neural network (ANN) model was applied to optimize polysaccharides from Althaea rosea seeds extracted by hot water method. The highest optimal experimental yield of A. rosea seed polysaccharides (ARSPs) of 59.85 mg/g was obtained using three extraction numbers, 113 min extraction time, 60.0% ethanol concentration, and 1:41 solid-liquid ratio. Under these optimized conditions, the ARSP experimental yield was very close to the predicted yield of 60.07 mg/g and was higher than the orthogonal test results (40.86 mg/g). Structural characterizations were conducted using physicochemical property and FTIR analysis. In addition, the study of ARSP antioxidant activity demonstrated that polysaccharides exhibited high superoxide dismutase activity, strong reducing power, and positive scavenging activity on superoxide anion, hydroxyl radical, 2,2-diphenyl-1-picrylhydrazyl, and reducing power. Our results indicated that ANNs were efficient quantitative tools for predicting the total ARSP content. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Arcjet space thrusters

    NASA Astrophysics Data System (ADS)

    Keefer, Dennis; Rhodes, Robert

    1993-05-01

    Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.

  9. Envelope: interactive software for modeling and fitting complex isotope distributions.

    PubMed

    Sykes, Michael T; Williamson, James R

    2008-10-20

    An important aspect of proteomic mass spectrometry involves quantifying and interpreting the isotope distributions arising from mixtures of macromolecules with different isotope labeling patterns. These patterns can be quite complex, in particular with in vivo metabolic labeling experiments producing fractional atomic labeling or fractional residue labeling of peptides or other macromolecules. In general, it can be difficult to distinguish the contributions of species with different labeling patterns to an experimental spectrum and difficult to calculate a theoretical isotope distribution to fit such data. There is a need for interactive and user-friendly software that can calculate and fit the entire isotope distribution of a complex mixture while comparing these calculations with experimental data and extracting the contributions from the differently labeled species. Envelope has been developed to be user-friendly while still being as flexible and powerful as possible. Envelope can simultaneously calculate the isotope distributions for any number of different labeling patterns for a given peptide or oligonucleotide, while automatically summing these into a single overall isotope distribution. Envelope can handle fractional or complete atom or residue-based labeling, and the contribution from each different user-defined labeling pattern is clearly illustrated in the interactive display and is individually adjustable. At present, Envelope supports labeling with 2H, 13C, and 15N, and supports adjustments for baseline correction, an instrument accuracy offset in the m/z domain, and peak width. Furthermore, Envelope can display experimental data superimposed on calculated isotope distributions, and calculate a least-squares goodness of fit between the two. All of this information is displayed on the screen in a single graphical user interface. Envelope supports high-quality output of experimental and calculated distributions in PNG or PDF format. Beyond simply comparing calculated distributions to experimental data, Envelope is useful for planning or designing metabolic labeling experiments, by visualizing hypothetical isotope distributions in order to evaluate the feasibility of a labeling strategy. Envelope is also useful as a teaching tool, with its real-time display capabilities providing a straightforward way to illustrate the key variable factors that contribute to an observed isotope distribution. Envelope is a powerful tool for the interactive calculation and visualization of complex isotope distributions for comparison to experimental data. It is available under the GNU General Public License from http://williamson.scripps.edu/envelope/.

  10. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  11. Hand and power tools: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Some hand and power tools were described. Section One describes several tools and shop techniques that may be useful in the home or commercial shop. Section Two contains descriptions of tools that are particularly applicable to industrial work, and in Section Three a number of metal working tools are presented.

  12. Introduction to metabolomics and its applications in ophthalmology

    PubMed Central

    Tan, S Z; Begley, P; Mullard, G; Hollywood, K A; Bishop, P N

    2016-01-01

    Metabolomics is the study of endogenous and exogenous metabolites in biological systems, which aims to provide comparative semi-quantitative information about all metabolites in the system. Metabolomics is an emerging and potentially powerful tool in ophthalmology research. It is therefore important for health professionals and researchers involved in the speciality to understand the basic principles of metabolomics experiments. This article provides an overview of the experimental workflow and examples of its use in ophthalmology research from the study of disease metabolism and pathogenesis to identification of biomarkers. PMID:26987591

  13. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  14. Flow-assisted single-beam optothermal manipulation of microparticles.

    PubMed

    Liu, Yangyang; Poon, Andrew W

    2010-08-16

    An optothermal tweezer was developed with a single-beam laser at 1550 nm for manipulation of colloidal microparticles. Strong absorption in water can thermally induce a localized flow, which exerts a Stokes' drag on the particles that complements the gradient force. Long-range capturing of 6 microm polystyrene particles over approximately 176 microm was observed with a tweezing power of approximately 7 mW. Transportation and levitation, targeted deposition and selective levitation of particles were explored to experimentally demonstrate the versatility of the optothermal tweezer as a multipurpose particle manipulation tool.

  15. [Combined use of various laser radiations in thoracic surgery in experimental studies].

    PubMed

    Ismailov, D A; Khoroshaev, V A; Shishkin, M A; Baĭbekov, I M

    1993-01-01

    The impact of various types of low-intensive lasers (He-Ne, copper vapour, ultraviolet, infrared, infrared gallium arsenide) on healing of a wound made by CO2 laser at an output power of 25 W was studied in an experiment on 120 albino Wistar rats. It was found that a concurrent application of high- and low-intensive lasers resulted in acceleration of reparative processes in the lung, stimulating the healing of laser-induced wounds. The infrared gallium arsenide laser was demonstrated to be the best tool in stimulating the healing process.

  16. A Perspective on DNA Microarrays in Pathology Research and Practice

    PubMed Central

    Pollack, Jonathan R.

    2007-01-01

    DNA microarray technology matured in the mid-1990s, and the past decade has witnessed a tremendous growth in its application. DNA microarrays have provided powerful tools for pathology researchers seeking to describe, classify, and understand human disease. There has also been great expectation that the technology would advance the practice of pathology. This review highlights some of the key contributions of DNA microarrays to experimental pathology, focusing in the area of cancer research. Also discussed are some of the current challenges in translating utility to clinical practice. PMID:17600117

  17. An EMTP system level model of the PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur

    1991-01-01

    A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.

  18. Co-fuse: a new class discovery analysis tool to identify and prioritize recurrent fusion genes from RNA-sequencing data.

    PubMed

    Paisitkriangkrai, Sakrapee; Quek, Kelly; Nievergall, Eva; Jabbour, Anissa; Zannettino, Andrew; Kok, Chung Hoow

    2018-06-07

    Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .

  19. The use of power tools in the insertion of cortical bone screws.

    PubMed

    Elliott, D

    1992-01-01

    Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.

  20. Applying Propensity Score Methods in Medical Research: Pitfalls and Prospects

    PubMed Central

    Luo, Zhehui; Gardiner, Joseph C.; Bradley, Cathy J.

    2012-01-01

    The authors review experimental and nonexperimental causal inference methods, focusing on assumptions for the validity of instrumental variables and propensity score (PS) methods. They provide guidance in four areas for the analysis and reporting of PS methods in medical research and selectively evaluate mainstream medical journal articles from 2000 to 2005 in the four areas, namely, examination of balance, overlapping support description, use of estimated PS for evaluation of treatment effect, and sensitivity analyses. In spite of the many pitfalls, when appropriately evaluated and applied, PS methods can be powerful tools in assessing average treatment effects in observational studies. Appropriate PS applications can create experimental conditions using observational data when randomized controlled trials are not feasible and, thus, lead researchers to an efficient estimator of the average treatment effect. PMID:20442340

  1. Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)

    NASA Technical Reports Server (NTRS)

    Fleurial, J.

    1994-01-01

    IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.

  2. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de; Lenske, H.

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capturemore » reaction rates of astrophysical importance. A comparison to available experimental data is discussed.« less

  3. Editorial

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Icardi, Matteo; Prodanović, Maša

    2018-05-01

    Substantial progress has been made over last few decades on understanding the physics of multiphase flow and reactive transport phenomena in subsurface porous media. Confluence of advances in experimental techniques (including micromodels, X-ray microtomography, Nuclear Magnetic Resonance (NMR)) as well as computational power have made it possible to observe static and dynamic multi-scale flow, transport and reactive processes, thus stimulating development of new generation of modelling tools from pore to field scale. One of the key challenges is to make experiment and models as complementary as possible, with continuously improving experimental methods in order to increase predictive capabilities of theoretical models across scales. This creates need to establish rigorous benchmark studies of flow, transport and reaction in porous media which can then serve as the basis for introducing more complex phenomena in future developments.

  4. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  5. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data.

    PubMed

    Promworn, Yuttachon; Kaewprommal, Pavita; Shaw, Philip J; Intarapanich, Apichart; Tongsima, Sissades; Piriyapongsa, Jittima

    2017-01-01

    Biochemical methods are available for enriching 5' ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq) and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5' ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance. We present Transformation of Nucleotide Enrichment Ratios (ToNER), a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5' ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5' ends than TSSAR. In general, the transcript 5' ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR. ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5'ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a.biotec.or.th/GI/tools/toner) and GitHub repository (https://github.com/PavitaKae/ToNER).

  6. XML-based data model and architecture for a knowledge-based grid-enabled problem-solving environment for high-throughput biological imaging.

    PubMed

    Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif

    2008-03-01

    High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.

  7. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  8. Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.

    1997-12-01

    Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.

  9. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  10. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts

    NASA Astrophysics Data System (ADS)

    Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo

    This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.

  11. Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.

  12. Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-03-01

    We use high-resolution tracer data from an experimental site to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Transport processes operating at the catchment scale are reflected in the evolving residence time distribution of the catchment water storage and in the age selection operated by out-fluxes. Such processes are described here through StorAge Selection (SAS) functions parameterized as power laws of the normalized rank storage. Such functions are computed through appropriate solution of the master equation defining formally the evolution of residence and travel times. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified and detailed comparison with empirical data sets are possible. Properly calibrated numerical tools provide simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. Results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The study shows that power law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  13. Impact of design features upon perceived tool usability and safety

    NASA Astrophysics Data System (ADS)

    Wiker, Steven F.; Seol, Mun-Su

    2005-11-01

    While injuries from powered hand tools are caused by a number of factors, this study looks specifically at the impact of the tools design features on perceived tool usability and safety. The tools used in this study are circular saws, power drills and power nailers. Sixty-nine males and thirty-two females completed an anonymous web-based questionnaire that provided orthogonal view photographs of the various tools. Subjects or raters provided: 1) description of the respondents or raters, 2) description of the responses from the raters, and 3) analysis of the interrelationships among respondent ratings of tool safety and usability, physical metrics of the tool, and rater demographic information. The results of the study found that safety and usability were dependent materially upon rater history of use and experience, but not upon training in safety and usability, or quality of design features of the tools (e.g., grip diameters, trigger design, guards, etc.). Thus, positive and negative transfer of prior experience with use of powered hand tools is far more important than any expectancy that may be driven by prior safety and usability training, or from the visual cues that are provided by the engineering design of the tool.

  14. A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants II: COSMO RS and COSMOTherm

    DTIC Science & Technology

    2017-04-01

    A COMPARISON OF PREDICTIVE THERMO AND WATER SOLVATION PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR...4. TITLE AND SUBTITLE A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected...1  2.  EXPERIMENTAL PROCEDURE

  15. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  16. CANEapp: a user-friendly application for automated next generation transcriptomic data analysis.

    PubMed

    Velmeshev, Dmitry; Lally, Patrick; Magistri, Marco; Faghihi, Mohammad Ali

    2016-01-13

    Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers. To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp's performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app . We believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.

  17. Assessment of ICount software, a precise and fast egg counting tool for the mosquito vector Aedes aegypti.

    PubMed

    Gaburro, Julie; Duchemin, Jean-Bernard; Paradkar, Prasad N; Nahavandi, Saeid; Bhatti, Asim

    2016-11-18

    Widespread in the tropics, the mosquito Aedes aegypti is an important vector of many viruses, posing a significant threat to human health. Vector monitoring often requires fecundity estimation by counting eggs laid by female mosquitoes. Traditionally, manual data analyses have been used but this requires a lot of effort and is the methods are prone to errors. An easy tool to assess the number of eggs laid would facilitate experimentation and vector control operations. This study introduces a built-in software called ICount allowing automatic egg counting of the mosquito vector, Aedes aegypti. ICount egg estimation compared to manual counting is statistically equivalent, making the software effective for automatic and semi-automatic data analysis. This technique also allows rapid analysis compared to manual methods. Finally, the software has been used to assess p-cresol oviposition choices under laboratory conditions in order to test the system with different egg densities. ICount is a powerful tool for fast and precise egg count analysis, freeing experimenters from manual data processing. Software access is free and its user-friendly interface allows easy use by non-experts. Its efficiency has been tested in our laboratory with oviposition dual choices of Aedes aegypti females. The next step will be the development of a mobile application, based on the ICount platform, for vector monitoring surveys in the field.

  18. "Using Power Tables to Compute Statistical Power in Multilevel Experimental Designs"

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros

    2009-01-01

    Power computations for one-level experimental designs that assume simple random samples are greatly facilitated by power tables such as those presented in Cohen's book about statistical power analysis. However, in education and the social sciences experimental designs have naturally nested structures and multilevel models are needed to compute the…

  19. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less

  20. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. Copyright © 2015 Hadjithomas et al.

  1. The skyshine benchmark experiment revisited.

    PubMed

    Terry, Ian R

    2005-01-01

    With the coming renaissance of nuclear power, heralded by new nuclear power plant construction in Finland, the issue of qualifying modern tools for calculation becomes prominent. Among the calculations required may be the determination of radiation levels outside the plant owing to skyshine. For example, knowledge of the degree of accuracy in the calculation of gamma skyshine through the turbine hall roof of a BWR plant is important. Modern survey programs which can calculate skyshine dose rates tend to be qualified only by verification with the results of Monte Carlo calculations. However, in the past, exacting experimental work has been performed in the field for gamma skyshine, notably the benchmark work in 1981 by Shultis and co-workers, which considered not just the open source case but also the effects of placing a concrete roof above the source enclosure. The latter case is a better reflection of reality as safety considerations nearly always require the source to be shielded in some way, usually by substantial walls but by a thinner roof. One of the tools developed since that time, which can both calculate skyshine radiation and accurately model the geometrical set-up of an experiment, is the code RANKERN, which is used by Framatome ANP and other organisations for general shielding design work. The following description concerns the use of this code to re-address the experimental results from 1981. This then provides a realistic gauge to validate, but also to set limits on, the program for future gamma skyshine applications within the applicable licensing procedures for all users of the code.

  2. Radiation shielding quality assurance

    NASA Astrophysics Data System (ADS)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  3. The study of non-fouling and non-specific cellular binding on functionalized surface for mammalian cell identification and manipulation

    NASA Astrophysics Data System (ADS)

    Zainudin, Nor Syuhada; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2017-04-01

    Surface functionalization has emerged as a powerful tool for mapping limitless surface-cell membrane interaction in diverse biomolecular applications. Inhibition of non-specific biomolecular and cellular adhesion to solid surfaces is critical in improving the performance of some biomedical devices, particularly for in vitro bioassays. Some factors have to be paid particular attention in determining the right surface modification which are the types of surface, the methods and chemical solution that being used during the experimentation and also tools for analyzing the results. Improved surface functionalization technologies that provide better non-fouling performance in conjunction with specific attachment chemistries are sought for these applications. Hence, this paper serves as a review for multiple surface treatment methods including PEG grafting, adsorptive chemistries, self-assembled monolayers (SAMs) and plasma treatments.

  4. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  5. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  6. EMP/GMD Phase 0 Report, A Review of EMP Hazard Environments and Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, Michael Kelly; Backhaus, Scott N.; Woodroffe, Jesse Richard

    The purpose of this study is to determine methods to analyze the hazard environments, impacts, and consequences of different sources of electromagnetic pulse (EMP), including nuclear electromagnetic pulse (NEMP) and geomagnetic disturbance (GMD) on the U.S. electric power infrastructures and to use those methods to determine EMP and GMD events of concern. The study will be carried out in four phases, each of which will provide higher levels of analytic fidelity that focuses on those EMP/GMD sources and events that create significant consequences, or whose consequences are sufficiently uncertain, to require more in-depth study. This study will leverage the bestmore » experimental data; device, equipment and system models; and simulation tools currently available. This study focuses primarily on the bulk electric system (BES) including large generating stations, large power transformers, the transmission network, and transmission system protection. Electrical distribution systems may potentially be included, if warranted, after consideration of the consequences for the bulk power system.« less

  7. EMU Battery/module Service Tool Characterization Study

    NASA Technical Reports Server (NTRS)

    Palandati, C. F.

    1984-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft is being modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery, a silver zinc battery, was tested for the power tool application. The results obtained during show the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  8. Green Power Community Tools and Resources

    EPA Pesticide Factsheets

    GPP supplies GPCs will tools to promote their status. GPCs are a subset of the Green Power Partnership; municipalities or tribal governments where government, businesses, and residents collectively use enough green power to meet GPP requirements.

  9. In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography.

    PubMed

    Molenaar, Sam D; Sleutels, Tom; Pereira, Joao; Iorio, Matteo; Borsje, Casper; Zamudio, Julian A; Fabregat-Santiago, Francisco; Buisman, Cees J N; Ter Heijne, Annemiek

    2018-04-25

    Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real-time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well-established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgCODbiomass  gCODacetate -1 at an anode potential of -0.35 V versus Ag/AgCl. Time-lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in-depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. A sensitive and reliable test instrument to assess swimming in rats with spinal cord injury.

    PubMed

    Xu, Ning; Åkesson, Elisabet; Holmberg, Lena; Sundström, Erik

    2015-09-15

    For clinical translation of experimental spinal cord injury (SCI) research, evaluation of animal SCI models should include several sensorimotor functions. Validated and reliable assessment tools should be applicable to a wide range of injury severity. The BBB scale is the most widely used test instrument, but similar to most others it is used to assess open field ambulation. We have developed an assessment tool for swimming in rats with SCI, with high discriminative power and sensitivity to functional recovery after mild and severe injuries, without need for advanced test equipment. We studied various parameters of swimming in four groups of rats with thoracic SCI of different severity and a control group, for 8 weeks after surgery. Six parameters were combined in a multiple item scale, the Karolinska Institutet Swim Assessment Tool (KSAT). KSAT scores for all SCI groups showed consistent functional improvement after injury, and significant differences between the five experimental groups. The internal consistency, the inter-rater and the test-retest reliability were very high. The KSAT score was highly correlated to the cross-section area of white matter spared at the injury epicenter. Importantly, even after 8 weeks of recovery the KSAT score reliably discriminated normal animals from those inflicted by the mildest injury, and also displayed the recovery of the most severely injured rats. We conclude that this swim scale is an efficient and reliable tool to assess motor activity during swimming, and an important addition to the methods available for evaluating rat models of SCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2017-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.

  12. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    PubMed Central

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  13. Results of an Experimental Exploration of Advanced Automated Geospatial Tools: Agility in Complex Planning

    DTIC Science & Technology

    2009-06-01

    AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet

  14. Design and experimental investigation of a cryogenic system for environmental test applications

    NASA Astrophysics Data System (ADS)

    Yan, Lutao; Li, Hong; Liu, Yue; Han, Che; Lu, Tian; Su, Yulei

    2015-04-01

    This paper is concerned with the design, development and performance testing of a cryogenic system for use in high cooling power instruments for ground-based environmental testing. The system provides a powerful tool for a combined environmental test that consists of high pressure and cryogenic temperatures. Typical cryogenic conditions are liquid hydrogen (LH2) and liquid oxygen (LO2), which are used in many fields. The cooling energy of liquid nitrogen (LN2) and liquid helium (LHe) is transferred to the specimen by a closed loop of helium cycle. In order to minimize the consumption of the LHe, the optimal design of heat recovery exchangers has been used in the system. The behavior of the system is discussed based on experimental data of temperature and pressure. The results show that the temperature range from room temperature to LN2 temperature can be achieved by using LN2, the pressurization process is stable and the high test pressure is maintained. Lower temperatures, below 77 K, can also be obtained with LHe cooling, the typical cooling time is 40 min from 90 K to 22 K. Stable temperatures of 22 K at the inlet of the specimen have been observed, and the system in this work can deliver to the load a cooling power of several hundred watts at a pressure of 0.58 MPa.

  15. Continuous-variable quantum computing on encrypted data.

    PubMed

    Marshall, Kevin; Jacobsen, Christian S; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L

    2016-12-14

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  16. Lipid Interaction Sites on Channels, Transporters and Receptors: Recent Insights from Molecular Dynamics Simulations

    PubMed Central

    Hedger, George; Sansom, Mark S. P.

    2017-01-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244

  17. Continuous-variable quantum computing on encrypted data

    PubMed Central

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks. PMID:27966528

  18. Continuous-variable quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-12-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  19. Experimental and numerical study of impact of voltage fluctuate, flicker and power factor wave electric generator to local distribution

    NASA Astrophysics Data System (ADS)

    Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan

    2017-10-01

    Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.

  20. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    NASA Astrophysics Data System (ADS)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  1. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.

    PubMed

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.

  2. Two states or not two states: Single-molecule folding studies of protein L

    NASA Astrophysics Data System (ADS)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  3. Design and Analysis of Bionic Cutting Blades Using Finite Element Method

    PubMed Central

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583

  4. A genetic algorithm approach in interface and surface structure optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less

  5. The Laser Mega-Joule : LMJ & PETAL status and Program Overview

    NASA Astrophysics Data System (ADS)

    Miquel, J.-L.; Lion, C.; Vivini, P.

    2016-03-01

    The laser Megajoule (LMJ), developed by the French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), will be a cornerstone of the French Simulation Program, which combines improvement of physics models, high performance numerical simulation, and experimental validation. The LMJ facility is under construction at CEA CESTA near Bordeaux and will provide the experimental capabilities to study High-Energy Density Physics (HEDP). One of its goals is to obtain ignition and burn of DT-filled capsules imploded, through indirect drive scheme, inside rugby-shape hohlraum. The PETAL project consists in the addition of one short-pulse (ps) ultra-high-power, high-energy beam (kJ) to the LMJ facility. PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. This combination will expand the LMJ experimental field on HEDP. This paper presents an update of LMJ & PETAL status, together with the development of the overall program including targets, plasma diagnostics and simulation tools.

  6. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  7. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    NASA Astrophysics Data System (ADS)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  8. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Vernon Cole; Abhra Roy; Ashok Damle

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.« less

  9. Failure analysis of a tool steel torque shaft

    NASA Technical Reports Server (NTRS)

    Reagan, J. R.

    1981-01-01

    A low design load drive shaft used to deliver power from an experimental exhaust heat recovery system to the crankshaft of an experimental diesel truck engine failed during highway testing. An independent testing laboratory analyzed the failure by routine metallography and attributed the failure to fatigue induced by a banded microstructure. Visual examination by NASA of the failed shaft plus the knowledge of the torsional load that it carried pointed to a 100 percent ductile failure with no evidence of fatigue. Scanning electron microscopy confirmed this. Torsional test specimens were produced from pieces of the failed shaft and torsional overload testing produced identical failures to that which had occurred in the truck engine. This pointed to a failure caused by a high overload and although the microstructure was defective it was not the cause of the failure.

  10. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    PubMed

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  11. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator

    PubMed Central

    Drewes, Rich; Zou, Quan; Goodman, Philip H.

    2008-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading “glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS. PMID:19506707

  12. Tupaia belangeri as an experimental animal model for viral infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development.

  13. Tupaia Belangeri as an Experimental Animal Model for Viral Infection

    PubMed Central

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  14. Magnetoencephalography in Stroke Recovery and Rehabilitation

    PubMed Central

    Paggiaro, Andrea; Birbaumer, Niels; Cavinato, Marianna; Turco, Cristina; Formaggio, Emanuela; Del Felice, Alessandra; Masiero, Stefano; Piccione, Francesco

    2016-01-01

    Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain–computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility. PMID:27065338

  15. The Biopsychology-Toolbox: a free, open-source Matlab-toolbox for the control of behavioral experiments.

    PubMed

    Rose, Jonas; Otto, Tobias; Dittrich, Lars

    2008-10-30

    The Biopsychology-Toolbox is a free, open-source Matlab-toolbox for the control of behavioral experiments. The major aim of the project was to provide a set of basic tools that allow programming novices to control basic hardware used for behavioral experimentation without limiting the power and flexibility of the underlying programming language. The modular design of the toolbox allows portation of parts as well as entire paradigms between different types of hardware. In addition to the toolbox, this project offers a platform for the exchange of functions, hardware solutions and complete behavioral paradigms.

  16. Internal scanning method as unique imaging method of optical vortex scanning microscope

    NASA Astrophysics Data System (ADS)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  17. Electronic processes in TTF-derived complexes studied by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Graja, Andrzej

    2001-09-01

    We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.

  18. The ROSPHERE γ-ray spectroscopy array

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.

    2016-11-01

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  19. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.

    2018-03-01

    A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

  20. Contractor's STTR Phase I Final Report- Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less

  1. Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less

  2. A computer controlled power tool for the servicing of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Konkel, Carl; Smith, Chris; Brown, Lee; Wagner, Ken

    1996-01-01

    The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.

  3. Boundaries of mass resolution in native mass spectrometry.

    PubMed

    Lössl, Philip; Snijder, Joost; Heck, Albert J R

    2014-06-01

    Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.

  4. designGG: an R-package and web tool for the optimal design of genetical genomics experiments.

    PubMed

    Li, Yang; Swertz, Morris A; Vera, Gonzalo; Fu, Jingyuan; Breitling, Rainer; Jansen, Ritsert C

    2009-06-18

    High-dimensional biomolecular profiling of genetically different individuals in one or more environmental conditions is an increasingly popular strategy for exploring the functioning of complex biological systems. The optimal design of such genetical genomics experiments in a cost-efficient and effective way is not trivial. This paper presents designGG, an R package for designing optimal genetical genomics experiments. A web implementation for designGG is available at http://gbic.biol.rug.nl/designGG. All software, including source code and documentation, is freely available. DesignGG allows users to intelligently select and allocate individuals to experimental units and conditions such as drug treatment. The user can maximize the power and resolution of detecting genetic, environmental and interaction effects in a genome-wide or local mode by giving more weight to genome regions of special interest, such as previously detected phenotypic quantitative trait loci. This will help to achieve high power and more accurate estimates of the effects of interesting factors, and thus yield a more reliable biological interpretation of data. DesignGG is applicable to linkage analysis of experimental crosses, e.g. recombinant inbred lines, as well as to association analysis of natural populations.

  5. Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction

    PubMed Central

    González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca

    2016-01-01

    Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638

  6. Morphogenesis of the C. elegans vulva

    PubMed Central

    Schindler, Adam J

    2012-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the C. elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of seven different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviours that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell-cell adhesion, cell migration, cell fusion, extracellular matrix remodelling and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. PMID:23418408

  7. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  8. Hand and Power Tools

    DTIC Science & Technology

    1998-01-01

    equipped with a constant- pressure switch or control: drills; tappers; fastener drivers; horizontal, vertical, and angle grinders with wheels more than...hand-held power tools must be equipped with either a positive “on-off” control switch, a constant pressure switch , or a “lock-on” control: disc sanders...percussion tools with no means of holding accessories securely, must be equipped with a constant- pressure switch that will shut off the power when the

  9. Evaluation of the analgesic effect of low-power optical radiation in acute inflammatory process

    NASA Astrophysics Data System (ADS)

    Ferreira, Denise M.; Zangaro, Renato A.; Cury, Yara; Frigo, Lucio; Barbosa, Daniella G.; da Silva Melo, Milene; Munin, Egberto

    2004-07-01

    Many research works have explored the use of the low power laser as a tool for the control of inflammatory processes. The anti-inflammatory effect of low power optical radiation and its ability to induce analgesia has been reported for different experimental conditions. Many published works are very qualitative in nature. In this work the action of low power laser radiation on acute inflammatory process is evaluated. The time evolution of rat paw edema and pain induced by carrageenan was experimentally monitored. A 632.8 nm He-Ne laser was used for the treatment. The laser treatment, at a dosage of 2,5 J/cm2, was applied at the first, second and third hour after the induction of the inflammation. A hydroplethysmometer was used for the evaluation of the inflammation. The measurement of pain sensitivity was performed according to the method described by Randall and Selito, (1957). The laser treatment was capable of inhibiting the carrageenan-induced hyperalgesia by 49% (p<0,001) at the second hour after the induction, as compared to the non-treated group. At the fourth hour (peak of the carrageenan action on hyperalgesia) and at the sixth hour, the achieved inhibition was 49% (p<0,001) and 61% (p<0,001), respectively. In the treated groups, the edema evolution was inhibited by 38% (p<0,01), at the second hour after induction, as compared to the non-treated groups. At the fourth hour (peak of the carrageenan action on leakage) and at sixth hour the achieved inhibition was 35% (p<0,01) and 30% (p<0,05) respectively.

  10. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Hamel, Dr. William R.

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simplermore » perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.« less

  11. Power-Tool Adapter For T-Handle Screws

    NASA Technical Reports Server (NTRS)

    Deloach, Stephen R.

    1992-01-01

    Proposed adapter enables use of pneumatic drill, electric drill, electric screwdriver, or similar power tool to tighten or loosen T-handled screws. Notched tube with perpendicular rod welded to it inserted in chuck of tool. Notched end of tube slipped over screw handle.

  12. A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak

    NASA Astrophysics Data System (ADS)

    Carnevali, Antonino

    An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.

  13. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  14. Composite multi-parameter ranking of real and virtual compounds for design of MC4R agonists: renaissance of the Free-Wilson methodology.

    PubMed

    Nilsson, Ingemar; Polla, Magnus O

    2012-10-01

    Drug design is a multi-parameter task present in the analysis of experimental data for synthesized compounds and in the prediction of new compounds with desired properties. This article describes the implementation of a binned scoring and composite ranking scheme for 11 experimental parameters that were identified as key drivers in the MC4R project. The composite ranking scheme was implemented in an AstraZeneca tool for analysis of project data, thereby providing an immediate re-ranking as new experimental data was added. The automated ranking also highlighted compounds overlooked by the project team. The successful implementation of a composite ranking on experimental data led to the development of an equivalent virtual score, which was based on Free-Wilson models of the parameters from the experimental ranking. The individual Free-Wilson models showed good to high predictive power with a correlation coefficient between 0.45 and 0.97 based on the external test set. The virtual ranking adds value to the selection of compounds for synthesis but error propagation must be controlled. The experimental ranking approach adds significant value, is parameter independent and can be tuned and applied to any drug discovery project.

  15. Autonomous mobile robot research using the HERMIES-III robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, F.G.; Beckerman, M.; Spelt, P.F.

    1989-01-01

    This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less

  16. Recent gyrokinetic turbulence insights with GENE and direct comparison with experimental measurements

    NASA Astrophysics Data System (ADS)

    Goerler, Tobias

    2017-10-01

    Throughout the last years direct comparisons between gyrokinetic turbulence simulations and experimental measurements have been intensified substantially. Such studies are largely motivated by the urgent need for reliable transport predictions for future burning plasma devices and the associated necessity for validating the numerical tools. On the other hand, they can be helpful to assess the way a particular diagnostic experiences turbulence and provide ideas for further optimization and the physics that may not yet be accessible. Here, synthetic diagnostics, i.e. models that mimic the spatial and sometimes temporal response of the experimental diagnostic, play an important role. In the contribution at hand, we focus on recent gyrokinetic GENE simulations dedicated to ASDEX Upgrade L-mode plasmas and comparison with various turbulence measurements. Particular emphasis will be given to density fluctuation spectra which are experimentally accessible via Doppler reflectometry. A sophisticated synthetic diagnostic involving a fullwave code has recently been established and solves the long-lasting question on different spectral roll-overs in gyrokinetic and measured spectra as well as the potentially different power laws in the O- and X-mode signals. The demonstrated agreement furthermore extends the validation data base deep into spectral space and confirms a proper coverage of the turbulence cascade physics. The flux-matched GENE simulations are then used to study the sensitivity of the latter to the main microinstability drive and investigate the energetics at the various scales. Additionally, electron scale turbulence based modifications of the high-k power law spectra in such plasmas will be presented and their visibility in measurable signals be discussed.

  17. Loads produced by a suited subject performing tool tasks without the use of foot restraints

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Poliner, Jeffrey; Klute, Glenn K.

    1993-01-01

    With an increase in the frequency of extravehicular activities (EVA's) aboard the Space Shuttle, NASA is interested in determining the capabilities of suited astronauts while performing manual tasks during an EVA, in particular the situations in which portable foot restraints are not used to stabilize the astronauts. Efforts were made to document the forces that are transmitted to spacecraft while pushing and pulling an object as well as while operating a standard wrench and an automatic power tool. The six subjects studied aboard the KC-135 reduced gravity aircraft were asked to exert a maximum torque and to maintain a constant level of torque with a wrench, to push and pull an EVA handrail, and to operate a Hubble Space Telescope (HST) power tool. The results give an estimate of the forces and moments that an operator will transmit to the handrail as well as to the supporting structure. In general, it was more effective to use the tool inwardly toward the body rather than away from the body. There were no differences in terms of strength capabilities between right and left hands. The power tool was difficult to use. It is suggested that ergonomic redesigning of the power tool may increase the efficiency of power tool use.

  18. The effects of environment and ownership on children's innovation of tools and tool material selection.

    PubMed

    Sheridan, Kimberly M; Konopasky, Abigail W; Kirkwood, Sophie; Defeyter, Margaret A

    2016-03-19

    Research indicates that in experimental settings, young children of 3-7 years old are unlikely to devise a simple tool to solve a problem. This series of exploratory studies done in museums in the US and UK explores how environment and ownership of materials may improve children's ability and inclination for (i) tool material selection and (ii) innovation. The first study takes place in a children's museum, an environment where children can use tools and materials freely. We replicated a tool innovation task in this environment and found that while 3-4 year olds showed the predicted low levels of innovation rates, 4-7 year olds showed higher rates of innovation than the younger children and than reported in prior studies. The second study explores the effect of whether the experimental materials are owned by the experimenter or the child on tool selection and innovation. Results showed that 5-6 year olds and 6-7 year olds were more likely to select tool material they owned compared to tool material owned by the experimenter, although ownership had no effect on tool innovation. We argue that learning environments supporting tool exploration and invention and conveying ownership over materials may encourage successful tool innovation at earlier ages. © 2016 The Author(s).

  19. Yeast as a tool to identify anti-aging compounds

    PubMed Central

    Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac

    2018-01-01

    Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792

  20. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-05-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  1. The SeaHorn Verification Framework

    NASA Technical Reports Server (NTRS)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  2. The Effects of Video Games on Cognition and Brain Structure: Potential Implications for Neuropsychiatric Disorders.

    PubMed

    Shams, Tahireh A; Foussias, George; Zawadzki, John A; Marshe, Victoria S; Siddiqui, Ishraq; Müller, Daniel J; Wong, Albert H C

    2015-09-01

    Video games are now a ubiquitous form of entertainment that has occasionally attracted negative attention. Video games have also been used to test cognitive function, as therapeutic interventions for neuropsychiatric disorders, and to explore mechanisms of experience-dependent structural brain changes. Here, we review current research on video games published from January 2011 to April 2014 with a focus on studies relating to mental health, cognition, and brain imaging. Overall, there is evidence that specific types of video games can alter brain structure or improve certain aspects of cognitive functioning. Video games can also be useful as neuropsychological assessment tools. While research in this area is still at a very early stage, there are interesting results that encourage further work in this field, and hold promise for utilizing this technology as a powerful therapeutic and experimental tool.

  3. Inferring subunit stoichiometry from single molecule photobleaching

    PubMed Central

    2013-01-01

    Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552

  4. Novel vaccine strategies against emerging viruses

    PubMed Central

    García-Sastre, Adolfo; Mena, Ignacio

    2013-01-01

    One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens. PMID:23477832

  5. Experimental investigations on the effect of process parameters with the use of minimum quantity solid lubrication in turning

    NASA Astrophysics Data System (ADS)

    Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.

    2018-04-01

    Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.

  6. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-01-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  7. Virus-Based MicroRNA Silencing in Plants1[C][W][OPEN

    PubMed Central

    Sha, Aihua; Zhao, Jinping; Yin, Kangquan; Tang, Yang; Wang, Yan; Wei, Xiang; Hong, Yiguo; Liu, Yule

    2014-01-01

    MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, the functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based microRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through tobacco rattle virus-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato (Solanum lycopersicum) compound leaves. These results demonstrate that tobacco rattle virus-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species. PMID:24296072

  8. A new way to make diamond tip hosting an atomic sized defect

    NASA Astrophysics Data System (ADS)

    Zhou, Tony; Stohr, Rainer; Dovzhenko, Yuliya; Casola, Francesco; Yacoby, Amir

    The nitrogen-vacancy (NV) center in diamond has been fascinating people with its unique role in quantum information and magnetometry. NV magnetometry was used to investigate many fundamental physics studies and develop a number of industrial applications. One of the powerful aspects of NV magnetometry is the ability to scan in space to perform spatial magnetic field sensing with nano-meter resolution. As a new emerging scanning probe technique, it faces a huge challenge to be widely adopted due to its complexity in fabrication. Here, we report a new simple way of creating diamond tips with tools found in basic clean room facilities and mount the tips onto an experimental apparatus with common lab bench tools. Finally, scanning NV magnetometry was performed to demonstrate its application. This work is supported by the QuASAR project and the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4531.

  9. Exploration of depth modeling mode one lossless wedgelets storage strategies for 3D-high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan

    2018-01-01

    The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.

  10. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  11. Providing Guidance in Virtual Lab Experimentation: The Case of an Experiment Design Tool

    ERIC Educational Resources Information Center

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; deJong, Ton; Anjewierden, Anjo; van Riesen, Siswa A. N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students' cognitive processes and inquiry skills before and after…

  12. Computational tool for simulation of power and refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Córdoba Tuta, E.; Reyes Orozco, M.

    2016-07-01

    Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.

  13. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments

    PubMed Central

    Kawamura, Kunio

    2017-01-01

    Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048

  14. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  15. Ultracold molecule assembly with photonic crystals

    NASA Astrophysics Data System (ADS)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  16. How to design PET experiments to study neurochemistry: application to alcoholism.

    PubMed

    Morris, Evan D; Lucas, Molly V; Petrulli, J Ryan; Cosgrove, Kelly P

    2014-03-01

    Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued.

  17. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  18. How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism

    PubMed Central

    Morris, Evan D.; Lucas, Molly V.; Petrulli, J. Ryan; Cosgrove, Kelly P.

    2014-01-01

    Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. PMID:24600335

  19. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with anmore » integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.« less

  20. The evolution of school nursing data indicators in Massachusetts: recommendations for a national data set.

    PubMed

    Gapinski, Mary Ann; Sheetz, Anne H

    2014-10-01

    The National Association of School Nurses' research priorities include the recommendation that data reliability, quality, and availability be addressed to advance research in child and school health. However, identifying a national school nursing data set has remained a challenge for school nurses, school nursing leaders, school nurse professional organizations, and state school nurse consultants. While there is much agreement that school nursing data (with associated data integrity) is an incredibly powerful tool for multiple uses, the content of a national data set must be developed. In 1993, recognizing the unique power of data, Massachusetts began addressing the need for consistent school nurse data collection. With more than 20 years' experience--and much experimentation, pilot testing, and system modification--Massachusetts is now ready to share its data collection system and certain key indicators with other states, thus offering a beginning foundation for a national school nursing data set. © The Author(s) 2014.

  1. Computational resources for ribosome profiling: from database to Web server and software.

    PubMed

    Wang, Hongwei; Wang, Yan; Xie, Zhi

    2017-08-14

    Ribosome profiling is emerging as a powerful technique that enables genome-wide investigation of in vivo translation at sub-codon resolution. The increasing application of ribosome profiling in recent years has achieved remarkable progress toward understanding the composition, regulation and mechanism of translation. This benefits from not only the awesome power of ribosome profiling but also an extensive range of computational resources available for ribosome profiling. At present, however, a comprehensive review on these resources is still lacking. Here, we survey the recent computational advances guided by ribosome profiling, with a focus on databases, Web servers and software tools for storing, visualizing and analyzing ribosome profiling data. This review is intended to provide experimental and computational biologists with a reference to make appropriate choices among existing resources for the question at hand. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. NeedATool: A Needlet Analysis Tool for Cosmological Data Processing

    NASA Astrophysics Data System (ADS)

    Pietrobon, Davide; Balbi, Amedeo; Cabella, Paolo; Gorski, Krzysztof M.

    2010-11-01

    We introduce NeedATool (Needlet Analysis Tool), a software for data analysis based on needlets, a wavelet rendition which is powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, and in particular to the analysis of cosmic microwave background (CMB) data. Usually, such analyses are performed in real space as well as in its dual domain, the harmonic one. Both spaces have advantages and disadvantages: for example, in pixel space it is easier to deal with partial sky coverage and experimental noise; in the harmonic domain, beam treatment and comparison with theoretical predictions are more effective. During the last decade, however, wavelets have emerged as a useful tool for CMB data analysis, since they allow us to combine most of the advantages of the two spaces, one of the main reasons being their sharp localization. In this paper, we outline the analytical properties of needlets and discuss the main features of the numerical code, which should be a valuable addition to the CMB analyst's toolbox.

  3. T.R.I.C.K.-Tire/Road Interaction Characterization & Knowledge - A tool for the evaluation of tire and vehicle performances in outdoor test sessions

    NASA Astrophysics Data System (ADS)

    Farroni, Flavio

    2016-05-01

    The most powerful engine, the most sophisticated aerodynamic devices or the most complex control systems will not improve vehicle performances if the forces exchanged with the road are not optimized by proper employment and knowledge of tires. The vehicle interface with the ground is constituted by the sum of small surfaces, wide about as one of our palms, in which tire/road interaction forces are exchanged. From this it is clear to see how the optimization of tire behavior represents a key-factor in the definition of the best setup of the whole vehicle. Nowadays, people and companies playing a role in automotive sector are looking for the optimal solution to model and understand tire's behavior both in experimental and simulation environments. The studies carried out and the tool developed herein demonstrate a new approach in tire characterization and in vehicle simulation procedures. This enables the reproduction of the dynamic response of a tire through the use of specific track sessions, carried out with the aim to employ the vehicle as a moving lab. The final product, named TRICK tool (Tire/Road Interaction Characterization and Knowledge), comprises of a vehicle model which processes experimental signals acquired from vehicle CAN bus and from sideslip angle estimation additional instrumentation. The output of the tool is several extra "virtual telemetry" channels, based on the time history of the acquired signals and containing force and slip estimations, useful to provide tire interaction characteristics. TRICK results can be integrated with the physical models developed by the Vehicle Dynamics UniNa research group, providing a multitude of working solutions and constituting an ideal instrument for the prediction and the simulation of the real tire dynamics.

  4. Experimental Evaluation of the Tools of the Mind Pre-K Curriculum. Technical Report. Working Paper

    ERIC Educational Resources Information Center

    Farran, Dale C.; Wilson, Sandra J.; Meador, Deanna; Norvell, Jennifer; Nesbitt, Kimberly

    2015-01-01

    The experimental evaluation of the "Tools of the Mind Pre-K Curriculum" described in this report was designed to examine the effectiveness of the "Tools of the Mind" ("Tools") curriculum for enhancing children's self-regulation skills and their academic preparation for kindergarten when compared to the usual…

  5. Simulation Tools for Power Electronics Courses Based on Java Technologies

    ERIC Educational Resources Information Center

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  6. General Construction Trades. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Ten units on the world of construction and twelve units on carpentry are presented in this teacher's guide. The construction units include the following: safety; human relations in the shop; grooming and hygiene; hand tools; measurement; portable power tools, stationary power tools; fastening devices; and job application and interview. The…

  7. Digital Portfolios: Powerful Marketing Tool for Communications Students

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2008-01-01

    A digital portfolio is a powerful marketing tool for young people searching for employment in the communication or interactive media fields. With a digital portfolio, students can demonstrate their skills at working with software tools, demonstrate appropriate use of materials, explain technical procedures, show an understanding of processes and…

  8. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

    NASA Astrophysics Data System (ADS)

    M, RACK; D, HÖSCHEN; D, REITER; B, UNTERBERG; J, W. COENEN; S, BREZINSEK; O, NEUBAUER; S, BOZHENKOV; G, CZYMEK; Y, LIANG; M, HUBENY; Ch, LINSMEIER; the Wendelstein 7-X Team

    2018-05-01

    Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.

  9. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  10. Development of a prototype infrared imaging bolometer for NSTX-U

    NASA Astrophysics Data System (ADS)

    van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration

    2015-11-01

    Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.

  11. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    NASA Astrophysics Data System (ADS)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  12. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  13. ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data

    PubMed Central

    Promworn, Yuttachon; Kaewprommal, Pavita; Shaw, Philip J.; Intarapanich, Apichart; Tongsima, Sissades

    2017-01-01

    Background Biochemical methods are available for enriching 5′ ends of RNAs in prokaryotes, which are employed in the differential RNA-seq (dRNA-seq) and the more recent Cappable-seq protocols. Computational methods are needed to locate RNA 5′ ends from these data by statistical analysis of the enrichment. Although statistical-based analysis methods have been developed for dRNA-seq, they may not be suitable for Cappable-seq data. The more efficient enrichment method employed in Cappable-seq compared with dRNA-seq could affect data distribution and thus algorithm performance. Results We present Transformation of Nucleotide Enrichment Ratios (ToNER), a tool for statistical modeling of enrichment from RNA-seq data obtained from enriched and unenriched libraries. The tool calculates nucleotide enrichment scores and determines the global transformation for fitting to the normal distribution using the Box-Cox procedure. From the transformed distribution, sites of significant enrichment are identified. To increase power of detection, meta-analysis across experimental replicates is offered. We tested the tool on Cappable-seq and dRNA-seq data for identifying Escherichia coli transcript 5′ ends and compared the results with those from the TSSAR tool, which is designed for analyzing dRNA-seq data. When combining results across Cappable-seq replicates, ToNER detects more known transcript 5′ ends than TSSAR. In general, the transcript 5′ ends detected by ToNER but not TSSAR occur in regions which cannot be locally modeled by TSSAR. Conclusion ToNER uses a simple yet robust statistical modeling approach, which can be used for detecting RNA 5′ends from Cappable-seq data, in particular when combining information from experimental replicates. The ToNER tool could potentially be applied for analyzing other RNA-seq datasets in which enrichment for other structural features of RNA is employed. The program is freely available for download at ToNER webpage (http://www4a.biotec.or.th/GI/tools/toner) and GitHub repository (https://github.com/PavitaKae/ToNER). PMID:28542466

  14. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  15. Optical effects induced by epitaxial tension in lead titanate

    NASA Astrophysics Data System (ADS)

    Dejneka, A.; Chvostova, D.; Pacherova, O.; Kocourek, T.; Jelinek, M.; Tyunina, M.

    2018-01-01

    Single-crystal-type epitaxial films of perovskite oxide ferroelectrics are attractive for integrated photonic applications because of the remarkable optical properties and effects in ferroelectrics. The properties of the films may be influenced by epitaxial strain arising from the film-substrate mismatch. Here, dramatic strain-induced changes of the absorption and refraction are experimentally detected by spectroscopic ellipsometry in epitaxial films of archetypical ferroelectric PbTiO3. Comparison of the properties of a tensile-strained film with those of reference films and crystals reveals that epitaxial tension produces blueshifts of the primary above-bandgap absorption peaks by 1 eV and a decrease in the refractive index by 0.5 in the transparent spectral range. The obtained quadratic electrooptic and effective elastooptic coefficients exceed the bulk values by orders of magnitude. The experimental observations prove that epitaxy is a powerful tool for engineering unprecedented optical properties that may enable future photonics innovations.

  16. Age-related reduction of cerebral ischemic preconditioning: myth or reality?

    PubMed Central

    Della-Morte, David; Cacciatore, Francesco; Salsano, Elisa; Pirozzi, Gilda; Genio, Maria Teresa Del; D’Antonio, Iole; Gargiulo, Gaetano; Palmirotta, Raffaele; Guadagni, Fiorella; Rundek, Tatjana; Abete, Pasquale

    2013-01-01

    Stroke is one of the leading causes of death in industrialized countries for people older than 65 years of age. The reasons are still unclear. A reduction of endogenous mechanisms against ischemic insults has been proposed to explain this phenomenon. The “cerebral” ischemic preconditioning mechanism is characterized by a brief episode of ischemia that renders the brain more resistant against subsequent longer ischemic events. This ischemic tolerance has been shown in numerous experimental models of cerebral ischemia. This protective mechanism seems to be reduced with aging both in experimental and clinical studies. Alterations of mediators released and/or intracellular pathways may be responsible for age-related ischemic preconditioning reduction. Agents able to mimic the “cerebral” preconditioning effect may represent a new powerful tool for the treatment of acute ischemic stroke in the elderly. In this article, animal and human cerebral ischemic preconditioning, its age-related difference, and its potential therapeutical applications are discussed. PMID:24204128

  17. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  18. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    PubMed

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.

  19. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  20. Cell separation: Terminology and practical considerations

    PubMed Central

    Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer

    2013-01-01

    Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031

  1. Do personalised e-mail invitations increase the response rates of breast cancer survivors invited to participate in a web-based behaviour change intervention? A quasi-randomised 2-arm controlled trial.

    PubMed

    Short, Camille E; Rebar, Amanda L; Vandelanotte, Corneel

    2015-08-19

    Previous research has shown that the personalisation of study invitations improves response rates in survey-based research. To examine if this finding extends to experimental studies, we examined the impact of personalised study invitation e-mails on the response rates of potentially eligible breast cancer survivors for participation in a 6 month randomised controlled trial testing the efficacy of a physical activity intervention. Potential participants (n = 344) were sent either a personalised email or a generic email. Those sent the personalised email were 1.5 times (95 % CI = 1.18-1.93) more likely to respond than those sent the generic email. These findings suggest that personalisation may be a useful and potentially powerful tool that can be utilised when recruiting participants into experimental studies in order to boost response rates.

  2. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  3. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  4. Automated assembly of fast-axis collimation (FAC) lenses for diode laser bar modules

    NASA Astrophysics Data System (ADS)

    Miesner, Jörn; Timmermann, Andre; Meinschien, Jens; Neumann, Bernhard; Wright, Steve; Tekin, Tolga; Schröder, Henning; Westphalen, Thomas; Frischkorn, Felix

    2009-02-01

    Laser diodes and diode laser bars are key components in high power semiconductor lasers and solid state laser systems. During manufacture, the assembly of the fast axis collimation (FAC) lens is a crucial step. The goal of our activities is to design an automated assembly system for high volume production. In this paper the results of an intermediate milestone will be reported: a demonstration system was designed, realized and tested to prove the feasibility of all of the system components and process features. The demonstration system consists of a high precision handling system, metrology for process feedback, a powerful digital image processing system and tooling for glue dispensing, UV curing and laser operation. The system components as well as their interaction with each other were tested in an experimental system in order to glean design knowledge for the fully automated assembly system. The adjustment of the FAC lens is performed by a series of predefined steps monitored by two cameras concurrently imaging the far field and the near field intensity distributions. Feedback from these cameras processed by a powerful and efficient image processing algorithm control a five axis precision motion system to optimize the fast axis collimation of the laser beam. Automated cementing of the FAC to the diode bar completes the process. The presentation will show the system concept, the algorithm of the adjustment as well as experimental results. A critical discussion of the results will close the talk.

  5. Experimental Evaluation of the Tools of the Mind Pre-K Curriculum. Fidelity of Implementation Technical Report. Working Paper

    ERIC Educational Resources Information Center

    Meador, Deanna; Nesbitt, Kimberly; Farran, Dale

    2015-01-01

    The "Experimental Evaluation of the Tools of the Mind Pre-K Curriculum" study was designed to compare the effectiveness of the "Tools of the Mind" ("Tools") curriculum to the curricula the school system is currently using in enhancing children's self-regulation skills and their academic preparation for kindergarten.…

  6. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  7. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution

    PubMed Central

    Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry

    2014-01-01

    One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  8. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks.

    PubMed

    Gerlt, John A; Bouvier, Jason T; Davidson, Daniel B; Imker, Heidi J; Sadkhin, Boris; Slater, David R; Whalen, Katie L

    2015-08-01

    The Enzyme Function Initiative, an NIH/NIGMS-supported Large-Scale Collaborative Project (EFI; U54GM093342; http://enzymefunction.org/), is focused on devising and disseminating bioinformatics and computational tools as well as experimental strategies for the prediction and assignment of functions (in vitro activities and in vivo physiological/metabolic roles) to uncharacterized enzymes discovered in genome projects. Protein sequence similarity networks (SSNs) are visually powerful tools for analyzing sequence relationships in protein families (H.J. Atkinson, J.H. Morris, T.E. Ferrin, and P.C. Babbitt, PLoS One 2009, 4, e4345). However, the members of the biological/biomedical community have not had access to the capability to generate SSNs for their "favorite" protein families. In this article we announce the EFI-EST (Enzyme Function Initiative-Enzyme Similarity Tool) web tool (http://efi.igb.illinois.edu/efi-est/) that is available without cost for the automated generation of SSNs by the community. The tool can create SSNs for the "closest neighbors" of a user-supplied protein sequence from the UniProt database (Option A) or of members of any user-supplied Pfam and/or InterPro family (Option B). We provide an introduction to SSNs, a description of EFI-EST, and a demonstration of the use of EFI-EST to explore sequence-function space in the OMP decarboxylase superfamily (PF00215). This article is designed as a tutorial that will allow members of the community to use the EFI-EST web tool for exploring sequence/function space in protein families. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  10. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  11. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  12. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  13. A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine

    NASA Astrophysics Data System (ADS)

    Boeckx, Bram; Ramaekers, Riet; Maes, Guido

    2010-06-01

    The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol -1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol -1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with Δ EMP2 < 10 kJ mol -1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.

  14. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  15. Experimental evidence on microwave induced electron losses from ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Sakildien, M.; Tarvainen, O.; Kronholm, R.; Izotov, I.; Skalyga, V.; Kalvas, T.; Jones, P.; Koivisto, H.

    2018-06-01

    The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial direction is presented in both continuous wave (CW) and pulsed operation of a 14 GHz ECRIS. In the CW mode, the experiment was carried out by comparing the characteristic X-ray emission from the plasma volume and from the surface of the biased disc located in the flux of the escaping electron at the axial magnetic mirror. Parametric sweeps of magnetic field, neutral gas pressure, and microwave power were conducted to determine their effect on electron losses. In the pulsed mode, the experiment was conducted by measuring the flux of escaping electrons through aluminum foils of different thicknesses providing some energy resolution. Both diagnostics support the view that rf-induced losses account for up to 70% of total hot electron losses and their importance depends on the source parameters, especially power and neutral gas pressure.

  16. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.

    PubMed

    Łabaj, Paweł P; Leparc, Germán G; Linggi, Bryan E; Markillie, Lye Meng; Wiley, H Steven; Kreil, David P

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error<20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision. rnaseq10@boku.ac.at

  17. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  18. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  19. Understanding Zeeman EIT Noise Correlation Spectra in Buffered Rb Vapor

    NASA Astrophysics Data System (ADS)

    O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael

    2014-05-01

    Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. During laser light's propagation through a resonant medium, interaction with the medium converts laser phase noise into intensity noise. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. Using a single diode laser with large phase noise, we examine laser intensity noise and noise correlations from Zeeman EIT in a buffered Rb vapor. Of particular interest is a narrow noise correlation feature, resonant with EIT, that has been shown in earlier work to be power-broadening resistant at low powers. We report here on our recent experimental work and complementary theoretical modeling on EIT noise spectra, including a study of power broadening of the narrow noise correlation feature. Understanding the nature of the noise correlation spectrum is essential for optimizing EIT-noise applications.

  20. Using Delft3D to Simulate Current Energy Conversion

    NASA Astrophysics Data System (ADS)

    James, S. C.; Chartrand, C.; Roberts, J.

    2015-12-01

    As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.

  1. Gate-Tuned Thermoelectric Power in Black Phosphorus.

    PubMed

    Saito, Yu; Iizuka, Takahiko; Koretsune, Takashi; Arita, Ryotaro; Shimizu, Sunao; Iwasa, Yoshihiro

    2016-08-10

    The electric field effect is a useful means of elucidating intrinsic material properties as well as for designing functional devices. The electric-double-layer transistor (EDLT) enables the control of carrier density in a wide range, which is recently proved to be an effective tool for the investigation of thermoelectric properties. Here, we report the gate-tuning of thermoelectric power in a black phosphorus (BP) single crystal flake with the thickness of 40 nm. Using an EDLT configuration, we successfully control the thermoelectric power (S) and find that the S of ion-gated BP reached +510 μV/K at 210 K in the hole depleted state, which is much higher than the reported bulk single crystal value of +340 μV/K at 300 K. We compared this experimental data with the first-principles-based calculation and found that this enhancement is qualitatively explained by the effective thinning of the conduction channel of the BP flake and nonuniformity of the channel owing to the gate operation in a depletion mode. Our results provide new opportunities for further engineering BP as a thermoelectric material in nanoscale.

  2. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging.

    PubMed

    Zhang, Xiangyang; Zhang, Hao F; Puliafito, Carmen A; Jiao, Shuliang

    2011-08-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective versus exacerbate) in the RPE in the aging process. We have successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  3. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Zhou, Lixiang; Jiao, Shuliang

    2012-02-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective vs. exacerbate) in the RPE in the aging process. We successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  4. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2011-08-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective versus exacerbate) in the RPE in the aging process. We have successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  5. Classical And Quantum Rainbow Scattering From Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, H.; Schueller, A.; Busch, M.

    2011-06-01

    The structure of clean and adsorbate covered surfaces as well as of ultrathin films can be investigated by grazing scattering of fast atoms. We present two recent experimental techniques which allow one to study the structure of ordered arrangements of surface atoms in detail. (1) Rainbow scattering under axial surface channeling conditions, and (2) fast atom diffraction. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in studies on the structure of surfaces. We will concentrate our discussion on the structure of ultrathin silica films on a Mo(112) surface and of adsorbed oxygenmore » atoms on a Fe(110) surface.« less

  6. Identification of particle-laden flow features from wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Jackson, A.; Turnbull, B.

    2017-12-01

    A wavelet decomposition based technique is applied to air pressure data obtained from laboratory-scale powder snow avalanches. This technique is shown to be a powerful tool for identifying both repeatable and chaotic features at any frequency within the signal. Additionally, this technique is demonstrated to be a robust method for the removal of noise from the signal as well as being capable of removing other contaminants from the signal. Whilst powder snow avalanches are the focus of the experiments analysed here, the features identified can provide insight to other particle-laden gravity currents and the technique described is applicable to a wide variety of experimental signals.

  7. Protein function prediction--the power of multiplicity.

    PubMed

    Rentzsch, Robert; Orengo, Christine A

    2009-04-01

    Advances in experimental and computational methods have quietly ushered in a new era in protein function annotation. This 'age of multiplicity' is marked by the notion that only the use of multiple tools, multiple evidence and considering the multiple aspects of function can give us the broad picture that 21st century biology will need to link and alter micro- and macroscopic phenotypes. It might also help us to undo past mistakes by removing errors from our databases and prevent us from producing more. On the downside, multiplicity is often confusing. We therefore systematically review methods and resources for automated protein function prediction, looking at individual (biochemical) and contextual (network) functions, respectively.

  8. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    NASA Astrophysics Data System (ADS)

    Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars

    2014-05-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.

  9. An approach to adjustment of relativistic mean field model parameters

    NASA Astrophysics Data System (ADS)

    Bayram, Tuncay; Akkoyun, Serkan

    2017-09-01

    The Relativistic Mean Field (RMF) model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN) method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs) of 58Ni and 208Pb have been found in agreement with the literature values.

  10. Ribosome profiling reveals the what, when, where and how of protein synthesis.

    PubMed

    Brar, Gloria A; Weissman, Jonathan S

    2015-11-01

    Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.

  11. The Computer as a Tool for Learning

    PubMed Central

    Starkweather, John A.

    1986-01-01

    Experimenters from the beginning recognized the advantages computers might offer in medical education. Several medical schools have gained experience in such programs in automated instruction. Television images and graphic display combined with computer control and user interaction are effective for teaching problem solving. The National Board of Medical Examiners has developed patient-case simulation for examining clinical skills, and the National Library of Medicine has experimented with combining media. Advances from the field of artificial intelligence and the availability of increasingly powerful microcomputers at lower cost will aid further development. Computers will likely affect existing educational methods, adding new capabilities to laboratory exercises, to self-assessment and to continuing education. PMID:3544511

  12. Simplified models for dark matter face their consistent completions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistentmore » $${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.« less

  13. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins.

    PubMed

    Huang, Kai-Yao; Su, Min-Gang; Kao, Hui-Ju; Hsieh, Yun-Chung; Jhong, Jhih-Hua; Cheng, Kuang-Hao; Huang, Hsien-Da; Lee, Tzong-Yi

    2016-01-04

    Owing to the importance of the post-translational modifications (PTMs) of proteins in regulating biological processes, the dbPTM (http://dbPTM.mbc.nctu.edu.tw/) was developed as a comprehensive database of experimentally verified PTMs from several databases with annotations of potential PTMs for all UniProtKB protein entries. For this 10th anniversary of dbPTM, the updated resource provides not only a comprehensive dataset of experimentally verified PTMs, supported by the literature, but also an integrative interface for accessing all available databases and tools that are associated with PTM analysis. As well as collecting experimental PTM data from 14 public databases, this update manually curates over 12 000 modified peptides, including the emerging S-nitrosylation, S-glutathionylation and succinylation, from approximately 500 research articles, which were retrieved by text mining. As the number of available PTM prediction methods increases, this work compiles a non-homologous benchmark dataset to evaluate the predictive power of online PTM prediction tools. An increasing interest in the structural investigation of PTM substrate sites motivated the mapping of all experimental PTM peptides to protein entries of Protein Data Bank (PDB) based on database identifier and sequence identity, which enables users to examine spatially neighboring amino acids, solvent-accessible surface area and side-chain orientations for PTM substrate sites on tertiary structures. Since drug binding in PDB is annotated, this update identified over 1100 PTM sites that are associated with drug binding. The update also integrates metabolic pathways and protein-protein interactions to support the PTM network analysis for a group of proteins. Finally, the web interface is redesigned and enhanced to facilitate access to this resource. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  15. Microsoft Producer: A Software Tool for Creating Multimedia PowerPoint[R] Presentations

    ERIC Educational Resources Information Center

    Leffingwell, Thad R.; Thomas, David G.; Elliott, William H.

    2007-01-01

    Microsoft[R] Producer[R] is a powerful yet user-friendly PowerPoint companion tool for creating on-demand multimedia presentations. Instructors can easily distribute these presentations via compact disc or streaming media over the Internet. We describe the features of the software, system requirements, and other required hardware. We also describe…

  16. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...

  17. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...

  18. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...

  19. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...

  20. 49 CFR 176.54 - Repairs involving welding, burning, and power-actuated tools and appliances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Repairs involving welding, burning, and power... MATERIALS REGULATIONS CARRIAGE BY VESSEL General Operating Requirements § 176.54 Repairs involving welding..., repairs or work involving welding or burning, or the use of power-actuated tools or appliances which may...

  1. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    PubMed

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  2. Factorial Experiments: Efficient Tools for Evaluation of Intervention Components

    PubMed Central

    Collins, Linda M.; Dziak, John J.; Kugler, Kari C.; Trail, Jessica B.

    2014-01-01

    Background An understanding of the individual and combined effects of a set of intervention components is important for moving the science of preventive medicine interventions forward. This understanding can often be achieved in an efficient and economical way via a factorial experiment, in which two or more independent variables are manipulated. The factorial experiment is a complement to the randomized controlled trial (RCT); the two designs address different research questions. Purpose This article offers an introduction to factorial experiments aimed at investigators trained primarily in the RCT. Method The factorial experiment is compared and contrasted with other experimental designs used commonly in intervention science to highlight where each is most efficient and appropriate. Results Several points are made: factorial experiments make very efficient use of experimental subjects when the data are properly analyzed; a factorial experiment can have excellent statistical power even if it has relatively few subjects per experimental condition; and when conducting research to select components for inclusion in a multicomponent intervention, interactions should be studied rather than avoided. Conclusions Investigators in preventive medicine and related areas should begin considering factorial experiments alongside other approaches. Experimental designs should be chosen from a resource management perspective, which states that the best experimental design is the one that provides the greatest scientific benefit without exceeding available resources. PMID:25092122

  3. EPSAT - A workbench for designing high-power systems for the space environment

    NASA Technical Reports Server (NTRS)

    Kuharski, R. A.; Jongeward, G. A.; Wilcox, K. G.; Kennedy, E. M.; Stevens, N. J.; Putnam, R. M.; Roche, J. C.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining the performance of power systems in both naturally occurring and self-induced environments. This paper presents the results of the project after two years of a three-year development program. The relevance of the project result for SDI are pointed out, and models of the interaction of the environment and power systems are discussed.

  4. Neural network detects the effects of p-CPA pre-treatment on brain electrophysiology in a rat model of focal brain injury.

    PubMed

    Sinha, Rakesh Kumar; Aggarwal, Yogender

    2009-04-01

    To examine the performance of Artificial Neural Network (ANN) in evaluation of the effects of pretreatment of para-Chlorophenylalanine (p-CPA), a serotonin blocker, in experimental brain injury. Continuous 4 h digital electroencephalogram (EEG) recordings from male Charles Foster rats and its power spectrum analysis by using fast Fourier transform (FFT) were performed in two experimental (i) drug untreated injury group; (ii) p-CPA pretreated injury group as well as a control group. The EEG power spectrum data were tested by ANN containing 60 nodes in input layer, weighted from the digital values of power spectrum from 0 to 30 Hz, 18 nodes in hidden layer and an output node. The effects of injury and of the drug pretreatment were confirmed with the help of calculation of edematous swelling in the brain. The changes in EEG spectral patterns were compared with the ANN and the accuracy was determined in terms of percent (%). Overall performance of the network was found the best in control group (97.9%) in comparison to p-CPA untreated injury group (96.3%) and p-CPA pretreated injury group (71.9%). The decrease in accuracy in p-CPA pretreated injury group of subjects have occurred due to increase in misclassified patterns due to faster recovery in brain cortical potentials. EEG spectrum analysis with ANN was found successful in identifying the changes due to brain swelling as well as the effect of pretreatment of p-CPA in focal brain injury condition. Thus, the training and testing of ANN with EEG power spectra can be used as an effective diagnostic tool for early prediction and monitoring of brain injury as well as the effects of drugs in this condition.

  5. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  6. A fresh approach to forecasting in astroparticle physics and dark matter searches

    NASA Astrophysics Data System (ADS)

    Edwards, Thomas D. P.; Weniger, Christoph

    2018-02-01

    We present a toolbox of new techniques and concepts for the efficient forecasting of experimental sensitivities. These are applicable to a large range of scenarios in (astro-)particle physics, and based on the Fisher information formalism. Fisher information provides an answer to the question 'what is the maximum extractable information from a given observation?'. It is a common tool for the forecasting of experimental sensitivities in many branches of science, but rarely used in astroparticle physics or searches for particle dark matter. After briefly reviewing the Fisher information matrix of general Poisson likelihoods, we propose very compact expressions for estimating expected exclusion and discovery limits ('equivalent counts method'). We demonstrate by comparison with Monte Carlo results that they remain surprisingly accurate even deep in the Poisson regime. We show how correlated background systematics can be efficiently accounted for by a treatment based on Gaussian random fields. Finally, we introduce the novel concept of Fisher information flux. It can be thought of as a generalization of the commonly used signal-to-noise ratio, while accounting for the non-local properties and saturation effects of background and instrumental uncertainties. It is a powerful and flexible tool ready to be used as core concept for informed strategy development in astroparticle physics and searches for particle dark matter.

  7. Development of an Empirical Model for Optimization of Machining Parameters to Minimize Power Consumption

    NASA Astrophysics Data System (ADS)

    Kant Garg, Girish; Garg, Suman; Sangwan, K. S.

    2018-04-01

    The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.

  8. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are shown.

  9. Structural Embeddings: Mechanization with Method

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Rushby, John

    1999-01-01

    The most powerful tools for analysis of formal specifications are general-purpose theorem provers and model checkers, but these tools provide scant methodological support. Conversely, those approaches that do provide a well-developed method generally have less powerful automation. It is natural, therefore, to try to combine the better-developed methods with the more powerful general-purpose tools. An obstacle is that the methods and the tools often employ very different logics. We argue that methods are separable from their logics and are largely concerned with the structure and organization of specifications. We, propose a technique called structural embedding that allows the structural elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool for that of the method. We have found this technique quite effective and we provide some examples of its application. We also suggest how general-purpose systems could be restructured to support this activity better.

  10. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    NASA Technical Reports Server (NTRS)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  11. Energy evaluation of protection effectiveness of anti-vibration gloves.

    PubMed

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  12. IMG-ABC. A knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world.« less

  13. Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders.

    PubMed

    March, Oliver P; Reichelt, Julia; Koller, Ulrich

    2018-04-01

    What is the topic of this review? This review concerns current gene editing strategies for blistering skin diseases with respect to individual genetic constellations and distinct conditions. What advances does it highlight? Specificity and safety dominate the discussion of gene editing applications for gene therapy, where a number of tools are implemented. Recent developments in this rapidly progressing field pose further questions regarding which tool is best suited for each particular use. The current treatment of inherited blistering skin diseases, such as epidermolysis bullosa (EB), is largely restricted to wound care and pain management. More effective therapeutic strategies are urgently required, and targeting the genetic basis of these severe diseases is now within reach. Here, we describe current gene editing tools and their potential to correct gene function in monogenetic blistering skin diseases. We present the features of the most frequently used gene editing techniques, transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), determining their preferential application for specific genetic conditions, including the type of mutational inheritance, the targeting site within the gene or the possibility to target the mutation specifically. Both tools have traits beneficial in specific situations. Promising developments in the field engender gene editing as a potentially powerful therapeutic option for future clinical applications. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  14. Water Power Data and Tools | Water Power | NREL

    Science.gov Websites

    computer modeling tools and data with state-of-the-art design and analysis. Photo of a buoy designed around National Wind Technology Center's Information Portal as well as a WEC-Sim fact sheet. WEC Design Response Toolbox The WEC Design Response Toolbox provides extreme response and fatigue analysis tools specifically

  15. Digital Storytelling: A Powerful Technology Tool for the 21st Century Classroom

    ERIC Educational Resources Information Center

    Robin, Bernard R.

    2008-01-01

    Digital storytelling has emerged over the last few years as a powerful teaching and learning tool that engages both teachers and their students. However, until recently, little attention has been paid to a theoretical framework that could be employed to increase the effectiveness of technology as a tool in a classroom environment. A discussion of…

  16. Helping School Leaders Help New Teachers: A Tool for Transforming School-Based Induction

    ERIC Educational Resources Information Center

    Birkeland, Sarah; Feiman-Nemser, Sharon

    2012-01-01

    Ample research demonstrates the power of comprehensive induction to develop and retain new teachers. Education scholars generally agree on what powerful systems of induction include, yet few tools exist for guiding schools in creating such systems. Drawing on theory and practice, we have created such a tool. This article introduces the "Continuum…

  17. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  18. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  19. DNA curtains for high-throughput single-molecule optical imaging.

    PubMed

    Greene, Eric C; Wind, Shalom; Fazio, Teresa; Gorman, Jason; Visnapuu, Mari-Liis

    2010-01-01

    Single-molecule approaches provide a valuable tool in the arsenal of the modern biologist, and new discoveries continue to be made possible through the use of these state-of-the-art technologies. However, it can be inherently difficult to obtain statistically relevant data from experimental approaches specifically designed to probe individual reactions. This problem is compounded with more complex biochemical reactions, heterogeneous systems, and/or reactions requiring the use of long DNA substrates. Here we give an overview of a technology developed in our laboratory, which relies upon simple micro- or nanofabricated structures in combination with "bio-friendly" lipid bilayers, to align thousands of long DNA molecules into defined patterns on the surface of a microfluidic sample chamber. We call these "DNA curtains," and we have developed several different versions varying in complexity and DNA substrate configuration, which are designed to meet different experimental needs. This novel approach to single-molecule imaging provides a powerful experimental platform that offers the potential for concurrent observation of hundreds or even thousands of protein-DNA interactions in real time. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  1. A Validation and Code-to-Code Verification of FAST for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guntur, Srinivas; Jonkman, Jason; Sievers, Ryan

    This paper presents validation and code-to-code verification of the latest version of the U.S. Department of Energy, National Renewable Energy Laboratory wind turbine aeroelastic engineering simulation tool, FAST v8. A set of 1,141 test cases, for which experimental data from a Siemens 2.3 MW machine have been made available and were in accordance with the International Electrotechnical Commission 61400-13 guidelines, were identified. These conditions were simulated using FAST as well as the Siemens in-house aeroelastic code, BHawC. This paper presents a detailed analysis comparing results from FAST with those from BHawC as well as experimental measurements, using statistics including themore » means and the standard deviations along with the power spectral densities of select turbine parameters and loads. Results indicate a good agreement among the predictions using FAST, BHawC, and experimental measurements. Here, these agreements are discussed in detail in this paper, along with some comments regarding the differences seen in these comparisons relative to the inherent uncertainties in such a model-based analysis.« less

  2. A Validation and Code-to-Code Verification of FAST for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades

    DOE PAGES

    Guntur, Srinivas; Jonkman, Jason; Sievers, Ryan; ...

    2017-08-29

    This paper presents validation and code-to-code verification of the latest version of the U.S. Department of Energy, National Renewable Energy Laboratory wind turbine aeroelastic engineering simulation tool, FAST v8. A set of 1,141 test cases, for which experimental data from a Siemens 2.3 MW machine have been made available and were in accordance with the International Electrotechnical Commission 61400-13 guidelines, were identified. These conditions were simulated using FAST as well as the Siemens in-house aeroelastic code, BHawC. This paper presents a detailed analysis comparing results from FAST with those from BHawC as well as experimental measurements, using statistics including themore » means and the standard deviations along with the power spectral densities of select turbine parameters and loads. Results indicate a good agreement among the predictions using FAST, BHawC, and experimental measurements. Here, these agreements are discussed in detail in this paper, along with some comments regarding the differences seen in these comparisons relative to the inherent uncertainties in such a model-based analysis.« less

  3. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    PubMed

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  4. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  5. SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps

    NASA Astrophysics Data System (ADS)

    Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Magerl, Veronika; Sonneveld, Jory; Traub, Michael; Waltenberger, Wolfgang

    2018-06-01

    SModelS is an automatized tool for the interpretation of simplified model results from the LHC. It allows to decompose models of new physics obeying a Z2 symmetry into simplified model components, and to compare these against a large database of experimental results. The first release of SModelS, v1.0, used only cross section upper limit maps provided by the experimental collaborations. In this new release, v1.1, we extend the functionality of SModelS to efficiency maps. This increases the constraining power of the software, as efficiency maps allow to combine contributions to the same signal region from different simplified models. Other new features of version 1.1 include likelihood and χ2 calculations, extended information on the topology coverage, an extended database of experimental results as well as major speed upgrades for both the code and the database. We describe in detail the concepts and procedures used in SModelS v1.1, explaining in particular how upper limits and efficiency map results are dealt with in parallel. Detailed instructions for code usage are also provided.

  6. The dye-sensitized solar cell database.

    PubMed

    Venkatraman, Vishwesh; Raju, Rajesh; Oikonomopoulos, Solon P; Alsberg, Bjørn K

    2018-04-03

    Dye-sensitized solar cells (DSSCs) have garnered a lot of attention in recent years. The solar energy to power conversion efficiency of a DSSC is influenced by various components of the cell such as the dye, electrolyte, electrodes and additives among others leading to varying experimental configurations. A large number of metal-based and metal-free dye sensitizers have now been reported and tools using such data to indicate new directions for design and development are on the rise. DSSCDB, the first of its kind dye-sensitized solar cell database, aims to provide users with up-to-date information from publications on the molecular structures of the dyes, experimental details and reported measurements (efficiencies and spectral properties) and thereby facilitate a comprehensive and critical evaluation of the data. Currently, the DSSCDB contains over 4000 experimental observations spanning multiple dye classes such as triphenylamines, carbazoles, coumarins, phenothiazines, ruthenium and porphyrins. The DSSCDB offers a web-based, comprehensive source of property data for dye sensitized solar cells. Access to the database is available through the following URL: www.dyedb.com .

  7. On the effect of experimental noise on the classification of biological samples using Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Barton, Sinead J.; Kerr, Laura T.; Domijan, Katarina; Hennelly, Bryan M.

    2016-04-01

    Raman micro-spectroscopy is an optoelectronic technique that can be used to evaluate the chemical composition of biological samples and has been shown to be a powerful diagnostic tool for the investigation of various cancer related diseases including bladder, breast, and cervical cancer. Raman scattering is an inherently weak process with approximately 1 in 107 photons undergoing scattering and for this reason, noise from the recording system can have a significant impact on the quality of the signal, and its suitability for diagnostic classification. The main sources of noise in the recorded signal are shot noise, CCD dark current, and CCD readout noise. Shot noise results from the low signal photon count while dark current results from thermally generated electrons in the semiconductor pixels. Both of these noise sources are time dependent; readout noise is time independent but is inherent in each individual recording and results in the fundamental limit of measurement, arising from the internal electronics of the camera. In this paper, each of the aforementioned noise sources are analysed in isolation, and used to experimentally validate a mathematical model. This model is then used to simulate spectra that might be acquired under various experimental conditions including the use of different cameras, different source wavelength, and power etc. Simulated noisy datasets of T24 and RT112 cell line spectra are generated based on true cell Raman spectrum irradiance values (recorded using very long exposure times) and the addition of simulated noise. These datasets are then input to multivariate classification using Principal Components Analysis and Linear Discriminant Analysis. This method enables an investigation into the effect of noise on the sensitivity and specificity of Raman based classification under various experimental conditions and using different equipment.

  8. Experimental Design and Power Calculation for RNA-seq Experiments.

    PubMed

    Wu, Zhijin; Wu, Hao

    2016-01-01

    Power calculation is a critical component of RNA-seq experimental design. The flexibility of RNA-seq experiment and the wide dynamic range of transcription it measures make it an attractive technology for whole transcriptome analysis. These features, in addition to the high dimensionality of RNA-seq data, bring complexity in experimental design, making an analytical power calculation no longer realistic. In this chapter we review the major factors that influence the statistical power of detecting differential expression, and give examples of power assessment using the R package PROPER.

  9. alpha-decay half-lives and Q{sub a}lpha values of superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jianmin; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000

    2010-06-15

    The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) where a new method to calculate the assault frequency of alpha emission is used. The excellent agreement with the experimental data indicates the UFM is a useful tool to investigate these alpha decays. It is found that the alpha-decay half-lives become more and more insensitive to the Q{sub a}lpha values as the atomic number increases on the whole, which is favorable for us to predict the half-lives of SHN. In addition, a formula is proposed to compute the Q{sub a}lpha values formore » the nuclei with Z>=92 and N>=140 with a good accuracy, according to which the long-lived SHN should be neutron rich. Several weeks ago, two isotopes of a new element with atomic number Z=117 were synthesized and their alpha-decay chains have been observed. The Q{sub a}lpha formula is found to work well for these nuclei, confirming its predictive power. The experimental half-lives are well reproduced by employing the UFM with the experimental Q{sub a}lpha values. This fact that the experimental half-lives are compatible with experimental Q{sub a}lpha values supports the synthesis of a new element 117 and the experimental measurements to a certain extent.« less

  10. Surface analysis of stone and bone tools

    NASA Astrophysics Data System (ADS)

    Stemp, W. James; Watson, Adam S.; Evans, Adrian A.

    2016-03-01

    Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.

  11. HANDMADE WOODEN RACK FOR TOOL STORE, LOWER LEVEL OF HYDROELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HANDMADE WOODEN RACK FOR TOOL STORE, LOWER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  12. Grid Integration Research | Wind | NREL

    Science.gov Websites

    -generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant

  13. Data and Tools | Concentrating Solar Power | NREL

    Science.gov Websites

    download. Solar Power tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) The SolarPILOT is code rapid layout and optimization capability of the analytical DELSOL3 program with the accuracy and

  14. NREL: News - Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better

    Science.gov Websites

    Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better Golden, Colo., June 11, 2002 A powerful analysis is made possible by co-simulation links to Avant!'s Saber and Ansoft's SIMPLORER�. Transient air conditioning system analysis is possible by co-simulation with C&R Technologies' SINDA/FLUINT

  15. Tool for a configurable integrated circuit that uses determination of dynamic power consumption

    NASA Technical Reports Server (NTRS)

    Davoodi, Azadeh (Inventor); French, Matthew C. (Inventor); Agarwal, Deepak (Inventor); Wang, Li (Inventor)

    2011-01-01

    A configurable logic tool that allows minimization of dynamic power within an FPGA design without changing user-entered specifications. The minimization of power may use minimized clock nets as a first order operation, and a second order operation that minimizes other factors, such as area of placement, area of clocks and/or slack.

  16. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2006-11-01

    Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.

  17. Morphogenesis of the caenorhabditis elegans vulva.

    PubMed

    Schindler, Adam J; Sherwood, David R

    2013-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. © 2012 Wiley Periodicals, Inc.

  18. Experimental investigations, modeling, and analyses of high-temperature devices for space applications: Part 1. Final report, June 1996--December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.; El-Genk, M.S.; Huang, L.

    1999-01-01

    The Institute of Space and Nuclear Power Studies at the University of New Mexico has developed a computer simulation of cylindrical geometry alkali metal thermal-to-electric converter cells using a standard Fortran 77 computer code. The objective and use of this code was to compare the experimental measurements with computer simulations, upgrade the model as appropriate, and conduct investigations of various methods to improve the design and performance of the devices for improved efficiency, durability, and longer operational lifetime. The Institute of Space and Nuclear Power Studies participated in vacuum testing of PX series alkali metal thermal-to-electric converter cells and developedmore » the alkali metal thermal-to-electric converter Performance Evaluation and Analysis Model. This computer model consisted of a sodium pressure loss model, a cell electrochemical and electric model, and a radiation/conduction heat transfer model. The code closely predicted the operation and performance of a wide variety of PX series cells which led to suggestions for improvements to both lifetime and performance. The code provides valuable insight into the operation of the cell, predicts parameters of components within the cell, and is a useful tool for predicting both the transient and steady state performance of systems of cells.« less

  19. Experimental investigations, modeling, and analyses of high-temperature devices for space applications: Part 2. Final report, June 1996--December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.; El-Genk, M.S.; Huang, L.

    1999-01-01

    The Institute of Space and Nuclear Power Studies at the University of New Mexico has developed a computer simulation of cylindrical geometry alkali metal thermal-to-electric converter cells using a standard Fortran 77 computer code. The objective and use of this code was to compare the experimental measurements with computer simulations, upgrade the model as appropriate, and conduct investigations of various methods to improve the design and performance of the devices for improved efficiency, durability, and longer operational lifetime. The Institute of Space and Nuclear Power Studies participated in vacuum testing of PX series alkali metal thermal-to-electric converter cells and developedmore » the alkali metal thermal-to-electric converter Performance Evaluation and Analysis Model. This computer model consisted of a sodium pressure loss model, a cell electrochemical and electric model, and a radiation/conduction heat transfer model. The code closely predicted the operation and performance of a wide variety of PX series cells which led to suggestions for improvements to both lifetime and performance. The code provides valuable insight into the operation of the cell, predicts parameters of components within the cell, and is a useful tool for predicting both the transient and steady state performance of systems of cells.« less

  20. Development and Implementation of Non-Newtonian Rheology Into the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok

    2006-01-01

    One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time, and viscosity were evaluated using formulae for non-Newtonian, power law fluids. The maximum shear rates (corrected for entrance effects) obtained in the rheometer with the current setup were in the 150,000 to 170,000sec- range. GFSSP simulations were performed with a flow circuit simulating the capillary rheometer and using Power Law gel viscosity coefficients from the experimental data. The agreement between the experimental data and the simulated flow curves was within +/-4% given quality entrance effect data.

  1. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  2. Compressed-air power tools in orthopaedic surgery: exhaust air is a potential source of contamination.

    PubMed

    Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi

    2002-01-01

    To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( < 0.01). Exhaust from compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.

  3. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776

  4. Bioinformatic tools for inferring functional information from plant microarray data: tools for the first steps.

    PubMed

    Page, Grier P; Coulibaly, Issa

    2008-01-01

    Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools (Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical and data mining tools (Section 8), and dissemination tools (Section 9).

  5. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  6. Klamath Falls: High-Power Acoustic Well Stimulation Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Brian

    Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-powermore » AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.« less

  7. Integrated Wind Power Planning Tool

    NASA Astrophysics Data System (ADS)

    Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik

    2013-04-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.

  8. Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain

    NASA Technical Reports Server (NTRS)

    Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem

    2016-01-01

    The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.

  9. Comparative analysis of methods for detecting interacting loci

    PubMed Central

    2011-01-01

    Background Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. Results We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs. Conclusion This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list. PMID:21729295

  10. Comparative analysis of methods for detecting interacting loci.

    PubMed

    Chen, Li; Yu, Guoqiang; Langefeld, Carl D; Miller, David J; Guy, Richard T; Raghuram, Jayaram; Yuan, Xiguo; Herrington, David M; Wang, Yue

    2011-07-05

    Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs. This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list.

  11. LADES: a software for constructing and analyzing longitudinal designs in biomedical research.

    PubMed

    Vázquez-Alcocer, Alan; Garzón-Cortes, Daniel Ladislao; Sánchez-Casas, Rosa María

    2014-01-01

    One of the most important steps in biomedical longitudinal studies is choosing a good experimental design that can provide high accuracy in the analysis of results with a minimum sample size. Several methods for constructing efficient longitudinal designs have been developed based on power analysis and the statistical model used for analyzing the final results. However, development of this technology is not available to practitioners through user-friendly software. In this paper we introduce LADES (Longitudinal Analysis and Design of Experiments Software) as an alternative and easy-to-use tool for conducting longitudinal analysis and constructing efficient longitudinal designs. LADES incorporates methods for creating cost-efficient longitudinal designs, unequal longitudinal designs, and simple longitudinal designs. In addition, LADES includes different methods for analyzing longitudinal data such as linear mixed models, generalized estimating equations, among others. A study of European eels is reanalyzed in order to show LADES capabilities. Three treatments contained in three aquariums with five eels each were analyzed. Data were collected from 0 up to the 12th week post treatment for all the eels (complete design). The response under evaluation is sperm volume. A linear mixed model was fitted to the results using LADES. The complete design had a power of 88.7% using 15 eels. With LADES we propose the use of an unequal design with only 14 eels and 89.5% efficiency. LADES was developed as a powerful and simple tool to promote the use of statistical methods for analyzing and creating longitudinal experiments in biomedical research.

  12. Safety with Hand and Portable Power Tools. Module SH-14. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety with hand and portable power tools is one of 50 modules concerned with job safety and health. This module discusses the proper use and maintenance of tools, including the need for protective equipment for the worker. Following the introduction, 16 objectives (each keyed to a page in the text) the student is expected…

  13. Rover Wheel-Actuated Tool Interface

    NASA Technical Reports Server (NTRS)

    Matthews, Janet; Ahmad, Norman; Wilcox, Brian

    2007-01-01

    A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.

  14. Interchangeable end effector tools utilized on the protoflight manipulator arm

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A subset of teleoperator and effector tools was designed, fabricated, delivered and successfully demonstrated on the Marshall Space Flight Center (MSFC) protoflight manipulator arm (PFMA). The tools delivered included a rotary power tool with interchangeable collets and two fluid coupling mate/demate tools; one for a Fairchild coupling and the other for a Purolator coupling. An electrical interface connector was also provided for the rotary power tool. A tool set, from which the subset was selected, for performing on-orbit satellite maintenance was identified and conceptionally designed. Maintenance requirements were synthesized, evaluated and prioritized to develop design requirements for a set of end effector tools representative of those needed to provide on-orbit maintenance of satellites to be flown in the 1986 to 2000 timeframe.

  15. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  16. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

    PubMed Central

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip

    2014-01-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199

  17. Classical mathematical models for description and prediction of experimental tumor growth.

    PubMed

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M L; Hlatky, Lynn; Hahnfeldt, Philip

    2014-08-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.

  18. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  19. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  20. modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks.

    PubMed

    Sain, Neetu; Mohanty, Debasisa

    2016-09-21

    PDZ domains recognize short sequence stretches usually present in C-terminal of their interaction partners. Because of the involvement of PDZ domains in many important biological processes, several attempts have been made for developing bioinformatics tools for genome-wide identification of PDZ interaction networks. Currently available tools for prediction of interaction partners of PDZ domains utilize machine learning approach. Since, they have been trained using experimental substrate specificity data for specific PDZ families, their applicability is limited to PDZ families closely related to the training set. These tools also do not allow analysis of PDZ-peptide interaction interfaces. We have used a structure based approach to develop modPDZpep, a program to predict the interaction partners of human PDZ domains and analyze structural details of PDZ interaction interfaces. modPDZpep predicts interaction partners by using structural models of PDZ-peptide complexes and evaluating binding energy scores using residue based statistical pair potentials. Since, it does not require training using experimental data on peptide binding affinity, it can predict substrates for diverse PDZ families. Because of the use of simple scoring function for binding energy, it is also fast enough for genome scale structure based analysis of PDZ interaction networks. Benchmarking using artificial as well as real negative datasets indicates good predictive power with ROC-AUC values in the range of 0.7 to 0.9 for a large number of human PDZ domains. Another novel feature of modPDZpep is its ability to map novel PDZ mediated interactions in human protein-protein interaction networks, either by utilizing available experimental phage display data or by structure based predictions. In summary, we have developed modPDZpep, a web-server for structure based analysis of human PDZ domains. It is freely available at http://www.nii.ac.in/modPDZpep.html or http://202.54.226.235/modPDZpep.html . This article was reviewed by Michael Gromiha and Zoltán Gáspári.

  1. A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course

    ERIC Educational Resources Information Center

    Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.

    2011-01-01

    The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…

  2. Development and content validation of the power mobility training tool.

    PubMed

    Kenyon, Lisa K; Farris, John P; Cain, Brett; King, Emily; VandenBerg, Ashley

    2018-01-01

    This paper outlines the development and content validation of the power mobility training tool (PMTT), an observational tool designed to assist therapists in developing power mobility training programs for children who have multiple, severe impairments. Initial items on the PMTT were developed based on a literature review and in consultation with therapists experienced in the use of power mobility. Items were trialled in clinical settings, reviewed, and refined. Items were then operationalized and an administration manual detailing scoring for each item was created. Qualitative and quantitative methods were used to establish content validity via a 15 member, international expert panel. The content validity ratio (CVR) was determined for each possible item. Of the 19 original items, 10 achieved minimum required CVR values and were included in the final version of the PMTT. Items related to manoeuvring a power mobility device were merged and an item related to the number of switches used concurrently to operate a power mobility device were added to the PMTT. The PMTT may assist therapists in developing training programs that facilitate the acquisition of beginning power mobility skills in children who have multiple, severe impairments. Implications for Rehabilitation The Power Mobility Training Tool (PMTT) was developed to help guide the development of power mobility intervention programs for children who have multiple, severe impairments. The PMTT can be used with children who access a power mobility device using either a joystick or a switch. Therapists who have limited experience with power mobility may find the PMTT to be helpful in setting up and conducting power mobility training interventions as a feasible aspect of a plan of care for children who have multiple, severe impairments.

  3. Development of TIF based figuring algorithm for deterministic pitch tool polishing

    NASA Astrophysics Data System (ADS)

    Yi, Hyun-Su; Kim, Sug-Whan; Yang, Ho-Soon; Lee, Yun-Woo

    2007-12-01

    Pitch is perhaps the oldest material used for optical polishing, leaving superior surface texture, and has been used widely in the optics shop floor. However, for its unpredictable controllability of removal characteristics, the pitch tool polishing has been rarely analysed quantitatively and many optics shops rely heavily on optician's "feel" even today. In order to bring a degree of process controllability to the pitch tool polishing, we added motorized tool motions to the conventional Draper type polishing machine and modelled the tool path in the absolute machine coordinate. We then produced a number of Tool Influence Function (TIF) both from an analytical model and a series of experimental polishing runs using the pitch tool. The theoretical TIFs agreed well with the experimental TIFs to the profile accuracy of 79 % in terms of its shape. The surface figuring algorithm was then developed in-house utilizing both theoretical and experimental TIFs. We are currently undertaking a series of trial figuring experiments to prove the performance of the polishing algorithm, and the early results indicate that the highly deterministic material removal control with the pitch tool can be achieved to a certain level of form error. The machine renovation, TIF theory and experimental confirmation, figuring simulation results are reported together with implications to deterministic polishing.

  4. Experimental study on internal cooling system in hard turning of HCWCI using CBN tools

    NASA Astrophysics Data System (ADS)

    Ravi, A. M.; Murigendrappa, S. M.

    2018-04-01

    In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.

  5. Fault Diagnosis of Power Systems Using Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.

  6. Proactive monitoring of an onshore wind farm through lidar measurements, SCADA data and a data-driven RANS solver

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo Valerio; Camarri, Simone; Ciri, Umberto; El-Asha, Said; Leonardi, Stefano; Rotea, Mario A.; Santhanagopalan, Vignesh; Viola, Francesco; Zhan, Lu

    2016-11-01

    Site conditions, such as topography and local climate, as well as wind farm layout strongly affect performance of a wind power plant. Therefore, predictions of wake interactions and their effects on power production still remain a great challenge in wind energy. For this study, an onshore wind turbine array was monitored through lidar measurements, SCADA and met-tower data. Power losses due to wake interactions were estimated to be approximately 4% and 2% of the total power production under stable and convective conditions, respectively. This dataset was then leveraged for the calibration of a data driven RANS (DDRANS) solver, which is a compelling tool for prediction of wind turbine wakes and power production. DDRANS is characterized by a computational cost as low as that for engineering wake models, and adequate accuracy achieved through data-driven tuning of the turbulence closure model. DDRANS is based on a parabolic formulation, axisymmetry and boundary layer approximations, which allow achieving low computational costs. The turbulence closure model consists in a mixing length model, which is optimally calibrated with the experimental dataset. Assessment of DDRANS is then performed through lidar and SCADA data for different atmospheric conditions. This material is based upon work supported by the National Science Foundation under the I/UCRC WindSTAR, NSF Award IIP 1362033.

  7. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications.

    PubMed

    Sabry, A H; W Hasan, W Z; Ab Kadir, M Z A; Radzi, M A M; Shafie, S

    2018-01-01

    The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.

  8. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications

    PubMed Central

    W. Hasan, W. Z.

    2018-01-01

    The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554

  9. Computerized power supply analysis: State equation generation and terminal models

    NASA Technical Reports Server (NTRS)

    Garrett, S. J.

    1978-01-01

    To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.

  10. Cell culture medium improvement by rigorous shuffling of components using media blending.

    PubMed

    Jordan, Martin; Voisard, Damien; Berthoud, Antoine; Tercier, Laetitia; Kleuser, Beate; Baer, Gianni; Broly, Hervé

    2013-01-01

    A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.

  11. Using R in experimental design with BIBD: An application in health sciences

    NASA Astrophysics Data System (ADS)

    Oliveira, Teresa A.; Francisco, Carla; Oliveira, Amílcar; Ferreira, Agostinho

    2016-06-01

    Considering the implementation of an Experimental Design, in any field, the experimenter must pay particular attention and look for the best strategies in the following steps: planning the design selection, conduct the experiments, collect observed data, proceed to analysis and interpretation of results. The focus is on providing both - a deep understanding of the problem under research and a powerful experimental process at a reduced cost. Mainly thanks to the possibility of allowing to separate variation sources, the importance of Experimental Design in Health Sciences is strongly recommended since long time. Particular attention has been devoted to Block Designs and more precisely to Balanced Incomplete Block Designs - in this case the relevance states from the fact that these designs allow testing simultaneously a number of treatments bigger than the block size. Our example refers to a possible study of inter reliability of the Parkinson disease, taking into account the UPDRS (Unified Parkinson's disease rating scale) in order to test if there are significant differences between the specialists who evaluate the patients performances. Statistical studies on this disease were described for example in Richards et al (1994), where the authors investigate the inter-rater Reliability of the Unified Parkinson's Disease Rating Scale Motor Examination. We consider a simulation of a practical situation in which the patients were observed by different specialists and the UPDRS on assessing the impact of Parkinson's disease in patients was observed. Assigning treatments to the subjects following a particular BIBD(9,24,8,3,2) structure, we illustrate that BIB Designs can be used as a powerful tool to solve emerging problems in this area. Once a structure with repeated blocks allows to have some block contrasts with minimum variance, see Oliveira et al. (2006), the design with cardinality 12 was selected for the example. R software was used for computations.

  12. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets.

    PubMed

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts

    2016-09-01

    In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.

  13. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    PubMed Central

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts

    2016-01-01

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047

  14. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less

  15. Comparative study of adaptive controller using MIT rules and Lyapunov method for MPPT standalone PV systems

    NASA Astrophysics Data System (ADS)

    Tariba, N.; Bouknadel, A.; Haddou, A.; Ikken, N.; Omari, Hafsa El; Omari, Hamid El

    2017-01-01

    The Photovoltaic Generator have a nonlinear characteristic function relating the intensity at the voltage I = f (U) and depend on the variation of solar irradiation and temperature, In addition, its point of operation depends directly on the load that it supplies. To fix this drawback, and to extract the maximum power available to the terminal of the generator, an adaptation stage is introduced between the generator and the load to couple the two elements as perfectly as possible. The adaptation stage is associated with a command called MPPT MPPT (Maximum Power Point Tracker) whose is used to force the PVG to operate at the MPP (Maximum Power Point) under variation of climatic conditions and load variation. This paper presents a comparative study between the adaptive controller for PV Systems using MIT rules and Lyapunov method to regulate the PV voltage. The Incremental Conductance (IC) algorithm is used to extract the maximum power from the PVG by calculating the voltage Vref, and the adaptive controller is used to regulate and track quickly the PV voltage. The two methods of the adaptive controller will be compared to prove their performance by using the PSIM tools and experimental test, and the mathematical model of step-up with PVG model will be presented.

  16. Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.

  17. Studies of nonlinear femtosecond pulse propagation in bulk materials

    NASA Astrophysics Data System (ADS)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This thesis applies FROG as a powerful tool for science and not just a useful pulse diagnostic technique. Studies of three-dimensional propagation provide an in-depth understanding of the processes involved in femtosecond pulse splitting. In addition, the experimental investigations of continuum generation and pulse propagation in liquids provide new insights into the possible processes involved and should provide a useful comparison for developing theories.

  18. Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation.

    PubMed

    Sánchez-González, P; Oropesa, I; Gómez, E J

    2013-01-01

    Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

  19. The Environment-Power System Analysis Tool development program. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Wilcox, Katherine G.; Stevens, N. John; Putnam, Rand M.; Roche, James C.

    1989-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide engineers with the ability to assess the effects of a broad range of environmental interactions on space power systems. A unique user-interface-data-dictionary code architecture oversees a collection of existing and future environmental modeling codes (e.g., neutral density) and physical interaction models (e.g., sheath ionization). The user-interface presents the engineer with tables, graphs, and plots which, under supervision of the data dictionary, are automatically updated in response to parameter change. EPSAT thus provides the engineer with a comprehensive and responsive environmental assessment tool and the scientist with a framework into which new environmental or physical models can be easily incorporated.

  20. Solving Power Tool Problems in the School Shop

    ERIC Educational Resources Information Center

    Irvin, Daniel W.

    1976-01-01

    The school shop instructor is largely responsible for the preventive maintenance of power tools. These preventive measures primarily involve proper alignment, good lubrication, a reasonable maintenance program, and good operating procedures. Suggestions for maintenance of specific equipment is provided. (Author/BP)

Top