Nilsson, Lisbeth; Durkin, Josephine
2017-10-01
To explore the knowledge necessary for adoption and implementation of the Assessment of Learning Powered mobility use (ALP) tool in different practice settings for both adults and children. To consult with a diverse population of professionals working with adults and children, in different countries and various settings; who were learning about or using the ALP tool, as part of exploring and implementing research findings. Classical grounded theory with a rigorous comparative analysis of data from informants together with reflections on our own rich experiences of powered mobility practice and comparisons with the literature. A core category learning tool use and a new theory of cognizing tool use, with its interdependent properties: motivation, confidence, permissiveness, attentiveness and co-construction has emerged which explains in greater depth what enables the application of the ALP tool. The scientific knowledge base on tool use learning and the new theory conveys the information necessary for practitioner's cognizing how to apply the learning approach of the ALP tool in order to enable tool use learning through powered mobility practice as a therapeutic intervention in its own right. This opens up the possibility for more children and adults to have access to learning through powered mobility practice. Implications for rehabilitation Tool use learning through powered mobility practice is a therapeutic intervention in its own right. Powered mobility practice can be used as a rehabilitation tool with individuals who may not need to become powered wheelchair users. Motivation, confidence, permissiveness, attentiveness and co-construction are key properties for enabling the application of the learning approach of the ALP tool. Labelling and the use of language, together with honing observational skills through viewing video footage, are key to developing successful learning partnerships.
ERIC Educational Resources Information Center
Stephen, Lauer; Owusu, Francis Y.
2015-01-01
Extension professionals facilitate community development through the strategic manipulation of learning and power in peer-to-peer learning partnerships. We discuss the relationship between empowerment and power, highlight relevant literature on the difficulties power presents to learning and the efficacy of service learning tools to facilitate…
Assessment of learning powered mobility use--applying grounded theory to occupational performance.
Nilsson, Lisbeth; Durkin, Josephine
2014-01-01
Collaboration by two grounded theory researchers, who each had developed a learning continuum instrument, led to the emergence of a new tool for assessment of learning powered mobility use. We undertook a rigorous process of comparative reanalysis that included merging, modifying, and expanding our previous research findings. A new instrument together with its facilitating strategies emerged in the course of revisits to our existing rich account of data taken from real environment powered mobility practice over an extensive time period. Instrument descriptors, categories, phases, and stages allow a facilitator to assess actual phase and plot actual occupational performance and provide a learner with the just right challenge through the learning process. Facilitating strategies are described for each of the phases and provide directions for involvement during learner performance. The learning approach is led by a belief system that the intervention is user-led, working in partnership and empowering the learner. The new assessment tool is inclusive of every potential powered mobility user because it focuses on the whole continuum of the learning process of powered mobility use from novice to expert. The new tool was appraised by clinicians and has been used successfully in clinical practice in the United Kingdom and Sweden.
A State for Excellence: New Jersey Boosts Learning Power with Online Video Resources
ERIC Educational Resources Information Center
Duff, Victoria; Sauer, Wendy; Gleason, Sonia Caus
2011-01-01
The New Jersey Department of Education supports all districts with a tool kit of valuable resources for planning and creating collaborative learning structures that focus on getting results for all students. This tool kit was the basis for the creation of Learning Forward's "Becoming a Learning School" (2009). The tool kit helps…
Mobile Learning: A Powerful Tool for Ubiquitous Language Learning
ERIC Educational Resources Information Center
Gomes, Nelson; Lopes, Sérgio; Araújo, Sílvia
2016-01-01
Mobile devices (smartphones, tablets, e-readers, etc.) have come to be used as tools for mobile learning. Several studies support the integration of such technological devices with learning, particularly with language learning. In this paper, we wish to present an Android app designed for the teaching and learning of Portuguese as a foreign…
Orchestration of Social Modes in E-Learning
ERIC Educational Resources Information Center
Weinberger, Armin; Papadopoulos, Pantelis M.
2016-01-01
The concept of orchestration has recently emerged as a useful metaphor in technology-enhanced learning research communities, because of its explanatory power and appeal in describing how different learning activities, tools, and arrangements could be combined to promote learning. More than a buffet of tools offering possibilities to the teachers,…
Integrating Learning Services in the Cloud: An Approach That Benefits Both Systems and Learning
ERIC Educational Resources Information Center
Gutiérrez-Carreón, Gustavo; Daradoumis, Thanasis; Jorba, Josep
2015-01-01
Currently there is an increasing trend to implement functionalities that allow for the development of applications based on Cloud computing. In education there are high expectations for Learning Management Systems since they can be powerful tools to foster more effective collaboration within a virtual classroom. Tools can also be integrated with…
ERIC Educational Resources Information Center
Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.
2011-01-01
An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…
Digital Storytelling: A Powerful Technology Tool for the 21st Century Classroom
ERIC Educational Resources Information Center
Robin, Bernard R.
2008-01-01
Digital storytelling has emerged over the last few years as a powerful teaching and learning tool that engages both teachers and their students. However, until recently, little attention has been paid to a theoretical framework that could be employed to increase the effectiveness of technology as a tool in a classroom environment. A discussion of…
ERIC Educational Resources Information Center
Borboa, Danielle; Joseph, Mathew; Spake, Deborah; Yazdanparast, Atefeh
2017-01-01
This study examines student views and use of technology in conjunction with university coursework. Results reveal that there is widespread use of Microsoft PowerPoint and certain learning management system (LMS) features; however, there are significant differences in views concerning the degree to which these LMS tools enhance learning based on…
At the Heart of Education: Portfolios as a Learning Tool.
ERIC Educational Resources Information Center
Gordon, Rick; Julius, Thomas
This chapter consists of a conversation between a third-grade teacher and a teacher educator about the advantages of the portfolio method of assessment. The advantages of portfolios are that they are a powerful learning tool as well as an assessment tool, they can make the separate subjects in a curriculum come together in an integrated way, and…
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2018-04-01
The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.
Technology-Supported Mathematics Environments: Telecollaboration in a Secondary Statistics Classroom
ERIC Educational Resources Information Center
Staley, John; Moyer-Packenham, Patricia; Lynch, Monique C.
2005-01-01
The Internet, an exciting and radically different medium infiltrating pop culture, business, and education, is also a powerful educational tool with teaching and learning potential for mathematics. Web-based instructional tools allow students and teachers to actively and interactively participate in the learning process (Lynch, Moyer, Frye & Suh,…
A Switching-Mode Power Supply Design Tool to Improve Learning in a Power Electronics Course
ERIC Educational Resources Information Center
Miaja, P. F.; Lamar, D. G.; de Azpeitia, M.; Rodriguez, A.; Rodriguez, M.; Hernando, M. M.
2011-01-01
The static design of ac/dc and dc/dc switching-mode power supplies (SMPS) relies on a simple but repetitive process. Although specific spreadsheets, available in various computer-aided design (CAD) programs, are widely used, they are difficult to use in educational applications. In this paper, a graphic tool programmed in MATLAB is presented,…
Gaming the Past: Using Video Games to Teach Secondary History
ERIC Educational Resources Information Center
McCall, Jeremiah
2011-01-01
Despite the growing number of books designed to radically reconsider the educational value of video games as powerful learning tools, there are very few practical guidelines conveniently available for prospective history and social studies teachers who actually want to use these teaching and learning tools in their classes. As the games and…
Rules, Roles and Tools: Activity Theory and the Comparative Study of E-Learning
ERIC Educational Resources Information Center
Benson, Angela; Lawler, Cormac; Whitworth, Andrew
2008-01-01
Activity theory (AT) is a powerful tool for investigating "artefacts in use", ie, the ways technologies interrelate with their local context. AT reveals the interfaces between e-learning at the macro- (strategy, policy, "campus-wide" solutions) and the micro-organisational levels (everyday working practice, iterative change, individual…
Using Active Learning as Assessment in the Postsecondary Classroom.
ERIC Educational Resources Information Center
Bonwell, Charles C.
1997-01-01
Provides a conceptual framework for introducing active learning into the classroom as a tool for assessment. Notes that formative assessment can be a powerful tool for transforming a passive classroom into one filled with active participants. Discusses what is assessed, what are the criteria, who will assess, and how the object of assessment will…
Addressing Power in Conversation: Enhancing the Transformative Learning Capacities of the World Café
ERIC Educational Resources Information Center
Lorenzetti, Liza A.; Azulai, Anna; Walsh, Christine A.
2016-01-01
The World Café (TWC), used as an effective conversational tool around the world, shares several tenets with other participatory approaches to learning and development. It has not been critiqued, however, for its insufficient attention to reflexivity, power differentials, and structural inequalities within its process, specifically in relation to…
Toward a Renewed Focus. Literacy in Early Language Programs
ERIC Educational Resources Information Center
Met, Mimi
2013-01-01
This article promotes literacy as a a powerful tool for learning new language. Although learners frequently think of comprehensible input as language that is heard, comprehensible input from print can also be accessed. Research has shown that reading has a powerful impact on language learning: much of the vocabulary that educated adults know has…
Metaphors & Analogies: Power Tools for Teaching Any Subject
ERIC Educational Resources Information Center
Wormeli, Rick
2009-01-01
Metaphors and analogies are more than figurative language suitable only for English classes and standardized test questions. They are "power tools" that can electrify learning in every subject and at all grade levels. Metaphors show students how to make connections between the concrete and the abstract, prior knowledge and unfamiliar concepts, and…
Learning Disabled Students and Computers: A Teacher's Guide Book.
ERIC Educational Resources Information Center
Metzger, Merrianne; And Others
This booklet is provided as a guide to teachers working with learning disabled (LD) students who are interested in using computers as a teaching tool. The computer is presented as a powerful option to enhance educational opportunities for LD children. The author outlines the three main modes in educational computer use (tutor, tool, and tutee) and…
Sims for Science: Powerful Tools to Support Inquiry-Based Teaching
ERIC Educational Resources Information Center
Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.
2010-01-01
Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…
The Computer as a Tool for Learning through Reflection. Technical Report No. 376.
ERIC Educational Resources Information Center
Collins, Allan; Brown, John Seely
Because of its ability to record and represent process, the computer can provide a powerful, motivating, and as yet untapped tool for focusing the students' attention directly on their own thought processes and learning through reflection. Properly abstracted and structured, the computational medium can capture the processes by which a novice or…
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-13
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
NASA Astrophysics Data System (ADS)
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth
2017-09-01
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.
The Power and Utility of Reflective Learning Portfolios in Honors
ERIC Educational Resources Information Center
Corley, Christopher R.; Zubizarreta, John
2012-01-01
The explosive growth of learning portfolios in higher education as a compelling tool for enhanced student learning, assessment, and career preparation is a sign of the increasing significance of reflective practice and mindful, systematic documentation in promoting deep, meaningful, transformative learning experiences. The advent of sophisticated…
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
Implementing Service Learning into a Graduate Social Work Course: A Step-by-Step Guide
ERIC Educational Resources Information Center
Campbell, Evelyn Marie
2012-01-01
Service learning is a powerful pedagogical tool linking community service to academic learning. Several steps are necessary to implement service learning effectively into the curriculum. This study uses a case example as an exploratory study to pilot-test data on how service learning impacts student outcomes. The paper will (1) provide an overview…
ERIC Educational Resources Information Center
Jones, Brett D.; Setareh, Mehdi; Polys, Nicholas F.; Bacim, Felipe
2014-01-01
Simulations can be powerful learning tools that allow students to explore and understand concepts in ways that are not possible in typical classroom settings. However, research is lacking as to how to use simulations most effectively in different types of learning environments. To address this need, we designed a study to examine the impact of…
ERIC Educational Resources Information Center
ExpandED Schools, 2014
2014-01-01
This guide is a list of tools that can be used in continued implementation of strong programming powered by Social and Emotional Learning (SEL) competencies. This curated resource pulls from across the landscape of policy, research and practice, with a description of each tool gathered directly from its website.
Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education
NASA Astrophysics Data System (ADS)
Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki
The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.
The Power of Questioning: Guiding Student Investigations
ERIC Educational Resources Information Center
McGough, Julie V.; Nyberg, Lisa M.
2015-01-01
This pedagogical picture book is a powerful tool in a small package. The authors of "The Power of Questioning" invite you to nurture the potential for learning that grows out of children's irrepressible urges to ask questions. The book's foundation is a three-part instructional model, Powerful Practices, grounded in questioning,…
Inspiring a Life Full of Learning
ERIC Educational Resources Information Center
Ludlam, John
2012-01-01
The Secrets and Words films had everything one would expect from a BBC drama--great writing, acting and directing allied with high production values. But the dramas were also powerful learning tools, co-commissioned by BBC Learning and aimed at inspiring people who have difficulty with reading and writing to seek help. The BBC's learning vision is…
Teacher Feedback during Active Learning: Current Practices in Primary Schools
ERIC Educational Resources Information Center
van den Bergh, Linda; Ros, Anje; Beijaard, Douwe
2013-01-01
Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…
Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load
ERIC Educational Resources Information Center
Yung, Hsin I.; Paas, Fred
2015-01-01
Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…
ERIC Educational Resources Information Center
Brock, Sabra; Brodahl, Cornelia
2013-01-01
Presentation software is an important tool for both student and professorial communicators. PowerPoint has been the standard since it was introduced in 1990. However, new "improved" software platforms are emerging. Prezi is one of these, claiming to remedy the linear thinking that underlies PowerPoint by creating one canvas and…
ERIC Educational Resources Information Center
Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.
2014-01-01
E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…
Perceptions of School Children of Using Social Media for Learning
ERIC Educational Resources Information Center
Blair, Robert; Millard, David; Woollard, John
2017-01-01
Social media is lauded as a powerful tool for informal learning, and a tool of choice for teenagers. This paper reports on the findings of a survey of 384 secondary school pupils in the UK (aged 11-17) over a 12 week period. Our findings indicate a pervasiveness of social media usage amongst this age group, but variety in the types of engagement…
Extending the Testing Effect to Self-Regulated Learning
ERIC Educational Resources Information Center
Fernandez, Jonathan; Jamet, Eric
2017-01-01
In addition to serving summative assessment purposes, testing has turned out to be a powerful learning tool. However, while the beneficial effect of testing on learning performances has been confirmed in a large body of literature, the question of exactly how testing influences cognitive and metacognitive processes remains unclear. We therefore…
Investigating Functions Using Real-World Data
ERIC Educational Resources Information Center
Arnold, Stephen
2006-01-01
The possibilities for using graphic calculators to enhance the teaching and learning of mathematics are great. However, the boundaries explode when these powerful tools for learning are connected to data logging devices: a whole new approach to mathematics learning becomes possible. Using real world data to introduce the main functions (which are…
The Development and Implementation of U-Msg for College Students' English Learning
ERIC Educational Resources Information Center
Cheng, Yuh-Ming; Kuo, Sheng-Huang; Lou, Shi-Jer; Shih, Ru-Chu
2016-01-01
With the advance of mobile technology, mobile devices have become more portable and powerful with numerous useful tools in daily life. Thus, mobile learning has been widely involved in e-learning studies. Many studies point out that it is important to integrate both pedagogical and technical strengths of mobile technology into learning settings.…
A Learning Architecture: How School Leaders Can Design for Learning Social Justice
ERIC Educational Resources Information Center
Scanlan, Martin
2013-01-01
Purpose: The field of socially just educational leadership focuses on reducing inequities within schools. The purpose of this article is to illustrate how one strand of social learning theory, communities of practice, can serve as a powerful tool for analyzing learning within a school ostensibly pursuing social justice. The author employs a core…
The iNACOL State Policy Frameworks: 5 Critical Issues to Transform K-12 Education
ERIC Educational Resources Information Center
Worthen, Maria; Patrick, Susan
2014-01-01
Over the last decade, the American education system has seen unprecedented transformation of teaching and learning as educators have grasped the power of new learning models to close achievement gaps and extend access to high-quality learning opportunities. The availability of adaptive digital tools that use data to improve student learning has…
McBee, Morgan P; Awan, Omer A; Colucci, Andrew T; Ghobadi, Comeron W; Kadom, Nadja; Kansagra, Akash P; Tridandapani, Srini; Auffermann, William F
2018-03-29
As radiology is inherently a data-driven specialty, it is especially conducive to utilizing data processing techniques. One such technique, deep learning (DL), has become a remarkably powerful tool for image processing in recent years. In this work, the Association of University Radiologists Radiology Research Alliance Task Force on Deep Learning provides an overview of DL for the radiologist. This article aims to present an overview of DL in a manner that is understandable to radiologists; to examine past, present, and future applications; as well as to evaluate how radiologists may benefit from this remarkable new tool. We describe several areas within radiology in which DL techniques are having the most significant impact: lesion or disease detection, classification, quantification, and segmentation. The legal and ethical hurdles to implementation are also discussed. By taking advantage of this powerful tool, radiologists can become increasingly more accurate in their interpretations with fewer errors and spend more time to focus on patient care. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hand, V.; Penuel, W. R.; Gutierrez, K. D.
2012-01-01
Accounts of how culture constitutes the learning activities we accomplish with others are flourishing. These accounts illustrate how participants draw upon, adapt, and contest historically situated social practices, tools, and relations to accomplish their learning goals [Vygotsky: Cambridge, Harvard University Press, 1978]. Yet, they often lack…
ERIC Educational Resources Information Center
Olssen, Mark
2006-01-01
This paper argues that Foucault's conception of "governmentality" provides a powerful tool for understanding learning and education and links the organisation of learning to both politics and economics in developed Western societies. What is offered by Foucault's conception, I will argue, is a new version of superstructural sociology, which…
Design and Implementation of a Learning Analytics Toolkit for Teachers
ERIC Educational Resources Information Center
Dyckhoff, Anna Lea; Zielke, Dennis; Bultmann, Mareike; Chatti, Mohamed Amine; Schroeder, Ulrik
2012-01-01
Learning Analytics can provide powerful tools for teachers in order to support them in the iterative process of improving the effectiveness of their courses and to collaterally enhance their students' performance. In this paper, we present the theoretical background, design, implementation, and evaluation details of eLAT, a Learning Analytics…
Understanding Collaborative Learning Behavior from Moodle Log Data
ERIC Educational Resources Information Center
Lu, Jingyan; Law, Nancy Wai Ying
2012-01-01
Although course management systems (CMSs) were originally designed for teachers to manage their teaching, little interest has been directed at students' learning. Moodle is usually regarded as a CMS. However, how to make full use of its powerful features and design them into learning tools has rarely been investigated. This study investigates two…
ERIC Educational Resources Information Center
Beausaert, Simon A. J.; Segers, Mien S. R.; Gijselaers, Wim H.
2011-01-01
Today, organizations are increasingly implementing assessment tools such as Personal Development Plans. Although the true power of the tool lies in supporting the employee's continuing professional development, organizations implement the tool for various different purposes, professional development purposes on the one hand and promotion/salary…
Tools for Educational Data Mining: A Review
ERIC Educational Resources Information Center
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan
2017-01-01
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
ERIC Educational Resources Information Center
Fazeli, Seyed Hossein
2011-01-01
Since Language Learning Strategies (LLSs) have the potential to be "an extremely powerful learning tool" (O'Malley, Chamot, Stewner-Manzanares, Russo & Kupper, 1985a, p.43), the use of LLSs helps the learners retrieve and store material, and facilitate their learning (Grander & Maclntyre, 1992), they are sensitive to the learning context and to…
Hunger Games: Interactive Ultrasound Imaging for Learning Gastrointestinal Physiology.
Kafer, Ilana; Rennie, William; Noor, Ali; Pellerito, John S
2017-02-01
Ultrasound is playing an increasingly important role in medical student education. Although most uses of ultrasound have focused on learning purely anatomic relationships or augmentation of the physical examination, there is little documentation of the value of ultrasound as a learning tool regarding physiology alone or in association with anatomy. We devised an interactive learning session for first-year medical students using ultrasound to combine both anatomic and physiologic principles as an integration of gastrointestinal and vascular function. The incorporation of our activity, The Hunger Games, provides the foundation for a powerful integration tool for medical student education. © 2016 by the American Institute of Ultrasound in Medicine.
Technology in the teaching of neuroscience: enhanced student learning.
Griffin, John D
2003-12-01
The primary motivation for integrating any form of education technology into a particular course or curriculum should always be to enhance student learning. However, it can be difficult to determine which technologies will be the most appropriate and effective teaching tools. Through the alignment of technology-enhanced learning experiences with a clear set of learning objectives, teaching becomes more efficient and effective and learning is truly enhanced. In this article, I describe how I have made extensive use of technology in two neuroscience courses that differ in structure and content. Course websites function as resource centers and provide a forum for student interaction. PowerPoint presentations enhance formal lectures and provide an organized outline of presented material. Some lectures are also supplemented with interactive CD-ROMs, used in the presentation of difficult physiological concepts. In addition, a computer-based physiological recording system is used in laboratory sessions, improving the hands-on experience of group learning while reinforcing the concepts of the research method. Although technology can provide powerful teaching tools, the enhancement of the learning environment is still dependent on the instructor. It is the skill and enthusiasm of the instructor that determines whether technology will be used effectively.
Smart Aquarium as Physics Learning Media for Renewable Energy
NASA Astrophysics Data System (ADS)
Desnita, D.; Raihanati, R.; Susanti, D.
2018-04-01
Smart aquarium has been developed as a learning media to visualize Micro Hydro Power Generator (MHPG). Its used aquarium water circulation system and Wind Power Generation (WPG) which generated through a wheel as a source. Its also used to teach about energy changes, circular motion and wheel connection, electromagnetic impact, and AC power circuit. The output power and system efficiency was adjusted through the adjustment of water level and wind speed. Specific targets in this research are: to achieved: (i) develop green aquarium technology that’s suitable to used as a medium of physics learning, (ii) improving quality of process and learning result at a senior high school student. Research method used development research by Borg and Gall, which includes preliminary studies, design, product development, expert validation, and product feasibility test, and vinalisation. The validation test by the expert states that props feasible to use. Limited trials conducted prove that this tool can improve students science process skills.
Collaborative Action Research on Technology Integration for Science Learning
ERIC Educational Resources Information Center
Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua
2012-01-01
This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…
The Add-On Impact of Mobile Applications in Learning Strategies: A Review Study
ERIC Educational Resources Information Center
Jeng, Yu-Lin; Wu, Ting-Ting; Huang, Yueh-Min; Tan, Qing; Yang, Stephen J. H.
2010-01-01
Mobile devices are more powerful and portable nowadays with plenty of useful tools for assisting people to handle daily life. With the advance of mobile technology, the issue of mobile learning has been widely investigated in e-learning research. Many researches consider it is important to integrate pedagogical and technical strengths of mobile…
ERIC Educational Resources Information Center
Brown, Elinor L.
2005-01-01
This five-year study examined the effectiveness of an innovative approach to service-learning embedded in a one year site-based alternative route to teacher certification. The ten-week school-based study investigated the influence of service-learning on the multicultural perceptions, cross-cultural communication skills, and social justice…
Ask-the-expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika; Avrekh, Ilya; Matthews, Bryan; Sharma, Manali; Oza, Nikunj
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the backend. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
Ask-the-Expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the back end. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
Going Google: Powerful Tools for 21st Century Learning
ERIC Educational Resources Information Center
Covili, Jared
2012-01-01
Google is more than a search engine--it offers many tools that give people the opportunity to work virtually from anywhere, with anyone, at any time they choose. And these tools are available to teachers and students for free. This book for K-12 educators explores the wide array of Google tools and shows how to use them in the classroom to foster…
ERIC Educational Resources Information Center
Hogan, Kevin
2008-01-01
This article presents this year's winners of Tech & Learning's student photography contest. Selected from an overwhelming six thousand entries, these images are proof that "the kids today" are not only extremely talented, but also powerfully enabled by digital tools that can help them express and communicate those talents. The theme of the…
Student Technology Use for Powerful Learning
ERIC Educational Resources Information Center
Heidenrich, Carol
2013-01-01
Technology has evolved as a valuable information and communication tool. In our knowledge and information society, students with information and communication technology (ICT) competence will be prepared for success. Teacher pedagogy and student learning have to change to fully integrate technology into the curriculum. Students may not have…
A potent effect of observational learning on chimpanzee tool construction
Price, Elizabeth E.; Lambeth, Susan P.; Schapiro, Steve J.; Whiten, Andrew
2009-01-01
Although tool use occurs in diverse species, its complexity may mark an important distinction between humans and other animals. Chimpanzee tool use has many similarities to that seen in humans, yet evidence of the cumulatively complex and constructive technologies common in human populations remains absent in free-ranging chimpanzees. Here we provide the first evidence that chimpanzees have a latent capacity to socially learn to construct a composite tool. Fifty chimpanzees were assigned to one of five demonstration conditions that varied in the amount and type of information available in video footage of a conspecific. Chimpanzees exposed to complete footage of a chimpanzee combining the two components to retrieve a reward learned to combine the tools significantly more than those exposed to more restricted information. In a follow-up test, chimpanzees that constructed tools after watching the complete demonstration tended to do so even when the reward was within reach of the unmodified components, whereas those that spontaneously solved the task (without seeing the modification process) combined only when necessary. Social learning, therefore, had a powerful effect in instilling a marked persistence in the use of a complex technique at the cost of efficiency, inhibiting insightful tool use. PMID:19570785
Machine learning for science: state of the art and future prospects.
Mjolsness, E; DeCoste, D
2001-09-14
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
ERIC Educational Resources Information Center
Dong, Yu Ren
2013-01-01
This article highlights how English language learners' (ELLs) prior knowledge can be used to help learn science vocabulary. The article explains that the concept of prior knowledge needs to encompass the ELL student's native language, previous science learning, native literacy skills, and native cultural knowledge and life experiences.…
ERIC Educational Resources Information Center
Hill, Cher M.; MacDonald, Margaret
2016-01-01
Teacher inquiry, in which teachers study their own professional practice, is currently a popular form of experiential learning that is considered a powerful tool to bring about effective change in teaching and learning. Little empirical evidence, however, exists to explain precisely if and how this pedagogical methodology moves teachers toward…
ERIC Educational Resources Information Center
Smilkstein, Rita
2011-01-01
This updated edition of the bestselling book on the brain's natural learning process brings new research results and applications in a power-packed teacher tool kit. Rita Smilkstein shows teachers how to create and deliver curricula that help students become the motivated, successful, and natural learners they were born to be. Updated features…
ERIC Educational Resources Information Center
Parenti, Melissa A.
2012-01-01
With the advent of and continual adaptations related to distance learning, there is a recognized need for up to date research in the area of effectiveness of online education programs. More specifically, assessing the capacity to attain academic goals by use of asynchronous and synchronous learning management systems (LMS) that power distance…
Using Microsoft PowerPoint as an Astronomical Image Analysis Tool
NASA Astrophysics Data System (ADS)
Beck-Winchatz, Bernhard
2006-12-01
Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies
A Structural Equation Model of Predictors for Effective Online Learning
ERIC Educational Resources Information Center
Marks, Ronald B.; Sibley, Stanley D.; Arbaugh, J. B.
2005-01-01
In studying online learning, researchers should examine three critical interactions: instructor-student, student-student, and student-content. Student-content interaction may include a wide variety of pedagogical tools (e.g., streaming media, PowerPoint, and hyperlinking). Other factors that can affect the perceived quality of online learning…
ERIC Educational Resources Information Center
Passerini, Katia
2007-01-01
Understanding the impact of different technological media on the achievement of instructional goals enables the delivery of a subject matter more effectively. Among the various instructional technologies that advance learning, educators and practitioners recurrently identify interactive multimedia as a very powerful tool for instruction and…
ERIC Educational Resources Information Center
Brown, Jennifer R.
2014-01-01
For years, anchor charts have been commonly used in literacy instruction. They also can be a powerful tool for learning mathematics. Anchor charts help create excitement for learning, establish real-world connections, and furnish a reference during work time as well as a solid foundation for later lessons. In this article, the author explores…
Suggested Guidelines for Writing Reflective Case Narratives: Structure and Indicators
ERIC Educational Resources Information Center
Becker, Karin L.; Renger, Ralph
2017-01-01
Reflective case narratives are a practical mechanism for conveying lessons learned for practice improvement. Their ability to transform experience into knowledge in a colloquial, narrative style positions reflective case narratives as a powerful learning tool with pedagogical benefits for the evaluation community. However, one criticism of…
ESSCOTS for Learning: Transforming Commercial Software into Powerful Educational Tools.
ERIC Educational Resources Information Center
McArthur, David; And Others
1995-01-01
Gives an overview of Educational Support Systems based on commercial off-the-shelf software (ESSCOTS), and discusses the benefits of developing such educational software. Presents results of a study that revealed the learning processes of middle and high school students who used a geographical information system. (JMV)
ERIC Educational Resources Information Center
Smith, Dwight; And Others
This instructional package is one of two designed for regular vocational students in the vocational area of building maintenance and engineering. The fifty-three learning modules are organized into ten units: office cleaning; grounds; sanitation; boiler maintenance and operation; power and hand tools; cabinet construction; repair of damaged…
New Means and New Meanings for Multicultural Education in a Global-Italian Context
ERIC Educational Resources Information Center
Barzanò, Giovanna; Cortiana, Paola; Jamison, Ian; Lissoni, Maria; Raffio, Lorenzo
2017-01-01
In today's multicultural world, digital tools may become a powerful means to building a culture of dialogue that supports "culturally responsive" teaching within imaginative multicultural learning environments. Students can develop global competencies, learning more about others' and their own culture as part of their personal…
Learning Stress Distribution in Soils Using a Digital Multimedia Tool.
ERIC Educational Resources Information Center
da Silva Ferreira, Ronaldo
The available technologies of microcomputers and international communication - Internet, are powerful sources for the Teaching and Learning Process. Undergraduate courses can take advantage of these resources to help students and teachers in the classroom. Thinking on this the Project REESC - Reengineering of Engineering Education in Santa…
Learning Science in a Second Language
ERIC Educational Resources Information Center
Lindquist, Bill; Loynachan, Courtney
2016-01-01
Courtney Loynachan was a student in Dr. Lindquist's summer 2014 "Teaching Science in the Elementary School" methods course at Hamline University in Saint Paul, Minnesota. The course included an exploration of the power of writing as a learning tool for science with a particular focus on the use of science notebooks. Throughout the…
Encouraging Learners to Create Language-Learning Materials
ERIC Educational Resources Information Center
Moiseenko, Veronika
2015-01-01
Student-produced materials are a powerful tool for promoting learner autonomy. They challenge the traditional paradigm of education because the very concept of learner-produced materials is based on trust in the student-centered learning process; when developing materials, learners do not rely on the teacher to make every decision. In this…
Developing Simulations in Multi-User Virtual Environments to Enhance Healthcare Education
ERIC Educational Resources Information Center
Rogers, Luke
2011-01-01
Computer-based clinical simulations are a powerful teaching and learning tool because of their ability to expand healthcare students' clinical experience by providing practice-based learning. Despite the benefits of traditional computer-based clinical simulations, there are significant issues that arise when incorporating them into a flexible,…
Writing in Chemistry: An Effective Learning Tool
NASA Astrophysics Data System (ADS)
Kovac, Jeffrey; Sherwood, Donna W.
1999-10-01
Writing is both a powerful learning tool and an important professional skill for chemists. We have developed a systematic approach to the integration of writing into the chemistry curriculum, which is described in detail in Writing Across the Chemistry Curriculum: A Faculty Handbook, available from the authors in a preliminary edition. The approach has been tested in high-enrollment sections of general chemistry at the University of Tennessee, Knoxville, with considerable success. This paper describes both the general approach and the specific implementation in the classroom.
Eportfolios in Business Communication Courses as Tools for Employment
ERIC Educational Resources Information Center
Okoro, Ephraim A.; Washington, Melvin C.; Cardon, Peter W.
2011-01-01
Eportfolios are a powerful tool for business students to gain self-awareness and take control of their learning experiences. Ideally, they can be used as online profiles in the job application process, allowing more authenticity, personalization, and completeness than traditional resumes. In our colleges, eportfolios help students reflect on their…
A Pythonic Approach for Computational Geosciences and Geo-Data Processing
NASA Astrophysics Data System (ADS)
Morra, G.; Yuen, D. A.; Lee, S. M.
2016-12-01
Computational methods and data analysis play a constantly increasing role in Earth Sciences however students and professionals need to climb a steep learning curve before reaching a sufficient level that allows them to run effective models. Furthermore the recent arrival and new powerful machine learning tools such as Torch and Tensor Flow has opened new possibilities but also created a new realm of complications related to the completely different technology employed. We present here a series of examples entirely written in Python, a language that combines the simplicity of Matlab with the power and speed of compiled languages such as C, and apply them to a wide range of geological processes such as porous media flow, multiphase fluid-dynamics, creeping flow and many-faults interaction. We also explore ways in which machine learning can be employed in combination with numerical modelling. From immediately interpreting a large number of modeling results to optimizing a set of modeling parameters to obtain a desired optimal simulation. We show that by using Python undergraduate and graduate can learn advanced numerical technologies with a minimum dedicated effort, which in turn encourages them to develop more numerical tools and quickly progress in their computational abilities. We also show how Python allows combining modeling with machine learning as pieces of LEGO, therefore simplifying the transition towards a new kind of scientific geo-modelling. The conclusion is that Python is an ideal tool to create an infrastructure for geosciences that allows users to quickly develop tools, reuse techniques and encourage collaborative efforts to interpret and integrate geo-data in profound new ways.
ERIC Educational Resources Information Center
Sazalli, Nurhasmiza; Wegerif, Rupert; Kleine-Staarman, Judith
2014-01-01
We report on the provisional findings of an ongoing research project investigating the pedagogical affordances of mobile learning in combination with Web 2.0 tools for the learning of English for English as a Second Language (ESL) learners. Using Design Based Research (DBR) as an approach to conduct this study, this paper will first present the…
Implementing Machine Learning in the PCWG Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Ding, Yu; Stuart, Peter
The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.
Overview of codes and tools for nuclear engineering education
NASA Astrophysics Data System (ADS)
Yakovlev, D.; Pryakhin, A.; Medvedeva, L.
2017-01-01
The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.
Learning curve approach to projecting cost and performance for photovoltaic technologies
NASA Astrophysics Data System (ADS)
Cody, George D.; Tiedje, Thomas
1997-10-01
The current cost of electricity generated by PV power is still extremely high with respect to power supplied by the utility grid, and there remain questions as to whether PV power can ever be competitive with electricity generated by fossil fuels. An objective approach to this important question was given in a previous paper by the authors which introduced analytical tools to define and project the technical/economic status of PV power from 1988 through the year 2010. In this paper, we apply these same tools to update the conclusions of our earlier study in the context of recent announcements by Amoco/Enron-Solar of projected sales of PV power at rates significantly less than the U.S. utility average.
A learning curve approach to projecting cost and performance for photovoltaic technologies
NASA Astrophysics Data System (ADS)
Cody, George D.; Tiedje, Thomas
1997-04-01
The current cost of electricity generated by PV power is still extremely high with respect to power supplied by the utility grid, and there remain questions as to whether PV power can ever be competitive with electricity generated by fossil fuels. An objective approach to this important question was given in a previous paper by the authors which introduced analytical tools to define and project the technical/economic status of PV power from 1988 through the year 2010. In this paper, we apply these same tools to update the conclusions of our earlier study in the context of recent announcements by Amoco/Enron-Solarex of projected sales of PV power at rates significantly less than the US utility average.
ERIC Educational Resources Information Center
Ocal, Mehmet Fatih
2017-01-01
Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the…
ERIC Educational Resources Information Center
Károly, Adrienn
2015-01-01
With an increasing emphasis on measuring the outcomes of learning in higher education, assessment is gaining an ever more prominent role in curriculum design and development as well as in instructional practices. In formative assessment, feedback is regarded as a powerful pedagogical tool driving student engagement and deep learning. The efficacy…
Using Storytelling to Teach Vocabulary in Language Lessons: Does It Work?
ERIC Educational Resources Information Center
Kirsch, Claudine
2016-01-01
It has long been claimed that stories are a powerful tool for language learning. Storytelling is often used as a discrete pedagogical approach in primary modern foreign language (MFL) lessons in England. There has, however, been little investigation into how storytelling might impact on vocabulary learning in the primary classroom. This article…
Between Fan Pilgrimage and Dark Tourism: Competing Agendas in Overseas Field Learning
ERIC Educational Resources Information Center
McMorran, Chris
2015-01-01
An overseas field learning itinerary can be a powerful pedagogical tool for both directing student attention and complicating preexisting spatial narratives. However, one must beware of using the itinerary to replace one narrative with another. This paper examines the itinerary negotiation for a 15-day overseas field module conducted three…
ERIC Educational Resources Information Center
Steinberg, Alan; And Others
This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty-one learning modules are organized into nine units: grounds; sanitation; boiler maintenance and operation; power and hand tools; cabinet construction; repair of damaged furniture;…
Earth Science Learning in SMALLab: A Design Experiment for Mixed Reality
ERIC Educational Resources Information Center
Birchfield, David; Megowan-Romanowicz, Colleen
2009-01-01
Conversational technologies such as email, chat rooms, and blogs have made the transition from novel communication technologies to powerful tools for learning. Currently virtual worlds are undergoing the same transition. We argue that the next wave of innovation is at the level of the computer interface, and that mixed-reality environments offer…
Beyond Polls: Using Science and Student Data to Stimulate Learning
ERIC Educational Resources Information Center
Loepp, Eric D.
2018-01-01
In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…
Transforming the Classroom for Collaborative Learning in the 21st Century
ERIC Educational Resources Information Center
Christen, Amy
2009-01-01
Today's hyper-connected students live in a world of instant interpersonal communications and virtually infinite access to information and educational resources. But this networked world, and the powerful learning tools it offers, has yet to penetrate the typical classroom. In many ways educational institutions are spinning their curricular wheels,…
Challenges of Teacher Collaboration within a Professional Learning Community
ERIC Educational Resources Information Center
Seisay, Benson M.
2013-01-01
The professional learning community (PLC) is a powerful tool in education, one that is intended to reform failing schools and improve student achievement. This research gathered data to determine teacher perceptions about challenges of teacher collaboration within a PLC school. The key conceptual framework for this case study originated from work…
ERIC Educational Resources Information Center
Lansford, Teresa
2017-01-01
Data can be a powerful tool for self-evaluation, goal setting, and advocacy in the school library. Regardless of the grade level or the size of the student body, any school library has meaningful data to mine and learn from. Basic data such as circulation numbers can impact a myriad of areas relevant to student learning such as collection…
Strategies for Using Repetition as a Powerful Teaching Tool
ERIC Educational Resources Information Center
Saville, Kirt
2011-01-01
Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…
Superitem Test: An Alternative Assessment Tool to Assess Students' Algebraic Solving Ability
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam; Idris, Noraini
2010-01-01
Superitem test based on the SOLO model (Structure of the Observing Learning Outcome) has become a powerful alternative assessment tool for monitoring the growth of students' cognitive ability in solving mathematics problems. This article focused on developing a superitem test to assess students' algebraic solving ability through interview method.…
Language at a Distance: Sharpening a Communication Tool in the Online Classroom
ERIC Educational Resources Information Center
Hannan, Annika
2009-01-01
Both immensely powerful and entirely fickle, language in online instruction is a double-edged sword. A potent intermediary between instructor and students, and among students themselves, language is a key tool in online learning. It carries and cultivates information. It builds knowledge and self-awareness. It brings learners together in a…
Macromedia Flash as a Tool for Mathematics Teaching and Learning
ERIC Educational Resources Information Center
Garofalo, Joe; Summers, Tim
2004-01-01
Macromedia Flash is a powerful and robust development tool. Because of its graphical, sound, and animation capabilities (and ubiquitous browser plug-in), major companies employ it in their website development (see www.nike.com or www.espn.com). These same features also make Flash a valuable environment for building multi-representational "movies"…
Scheduling lessons learned from the Autonomous Power System
NASA Technical Reports Server (NTRS)
Ringer, Mark J.
1992-01-01
The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.
Hage, S J
1991-01-01
"Rapid and tumultuous change in health care as well as business has precipitated a power shift," declares Mr. Hage in this candid discussion of a quality that is both abstract and concrete. Centralized power is no longer the order of the day; in fact, the new stance supports pushing power down into organizations where it can be better used by those closer to the action. The author maintains that effective participants in this new model will learn to share power and respect knowledge as the only tool that wields it.
AVERT Main Module Quick Start Guide
Learn how to get started with the AVERT tool, which guides non-experts in evaluating county-level emissions displaced at electric power plants by energy efficiency and renewable energy policies and programs.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.
EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanbhag, Uday V; Basar, Tamer; Meyn, Sean
Research reported addressed these topics: the development of analytical and algorithmic tools for distributed computation of Nash equilibria; synchronization in mean-field oscillator games, with an emphasis on learning and efficiency analysis; questions that combine learning and computation; questions including stochastic and mean-field games; modeling and control in the context of power markets.
How Much Is Learning Measurement Worth? Assessment Costs in Low-Income Countries
ERIC Educational Resources Information Center
Wagner, Daniel A.; Babson, Andrew; Murphy, Katie M.
2011-01-01
Timely and credible data on student learning has become a global issue in the ongoing effort to improve educational outcomes. With the potential to serve as a powerful diagnostic tool to gauge the overall health and well-being of an educational system, educational assessments have received increasing attention among specialists and the media.…
ERIC Educational Resources Information Center
DeMatthews, David
2014-01-01
Professional Learning Communities (PLCs) can be powerful tools for school improvement but require principals and teachers to collaborate and work together. This article reports on a qualitative multi-case study focused on six elementary schools in West Texas that had been identified for having effective PLCs. Principals and teachers were observed…
Clickers and CATs: Using Learner Response Systems for Formative Assessments in the Classroom
ERIC Educational Resources Information Center
Briggs, Charlotte L.; Keyek-Franssen, Deborah
2010-01-01
Formative assessment can play a critical role in fostering student success by engaging students in their own learning process, focusing their attention on what really matters, and helping instructors adjust to student learning needs in real time. Classroom assessment techniques (CATs) are a powerful formative assessment tool, and many CATs can be…
ERIC Educational Resources Information Center
Hsieh, Betina
2017-01-01
Research on social media use in education indicates that network-based connections can enable powerful teacher learning opportunities. Using a connectivist theoretical framework (Siemens, 2005), this study focuses on secondary teacher candidates (TCs) who completed, archived, and reflected upon 1-hour Twitter chats (N = 39) to explore the promise…
ERIC Educational Resources Information Center
Hoffman, Martin A., Sr.
2016-01-01
Professional development is a vital activity in postsecondary educational institutions that is specifically intended to improve the participants' skill set as educators. Personalized education, differentiated instruction, and adaptive learning are widely discussed as being powerful tools to reach students, but are largely outward facing and not…
ERIC Educational Resources Information Center
Chien, Tien-Chen
2008-01-01
Computer is not only a powerful technology for managing information and enhancing productivity, but also an efficient tool for education and training. Computer anxiety can be one of the major problems that affect the effectiveness of learning. Through analyzing related literature, this study describes the phenomenon of computer anxiety,…
Don't Take It Personal, It's Just Our Bad Ass Ways
ERIC Educational Resources Information Center
Chun, Cynthia Kelley
2005-01-01
As teachers, an important part of planning curriculum is considering the relevance of what they teach their students. The author believes that project-based learning that integrates technology, language arts, and critical media literacy can be a powerful tool for learning. Not only does this kind of work connect students to the curriculum, it also…
Intentional Language and the Power of Metaphor: Helping Students Build a Learning Community
ERIC Educational Resources Information Center
Pate, Joseph A.; Johnson, Corey W.
2013-01-01
Metaphors are an effective pedagogical tool used within the classroom to enhance and facilitate learning and growth. This article draws attention to the intentional, and sometimes even unintentional, use of metaphors with regard to what metaphors open up and afford, and how metaphors are created or formed. Specific examples of metaphors are…
How I Learned to Design and Conduct Semi-Structured Interviews: An Ongoing and Continuous Journey
ERIC Educational Resources Information Center
Rabionet, Silvia E.
2011-01-01
Qualitative interviewing is a flexible and powerful tool to capture the voices and the ways people make meaning of their experience Learning to conduct semi-structure interviews requires the following six stages: (a) selecting the type of interview; (b) establishing ethical guidelines, (c) crafting the interview protocol; (d) conducting and…
Arts Infusion and Literacy Achievement within Underserved Communities: A Matter of Equity
ERIC Educational Resources Information Center
Carney, Charles L.; Weltsek, Gustave J.; Hall, M. Lynne; Brinn, Ginger
2016-01-01
There is ample evidence that arts added to the K-12 curriculum can have many positive learning impacts. Nevertheless, many states do not promote such instruction as an integral part of classroom plans. For particular schools with underserved populations, arts-enhanced curricula can be a powerful learning tool. Beyond arts integration, arts…
Our Compulsory Goals: Effective Teaching and Meaningful Learning through Powerful Cultural Tools
ERIC Educational Resources Information Center
Wilhelm, Jeffrey D., Ed.
2012-01-01
Wilhelm asks, "But are new literacies just fun?" Then he immediately answers, "Absolutely not--if we as teachers provide the right context and conditions of their use." Offering research-based advice on incorporating technology to increase motivation and deepen learning, Wilhelm boils it down to this bottom line: it's engaged, substantive,…
Feedback Both Helps and Hinders Learning: The Causal Role of Prior Knowledge
ERIC Educational Resources Information Center
Fyfe, Emily R.; Rittle-Johnson, Bethany
2016-01-01
Feedback can be a powerful learning tool, but its effects vary widely. Research has suggested that learners' prior knowledge may moderate the effects of feedback; however, no causal link has been established. In Experiment 1, we randomly assigned elementary school children (N = 108) to a condition based on a crossing of 2 factors: induced strategy…
A Decision Support Prototype Tool for Predicting Student Performance in an ODL Environment
ERIC Educational Resources Information Center
Kotsiantis, S. B.; Pintelas, P. E.
2004-01-01
Machine Learning algorithms fed with data sets which include information such as attendance data, test scores and other student information can provide tutors with powerful tools for decision-making. Until now, much of the research has been limited to the relation between single variables and student performance. Combining multiple variables as…
Physics Education through Computational Tools: The Case of Geometrical and Physical Optics
ERIC Educational Resources Information Center
Rodríguez, Y.; Santana, A.; Mendoza, L. M.
2013-01-01
Recently, with the development of more powerful and accurate computational tools, the inclusion of new didactic materials in the classroom is known to have increased. However, the form in which these materials can be used to enhance the learning process is still under debate. Many different methodologies have been suggested for constructing new…
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T. G.; Morris, R. V.; Laura, J.; Gaddis, L. R.
2017-12-01
Machine learning is a powerful but underutilized approach that can enable planetary scientists to derive meaningful results from the rapidly-growing quantity of available spectral data. For example, regression methods such as Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO), can be used to determine chemical concentrations from ChemCam and SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) data [1]. Many scientists are interested in testing different spectral data processing and machine learning methods, but few have the time or expertise to write their own software to do so. We are therefore developing a free open-source library of software called the Python Spectral Analysis Tool (PySAT) along with a flexible, user-friendly graphical interface to enable scientists to process and analyze point spectral data without requiring significant programming or machine-learning expertise. A related but separately-funded effort is working to develop a graphical interface for orbital data [2]. The PySAT point-spectra tool includes common preprocessing steps (e.g. interpolation, normalization, masking, continuum removal, dimensionality reduction), plotting capabilities, and capabilities to prepare data for machine learning such as creating stratified folds for cross validation, defining training and test sets, and applying calibration transfer so that data collected on different instruments or under different conditions can be used together. The tool leverages the scikit-learn library [3] to enable users to train and compare the results from a variety of multivariate regression methods. It also includes the ability to combine multiple "sub-models" into an overall model, a method that has been shown to improve results and is currently used for ChemCam data [4]. Although development of the PySAT point-spectra tool has focused primarily on the analysis of LIBS spectra, the relevant steps and methods are applicable to any spectral data. The tool is available at https://github.com/USGS-Astrogeology/PySAT_Point_Spectra_GUI. [1] Clegg, S.M., et al. (2017) Spectrochim Acta B. 129, 64-85. [2] Gaddis, L. et al. (2017) 3rd Planetary Data Workshop, #1986. [3] http://scikit-learn.org/ [4] Anderson, R.B., et al. (2017) Spectrochim. Acta B. 129, 49-57.
The Power of Self-Directed Journals: Being a Temporary "Other" for Learning to Teach
ERIC Educational Resources Information Center
Matsumoto, Yumi
2016-01-01
This case study investigates how an ESL teacher's activity of self-directed journal writing can facilitate learning and function as a mediational tool for teacher professional development. The participant for this study is a native English speaker who taught an ESL freshman writing course in an American university. Since he had little time to…
ERIC Educational Resources Information Center
Gengler, Amanda Marie
2010-01-01
Travel is a powerful pedagogical tool for critical and feminist teachers, as it leads to learning that is uniquely interactive, collective, and transformative. It places students in immersive contact with real-world realities, which the teachers strive to help them see, come to terms with, and connect to the positionality of their own lived…
ERIC Educational Resources Information Center
Department of Energy, Washington, DC.
This guide explores the contributions that parents and teachers can make to enhance energy choice decisions that affect the design and operation of educational facilities. It also examines how making the right choice can create better learning environments. The guide reveals how schools have turned energy improvements into powerful teaching tools;…
The Use of Digital Storytelling for ESP in a Technical English Course for Aerospace Engineers
ERIC Educational Resources Information Center
Sevilla-Pavón, Ana; Serra-Cámara, Belén; Gimeno-Sanz, Ana
2012-01-01
Digital Storytelling is a powerful pedagogical tool for both students and educators, which started to be used for teaching and learning purposes a few years ago, becoming more and more popular over time. The use of digital storytelling in non-specific language learning contexts has been widely explored, as shown in the literature. However, its use…
ERIC Educational Resources Information Center
Craig, Shelley L.; McInroy, Lauren B.; Bogo, Marion; Thompson, Michelle
2017-01-01
Simulation-based learning (SBL) is a powerful tool for social work education, preparing students to practice in integrated health care settings. In an educational environment addressing patient health using an integrated care model, there is growing emphasis on students developing clinical competencies prior to entering clinical placements or…
Using Short Texts to Teach English as Second Language: An Integrated Approach
ERIC Educational Resources Information Center
Kembo, Jane
2016-01-01
The teacher of English Language is often hard pressed to find interesting and authentic ways to present language to target second language speakers. While language can be taught and learned, part of it must be acquired and short texts provide powerful tools for doing so and reinforcing what has been taught/learned. This paper starts from research,…
Homemade Powerpoint Games: Game Design Pedagogy Aligned to the TPACK Framework
ERIC Educational Resources Information Center
Siko, Jason P.; Barbour, Michael K.
2012-01-01
While researchers are examining the role of playing games to learn, others are looking at using game design as an instructional tool. However, game-design software may require additional time to train both teachers and students. In this article, the authors discuss the use of Microsoft PowerPoint as a tool for game-design instruction and the…
Mediated Authentic Video: A Flexible Tool Supporting a Developmental Approach to Teacher Education
ERIC Educational Resources Information Center
Stutchbury, Kris; Woodward, Clare
2017-01-01
YouTube now has more searches than Google, indicating that video is a motivating and, potentially, powerful learning tool. This paper investigates how we can embrace video to support improvements in teacher education. It will draw on innovative approaches to teacher education, developed by the Open University UK, in order to explore in more depth…
Experimental studies illuminate the cultural transmission of percussive technologies in Homo and Pan
Whiten, Andrew
2015-01-01
The complexity of Stone Age tool-making is assumed to have relied upon cultural transmission, but direct evidence is lacking. This paper reviews evidence bearing on this question provided through five related empirical perspectives. Controlled experimental studies offer special power in identifying and dissecting social learning into its diverse component forms, such as imitation and emulation. The first approach focuses on experimental studies that have discriminated social learning processes in nut-cracking by chimpanzees. Second come experiments that have identified and dissected the processes of cultural transmission involved in a variety of other force-based forms of chimpanzee tool use. A third perspective is provided by field studies that have revealed a range of forms of forceful, targeted tool use by chimpanzees, that set percussion in its broader cognitive context. Fourth are experimental studies of the development of flint knapping to make functional sharp flakes by bonobos, implicating and defining the social learning and innovation involved. Finally, new and substantial experiments compare what different social learning processes, from observational learning to teaching, afford good quality human flake and biface manufacture. Together these complementary approaches begin to delineate the social learning processes necessary to percussive technologies within the Pan–Homo clade. PMID:26483537
Leadership DNA: The Ford Motor Story.
ERIC Educational Resources Information Center
Friedman, Stewart D.
2001-01-01
The Ford Motor Company invested in transformational leadership to change itself. Programs center around core principles: adopt a transformational mindset, use action learning, leverage the power of electronic tools, integrate work and life, and generate business impact. (JOW)
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Theoretical foundations of learning through simulation.
Zigmont, Jason J; Kappus, Liana J; Sudikoff, Stephanie N
2011-04-01
Health care simulation is a powerful educational tool to help facilitate learning for clinicians and change their practice to improve patient outcomes and safety. To promote effective life-long learning through simulation, the educator needs to consider individuals, their experiences, and their environments. Effective education of adults through simulation requires a sound understanding of both adult learning theory and experiential learning. This review article provides a framework for developing and facilitating simulation courses, founded upon empiric and theoretic research in adult and experiential learning. Specifically, this article provides a theoretic foundation for using simulation to change practice to improve patient outcomes and safety. Copyright © 2011 Elsevier Inc. All rights reserved.
Inspiring Students through Digital Media Teleschool Teacher, Hawaii Schools Digital Media Program
ERIC Educational Resources Information Center
Yamashita, Irene
2005-01-01
Video is a powerful tool, and it can be used to motivate student achievement and learning. One of the greatest advantages in getting students to work with digital media is that they can retake and re-edit a project until they are satisfied with it. Students become very occupied in applying what they have learned by producing mini-documentaries,…
Leadership Styles of Lecturer's Technical and Vocational in Teaching and Learning
ERIC Educational Resources Information Center
Razak, Nur Afifah Binti Abdul; Jaafar, Siti Norain Bt; Hamidon, Nur Izeanty Binti; Zakaria, Normah Binti
2015-01-01
Leadership style is a way of using the power of a leader held as a tool to influence the students and to achieve the objectives in the classroom and affect the election approaches in teaching and learning process. The purpose of this research is to study the style of lecturer's leadership in UTHM Technical and Vocational (TVeT). The study focuses…
Once upon a Time … the Power of Story and Learning Journals.
Lewis, Melinda
2004-05-01
This paper will invite you to consider the role of stories for learning and the use of learning journals as a tool to create meaning. The application of story and story culture in higher education, academia and management contexts will be presented. As an example, an old Punjabi tale will be adapted for use when managing and inspiring teams in the workplace. Storytelling is experiencing a revival and being used in the corporate sector to ignite action in knowledge-era organisations.
Tech Talk for Social Studies Teachers: Using the Internet to Explore the French Revolution
ERIC Educational Resources Information Center
Street, Chris
2005-01-01
Although the mandate to promote information literacy in the classroom is no longer a new one, many teachers still struggle to find trustworthy Web sites and tools that allow them to meet that challenge in a meaningful way. The Internet is an exciting and powerful tool for research and learning. It also is one of the ultimate conduits for freedom…
ERIC Educational Resources Information Center
Zhang, Weiwei
2012-01-01
This research looks at the use of PowerPoint as an instructional tool for teaching English language learners (ELL) who studied in a language program at a state university in the Pacific Northwest. The purpose of the research was to discover and to explore the perceptions of PowerPoint supported teaching and learning that were held by the students,…
Web-Based Learning Support System
NASA Astrophysics Data System (ADS)
Fan, Lisa
Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.
Developing affordable multi-touch technologies for use in physics
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, Carolina; Schofield, Damian; Vampola, David
2012-02-01
Physics is one of many areas which has the ability to benefit from a number of different teaching styles and sophisticated instructional tools due to it having both theoretical and practical applications which can be explored. The purpose of this research is to develop affordable large scale multi-touch interfaces which can be used within and outside of the classroom as both an instruction technology and a computer supported collaborative learning tool. Not only can this technology be implemented at university levels, but also at the K-12 level of education. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style [1]. Through the use of these types of multi-touch tools and teaching methods which incorporate them, the classroom can be enriched to allow for better comprehension and retention of information. This is due in part to a wider range of learning styles, such as kinesthetic learning, which are being catered to within the classroom. [4pt] [1] Wieman, C.E, Perkins, K.K., Adams, W.K., ``Oersted Medal Lecture 2007: Interactive Simulations for teaching physics: What works, what doesn't and why,'' American Journal of Physics. 76 393-99.
Practice and Evaluation of Ability Grouping Lecture on Information Literacy Using a Chat Tool
NASA Astrophysics Data System (ADS)
Fujinaga, Kiyohisa
A teaching methodology on information literacy that skilled and inexperienced students learn through different specific contents in a class is proposed. Skilled students collaboratively work using an e-Learning environment while a conventional projector-based lecture on how to use a computer is given for inexperienced students. The methodology had been put into practice for two years. Skilled students were divided into a few groups and members in a group collaboratively made a PowerPoint slide show using a chat tool as the communication media. The slide shows were evaluated by means of questionnaire to the inexperienced students. The results were nearly the same as those of teachers. The practice of the methodology resulted in that the concentration of the skilled students was promoted and the learning attitude of the inexperienced students was improved, compared with the case that the both skilled and inexperienced students learned through the same contents.
A learning tool for optical and microwave satellite image processing and analysis
NASA Astrophysics Data System (ADS)
Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.
2016-04-01
This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.
Speaking Math: Using Chat in the Multicultural Math Classroom
ERIC Educational Resources Information Center
Graham, Janet; Hodgson, Ted
2008-01-01
Electronic communication is a powerful tool teachers can leverage to improve learning. In this article, the authors explain how they used chat and discussion forums to improve their mathematics classes, and how others can adapt their strategies across the curriculum.
1984-03-01
evaluation of powerful support environments are essential if we are to maximize Lanauage Definition the productivity of programmers. CENVTACS provided...quality Policy and Objectives Ada support environment which includes a rich set of powerful tools (in addition to a compiler) The DOD has established Ada...to be easy to learn and easy to use. It will be powerful , efficient, and The MAPSE Command Language (MCL) friendly. This paper describes how these
Engaging the YouTube Google-Eyed Generation: Strategies for Using Web 2.0 in Teaching and Learning
ERIC Educational Resources Information Center
Duffy, Peter
2008-01-01
YouTube, Podcasting, Blogs, Wikis and RSS are buzz words currently associated with the term Web 2.0 and represent a shifting pedagogical paradigm for the use of a new set of tools within education. The implication here is a possible shift from the basic archetypical vehicles used for (e)learning today (lecture notes, printed material, PowerPoint,…
Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.
Zhang, JunQi; Wang, Cheng; Zhou, MengChu
2015-10-01
Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.
Deep learning guided stroke management: a review of clinical applications.
Feng, Rui; Badgeley, Marcus; Mocco, J; Oermann, Eric K
2018-04-01
Stroke is a leading cause of long-term disability, and outcome is directly related to timely intervention. Not all patients benefit from rapid intervention, however. Thus a significant amount of attention has been paid to using neuroimaging to assess potential benefit by identifying areas of ischemia that have not yet experienced cellular death. The perfusion-diffusion mismatch, is used as a simple metric for potential benefit with timely intervention, yet penumbral patterns provide an inaccurate predictor of clinical outcome. Machine learning research in the form of deep learning (artificial intelligence) techniques using deep neural networks (DNNs) excel at working with complex inputs. The key areas where deep learning may be imminently applied to stroke management are image segmentation, automated featurization (radiomics), and multimodal prognostication. The application of convolutional neural networks, the family of DNN architectures designed to work with images, to stroke imaging data is a perfect match between a mature deep learning technique and a data type that is naturally suited to benefit from deep learning's strengths. These powerful tools have opened up exciting opportunities for data-driven stroke management for acute intervention and for guiding prognosis. Deep learning techniques are useful for the speed and power of results they can deliver and will become an increasingly standard tool in the modern stroke specialist's arsenal for delivering personalized medicine to patients with ischemic stroke. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
What's New in Software? Computers and the Writing Process: Strategies That Work.
ERIC Educational Resources Information Center
Ellsworth, Nancy J.
1990-01-01
The computer can be a powerful tool to help students who are having difficulty learning the skills of prewriting, composition, revision, and editing. Specific software is suggested for each phase, as well as for classroom publishing. (Author/JDD)
Energizing Learning: The Instructional Power of Conflict
ERIC Educational Resources Information Center
Johnson, David W.; Johnson, Roger T.
2009-01-01
Although intellectual conflict may be an important instructional tool (because of its potential constructive outcomes), conflict is rarely structured in instructional situations (because of its potential destructive outcomes). Many educators may be apprehensive about instigating intellectual conflict among students because of the lack of…
AstroML: Python-powered Machine Learning for Astronomy
NASA Astrophysics Data System (ADS)
Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.
2014-01-01
As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.
The mechanism of impact of summative assessment on medical students’ learning
Schuwirth, Lambert W.; Adendorff, Hanelie J.; Herman, Nicoline; van der Vleuten, Cees P.
2010-01-01
It has become axiomatic that assessment impacts powerfully on student learning, but there is a surprising dearth of research on how. This study explored the mechanism of impact of summative assessment on the process of learning of theory in higher education. Individual, in-depth interviews were conducted with medical students and analyzed qualitatively. The impact of assessment on learning was mediated through various determinants of action. Respondents’ learning behaviour was influenced by: appraising the impact of assessment; appraising their learning response; their perceptions of agency; and contextual factors. This study adds to scant extant evidence and proposes a mechanism to explain this impact. It should help enhance the use of assessment as a tool to augment learning. PMID:20455078
Assessing Understanding through Reading and Writing in Mathematics
ERIC Educational Resources Information Center
Adu-Gyamfi, Kwaku; Bosse, Michael J.; Faulconer, Johna
2010-01-01
The mathematics education community recognizes the integrality of reading and writing in learning and communicating mathematics knowledge. Unfortunately, many students have yet to significantly experience this integrality in their mathematics classrooms despite the power these tools offer teachers for assessing student knowledge. This paper…
ERIC Educational Resources Information Center
Weisberg, Shelley Kruger
2011-01-01
As Howard Gardner persuasively argued, movement, or kinesthetics, can be a powerful educational tool and one to which some learners are particularly attuned. Museums, however, are typically places that discourage movement (don't run, don't jump, watch out for the artifacts). This makes incorporating kinesthetic learning challenging. This article…
ERIC Educational Resources Information Center
Ward, Lauren; Lyden, Sarah; Fitzallen, Noleine
2016-01-01
Context based learning (CBL) is a powerful tool that utilises areas of student interest framed in meaningful contexts to foster development of new skills and understanding. For middle school students, engineering activities that relate to real-world problems provide suitable CBL contexts for acquiring conceptual scientific and mathematical…
ERIC Educational Resources Information Center
Lucking, Robert A.; Christmann, Edwin P.; Wighting, Mervyn J.
2010-01-01
Although in some schools cell phones have to be turned off or perhaps kept in lockers to avoid misuse, the authors hope to demonstrate in this article how they can be used under supervision to assist learning. This ubiquitous device can be a powerful classroom tool. (Contains 2 figures.)
ERIC Educational Resources Information Center
Engel, Susan
2015-01-01
"One of the most powerful educational tools available to students and teachers lies hidden in plain sight, in every classroom--conversation," writes Susan Engel. The conversational exchanges that happen naturally between parents and young children are full of questions that can lead to learning. Within the context of these casual…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E. (Editor); Sullivan, Shannon (Editor); Sanchez, Alicia (Editor)
2008-01-01
This NASA Conference Publication features select papers and PowerPoint presentations from the Education and Training Track of MODSIM World 2007 Conference and Expo. Invited speakers and panelists of national and international renown, representing academia, industry and government, discussed how modeling and simulation (M&S) technology can be used to accelerate learning in the K-16 classroom, especially when using M&S technology as a tool for integrating science, technology, engineering and mathematics (STEM) classes. The presenters also addressed the application ofM&S technology to learning and training outside of the classroom. Specific sub-topics of the presentations included: learning theory; curriculum development; professional development; tools/user applications; implementation/infrastructure/issues; and workforce development. There was a session devoted to student M&S competitions in Virginia too, as well as a poster session.
Using Machine Learning to Advance Personality Assessment and Theory.
Bleidorn, Wiebke; Hopwood, Christopher James
2018-05-01
Machine learning has led to important advances in society. One of the most exciting applications of machine learning in psychological science has been the development of assessment tools that can powerfully predict human behavior and personality traits. Thus far, machine learning approaches to personality assessment have focused on the associations between social media and other digital records with established personality measures. The goal of this article is to expand the potential of machine learning approaches to personality assessment by embedding it in a more comprehensive construct validation framework. We review recent applications of machine learning to personality assessment, place machine learning research in the broader context of fundamental principles of construct validation, and provide recommendations for how to use machine learning to advance our understanding of personality.
Blogs as Powerful Learning Tools: The Perception from EFL Students in Riau Main Island Indonesia
NASA Astrophysics Data System (ADS)
Hamuddin, Budianto; Dahler
2018-05-01
Promoting the potential value of blogs in English Language Teaching (ELT) for English as a Foreign Language (EFL) students is the focus of this present study. It’s aimed to explain in a quantitative way the perceptions from English as a Foreign Language (EFL) students in using blogs in Riau main island context. The students from PBIG FKIP Universitas Lancang Kuning in Riau mainland, Indonesia was selected based on the increasing trends of the blog used as alternative media to learn English during these two years. The analysis of this present study based its data from online questionnaire as the main instrument to collect the data. The online questionnaire was open from August 2016-February 2017 (6 months) and filled up by 161 students from English Department of FKIP Unilak who enroll in 6 different blog-based classes at PBIG FKIP Unilak. The analysis showing that the majority of the students had a positive perception that blog can be used as powerful tools to promote English language skills especially reading and writing. The data also reveals that using the blog as a learning journal can raise students’ motivation in learning English and publishing article. These positive results somehow showing that blog can be promoted as an alternative media of learning English for English as Foreign Language Students at PBIG FKIP Unilak or in other institutions around the globe that teach English as a Foreign language.
The power of associative learning and the ontogeny of optimal behaviour.
Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano
2016-11-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce 'intelligent' behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion.
The power of associative learning and the ontogeny of optimal behaviour
Enquist, Magnus; Lind, Johan
2016-01-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce ‘intelligent’ behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion. PMID:28018662
ERIC Educational Resources Information Center
Celeste, Eric
2016-01-01
Communities of practice have become important tools for districts striving to improve teacher quality in a way that improves student outcomes, but scaling the benefits of these communities requires a more rigorous, intentional approach. That's why Learning Forward, with support from the Bill & Melinda Gates Foundation, created the Redesign PD…
Power Tools for Talking: Custom Protocols Enrich Coaching Conversations
ERIC Educational Resources Information Center
Pomerantz, Francesca; Ippolito, Jacy
2015-01-01
Discussion-based protocols--an "agreed upon set of discussion or observation rules that guide coach/teacher/student work, discussion, and interactions" (Ippolito & Lieberman, 2012, p. 79)--can help focus and structure productive professional learning discussions. However, while protocols are slowly growing into essential elements of…
Online Reading Informs Classroom Instruction and Promotes Collaborative Learning
ERIC Educational Resources Information Center
Wright, L. Kate; Zyto, Sacha; Karger, David R.; Newman, Dina L.
2013-01-01
Web-based collaborative annotation tools can facilitate communication among students and their instructors through online reading and communication. Collaborative reading fosters peer interaction and is an innovative way to facilitate discussion and participation in larger enrollment courses. It can be especially powerful as it creates an…
ERIC Educational Resources Information Center
Skouge, James R.; Kajiyama, Brian
2009-01-01
In this article, the authors relate a story about the transformative power of technologies for voice. They relate Brian Kajiyama's personal odyssey--what might be described as a journey from unvoiced to vocal--in learning to use a DynaWrite, a type-and-talk device that Brian uses as a communication tool.
ERIC Educational Resources Information Center
Jackson, Julie K.; Newell, Nancy
2012-01-01
Words are the foundation of knowledge. They are powerful tools used to express ideas, communicate with others, access knowledge, and learn about new concepts. Research shows a strong relationship between student word knowledge and academic achievement. As a result, building academic content vocabulary is an important part of science instruction.…
ERIC Educational Resources Information Center
Anderson, Janice L.; Smith, Diane; Corbat, Josh; Minshew, Lana; Madlangbayan, Melissa
2016-01-01
Direct experience is a powerful learning and teaching tool. However, when trying to teach students about natural hazards such as earthquakes, direct experience is not the best idea. Depending on location, it might be difficult to help young students understand the impact of natural hazards on their lives. Students will naturally find it…
Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong
2017-12-15
Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Can surgical simulation be used to train detection and classification of neural networks?
Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail
2017-10-01
Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.
ERIC Educational Resources Information Center
Foster, Carla
2016-01-01
Presenting the Montessori tools of the Great Lessons highlights the power of storytelling in teaching. Carla Foster suggests that children should be aware of how their learning increases as wonder points them to the mystery of the unknown. Engaging in the dialect of wonder during presentations can bring participants to attention by suggesting that…
Turning a New Light on Assessment with LinguaFolio
ERIC Educational Resources Information Center
Van Houten, Jacqueline Bott
2006-01-01
This article aims to reshape the prevailing negative perception of assessment into one of a positive and powerful tool to guide learning, teaching and advocacy. Emphasis is placed on the importance of becoming assessment-literate, developing a balanced assessment system, using assessment results to motivate learners and mold instruction, and…
The Electronic Biology Classroom: Implementation and Student Opinion.
ERIC Educational Resources Information Center
Davis, Mark S.
This paper describes a method for teaching introductory biology using a multimedia approach. This methodology aimed to increase student participation, promote independent learning, and enhance computer literacy. Five multimedia tools were used to teach the course. PowerPoint slide shows were used to present lecture material; videodiscs displayed…
Using Digital Storytelling to Teach Psychology: A Preliminary Investigation
ERIC Educational Resources Information Center
Sheafer, Vicki
2017-01-01
Digital storytelling is a technology application that has emerged as a powerful teaching and learning tool that engages both teachers and students. Digital storytelling allows students to become creative storytellers through selecting a topic, conducting research, writing a script, and developing the story. However, the use of digital storytelling…
Integrating Digital Video Technology in the Classroom
ERIC Educational Resources Information Center
Lim, Jon; Pellett, Heidi Henschel; Pellett, Tracy
2009-01-01
Digital video technology can be a powerful tool for teaching and learning. It enables students to develop a variety of skills including research, communication, decision-making, problem-solving, and other higher-order critical-thinking skills. In addition, digital video technology has the potential to enrich university classroom curricula, enhance…
ERIC Educational Resources Information Center
Thomas, David A.; Li, Qing
2008-01-01
The World Wide Web is evolving in response to users who demand faster and more efficient access to information, portability, and reusability of digital objects between Web-based and computer-based applications and powerful communication, publication, collaboration, and teaching and learning tools. This article reviews current uses of Web-based…
ERIC Educational Resources Information Center
Joyner, Amy
2003-01-01
Handheld computers provide students tremendous computing and learning power at about a 10th the cost of a regular computer. Describes the evolution of handhelds; provides some examples of their uses; and cites research indicating they are effective classroom tools that can improve efficiency and instruction. A sidebar lists handheld resources.…
Guidelines for a Scientific Approach to Critical Thinking Assessment
ERIC Educational Resources Information Center
Bensley, D. Alan; Murtagh, Michael P.
2012-01-01
Assessment of student learning outcomes can be a powerful tool for improvement of instruction when a scientific approach is taken; unfortunately, many educators do not take full advantage of this approach. This article examines benefits of taking a scientific approach to critical thinking assessment and proposes guidelines for planning,…
Understanding the Impact of Using Oral Histories in the Classroom
ERIC Educational Resources Information Center
Dutt-Doner, Karen M.; Allen, Susan; Campanaro, Kathryn
2016-01-01
Oral histories are a powerful pedagogical tool in developing historical understanding and important learning skills simultaneously. Teachers use firsthand accounts of historical time periods and/or events to help develop students' sense of history. In addition to gaining historical understanding, students are able to bring history alive by…
Strategies for Teaching Fractions: Using Error Analysis for Intervention and Assessment
ERIC Educational Resources Information Center
Spangler, David B.
2011-01-01
Many students struggle with fractions and must understand them before learning higher-level math. Veteran educator David B. Spangler provides research-based tools that are aligned with NCTM and Common Core State Standards. He outlines powerful diagnostic methods for analyzing student work and providing timely, specific, and meaningful…
Assessing the Accessibility of Online Learning
ERIC Educational Resources Information Center
Badge, Joanne L.; Dawson, Emma; Cann, Alan J.; Scott, Jon
2008-01-01
A wide range of tools is now available to enable teaching practitioners to create web-based educational materials from PowerPoint presentations, adding a variety of different digital media, such as audio and animation. The pilot study described in this paper compared three different systems for producing multimedia presentations from existing…
The Seventh Generation in Adventure Therapy.
ERIC Educational Resources Information Center
Itin, Christian
Hypnotic language provides a powerful tool for the transfer of learning in adventure therapy. It allows the therapeutic adventure practitioner to use the client's experiential language to enhance the isomorphic connections of the adventure activity and to draw upon and develop the client's unconscious resources to support client goals. This paper…
The Promise of Open Educational Resources
ERIC Educational Resources Information Center
Smith, Marshall S.; Casserly, Catherine M.
2006-01-01
Open educational resources (OER) include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to either support access to knowledge, or have an impact on teaching, learning, and research. At the heart of the OER movement is the simple and powerful idea that the…
ERIC Educational Resources Information Center
Moulder, M. Amanda
2011-01-01
This article discusses how archival documents reveal early nineteenth-century Cherokee purposes for English-language literacy. In spite of Euro-American efforts to depoliticize Cherokee women's roles, Cherokee female students adapted the literacy tools of an outsider patriarchal society to retain public, political power. Their writing served…
Teachers' Implementation of a Game-Based Biotechnology Curriculum
ERIC Educational Resources Information Center
Eastwood, Jennifer L.; Sadler, Troy D.
2013-01-01
Research in education suggests that computer games can serve as powerful learning environments, however, teachers perceive many obstacles to using games as teaching tools. In this study, we examine three science teachers' implementation and perceptions of a curriculum unit incorporating the game, Mission Biotech (MBt) and a set of supporting…
The Undergraduate Case Research Study Model
ERIC Educational Resources Information Center
Vega, Gina
2010-01-01
Student-written cases are powerful pedagogical tools that can lead to improved understanding of business situations, more informed analysis, emphasis on reflection, and clearer expository writing, all of which are critical skills for business students. Cases provide an opportunity for students to enjoy an active learning experience and derive the…
Toward an Improvement of the Analysis of Neural Coding.
Alegre-Cortés, Javier; Soto-Sánchez, Cristina; Albarracín, Ana L; Farfán, Fernando D; Val-Calvo, Mikel; Ferrandez, José M; Fernandez, Eduardo
2017-01-01
Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.
NASA Astrophysics Data System (ADS)
Ekonomou, L.; Karampelas, P.; Vita, V.; Chatzarakis, G. E.
2011-04-01
One of the most popular methods of protecting high voltage transmission lines against lightning strikes and internal overvoltages is the use of arresters. The installation of arresters in high voltage transmission lines can prevent or even reduce the lines' failure rate. Several studies based on simulation tools have been presented in order to estimate the critical currents that exceed the arresters' rated energy stress and to specify the arresters' installation interval. In this work artificial intelligence, and more specifically a Q-learning artificial neural network (ANN) model, is addressed for evaluating the arresters' failure probability. The aims of the paper are to describe in detail the developed Q-learning ANN model and to compare the results obtained by its application in operating 150 kV Greek transmission lines with those produced using a simulation tool. The satisfactory and accurate results of the proposed ANN model can make it a valuable tool for designers of electrical power systems seeking more effective lightning protection, reducing operational costs and better continuity of service.
Inquiry-based Learning and Digital Libraries in Undergraduate Science Education
NASA Astrophysics Data System (ADS)
Apedoe, Xornam S.; Reeves, Thomas C.
2006-12-01
The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.
Sievertsen, Niels; Carreira, Erick M
2018-02-01
Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics
HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE
2017-01-01
Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. PMID:29275361
Cross-cultural Comparison of Learning in Human Hunting : Implications for Life History Evolution.
MacDonald, Katharine
2007-12-01
This paper is a cross-cultural examination of the development of hunting skills and the implications for the debate on the role of learning in the evolution of human life history patterns. While life history theory has proven to be a powerful tool for understanding the evolution of the human life course, other schools, such as cultural transmission and social learning theory, also provide theoretical insights. These disparate theories are reviewed, and alternative and exclusive predictions are identified. This study of cross-cultural regularities in how children learn hunting skills, based on the ethnographic literature on traditional hunters, complements existing empirical work and highlights future areas for investigation.
Tools for Data Analysis in the Middle School Classroom: A Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Ledley, T. S.; Haddad, N.; McAuliffe, C.; Dahlman, L.
2006-12-01
In order for students to learn how to engage with scientific data to answer questions about the real world, it is imperative that their teachers are 1) comfortable with the data and the tools used to analyze it, and 2) feel prepared to support their students in this complex endeavor. TERC's Tools for Data Analysis in the Middle School Classroom (DataTools) professional development program, funded by NSF's ITEST program, prepares middle school teachers to integrate Web-based scientific data and analysis tools into their existing curricula. This 13-month program supports teachers in using a set of freely or commonly available tools with a wide range of data. It also gives them an opportunity to practice teaching these skills to students before teaching in their own classrooms. The ultimate goal of the program is to increase the number of middle school students who work directly with scientific data, who use the tools of technology to import, manipulate, visualize and analyze the data, who come to understand the power of data-based arguments, and who will consider pursuing a career in technical and scientific fields. In this session, we will describe the elements of the DataTools program and the Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet), a Web-based resource that supports Earth system education for teachers and students in grades 6 through 16. The EET provides essential support to DataTools teachers as they use it to learn to locate and download Web-based data and use data analysis tools. We will also share what we have learned during the first year of this three-year program.
Schwartz, David M
2014-01-01
Assistive technologies provide significant capabilities for improving student achievement. Improved accessibility, cost, and diversity of applications make integration of technology a powerful tool to compensate for executive function weaknesses and deficits and their impact on student performance, learning, and achievement. These tools can be used to compensate for decreased working memory, poor time management, poor planning and organization, poor initiation, and decreased memory. Assistive technology provides mechanisms to assist students with diverse strengths and weaknesses in mastering core curricular concepts.
Leveraging the Power of Knowledge Management to Transform Global Health and Development.
Sullivan, Tara M; Limaye, Rupali J; Mitchell, Vanessa; D'Adamo, Margaret; Baquet, Zachary
2015-04-27
Good knowledge is essential to prevent disease and improve health. Knowledge management (KM) provides a systematic process and tools to promote access to and use of knowledge among health and development practitioners to improve health and development outcomes. KM tools range from publications and resources (briefs, articles, job aids) and products and services (websites, eLearning courses, mobile applications), to training and events (workshops, webinars, meetings) and approaches and techniques (peer assists, coaching, after-action reviews, knowledge cafés).
Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Gofuku, A.
2018-02-01
Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.
ERIC Educational Resources Information Center
Jones, Marla Wagner
2009-01-01
A piece of children's literature can be a powerful tool for teaching and learning science; however, it takes more than reading about a topic to qualify as "doing science." Inspired by the book, "The Gift of the Tree", the author developed an in-depth interdisciplinary lesson for her sixth-grade students without diluting the science. Through this…
The Influence of Retrieval Practice on Memory and Comprehension of Science Texts
ERIC Educational Resources Information Center
Hinze, Scott R.
2010-01-01
The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not…
Writing as Learning: A Content-Based Approach.
ERIC Educational Resources Information Center
Rothstein, Evelyn; Lauber, Gerald
Based on the understanding that writing should not be confined to the language arts classroom, this book provides over 200 examples of how 12 different strategies can be used in kindergarten through high school classrooms. The writing strategies in the book demonstrate how writing can also be employed as a powerful tool for processing new…
Evaluation of the Effect of a Digital Mathematics Game on Academic Achievement
ERIC Educational Resources Information Center
Wale, Christine M.
2013-01-01
Digital games are widely popular and interest has increased for their use in education. Digital games are thought to be powerful instructional tools because they promote active learning and feedback, provide meaningful contexts to situate knowledge, create engagement and intrinsic motivation, and have the ability individualize instruction.…
Evidence of Middle School Science Assessment Practice from Classroom-Based Portfolios
ERIC Educational Resources Information Center
Kloser, Matthew; Borko, Hilda; Martinez, Jose Felipe; Stecher, Brian; Luskin, Rebecca
2017-01-01
Assessments are powerful tools for informing teachers and students about where student thinking stands with relation to a learning goal. Yet, few studies provide qualitative analyses of assessment practice across a unit. This study uses a framework of nine dimensions of effective assessment practice in science classrooms to compare more and less…
Does Digital Handwriting of Instructors Using the iPad Enhance Student Learning?
ERIC Educational Resources Information Center
Lee, Hyeon Woo; Lim, Kyu Yon
2013-01-01
Recently, projected electronic slides have been the most common tool used in classrooms. However, electronic projection slides, such as PowerPoint slides, do not provide sufficient flexibility to augment the displayed materials; therefore, instructors are not able to adjust their instruction instantly in response to the audience reaction and…
Putting Theory into Theory: Thematic Value of Research in Public Administration Teaching
ERIC Educational Resources Information Center
Barber, Stephen; Luke, Peter
2016-01-01
Research can be a powerful tool informing public administration teaching. This article takes the distinctive approach of exploring its use through the prism of the research itself by considering 10 publications by the article's authors. The existing literature revolves around students learning about the craft of research or research findings. By…
Agricultural Science I. Supplementary Units. Instructor Information.
ERIC Educational Resources Information Center
Martin, Donna; And Others
These supplementary units are designed to help students with special needs learn and apply agricultural skills in the areas of animal breeding, animal nutrition, leadership, and power tools. Specific competencies are listed as study questions at the beginning of each of the 10 self-paced and self-contained units. Skill sheets, activity sheets, and…
Work-Based Learning as a Field of Study
ERIC Educational Resources Information Center
Gibbs, Paul; Garnett, Jonathan
2007-01-01
This article addresses the challenges that Garnett suggests face higher education through the lens of Bourdieu. In taking up the challenge set by Garnett for higher education in the knowledge economy and responding to its powerful and primary artefact--intellectual capital--the article reviews and uses the analytical tool of Bourdieu's practice in…
The Accuracy of Student Grading in First-Year Engineering Courses
ERIC Educational Resources Information Center
Van Hattum-Janssen, Natascha; Pacheco, Jose Augusto; Vasconcelos, Rosa Maria
2004-01-01
Assessment has become a powerful tool to change student learning. In a project of the Council of Engineering Courses of the University of Minho, Portugal, students of textile engineering, apparel engineering and industrial electronics increased their participation in every aspect of their assessment process. The traditional exam was changed to…
Situating Information Literacy within the Curriculum: Using a Rubric to Shape a Program
ERIC Educational Resources Information Center
Jastram, Iris; Leebaw, Danya; Tompkins, Heather
2014-01-01
Rubrics are a rapidly growing subfield of information literacy assessment, providing a powerful tool for understanding student learning. This paper explores the role that the creation and application of an information literacy rubric can play in program development. Because of the Information Literacy in Student Writing assessment project at…
Second Life as a Surrogate for Experiential Learning
ERIC Educational Resources Information Center
DeMers, Michael N.
2010-01-01
Second Life is increasingly being used as a venue for education, especially for delivery of online instruction where social presence and community building are essential components. Despite its robust 3-D modeling tools and powerful scripting language, many educational uses of Second Life are limited to passive forms of content delivery that often…
A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans
ERIC Educational Resources Information Center
Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon
2017-01-01
The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…
Modelling for Prediction vs. Modelling for Understanding: Commentary on Musso et al. (2013)
ERIC Educational Resources Information Center
Edelsbrunner, Peter; Schneider, Michael
2013-01-01
Musso et al. (2013) predict students' academic achievement with high accuracy one year in advance from cognitive and demographic variables, using artificial neural networks (ANNs). They conclude that ANNs have high potential for theoretical and practical improvements in learning sciences. ANNs are powerful statistical modelling tools but they can…
ERIC Educational Resources Information Center
Waters, John K.
2007-01-01
This article reports the potential of online role-playing games to be a powerful tool for English as a second language (ESL) learning. When Professor Edd Schneider and game designer Kai Zheng suggested to attendees gathered in San Francisco last spring for the annual Game Developers Conference that massively multiplayer online role-playing games,…
English as a Global Language and Education for Cosmopolitan Citizenship
ERIC Educational Resources Information Center
Guilherme, Manuela
2007-01-01
Due to the overriding power of World English in the global economy, media, academy, entertainment, etc., EFL education has become a crucial curricular element in the educational systems of developing societies. English language learning has therefore been portrayed either as a fundamental tool that unquestionably brings professional success or one…
Formative Assessment in the Visual Arts
ERIC Educational Resources Information Center
Andrade, Heidi; Hefferen, Joanna; Palma, Maria
2014-01-01
Classroom assessment is a hot topic in K-12 education because of compelling evidence that assessment in the form of feedback is a powerful teaching and learning tool (Hattie & Timperley, 2007). Although formal evaluation has been anathema to many art specialists and teachers (Colwell, 2004), informal assessment in the form of feedback is not.…
Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands
ERIC Educational Resources Information Center
King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.
2016-01-01
Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…
ERIC Educational Resources Information Center
Ardiel, Evan L.; Giles, Andrew C.; Yu, Alex J.; Lindsay, Theodore H.; Lockery, Shawn R.; Rankin, Catharine H.
2016-01-01
Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like "Caenorhabditis elegans," can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral…
Considerating the Prospect of Cultivating Mindfulness in Teacher Education
ERIC Educational Resources Information Center
Zimmerman, Aaron
2018-01-01
In this article, the author argues that mindfulness--a metacognitive strategy used to regulate thoughts and emotions--is a powerful tool that can improve novice teacher resilience in the face of the stress, tension, and vulnerability that accompanies the endeavor of learning to teach. He will advance two theses: First, mindfulness cultivates…
The Power of 'Evidence': Reliable Science or a Set of Blunt Tools?
ERIC Educational Resources Information Center
Wrigley, Terry
2018-01-01
In response to the increasing emphasis on 'evidence-based teaching', this article examines the privileging of randomised controlled trials and their statistical synthesis (meta-analysis). It also pays particular attention to two third-level statistical syntheses: John Hattie's "Visible learning" project and the EEF's "Teaching and…
Forum Guide to Taking Action with Education Data. NFES 2013-801
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2012
2012-01-01
Education data are growing in quantity, quality, and value. When appropriately used to guide action, data can be a powerful tool for improving school operations, teaching, and learning. Education stakeholders who possess the knowledge, skills, and abilities to appropriately access, analyze, and interpret data will be able to use data to take…
Using Appreciative Inquiry to Build and Enhance a Learning Culture
ERIC Educational Resources Information Center
Lehner, Rachelle; Ruona, Wendy
2004-01-01
Appreciative Inquiry (AI) has emerged as a powerful organization development philosophy that builds on past successes to impel positive change. AI is a highly participative, holistic approach to change that values the wisdom of members of the organization and amplifies positive forces. This session will introduce AI as a tool to enhance…
Instructional Computer Programs and the Phonological Deficits of Dyslexic Children
ERIC Educational Resources Information Center
Cammarata, Lisa
2006-01-01
The 21st century is a time to contemplate the power of the technological advances that have occurred today. Computers have become idea engines- a tool used for thinking, performing, processing, and instructing people. No one understands or appreciates this phenomenon more than children suffering with dyslexia. These children's ability to learn or…
Mining LMS Data to Develop an "Early Warning System" for Educators: A Proof of Concept
ERIC Educational Resources Information Center
Macfadyen, Leah P.; Dawson, Shane
2010-01-01
Earlier studies have suggested that higher education institutions could harness the predictive power of Learning Management System (LMS) data to develop reporting tools that identify at-risk students and allow for more timely pedagogical interventions. This paper confirms and extends this proposition by providing data from an international…
"Digit Anatomy": A New Technique for Learning Anatomy Using Motor Memory
ERIC Educational Resources Information Center
Oh, Chang-Seok; Won, Hyung-Sun; Kim, Kyong-Jee; Jang, Dong-Su
2011-01-01
Gestural motions of the hands and fingers are powerful tools for expressing meanings and concepts, and the nervous system has the capacity to retain multiple long-term motor memories, especially including movements of the hands. We developed many sets of successive movements of both hands, referred to as "digit anatomy," and made…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
E-Portfolio for Enhancing Graduate Research Supervision
ERIC Educational Resources Information Center
Le, Quynh
2012-01-01
Purpose: E-Portfolio is a powerful tool for demonstrating evidence of learning and achievements in graduate research. The purpose of this paper is to examine the concept, structure and functions of e-Portfolio in graduate research and discuss the significance of the role of e-Portfolio in enhancing the quality of graduate research students and…
A Powerful Tool: Writing Based on Knowledge and Understanding
ERIC Educational Resources Information Center
Ginty, Eloise; Hawkins, Joanna; Kurzman, Karen; Leddy, Diana; Miller, Jane
2016-01-01
The National Writing Project (NWP) has contributed enormously and consistently to the effort to help teachers help students learn to write. In the early 1970s, researchers such as Donald Graves and Janet Emig began studying the ways writers go about the task of thinking and producing polished writing. The NWP's book "Because Writing…
ERIC Educational Resources Information Center
Texley, Juliana
2005-01-01
Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…
Towards AI-powered personalization in MOOC learning
NASA Astrophysics Data System (ADS)
Yu, Han; Miao, Chunyan; Leung, Cyril; White, Timothy John
2017-12-01
Massive Open Online Courses (MOOCs) represent a form of large-scale learning that is changing the landscape of higher education. In this paper, we offer a perspective on how advances in artificial intelligence (AI) may enhance learning and research on MOOCs. We focus on emerging AI techniques including how knowledge representation tools can enable students to adjust the sequence of learning to fit their own needs; how optimization techniques can efficiently match community teaching assistants to MOOC mediation tasks to offer personal attention to learners; and how virtual learning companions with human traits such as curiosity and emotions can enhance learning experience on a large scale. These new capabilities will also bring opportunities for educational researchers to analyse students' learning skills and uncover points along learning paths where students with different backgrounds may require different help. Ethical considerations related to the application of AI in MOOC education research are also discussed.
Activity-Based Introductory Physics Reform *
NASA Astrophysics Data System (ADS)
Thornton, Ronald
2004-05-01
Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to those of good traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). RealTime Physics promotes interaction among students in a laboratory setting and makes use of powerful real-time data logging tools to teach concepts as well as quantitative relationships. An active learning environment is often difficult to achieve in large lecture sessions and Workshop Physics and Scale-Up largely eliminate lectures in favor of collaborative student activities. Peer Instruction, Just in Time Teaching, and Interactive Lecture Demonstrations (ILDs) make lectures more interactive in complementary ways. This presentation will introduce these reforms and use Interactive Lecture Demonstrations (ILDs) with the audience to illustrate the types of curricula and tools used in the curricula above. ILDs make use real experiments, real-time data logging tools and student interaction to create an active learning environment in large lecture classes. A short video of students involved in interactive lecture demonstrations will be shown. The results of research studies at various institutions to measure the effectiveness of these methods will be presented.
Software tools for interactive instruction in radiologic anatomy.
Alvarez, Antonio; Gold, Garry E; Tobin, Brian; Desser, Terry S
2006-04-01
To promote active learning in an introductory Radiologic Anatomy course through the use of computer-based exercises. DICOM datasets from our hospital PACS system were transferred to a networked cluster of desktop computers in a medical school classroom. Medical students in the Radiologic Anatomy course were divided into four small groups and assigned to work on a clinical case for 45 minutes. The groups used iPACS viewer software, a free DICOM viewer, to view images and annotate anatomic structures. The classroom instructor monitored and displayed each group's work sequentially on the master screen by running SynchronEyes, a software tool for controlling PC desktops remotely. Students were able to execute the assigned tasks using the iPACS software with minimal oversight or instruction. Course instructors displayed each group's work on the main display screen of the classroom as the students presented the rationale for their decisions. The interactive component of the course received high ratings from the students and overall course ratings were higher than in prior years when the course was given solely in lecture format. DICOM viewing software is an excellent tool for enabling students to learn radiologic anatomy from real-life clinical datasets. Interactive exercises performed in groups can be powerful tools for stimulating students to learn radiologic anatomy.
Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems
NASA Technical Reports Server (NTRS)
Holda, Julie
2004-01-01
The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.
Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne
2018-01-01
Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
Reinforcement learning techniques for controlling resources in power networks
NASA Astrophysics Data System (ADS)
Kowli, Anupama Sunil
As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.
The Benefits of College Marching Bands for Students and Universities: A Review of the Literature
ERIC Educational Resources Information Center
Cumberledge, Jason P.
2017-01-01
College marching bands are a large and visible part of American music education. Institutions of higher learning have benefited from the existence of marching bands, as they serve as a powerful recruitment tool and an essential public relations vehicle for music departments and universities. The benefit students may receive from marching band…
Influences of Writing Project Involvement on the Professional Development of Teachers
ERIC Educational Resources Information Center
Holmes, Barbara Dondiego
2009-01-01
Writing is a powerful learning tool that allows students to connect critical thinking across the curriculum. Good writing skills are necessary for students to succeed in higher education and on the job. Teachers, however, are avoiding teaching writing, in part because it has not been included until recently in high stakes testing, and in part…
My World Is a Metaphor: An Investigation into Reflective Practices Specifically Utilizing Metaphors
ERIC Educational Resources Information Center
Williams, Lacey Ann
2013-01-01
This dissertation suggests that metaphors are a powerful learning tool in education and a way to develop as a professional educator. The purpose of this phenomenological study was to gain a deeper understanding of how teachers utilize metaphors during reflection. I addressed their experience with metaphors, how they use metaphors, how metaphors…
Power of the Mashup: Combining Essential Learning with New Technology Tools
ERIC Educational Resources Information Center
Boss, Suzie; Krauss, Jane
2007-01-01
Jerome Burg, after 34 years of teaching, left his own classroom last year and now helps other teachers integrate technology into the curriculum at Granada High School in Livermore, California. One new project he designed is heightening global interest in literary road trips by creating a resource that combines a new technology with a time-tested…
Using Emotions and Personal Memory Associations to Acquire Vocabulary
ERIC Educational Resources Information Center
Randolph, Patrick T.
2018-01-01
Of all the possible tools available to help out English language Learners (ELLs) acquire vocabulary, the use of emotions is one of the most powerful because "we are learning that emotions are the result of multiple brain and body systems that are distributed over the whole person". If we go one step further and connect emotions to…
PDAs in Teacher Education: A Case Study Examining Mobile Technology Integration
ERIC Educational Resources Information Center
Franklin, Teresa; Sexton, Colleen; Lu, Young; Ma, Hongyan
2007-01-01
The classroom computer is no longer confined to a box on the desk. Mobile handheld computing devices have evolved into powerful and affordable learning tools. Handheld technologies are changing the way people access and work with information. The use of Personal Digital Assistants (PDAs or handhelds) has been an evolving part of the business world…
Students as Co-Designers: Peer and Instructional Resources for Novice Users of Eportfolio
ERIC Educational Resources Information Center
Gordon, Leslie
2017-01-01
Several decades of ePortfolio research confirm the power of the tool for helping students make meaning of varied curricular and personal experiences. For first-time users, however, the learning curve may be steep, and the gap between institutional or instructor goals and student experiences may be wide. Some studies suggest that students…
Power and Peril of Wikipedia: Exercises in Social and Industrial/Organizational Psychology Courses
ERIC Educational Resources Information Center
Bernhardt, P. C.
2012-01-01
The author examined Wikipedia's use as an instructional tool in two studies. The widespread use of Wikipedia indicates that students need to learn more about its workings and validity. Wikipedia articles relevant to psychology were edited by students in one class and critiqued in another class. Analysis of the subsequent editing of students'…
ERIC Educational Resources Information Center
Hadjerrouit, Said
2015-01-01
This research study aims at evaluating the suitability of SimReal+ for effective use in teacher education. SimReal+ was originally developed to teach mathematics in universities, but it is has been recently improved to include school mathematics. The basic idea of SimReal+ is that the visualization of mathematical concepts is a powerful technique…
ERIC Educational Resources Information Center
Perry, Phyllis J.
Fiction is a powerful tool that can motivate students to learn. This book is designed to assist elementary teachers in planning integrated units of study based on quality fiction titles about U.S. history. These titles build interest, illuminate specific eras, and lead students to related nonfiction titles. Organized in sections that cover…
A Writing Template for Probing Students' Botanical Sense of Place
ERIC Educational Resources Information Center
Wandersee, James H.; Clary, Renee M.; Guzman, Sandra M.
2006-01-01
Writing can be a powerful tool for learning biology. Writing assignments in biology could help students personalize and understand the biology knowledge they are studying. In this article, the authors present the "Botanical Sense of Place" (BSP), a convenient and easy-to-use writing template that they developed to elicit and probe students' prior…
ERIC Educational Resources Information Center
Derr, Victoria
2017-01-01
This article explores the role of green schools in promoting education for sustainability by reflecting on a university-middle school partnership focused on sustainable design. Undergraduates and middle school students met weekly for a semester to learn about sustainability through simple design projects and activities that focused on…
E-Books Plus: Role of Interactive Visuals in Exploration of Mathematical Information and E-Learning
ERIC Educational Resources Information Center
Rowhani, Sonja; Sedig, Kamran
2005-01-01
E-books promise to become a widespread delivery mechanism for educational resources. However, current e-books do not take full advantage of the power of computing tools. In particular, interaction with the content is often reduced to navigation through the information. This article investigates how adding interactive visuals to an e-book…
What Does Your Child Really Know? Supporting Teachers to Listen Closely to Our Children
ERIC Educational Resources Information Center
Cox Suárez, Stephanie
2014-01-01
Close listening and observation of children as an alternative assessment is a powerful approach that can help balance an emphasis on standardized measurement. The tool of Reggio-inspired documentation is described for families with suggestions on how to advocate and support teachers who want to tell a story about children's learning that…
Calibration Study of POWER Performance Levels to the CASAS Scale. Research Brief No. 5
ERIC Educational Resources Information Center
Posey, Virginia
2005-01-01
The Adult Education and Family Literacy Act, as part of the Workforce Investment Act of 1998, requires programs to use standardized assessments to report learning gains for students in adult education programs. In addition, local and state agencies need an accountability tool for students who are difficult to assess adequately with a…
ERIC Educational Resources Information Center
Quintana, Maclovia; Morales, Alfonso
2015-01-01
Computer-mediated communications, in particular listservs, can be powerful tools for creating social change--namely, shifting our food system to a more healthy, just, and localised model. They do this by creating the conditions--collaborations, interaction, self-reflection, and personal empowerment--that cultivate distributed leadership. In this…
Using Data Mining for Predicting Relationships between Online Question Theme and Final Grade
ERIC Educational Resources Information Center
Abdous, M'hammed; He, Wu; Yen, Cherng-Jyh
2012-01-01
As higher education diversifies its delivery modes, our ability to use the predictive and analytical power of educational data mining (EDM) to understand students' learning experiences is a critical step forward. The adoption of EDM by higher education as an analytical and decision making tool is offering new opportunities to exploit the untapped…
ERIC Educational Resources Information Center
Kennedy, Kate; Peters, Mary; Thomas, Mike
2012-01-01
Value-added analysis is the most robust, statistically significant method available for helping educators quantify student progress over time. This powerful tool also reveals tangible strategies for improving instruction. Built around the work of Battelle for Kids, this book provides a field-tested continuous improvement model for using…
Learning History through the Universal Declaration of Human Rights
ERIC Educational Resources Information Center
Landorf, Hilary; Pineda, Martha Fernanda
2007-01-01
Although adolescent students often do not have knowledge of specific laws, they usually have a keen sense of justice and fairness. In this article, the author discusses the Universal Declaration of Human Rights (UDHR) as a powerful tool to channel students' sense of fairness into visible actions. Adopted in December 1948 by the General Assembly of…
The Impact of a Comparison Curriculum in Algebra I: A Randomized Experiment
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany; Durkin, Kelley; Newton, Kristie; Pollack, Courtney; Lynch, Kathleen; Gogolen, Claire
2013-01-01
Comparison is a powerful tool that has been shown to improve learning in a variety of domains. In both laboratory studies and small-scale classroom studies, having learners compare and contrast worked examples has been shown to reliably lead to gains in students' knowledge. Comparison is also integral to "best practices" in mathematics…
Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection
ERIC Educational Resources Information Center
Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki
2016-01-01
Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…
Essays in Development Economics and the Economics of Education
ERIC Educational Resources Information Center
Blimpo, Moussa Pouguinimpo
2010-01-01
Education is a powerful tool to improve lives and enhance the prospect of innovation and development of nations. While primary school enrollment has increased considerably over the past few decades in Sub-Saharan Africa, learning and the retention rate have remained low. The first two chapters of this dissertation analyze two dimensions in a bid…
Finding disturbances in on-farm biogas production.
Antonio, Pereira-Querol Marco; Laura, Seppänen
2012-01-01
When implementing innovations, disturbances are very likely to take place. Disturbances are undesirable because they can lead to unwanted outcomes, such as economic losses and work overload to workers. However, they can be powerful opportunities for learning and re-designing innovations. Here, we will present activity theoretical tools for analyzing disturbances in a way that they could be used as learning opportunities. We illustrate the proposed tools by analyzing a disturbance that took place during the implementation of a project of biogas production. By interpreting the disturbance process with a network of activity systems, we found that on-farm disturbances were formed as ruptures, innovations and asynchronies originated in other activity systems. This finding suggests that disturbances are outcomes of the functioning of networks, rather than simple results of failure of individuals or technical devices. The proposed tools could be used in interventions to help practitioners and ergonomists to recognize the systemic and networked nature of problems, and therefore, realize that they may require the collaboration of actors from different activities. In this sense, disturbances may be turned into opportunities for learning and developing innovations. We conclude by discussing how the method could be used in ergonomic design and intervention.
Computational Modeling for Language Acquisition: A Tutorial With Syntactic Islands.
Pearl, Lisa S; Sprouse, Jon
2015-06-01
Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. We provide a general overview of why modeling can be a particularly informative tool and some general considerations when creating a computational acquisition model. We then review a concrete example of a computational acquisition model for complex structural knowledge referred to as syntactic islands. This includes an overview of syntactic islands knowledge, a precise definition of the acquisition task being modeled, the modeling results, and how to meaningfully interpret those results in a way that is relevant for questions about knowledge representation and the learning process. Computational modeling is a powerful tool that can be used to understand linguistic development. The general approach presented here can be used to investigate any acquisition task and any learning strategy, provided both are precisely defined.
IntellEditS: intelligent learning-based editor of segmentations.
Harrison, Adam P; Birkbeck, Neil; Sofka, Michal
2013-01-01
Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
NASA Astrophysics Data System (ADS)
Dabrowska, A. E.
2014-12-01
Regional Teacher Training Centre (RTTC) in Skierniewice is one of 49 public, accredited institutions in Poland carrying out it statutory goals at the regional level. It has been operating since 1989 and is responsible for organizing of support of schools, institutions, networks of teachers for cooperation and self-education, organizing various forms of in-service training and disseminating examples of good practice. It also has rich experience in teaching by using modern Interactive Computer Technology (ICT) tools and e-learning platform. I present examples about teaching of Astronomical issues through teacher training both as hands on workshops as well as through e-learning. E-learning is playing an important role in organizing educational activities not only in the field of modern didactic but also in learning Science subjects. Teachers find e-learning as a very economical, easy and convenient way of learning and developing their knowledge and skills. Moreover, they are no longer afraid of using new ICT tools and programs which help them to cooperate with students effectively. Since 2011 RTTC in Skierniewice has been an organizer of many on-line in-service programs for teachers, in learning Science. Some of them are organized as blended-learning programs which allow teachers to participate first in hands on activities then continue learning on the Moodle platform. These courses include two 15 and 30-hours of Astronomical topics. Teachers have the opportunity to gain knowledge and receive materials not only about the Universe and the Solar System but also can learn to use tools like Stellarium, Celestia, WorldWide Telescope, Your Sky and other tools. E-learning modules consist of both publishing learning materials in various forms, eg. PowerPoint Presentations, Word & PDF materials, web sites, publications, working sheets as well as practical duties like participation in chats, forums, tasks, Wiki, group workshop. Teachers use these materials for extending their knowledge as well as for preparing their own tasks, like lesson's scenarios and school projects. Realizing school projects pay an important role in students' education. It is obligatory for students representing lower secondary level to implement school project during their 3 years education. Some of these projects are devoted to Astronomy.
NASA Astrophysics Data System (ADS)
Novak, Joseph D.
2002-07-01
The construction and reconstruction of meanings by learners requires that they actively seek to integrate new knowledge with knowledge already in their cognitive structure. Ausubel's assimilation theory of cognitive learning has been shown to be effective in guiding research and instructional design to facilitate meaningful learning (Ausubel, The psychology of meaningful verbal learning, New York: Grune and Stratton, 1963; Educational psychology: A cognitive view, New York: Holt, Rinehart and Winston, 1968; The acquisition and retention of knowledge, Dordrecht: Kluwer, 2000). Gowin's Vee heuristic has been employed effectively to aid teachers and students in understanding the constructed nature of knowledge (Gowin, Educating, Ithaca, NY: Cornell University Press, 1981). Situated learning occurs when learning is by rote or at a lower level of meaningful learning. Concept mapping has been used effectively to aid meaningful learning with resulting modification of student's knowledge structures. When these knowledge structures are limited or faulty in some way, they may be referred to as Limited or Inappropriate Propositional Hierarchies (LIPH's). Conceptual change, or more accurately conceptual reconstrution, requires meaningful learning to modify LIPH's. Collaborative group learning facilitates meaningful learning and new knowledge construction. World-wide economic changes are forcing major changes in business and industry placing a premium on the power and value of knowledge and new knowledge production. These changes require changes in school and university education that centers on the nature and power of meaningful learning. New computer tools are available to facilitate teaching activities targeted at modifying LIPH's, and aiding meaningful learning in general.
Fundamental concepts of problem-based learning for the new facilitator.
Kanter, S L
1998-01-01
Problem-based learning (PBL) is a powerful small group learning tool that should be part of the armamentarium of every serious educator. Classic PBL uses ill-structured problems to simulate the conditions that occur in the real environment. Students play an active role and use an iterative process of seeking new information based on identified learning issues, restructuring the information in light of the new knowledge, gathering additional information, and so forth. Faculty play a facilitatory role, not a traditional instructional role, by posing metacognitive questions to students. These questions serve to assist in organizing, generalizing, and evaluating knowledge; to probe for supporting evidence; to explore faulty reasoning; to stimulate discussion of attitudes; and to develop self-directed learning and self-assessment skills. Professional librarians play significant roles in the PBL environment extending from traditional service provider to resource person to educator. Students and faculty usually find the learning experience productive and enjoyable. PMID:9681175
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
Web-based learning: pros, cons and controversies.
Cook, David A
2007-01-01
Advantages of web-based learning (WBL) in medical education include overcoming barriers of distance and time, economies of scale, and novel instructional methods, while disadvantages include social isolation, up-front costs, and technical problems. Web-based learning is purported to facilitate individualised instruction, but this is currently more vision than reality. More importantly, many WBL instructional designs fail to incorporate principles of effective learning, and WBL is often used for the wrong reasons (e.g., for the sake of technology). Rather than trying to decide whether WBL is superior to or equivalent to other instructional media (research addressing this question will always be confounded), we should accept it as a potentially powerful instructional tool, and focus on learning when and how to use it. Educators should recognise that high fidelity, multimedia, simulations, and even WBL itself will not always be necessary to effectively facilitate learning.
Changing computing paradigms towards power efficiency
Klavík, Pavel; Malossi, A. Cristiano I.; Bekas, Costas; Curioni, Alessandro
2014-01-01
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. PMID:24842033
Lisasi, Esther; Kulanga, Ahaz; Muiruri, Charles; Killewo, Lucy; Fadhili, Ndimangwa; Mimano, Lucy; Kapanda, Gibson; Tibyampansha, Dativa; Ibrahim, Glory; Nyindo, Mramba; Mteta, Kien; Kessi, Egbert; Ntabaye, Moshi; Bartlett, John
2014-08-01
The Kilimanjaro Christian Medical University (KCMU) College and the Medical Education Partnership Initiative (MEPI) are addressing the crisis in Tanzanian health care manpower by modernizing the college's medical education with new tools and techniques. With a $10 million MEPI grant and the participation of its partner, Duke University, KCMU is harnessing the power of information technology (IT) to upgrade tools for students and faculty. Initiatives in eLearning have included bringing fiber-optic connectivity to the campus, offering campus-wide wireless access, opening student and faculty computer laboratories, and providing computer tablets to all incoming medical students. Beyond IT, the college is also offering wet laboratory instruction for hands-on diagnostic skills, team-based learning, and clinical skills workshops. In addition, modern teaching tools and techniques address the challenges posed by increasing numbers of students. To provide incentives for instructors, a performance-based compensation plan and teaching awards have been established. Also for faculty, IT tools and training have been made available, and a medical education course management system is now being widely employed. Student and faculty responses have been favorable, and the rapid uptake of these interventions by students, faculty, and the college's administration suggests that the KCMU College MEPI approach has addressed unmet needs. This enabling environment has transformed the culture of learning and teaching at KCMU College, where a path to sustainability is now being pursued.
Lisasi, Esther; Kulanga, Ahaz; Muiruri, Charles; Killewo, Lucy; Fadhili, Ndimangwa; Mimano, Lucy; Kapanda, Gibson; Tibyampansha, Dativa; Ibrahim, Glory; Nyindo, Mramba; Mteta, Kien; Kessi, Egbert; Ntabaye, Moshi; Bartlett, John
2014-01-01
The Kilimanjaro Christian Medical University (KCMU) College and the Medical Education Partnership Initiative (MEPI) are addressing the crisis in Tanzanian health care manpower by modernizing the college’s medical education with new tools and techniques. With a $10 million MEPI grant and the participation of its partner, Duke University, KCMU is harnessing the power of information technology (IT) to upgrade tools for students and faculty. Initiatives in eLearning have included bringing fiber-optic connectivity to the campus, offering campus-wide wireless access, opening student and faculty computer laboratories, and providing computer tablets to all incoming medical students. Beyond IT, the college is also offering wet laboratory instruction for hands-on diagnostic skills, team-based learning, and clinical skills workshops. In addition, modern teaching tools and techniques address the challenges posed by increasing numbers of students. To provide incentives for instructors, a performance-based compensation plan and teaching awards have been established. Also for faculty, IT tools and training have been made available, and a medical education course management system is now being widely employed. Student and faculty responses have been favorable, and the rapid uptake of these interventions by students, faculty, and the college’s administration suggests that the KCMU College MEPI approach has addressed unmet needs. This enabling environment has transformed the culture of learning and teaching at KCMU College, where a path to sustainability is now being pursued. PMID:25072581
Getting The Picture: Our Changing Climate- A new learning tool for climate science
NASA Astrophysics Data System (ADS)
Yager, K.; Balog, J. D.
2014-12-01
Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.
ERIC Educational Resources Information Center
Philip, Thomas M.; Garcia, Antero
2015-01-01
Mobile devices are increasingly upheld as powerful tools for learning and school reform. In this article, we prioritize youth voices to critically examine assumptions about student interest in mobile devices that often drive the incorporation of new technologies into schools. By demonstrating how the very meaning of mobile phones shift as they are…
Beyond PowerPoint: Visual Presentation Tools for Online Learning
ERIC Educational Resources Information Center
Howerton, Bruce
2005-01-01
In the mid-1990s, the University Of North Carolina (UNC) School of Dentistry entered the digital era by publishing curricula, syllabi, and modules on the Web. The School took this step in part to give students greater access to materials that supplement the lecture-based courses in the program, and in part to help students prepare for examinations…
Visualizing Economic Development with ArcGIS Explorer
ERIC Educational Resources Information Center
Webster, Megan L.; Milson, Andrew J.
2011-01-01
Numerous educators have noted that Geographic Information Systems (GIS) is a powerful tool for social studies teaching and learning. Yet the use of GIS has been hampered by issues such as the cost of the software and the management of large spatial data files. One trend that shows great promise for GIS in education is the move to cloud computing.…
RIF or VIP? Having a PLN Can Help
ERIC Educational Resources Information Center
Nelson, Cathy Jo
2012-01-01
With school budgets shrinking every year, tough decisions are made by those powers that be, and you very well may be the next RIF (reduction in force) waiting to happen. Sadly, those school librarians who have stopped learning, who have become stale in their role as librarian, or who feel the newer tools and ways of doing the job are not necessary…
ERIC Educational Resources Information Center
Rellensmann, Johanna; Schukajlow, Stanislaw; Leopold, Claudia
2017-01-01
Drawing strategies are widely used as a powerful tool for promoting students' learning and problem solving. In this article, we report the results of an inferential mediation analysis that was applied to investigate the roles that strategic knowledge about drawing and the accuracy of different types of drawings play in mathematical modelling…
ERIC Educational Resources Information Center
Guegan, Jean-Paul; Daniellou, Richard
2012-01-01
NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…
Mind Maps as a Lifelong Learning Tool
ERIC Educational Resources Information Center
Erdem, Aliye
2017-01-01
Mind map, which was developed by Tony Buzan as a note-taking technique, is an application which has the power of uncovering the thoughts which the brain has about a subject from different viewpoints and which activate the right and left lobes of the brain together as an alternative to linear thought. It is known that mind maps have benefits such…
Learning and Teaching in WANDA Wiki Wonderland: Literature Circles in the Digital Commons
ERIC Educational Resources Information Center
Moreillon, Judi
2009-01-01
In the 2007-2008 school year, Jennifer Hunt, language arts teacher for the 8th grade pre-Advanced Placement class wondered how she could harness the power of Web 2.0 tools to develop her students' literacy skills and deepen their engagement with literature and ideas. To that end, she wrote a successful Qwest Arizona Technology in Education…
What You Need To Know about Starting a Student Drug-Testing Program.
ERIC Educational Resources Information Center
Colston, Stephenie; Stephenson, Bob; LoDico, Charles; Vogl, Walt; Price, Deborah; Disselkoen, Robyn; Modzeleski, Bill; Deramond, Helene; Mazza, Jacqueline
2004-01-01
Drugs are a significant barrier to learning, and the use of drugs by even a small number of students can affect the entire atmosphere of a school. Recognizing this, many administrators, parents, and students appreciate having a tool as powerful as student drug testing available as an additional component in their school?s comprehensive drug and…
Digital Diversity: A Basic Tool with Lots of Uses
ERIC Educational Resources Information Center
Coy, Mary
2006-01-01
In this article the author relates how the digital camera has altered the way she teaches and the way her students learn. She also emphasizes the importance for teachers to have software that can edit, print, and incorporate photos. She cites several instances in which a digital camera can be used: (1) PowerPoint presentations; (2) Open house; (3)…
ERIC Educational Resources Information Center
Welton, Anjalé D.; Harris, Tiffany Octavia; La Londe, Priya G.; Moyer, Rachel T.
2015-01-01
High school students who participate in social justice education have a greater awareness of inequities that impact their school, community, and society, and learn tools for taking action to address these inequities. Also, a classroom that consist of students with a diverse set of identities creates an ideal circumstance in which a teacher can…
ERIC Educational Resources Information Center
Bosche, Wolfgang; Kattner, Florian
2011-01-01
Digital games and their power as a tool for acquiring knowledge, training skills and changing behavior are--for some laymen--associated with rather negative concepts, and are thought to pose a general health risk. This paper shortly reviews and evaluates the scientific evidence for both positive and negative outcomes. It describes how particularly…
ERIC Educational Resources Information Center
Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava
2004-01-01
The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).
Narrative assessment: making mathematics learning visible in early childhood settings
NASA Astrophysics Data System (ADS)
Anthony, Glenda; McLachlan, Claire; Lim Fock Poh, Rachel
2015-09-01
Narratives that capture children's learning as they go about their day-to-day activities are promoted as a powerful assessment tool within early childhood settings. However, in the New Zealand context, there is increasing concern that learning stories—the preferred form of narrative assessment—currently downplay domain knowledge. In this paper, we draw on data from 13 teacher interviews and samples of 18 children's learning stories to examine how mathematics is made visible within learning stories. Despite appreciating that mathematics is embedded in a range of everyday activities within the centres, we found that the nature of a particular activity appeared to influence `how' and `what' the teachers chose to document as mathematics learning. Many of the teachers expressed a preference to document and analyse mathematics learning that occurred within explicit mathematics activities rather than within play that involves mathematics. Our concern is that this restricted documentation of mathematical activity could potentially limit opportunities for mathematics learning both in the centre and home settings.
Parsing learning in networks using brain-machine interfaces.
Orsborn, Amy L; Pesaran, Bijan
2017-10-01
Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control movements of a new effector and could restore movement to people with paralysis. Increasing experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs precisely define the information streams into and out of the brain, but engage wide-spread learning. We take a network perspective and review existing observations of learning in motor BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. Recent studies demonstrate the advantages of BMI for parsing this learning and its underlying neural mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of learning that highlights the critical role of learning in engineered neural therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Naturalistic Decision Making for Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2010-02-01
Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less
Adaptive filtering with the self-organizing map: a performance comparison.
Barreto, Guilherme A; Souza, Luís Gustavo M
2006-01-01
In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.
NASA Astrophysics Data System (ADS)
Mclaughlin, Cheryl Althea
A professional learning community (PLC) typically consists of practitioners who systematically examine and problematize their practice with the intention of development and improvement. The collaborative practices inherent in PLCs mirror the way scientists work together to develop new theories, and are particularly valuable for science teachers who could draw from these experiences to improve the quality of student learning. Gaps in the science education literature support the need for research to determine how interactions within PLCs support science teacher development. Additionally, issues of power that may constrain or encourage meaningful interactions are largely overlooked in PLC studies. This qualitative study examines, from a Foucauldian perspective, interactions within a PLC comprising middle school science teachers preparing to implement reform curriculum. Specifically, the study analyzes interactions within the PLC to determine opportunities created for professional learning and development. Audiotaped transcripts of teacher interactions were analyzed using discourse analysis building tasks designed to identify opportunities for learning and to examine the exercise of power within the PLCs. The discourse analytical tools integrated theories of Gee (2011) and Foucault (1972), and were used to deconstruct and interrogate the data. The events were subsequently reconstructed through the lens of social constructivism and Foucault theories on power. The findings identified several processes emerging from the interactions that contributed to the negotiation of an understanding of the reform curriculum. These include reflection on practice, reorganization of cognitive structures, reinvention of practice, and refinement of instructional strategies. The findings also indicated that the exercise of power by entities both external to, and within the PLCs influenced the process of meaning negotiation among the science teachers. The consensus achieved by the teachers reflected knowledge constructed by science education discourses external to the PLC, which regulated understandings emerging from the interactions. Additionally, some teachers, through their actions, exercised power in ways that hindered rather than enhanced constructive dialogue in PLCs. The exercise of power by external institutions was nevertheless necessary to set the stage for the series of actions, the outcome of which facilitated constructive dialogue among science teachers who were implementing the reform curriculum.
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.
2017-12-01
A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.
What Does It Take for an Infant to Learn How to Use a Tool by Observation?
Fagard, Jacqueline; Rat-Fischer, Lauriane; Esseily, Rana; Somogyi, Eszter; O’Regan, J. K.
2016-01-01
Observational learning is probably one of the most powerful factors determining progress during child development. When learning a new skill, infants rely on their own exploration; but they also frequently benefit from an adult’s verbal support or from demonstration by an adult modeling the action. At what age and under what conditions does adult demonstration really help the infant to learn a novel behavior? In this review, we summarize recently published work we have conducted on the acquisition of tool use during the second year of life. In particular, we consider under what conditions and to what extent seeing a demonstration from an adult advances an infant’s understanding of how to use a tool to obtain an out-of-reach object. Our results show that classic demonstration starts being helpful at 18 months of age. When adults explicitly show their intention prior to demonstration, even 16-month-old infants learn from the demonstration. On the other hand, providing an explicit demonstration (“look at how I do it”) is not very useful before infants are ready to succeed by themselves anyway. In contrast, repeated observations of the required action in a social context, without explicit reference to this action, considerably advances the age of success and the usefulness of providing a demonstration. We also show that the effect of demonstration can be enhanced if the demonstration makes the baby laugh. Taken together, the results from this series of studies on observational learning of tool use in infants suggest, first, that when observing a demonstration, infants do not know what to pay attention to: demonstration must be accompanied by rich social cues to be effective; second, infants’ attention is inhibited rather than enhanced by an explicit demand of “look at what I do”; and finally a humorous situation considerably helps infants understand the demonstration. PMID:26973565
What Does It Take for an Infant to Learn How to Use a Tool by Observation?
Fagard, Jacqueline; Rat-Fischer, Lauriane; Esseily, Rana; Somogyi, Eszter; O'Regan, J K
2016-01-01
Observational learning is probably one of the most powerful factors determining progress during child development. When learning a new skill, infants rely on their own exploration; but they also frequently benefit from an adult's verbal support or from demonstration by an adult modeling the action. At what age and under what conditions does adult demonstration really help the infant to learn a novel behavior? In this review, we summarize recently published work we have conducted on the acquisition of tool use during the second year of life. In particular, we consider under what conditions and to what extent seeing a demonstration from an adult advances an infant's understanding of how to use a tool to obtain an out-of-reach object. Our results show that classic demonstration starts being helpful at 18 months of age. When adults explicitly show their intention prior to demonstration, even 16-month-old infants learn from the demonstration. On the other hand, providing an explicit demonstration ("look at how I do it") is not very useful before infants are ready to succeed by themselves anyway. In contrast, repeated observations of the required action in a social context, without explicit reference to this action, considerably advances the age of success and the usefulness of providing a demonstration. We also show that the effect of demonstration can be enhanced if the demonstration makes the baby laugh. Taken together, the results from this series of studies on observational learning of tool use in infants suggest, first, that when observing a demonstration, infants do not know what to pay attention to: demonstration must be accompanied by rich social cues to be effective; second, infants' attention is inhibited rather than enhanced by an explicit demand of "look at what I do"; and finally a humorous situation considerably helps infants understand the demonstration.
Generative Models in Deep Learning: Constraints for Galaxy Evolution
NASA Astrophysics Data System (ADS)
Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.
2018-01-01
New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.
An introduction to scripting in Ruby for biologists.
Aerts, Jan; Law, Andy
2009-07-16
The Ruby programming language has a lot to offer to any scientist with electronic data to process. Not only is the initial learning curve very shallow, but its reflection and meta-programming capabilities allow for the rapid creation of relatively complex applications while still keeping the code short and readable. This paper provides a gentle introduction to this scripting language for researchers without formal informatics training such as many wet-lab scientists. We hope this will provide such researchers an idea of how powerful a tool Ruby can be for their data management tasks and encourage them to learn more about it.
Picturing academic learning: salutogenic and health promoting perspectives on drawings.
Garista, Patrizia; Pocetta, Giancarlo; Lindström, Bengt
2018-05-25
More than 20 years ago an article about the use of drawings in higher education appeared in a medical journal. After that, other papers explored the possible contribution of drawings in adult education, while only very few in the field of health promotion and education. This article aims to introduce the use of drawing in this field using the salutogenic lens to think, plan and reflect on academic learning. Reflections on what salutogenesis is and what we can consider a clear application of salutogenic principles to the learning process answer a hypothetical question for the reader concerning the relationship between drawings and health promotion theories. They appear as communication tools capable of exploring meaning-making processes, capturing data that is flexible to dynamic systems, power relations, as well as emotional and latent aspects of human experience. This article proposes a connection between salutogenesis and drawings through: a theoretical framework on salutogenic learning and drawings; a teacher practice and its tools focusing the critical point on visual data analysis in a learning environment; a learner case example for knowledge and capacity building through the drawing process; and a health promotion competency-based analysis. Our case example illustrates how drawings were introduced in a post-graduate course in Health Promotion and Education and argues their strengths and weaknesses.
NASA Astrophysics Data System (ADS)
Friedrich, J.; Kressig, A.; Van Groenou, S.; McCormick, C.
2017-12-01
Challenge The lack of transparent, accessible, and centralized power sector data inhibits the ability to research the impact of the global power sector. information gaps for citizens, analysts, and decision makers worldwide create barriers to sustainable development efforts. The need for transparent, accessible, and centralized information is especially important to enhance the commitments outlined in the recently adopted Paris Agreement and Sustainable Development Goals. Offer Power Watch will address this challenge by creating a comprehensive, open-source platform on the world's power systems. The platform hosts data on 85% of global installed electrical capacity and for each power plant will include data points on installed capacity, fuel type, annual generation, commissioning year, with more characteristics like emissions, particulate matter, annual water demand and more added over time. Most of the data is reported from national level sources, but annual generation and other operational characteristiscs are estimated via Machine Learning modeling and remotely sensed data when not officially reported. In addition, Power Watch plans to provide a suite of tools that address specific decision maker needs, such as water risk assessments and air pollution modeling. Impact Through open data, the platform and its tools will allow reserachers to do more analysis of power sector impacts and perform energy modeling. It will help catalyze accountability for policy makers, businesses, and investors and will inform and drive the transition to a clean energy future while reaching development targets.
Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen
2017-09-05
In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
Changing computing paradigms towards power efficiency.
Klavík, Pavel; Malossi, A Cristiano I; Bekas, Costas; Curioni, Alessandro
2014-06-28
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
A Tool for Measuring Active Learning in the Classroom
Devlin, John W.; Kirwin, Jennifer L.; Qualters, Donna M.
2007-01-01
Objectives To develop a valid and reliable active-learning inventory tool for use in large classrooms and compare faculty perceptions of active-learning using the Active-Learning Inventory Tool. Methods The Active-Learning Inventory Tool was developed using published literature and validated by national experts in educational research. Reliability was established by trained faculty members who used the Active-Learning Inventory Tool to observe 9 pharmacy lectures. Instructors were then interviewed to elicit perceptions regarding active learning and asked to share their perceptions. Results Per lecture, 13 (range: 4-34) episodes of active learning encompassing 3 (range: 2-5) different types of active learning occurred over 2.2 minutes (0.6-16) per episode. Both interobserver (≥87%) and observer-instructor agreement (≥68%) were high for these outcomes. Conclusions The Active-Learning Inventory Tool is a valid and reliable tool to measure active learning in the classroom. Future studies are needed to determine the impact of the Active-Learning Inventory Tool on teaching and its usefulness in other disciplines. PMID:17998982
Liu, Yun; Scirica, Benjamin M; Stultz, Collin M; Guttag, John V
2016-10-06
Frequency domain measures of heart rate variability (HRV) are associated with adverse events after a myocardial infarction. However, patterns in the traditional frequency domain (measured in Hz, or cycles per second) may capture different cardiac phenomena at different heart rates. An alternative is to consider frequency with respect to heartbeats, or beatquency. We compared the use of frequency and beatquency domains to predict patient risk after an acute coronary syndrome. We then determined whether machine learning could further improve the predictive performance. We first evaluated the use of pre-defined frequency and beatquency bands in a clinical trial dataset (N = 2302) for the HRV risk measure LF/HF (the ratio of low frequency to high frequency power). Relative to frequency, beatquency improved the ability of LF/HF to predict cardiovascular death within one year (Area Under the Curve, or AUC, of 0.730 vs. 0.704, p < 0.001). Next, we used machine learning to learn frequency and beatquency bands with optimal predictive power, which further improved the AUC for beatquency to 0.753 (p < 0.001), but not for frequency. Results in additional validation datasets (N = 2255 and N = 765) were similar. Our results suggest that beatquency and machine learning provide valuable tools in physiological studies of HRV.
Confessions of a Librarian or: How I Learned to Stop Worrying and Love Google
ERIC Educational Resources Information Center
Gunnels, Claire B.; Sisson, Amy
2009-01-01
Have you ever stopped to think about life before Google? We will make the argument that Google is the first manifestation of Web 2.0, of the power and promise of social networking and the ubiquitous wiki. We will discuss the positive influence of Google and how Google and other social networking tools afford librarians leading-edge technologies…
ERIC Educational Resources Information Center
Alcoser, Michelle Elaine
2017-01-01
This self-study examines the planning, practices, policies, and procedures present in a blended learning classroom environment to develop academic writing with tenth and eleventh grade public high school students. Digital technology is a prevalent and powerful force intertwined with most aspects of the human experience in the twenty-first century.…
FIST at 5: Looking Back, Looking Ahead
2011-05-01
Innovative Problem Solving ( TRIZ ) is a master’s class in design, with a strong em- phasis on simplicity and speed. Altshuller’s TRIZ contradiction matrix...and 40 principles are powerful, elegant, and efficient. They should be required reading across the acquisition com- munity (learn more at triz ...shortcuts. As with any tool, expertise comes from practice. Truly mastering Agile, Lean, TRIZ , or MOSA requires concentrated study, experimentation, and
ERIC Educational Resources Information Center
Noble, Steve
This paper discusses the Theatre of the Absurd as a type of popular theater which can be used as a weapon of deconstruction and a tool for empowerment for marginalized social, economic, and political groups. It raises the issue of how institutions, most notably educational institutions, invoke rituals to enforce regimes of normalcy. The…
ERIC Educational Resources Information Center
Murugaiah, Puvaneswary
2016-01-01
In computer-assisted language learning (CALL), technological tools are often used both as an end and as a means to an end (Levy & Stockwell, 2006). Microsoft PowerPoint is an example of the latter as it is commonly used in oral presentations in classrooms. However, many student presentations are often boring as students generally read from…
ERIC Educational Resources Information Center
Singh, Shashi; Singh, Ajay; Singh, Kiran
2011-01-01
Higher education today is being viewed as a tool to achieve prosperity and high living standards. It is thus looked upon as a service to the society and a powerful weapon to change the society for its betterment. Motivation plays a crucial role in learning. Motivation energizes the behavior of the individual. It also directs the behavior towards…
Taking Time To Act: A Guide to Cross-Curricular Drama.
ERIC Educational Resources Information Center
Ball, Chris; Airs, John
Based on the idea that drama (a medium that children relish and are good at) offers a context and a powerful motivation for learning, this book is intended for the teacher who wants to use drama in the classroom for its own sake or as a tool in other areas of the curriculum. The book looks at the many common concerns teachers have and offers…
A framework to develop a clinical learning culture in health facilities: ideas from the literature.
Henderson, A; Briggs, J; Schoonbeek, S; Paterson, K
2011-06-01
Internationally, there is an increase in demand to educate nurses within the clinical practice environment. Clinical practice settings that encourage teaching and learning during episodes of care delivery can be powerful in educating both the existing nursing workforce and nursing students. This paper presents a framework, informed by the literature, that identifies the key factors that are needed to encourage the interactions fundamental to learning in clinical practice. Learning occurs when nurses demonstrate good practice, share their knowledge through conversations and discussions, and also provide feedback to learners, such as students and novices. These types of interactions occur when positive leadership practices encourage trust and openness between staff; when the management team provides sessions for staff to learn how to interact with learners, and also when partnerships provide support and guidance around learning in the workplace. APPLICATION OF CONCEPTS: This framework presents how the concepts of leadership, management and partnership interact to create and sustain learning environments. The feedback from proposed measurement tools can provide valuable information about the positive and negative aspects of these concepts in the clinical learning environment. Analysis of the subscales can assist in identifying appropriate recommended strategies outlined in the framework to guide nurses in improving the recognized deficits in the relationship between the concepts. Leadership, management and partnerships are pivotal for the creation and maintenance of positive learning environments. Diagnostic measurement tools can provide specific information about weaknesses across these areas. This knowledge can guide future initiatives. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.
Mena, Luis J.; Orozco, Eber E.; Felix, Vanessa G.; Ostos, Rodolfo; Melgarejo, Jesus; Maestre, Gladys E.
2012-01-01
Machine learning has become a powerful tool for analysing medical domains, assessing the importance of clinical parameters, and extracting medical knowledge for outcomes research. In this paper, we present a machine learning method for extracting diagnostic and prognostic thresholds, based on a symbolic classification algorithm called REMED. We evaluated the performance of our method by determining new prognostic thresholds for well-known and potential cardiovascular risk factors that are used to support medical decisions in the prognosis of fatal cardiovascular diseases. Our approach predicted 36% of cardiovascular deaths with 80% specificity and 75% general accuracy. The new method provides an innovative approach that might be useful to support decisions about medical diagnoses and prognoses. PMID:22924062
[Death education for medical personnel utilizing cinema].
Jung, Hyun Chae
2012-09-25
Death and dying is an ultimate process that every human being must experience. However, in these days we do not like to think or discuss about death and dying. Actually, hatred and denial is the usual feeling when we encounter death and dying. Dying is more than a biological occurrence. It is a human, social, and spiritual event, but the spiritual dimension of patients is too often neglected. Whether death is viewed as a "wall" or as a "door" can have significantly important consequences for how we live our lives. Near death experience is one of the excellent evidences to prove that there should be spiritual component being separated from the human physical body when we experience death. People have called it soul, spirit, or nonlocal consciousness. Caregivers need to recognize and acknowledge the spiritual component of patient care. Learning about death and dying helps us encounter death in ways that are meaningful for our own lives. Among the several learning tools, utilizing cinema with its audio and visual components can be one of the most powerful learning tools in death education.
Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography.
González, Germán; Ash, Samuel Y; Vegas-Sánchez-Ferrero, Gonzalo; Onieva Onieva, Jorge; Rahaghi, Farbod N; Ross, James C; Díaz, Alejandro; San José Estépar, Raúl; Washko, George R
2018-01-15
Deep learning is a powerful tool that may allow for improved outcome prediction. To determine if deep learning, specifically convolutional neural network (CNN) analysis, could detect and stage chronic obstructive pulmonary disease (COPD) and predict acute respiratory disease (ARD) events and mortality in smokers. A CNN was trained using computed tomography scans from 7,983 COPDGene participants and evaluated using 1,000 nonoverlapping COPDGene participants and 1,672 ECLIPSE participants. Logistic regression (C statistic and the Hosmer-Lemeshow test) was used to assess COPD diagnosis and ARD prediction. Cox regression (C index and the Greenwood-Nam-D'Agnostino test) was used to assess mortality. In COPDGene, the C statistic for the detection of COPD was 0.856. A total of 51.1% of participants in COPDGene were accurately staged and 74.95% were within one stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were within one stage. In COPDGene and ECLIPSE, the C statistics for ARD events were 0.64 and 0.55, respectively, and the Hosmer-Lemeshow P values were 0.502 and 0.380, respectively, suggesting no evidence of poor calibration. In COPDGene and ECLIPSE, CNN predicted mortality with fair discrimination (C indices, 0.72 and 0.60, respectively), and without evidence of poor calibration (Greenwood-Nam-D'Agnostino P values, 0.307 and 0.331, respectively). A deep-learning approach that uses only computed tomography imaging data can identify those smokers who have COPD and predict who are most likely to have ARD events and those with the highest mortality. At a population level CNN analysis may be a powerful tool for risk assessment.
Tying knots: an activity theory analysis of student learning goals in clinical education.
Larsen, Douglas P; Wesevich, Austin; Lichtenfeld, Jana; Artino, Antony R; Brydges, Ryan; Varpio, Lara
2017-07-01
Learning goal programmes are often created to help students develop self-regulated learning skills; however, these programmes do not necessarily consider the social contexts surrounding learning goals or how they fit into daily educational practice. We investigated a high-frequency learning goal programme in which students generated and shared weekly learning goals with their clinical teams in core Year 3 clerkships. Our study explores: (i) how learning goals were incorporated into the clinical work, and (ii) the factors that influenced the use of students' learning goals in work-based learning. We conducted semi-structured interviews with 14 students and 14 supervisors (attending physicians and residents) sampled from all participating core clerkships. Interviews were coded for emerging themes. Using cultural historical activity theory and knotworking as theoretical lenses, we developed a model of the factors that influenced students' learning goal usage in a work-based learning context. Students and supervisors often faced the challenge of reconciling contradictions that arose when the desired outcomes of student skill development, grading and patient care were not aligned. Learning goals could function as tools for developing new ways of acting that overcame those contradictions by facilitating collaborative effort between students and their supervisors. However, for new collaborations to take place, both students and supervisors had to engage with the goals, and the necessary patients needed to be present. When any one part of the system did not converge around the learning goals, the impact of the learning goals programme was limited. Learning goals are potentially powerful tools to mediate interactions between students, supervisors and patients, and to reconcile contradictions in work-based learning environments. Learning goals provide a means to develop not only learners, but also learning systems. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Venus Atmospheric Exploration by Solar Aircraft
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; LaMarre, C.; Colozza, A.
2002-01-01
The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.
Mobile computing device as tools for college student education: a case on flashcards application
NASA Astrophysics Data System (ADS)
Kang, Congying
2012-04-01
Traditionally, college students always use flash cards as a tool to remember massive knowledge, such as nomenclature, structures, and reactions in chemistry. Educational and information technology have enabled flashcards viewed on computers, like Slides and PowerPoint, works as tunnels of drilling and feedback for the learners. The current generation of students is more capable of information technology and mobile computing devices. For example, they use their Mobile phones much more intensively everyday day. Trends of using Mobile phone as an educational tool is analyzed and a educational technology initiative is proposed, which use Mobile phone flash cards applications to help students learn biology and chemistry. Experiments show that users responded positively to these mobile flash cards.
The cultural niche: Why social learning is essential for human adaptation
Boyd, Robert; Richerson, Peter J.; Henrich, Joseph
2011-01-01
In the last 60,000 y humans have expanded across the globe and now occupy a wider range than any other terrestrial species. Our ability to successfully adapt to such a diverse range of habitats is often explained in terms of our cognitive ability. Humans have relatively bigger brains and more computing power than other animals, and this allows us to figure out how to live in a wide range of environments. Here we argue that humans may be smarter than other creatures, but none of us is nearly smart enough to acquire all of the information necessary to survive in any single habitat. In even the simplest foraging societies, people depend on a vast array of tools, detailed bodies of local knowledge, and complex social arrangements and often do not understand why these tools, beliefs, and behaviors are adaptive. We owe our success to our uniquely developed ability to learn from others. This capacity enables humans to gradually accumulate information across generations and develop well-adapted tools, beliefs, and practices that are too complex for any single individual to invent during their lifetime. PMID:21690340
NASA Astrophysics Data System (ADS)
Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.
2004-12-01
Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.
Rethinking the learning of belief network probabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, R.
Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rotemore » learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neutral networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.« less
One lens missing? Clarifying the clinical microsystem framework with learning theories.
Norman, Ann-Charlott; Fritzen, Lena; Fridh, Marianne Lindblad
2013-01-01
The clinical microsystem (CMS) approach is widely used and is perceived as helpful in practice but, we ask the question: "Is its learning potential sufficiently utilized?" To scrutinize aspects of learning within the CMS framework and to clarify the learning aspects the framework includes and thereby support the framework with the enhanced learning perspective that becomes visible. Literature on the CMS framework was systematically searched and selected using inclusion criteria. An analytical tool was constructed in the form of a theoretical lens that was used to clarify learning aspects that are associated with the framework. The analysis revealed 3 learning aspects: (1) The CMS framework describes individual and social learning but not how to adapt learning strategies for purposes of change. (2) The metaphorical language of how to reach a holistic health care system for each patient has developed over time but can still be improved by naming social interactions to transcend organizational boundaries. (3) Power structures are recognized but not as a characteristic that restricts learning due to asymmetric communication. The "lens" perspective reveals new meanings to learning that enhance our understanding of health care as a social system and provides new practical learning strategies.
MLBCD: a machine learning tool for big clinical data.
Luo, Gang
2015-01-01
Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.
ERIC Educational Resources Information Center
Wallace, Belle; Bernardelli, Alessio; Molyneux, Clare; Farrell, Clare
2012-01-01
All children are born with the gifts of curiosity and creativity--and an insatiable appetite for asking questions to find out about the world in which they live. Fostering these questions and developing inquisitive and investigating minds is one of the essential roles of parent and teacher, and the processes of enquiry are the necessary routes for…
A Normative Model of Work Team Effectiveness
1983-11-01
Hawthc-ne studies at Western Electric Corporation, Harold Leavitt (1975) observed: Far and away the most powerful and beloved tool of applied behavioral ...scientists is the small face-to-face group. Since the Western Electric researches, behavioral scientists have been learning to understand, exploit and...integration of literature on small group behavior , see McGrath and Altman (1966). Current reviews are provided by Hare (1976), MicGrath and Kravitz (1982
ERIC Educational Resources Information Center
Croddy, Marshall; Levine, Peter
2014-01-01
As the C3 Framework for the social studies rolls out, it is hoped that its influence will grow, offering a vision and guidance for the development of a new generation of state social studies standards that promote deeper student learning and the acquisition of essentials skills for college, career, and civic life. In the interim, it can be an…
Learning About The Internet Bibliography And Beginner’s Guide
1994-01-01
are eight parts to this document, all beginning with the acadlist. Strangelove, Michael, comp. "Directory of Electronic Journals and Newsletters/X^l...WEB World Wide Web (WWW) is a tool that merges the techniques of information retrieval and hypertext to make an easy but powerful global information...data and changes in theories . Sometimes, conversation helps to clarify articles, illuminate new perceptions of theories , and sustain us through our
Teaching introductory undergraduate physics using commercial video games
NASA Astrophysics Data System (ADS)
Mohanty, Soumya D.; Cantu, Sergio
2011-09-01
Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate physics. The examples are selected from a course taught predominantly through the medium of commercial video games.
An Alternative Procedure for Estimating Unit Learning Curves,
1985-09-01
the model accurately describes the real-life situation, i.e., when the model is properly applied to the data, it can be a powerful tool for...predicting unit production costs. There are, however, some unique estimation problems inherent in the model . The usual method of generating predicted unit...production costs attempts to extend properties of least squares estimators to non- linear functions of these estimators. The result is biased estimates of
Capitalizing on Social Media for Career Development.
Escoffery, Cam; Kenzig, Melissa; Hyden, Christel; Hernandez, Kristen
2018-01-01
Social media is powerful and has effective tools for career advancement. Health promotion professionals at all stages of their career can employ social media to develop their profile, network with a range of colleagues, and learn about jobs and other career-enhancing opportunities. This article focuses on several social media resources, describes their key functions for career development, and offers strategies for effective use. Steps in using social media include creating a personal profile, sharing products such as newsletters or publications, and locating volunteer and job opportunities. Learning skills to use social media effectively is important to advancing careers and to the expansion of the public health workforce.
Using Simulation in Interprofessional Education.
Paige, John T; Garbee, Deborah D; Brown, Kimberly M; Rojas, Jose D
2015-08-01
Simulation-based training (SBT) is a powerful educational tool permitting the acquisition of surgical knowledge, skills, and attitudes at both the individual- and team-based level in a safe, nonthreatening learning environment at no risk to a patient. Interprofessional education (IPE), in which participants from 2 or more health or social care professions learn interactively, can help improve patient care through the promotion of efficient coordination, dissemination of advances in care across specialties and professions, and optimization of individual- and team-based function. Nonetheless, conducting SBT IPE sessions poses several tactical and strategic challenges that must be effectively overcome to reap IPE's benefits. Copyright © 2015 Elsevier Inc. All rights reserved.
An introduction to scripting in Ruby for biologists
Aerts, Jan; Law, Andy
2009-01-01
The Ruby programming language has a lot to offer to any scientist with electronic data to process. Not only is the initial learning curve very shallow, but its reflection and meta-programming capabilities allow for the rapid creation of relatively complex applications while still keeping the code short and readable. This paper provides a gentle introduction to this scripting language for researchers without formal informatics training such as many wet-lab scientists. We hope this will provide such researchers an idea of how powerful a tool Ruby can be for their data management tasks and encourage them to learn more about it. PMID:19607723
Expanding nursing education through e-learning: A case study in Malaysia.
Syed-Mohamad, Sharifah-Mastura; Pardi, Kasmah-Wati; Zainal, Nor-Azmi; Ismail, Zalina
2006-01-01
The School of Health Sciences, Universiti Sains Malaysia (SHS) is planning to expand its contribution to produce more graduate nurses by offering a nursing degree through e-learning. After three years of using e-learning by four lecturers in seven nursing courses, we conducted a study to get the lecturers feedback and to compare the students' preference and their actual experiences in e-learning. Lecturers' feedback were collected based on six open-ended questions. Feedback from all the 36 final year nursing students were collected using Constructivist On-line Learning Environment Survey (COLLES)--the Student Experience/Preferred Form. Results show that lecturers and students have positive perception on e-learning. They perceive e-learning as a powerful and effective tool for expanding nursing education to meet the demand for a labour force that is knowledgeable, highly skilled and equipped with positive values. We believe blended learning is the most suitable approach to implement e-learning and social constructivism theory provides the dynamic view of learning. To increase success in e-learning implementation for the nursing programme, lecturers should be educated regarding proper instructional design so that their content delivery blends well with the technology and pedagogy.
Simulation-based medical education in pediatrics.
Lopreiato, Joseph O; Sawyer, Taylor
2015-01-01
The use of simulation-based medical education (SBME) in pediatrics has grown rapidly over the past 2 decades and is expected to continue to grow. Similar to other instructional formats used in medical education, SBME is an instructional methodology that facilitates learning. Successful use of SBME in pediatrics requires attention to basic educational principles, including the incorporation of clear learning objectives. To facilitate learning during simulation the psychological safety of the participants must be ensured, and when done correctly, SBME is a powerful tool to enhance patient safety in pediatrics. Here we provide an overview of SBME in pediatrics and review key topics in the field. We first review the tools of the trade and examine various types of simulators used in pediatric SBME, including human patient simulators, task trainers, standardized patients, and virtual reality simulation. Then we explore several uses of simulation that have been shown to lead to effective learning, including curriculum integration, feedback and debriefing, deliberate practice, mastery learning, and range of difficulty and clinical variation. Examples of how these practices have been successfully used in pediatrics are provided. Finally, we discuss the future of pediatric SBME. As a community, pediatric simulation educators and researchers have been a leading force in the advancement of simulation in medicine. As the use of SBME in pediatrics expands, we hope this perspective will serve as a guide for those interested in improving the state of pediatric SBME. Published by Elsevier Inc.
Young Scientist in the Classroom (II)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (I)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (III)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Young Scientist in the Classroom (IV)
NASA Astrophysics Data System (ADS)
Doran, Rosa
2016-07-01
Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a diversity of topics ranging from ICT tools to the Exploration of our Universe. Instead of using traditional methods to teach about certain subjects for instance: stellar spectra, extra-solar planets of the classification of galaxies, they can use these powerful tools. Among other advantages a clear benefit of such tool is that teachers can use telescopes during regular classroom hours, provided they choose one located in the opposite part of the planet, where it is night time. Image Processing - After acquiring the images participants will be introduced to Salsa J, an image processing software that allows educators to explore the potential of astronomical images. The first example will be a simple measurement task: measuring craters on the Moon. Further exploration will guide them from luminosity studies until the construction of colour images or movies exhibiting the circular motion of the Sun or Jupiter Moons dance around the planet. Inquiry Based Learning - In the era of big data it is crucial to develop in students the capacity to creatively find solutions to a diversity of problems. In this session we will share with participants new models to engage students in the use of the scientific method while learning curriculum contents. Examples of cutting edge platforms embedding online labs and assessment tools will be explored.
Technological tools for library user education: one library's experience.
Kerns, Stephanie C
2007-01-01
In today's world, library users are confronted with almost too many options for using information because of the ubiquitousness of technology. Yet, libraries can harness the power of the same technologies to help users find the information they need at the time it is needed. The tools described in this article represent a starting point for librarians looking for technologies that are easy to use, inexpensive, and have a reasonable learning curve. Technologies addressed include classroom technologies such as audience response systems and Web-based technologies, including Web tutorials and screencasting. These technologies enhance and offer flexibility and variety in many educational settings.
Using texts in science education: cognitive processes and knowledge representation.
van den Broek, Paul
2010-04-23
Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.
Use of classroom "clickers" to promote acquisition of advanced reasoning skills.
DeBourgh, Gregory A
2008-03-01
Use of classroom response systems (a.k.a. "clickers" or "audience polling systems") are growing in popularity among faculty in colleges and universities. When used by faculty in a strategic instructional design, clickers can raise the level of participation and the effectiveness of interaction, promote engagement of students in active learning, foster communication to clarify misunderstanding and incorrect thinking, and provide a method to instructionally embed assessment as a learning activity rather than reliance on the traditional approach of summative assessment for assigning grades. This article describes the use of clicker technology in a baccalaureate nursing program to promote acquisition and application of advanced reasoning skills. Methods are suggested for embedding formative assessment and the tactical use of questioning as feedback and a powerful learning tool. Operational aspects of clickers technology are summarized and students' perceptions and satisfaction with use of this teaching and learning technology are described.
The Power of Influence: School Nurse Stories.
Mazyck, Donna; Cellucci, Margaret; Largent, Piper
2015-07-01
School nurses have influence, and this influence is ignited with school nurse stories. School nurses must tell school staff, leaders, families, and students what they do to help students access their education. School boards, city councils, and legislators need to know the knowledge, skills, and judgment school nurses use daily. NASN understands that school nurses benefit from a "how to" kit and has developed tools to empower school nurses in advocating for their important role in supporting the health and learning of students. This article provides an overview this newly developed electronic toolkit while at the same time reinforcing the power of influence when sharing your stories. © 2015 The Author(s).
The writing process: A powerful approach for the language-disabled student.
Moulton, J R; Bader, M S
1985-01-01
Our understanding of the writing process can be a powerful tool for teaching language-disabled students the "how" of writing. Direct, explicit instruction in writing process helps these students learn to explore their ideas and to manage the multiple demands of writing. A case study of one student, Jeff, demonstrates how we structure the stages of writing: prewriting, planning, drafting, revising, and proofreading. When these stages are clearly defined and involve specific skills, language-disabled students can reach beyond their limitations and strengthen their expression. The case study of Jeff reveals the development of his sense of control and his regard for himself as a writer.
Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao
2017-11-01
Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurhuda; Lukito, A.; Masriyah
2018-01-01
This study aims to develop instructional tools and implement it to see the effectiveness. The method used in this research referred to Designing Effective Instruction. Experimental research with two-group pretest-posttest design method was conducted. The instructional tools have been developed is cooperative learning model with predict-observe-explain strategy on the topic of cuboid and cube volume which consist of lesson plans, POE tasks, and Tests. Instructional tools were of good quality by criteria of validity, practicality, and effectiveness. These instructional tools was very effective for teaching the volume of cuboid and cube. Cooperative instructional tool with predict-observe-explain (POE) strategy was good of quality because the teacher was easy to implement the steps of learning, students easy to understand the material and students’ learning outcomes completed classically. Learning by using this instructional tool was effective because learning activities were appropriate and students were very active. Students’ learning outcomes were completed classically and better than conventional learning. This study produced a good instructional tool and effectively used in learning. Therefore, these instructional tools can be used as an alternative to teach volume of cuboid and cube topics.
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Hermanto, Didik
2017-08-01
This research is a developmental research of probabilistic thinking-oriented learning tools for probability materials at ninth grade students. This study is aimed to produce a good probabilistic thinking-oriented learning tools. The subjects were IX-A students of MTs Model Bangkalan. The stages of this development research used 4-D development model which has been modified into define, design and develop. Teaching learning tools consist of lesson plan, students' worksheet, learning teaching media and students' achievement test. The research instrument used was a sheet of learning tools validation, a sheet of teachers' activities, a sheet of students' activities, students' response questionnaire and students' achievement test. The result of those instruments were analyzed descriptively to answer research objectives. The result was teaching learning tools in which oriented to probabilistic thinking of probability at ninth grade students which has been valid. Since teaching and learning tools have been revised based on validation, and after experiment in class produced that teachers' ability in managing class was effective, students' activities were good, students' responses to the learning tools were positive and the validity, sensitivity and reliability category toward achievement test. In summary, this teaching learning tools can be used by teacher to teach probability for develop students' probabilistic thinking.
ERIC Educational Resources Information Center
Tonui, Betty; Kerich, E.; Koross, R.
2016-01-01
Information and communication technologies (ICTs) have been touted as being potentially powerful tools that can be used to facilitate the implied educational change and reform. Implementation of ICT in higher education learning environments is a complex task. Teachers and students, but also management, administration and ICT support are affected…
Modellus: Learning Physics with Mathematical Modelling
NASA Astrophysics Data System (ADS)
Teodoro, Vitor
Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations--differential equations--are the most important mathematical objects used for modelling Natural phenomena. In traditional approaches, they are introduced only at advanced level, because it takes a long time for students to be introduced to the fundamental principles of Calculus. With the new proposed approach, rates of change can be introduced also at early stages on learning if teachers stress semi-quantitative reasoning and use adequate computer tools. In this thesis, there is also presented Modellus, a computer tool for modelling and experimentation. This computer tool has a user interface that allows students to start doing meaningful conceptual and empirical experiments without the need to learn new syntax, as is usual with established tools. The different steps in the process of constructing and exploring models can be done with Modellus, both from physical points of view and from mathematical points of view. Modellus activities show how mathematics and physics have a unity that is very difficult to see with traditional approaches. Mathematical models are treated as concrete-abstract objects: concrete in the sense that they can be manipulated directly with a computer and abstract in the sense that they are representations of relations between variables. Data gathered from two case studies, one with secondary school students and another with first year undergraduate students support the main ideas of the thesis. Also data gathered from teachers (from college and secondary schools), mainly through an email structured questionnaire, shows that teachers agree on the potential of modelling in the learning of physics (and mathematics) and of the most important aspects of the proposed framework to integrate modelling as an essential component of the curriculum. Schools, as all institutions, change at a very slow rate. There are a multitude of reasons for this. And traditional curricula, where the emphasis is on rote learning of facts, can only be changed if schools have access to new and powerful views of learning and to new tools, that support meaningful conceptual learning and are as common and easy to use as pencil and paper.
Harnessing the power of mobile technologies for collaborating, crowdsourcing, and creating
NASA Astrophysics Data System (ADS)
Crompton, H.
2015-12-01
Today's digital technologies can have a powerful influence on teaching and learning. M-learning and u-learning in particular are changing pedagogical practice. Sub categories are rapidly emerging, such as context-aware ubiquitous learning, that involve students learning subject content while immersed in authentic and relevant surroundings. Learning cultures are a nebulous blend of traditions, values, beliefs, and rituals built up over time. For a long time, education has long been conceived as classroom-based and predominantly sedentary (Merchant, 2012). Recent mobile technologies are disrupting this culture in favor of learning that is contextualized, personalized, on demand, and ubiquitous (Crompton, 2013). 21st century students are a different breed than past generations (Prensky, 2001). These students have grown up in a time that has not only altered their perceptions and practices but modified the wiring of the brain through neuroplasticity (Crompton, 2012). Students now cognitively receive information quickly through non-linear methods (Gross, 2003, Oblinger & Oblinger, 2005). They think differently. They also seem to be attached to mobile devices 24/7, although the content of the lesson does not match what they seem to be doing on the mobile devices. This presentation will showcase how to get your students to harness the power of mobile devices for educational purposes. For example, students in your classes will be using devices to collaborate on activities with Google Forms, crowdsourcing the best class questions in Slido, and screencasting thoughts and ideas to share with others with Educreations. These are examples of free apps or Web 2.0 tools that can be used on all the major mobile platforms. Crompton, H. (2013). Mobile learning: New approach, new theory. In Z. L. Berge & L. Y. Muilenburg (Eds.), Handbook of mobile learning (pp. 47-57). Prensky, M. (2001). Digital natives, digital immigrants. Mcb University Press, 9(5). Oblinger, D., & Oblinger, J. (2005). Educating the Net Generation. EDUCAUSE http://www.educause.edu/educatingthenetgen Merchant, G. (2012). Mobile practices in everyday life: Popular digital technologies and schooling revisited. British Journal of Educational Technology, 43(5), 770-782.
Machine learning patterns for neuroimaging-genetic studies in the cloud.
Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand
2014-01-01
Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines.
Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony
2009-01-01
Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.
ERIC Educational Resources Information Center
Zhu, Guangtian; Singh, Chandralekha
2012-01-01
We describe the development and implementation of research-based learning tools such as the Quantum Interactive Learning Tutorials and peer-instruction tools to reduce students' common difficulties with issues related to measurement in quantum mechanics. A preliminary evaluation shows that these learning tools are effective in improving students'…
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Breaking Barriers and Building Bridges: Using EJ SCREEN ...
Communities across the United States are faced with concerns about environmental risks and exposures including air contaminants near roadways, proximity to hazardous waste sites and children’s environmental health. These concerns are compounded by complicated data, limited opportunities for collaboration and resource-based restrictions such as funding. This workshop will introduce innovative approaches for combining the capacity of EPA science tools - EJ SCREEN and the recently released Community Focused Exposure and Risk Screening Tool (C-FERST). Following a nationally applicable case study, participants will learn how these tools can be used sequentially to; (1) identify community environmental health ‘hotspots’; (2) take a closer look at local scale sources of exposure and; (3) use new features of the tool to target potential partners and resources across the country. By exploring the power of GIS mapping and crowdsource data, participants will leave with simple, user-defined approaches for using state of the science tools to advance their community and environmental health projects. Presentation using EJ SCREEN and C-FERST
Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time‐to‐Event Analysis
Gong, Xiajing; Hu, Meng
2018-01-01
Abstract Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time‐to‐event data synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the proportional hazard function, or with high‐dimensional data featured by a large number of predictor variables. Our results showed that ML‐based methods outperformed the Cox model in prediction performance as assessed by concordance index and in identifying the preset influential variables for high‐dimensional data. The prediction performances of ML‐based methods are also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML‐based methods provide a powerful tool for time‐to‐event analysis, with a built‐in capacity for high‐dimensional data and better performance when the predictor variables assume nonlinear relationships in the hazard function. PMID:29536640
NASA Astrophysics Data System (ADS)
Rooney-varga, J. N.; Sterman, J.; Jones, A.; Johnston, E.; Rath, K.; Nease, J.
2014-12-01
A rapid transition to a low-carbon, climate-resilient society is not only possible, but could also bring many co-benefits for public health, economic wellbeing, social equity, and more. The science supporting an urgent need for such a transition has never been clearer. Yet, social science data are also clear: the public in the US (and many other similar developed economies) does not, on average, share this sense of urgency, nor have policymakers shown a willingness to put scientific evidence above the perceptions of their constituents. The gulf between scientific and public understanding of climate change has spurred research on climate change communication, learning, and decision-making, identifying barriers such as misconceptions and faulty mental models of the climate and energy systems; poor understanding of complex, dynamic systems generally; and affective and social barriers to learning and action. There is also a growing opportunity to address these barriers, through tools that rely on active learning, that are social, engaging (and even fun), and that are grounded in rigorous science. An increasing number of decision-support computer simulations are being developed, intended to make complex technical problems accessible to non-experts in an interactive format. At the same time, the use of scenario planning, role-playing games, and active learning approaches are gaining ground in policy and education spheres. Simulation-based role-playing games bring these approaches together and can provide powerful learning experiences: they offer the potential to compress time and reality; create experiences without requiring the 'real thing;' explore the consequences of our decisions that often unfold over decades; and open affective and social learning pathways. Here, we offer a perspective on the potential of these tools in climate change education, communication, and decision-support, and a brief demonstration of one tool we have developed, World Energy.
Discovering online learning barriers: survey of health educational stakeholders in dentistry.
Schönwetter, D; Reynolds, P
2013-02-01
Given the exponential explosion of online learning tools and the challenge to harness their influence in dental education, there is a need to determine the current status of online learning tools being adopted at dental schools, the barriers that thwart the potential of adopting these and to capture this information from each of the various stakeholders involved in dental online learning (administrators, instructors, students and software/hardware technicians). The aims of this exploratory study are threefold: first, to understand which online learning tools are currently being adopted at dental schools; second, to determine the barriers in adopting online learning in dental education; and third, to identify a way of better preparing stakeholders in their quest to encourage others at their institutions to adopt online learning tools. Seventy-two participants representing eight countries and 13 stakeholder groups in dentistry were invited to complete the online Survey of Barriers in Online Learning Education in Health Professional Schools. The survey was created for this study but generic to all healthcare education domains. Twenty participants completed the survey. demonstrated that many online learning tools are being successfully adopted at dental schools, but computer-based assessment tools are the least successful. Added to this are challenges of support and resources for online learning tools. Participants offered suggestions of creating a blended (online and face-to-face) tutorial aimed at assisting stakeholders to help their dental schools in adopting online learning tools The information from this study is essential in helping us to better prepare the next generation of dental providers in terms of adopting online learning tools. This paper will not only provide strategies of how best to proceed, but also inspire participants with the necessary tools to move forward as they assist their clients with adopting and sustaining online learning tools and models. © 2012 John Wiley & Sons A/S.
The Progression of Podcasting/Vodcasting in a Technical Physics Class
NASA Astrophysics Data System (ADS)
Glanville, Y. J.
2010-11-01
Technology such as Microsoft PowerPoint presentations, clickers, podcasting, and learning management suites is becoming prevalent in classrooms. Instructors are using these media in both large lecture hall settings and small classrooms with just a handful of students. Traditionally, each of these media is instructor driven. For instance, podcasting (audio recordings) provided my technical physics course with supplemental notes to accompany a traditional algebra-based physics lecture. Podcasting is an ideal tool for this mode of instruction, but podcasting/vodcasting is also an ideal technique for student projects and student-driven learning. I present here the various podcasting/vodcasting projects my students and I have undertaken over the last few years.
Nicolatou-Galitis, Ourania; Migliorati, Cesar
2018-01-01
The definition, pathobiology and risk factors of ONJ in cancer patients who receive BTAs are discussed in the recent ecancer module for osteonecrosis of the jaw (http://ecancer.org/education/module/276-osteonecrosis-of-the-jaw.php). ONJ prevention, early diagnosis and management are presented. The critical question of the performance of dental extraction, during BTA therapy, as indicated with the recent studies, is supported. The importance of the collaboration between dental and oncology professionals and the patients is highlighted and can be achieved through appropriate education. The ecancer modules are valuable tools for successful e-learning in medical oncology education, including ONJ.
dos Santos, Mateus Casanova; Leite, Maria Cecília Lorea; Heck, Rita Maria
2010-12-01
This is an investigative case study with descriptive and participative character, based on an educational experience with the Simulation in Nursing learning trigger. It was carried out during the second semester of the first cycle of Faculdade de Enfermagem (FEN), Universidade Federal de Pelotas (UFPel). The aim is to study the recontextualization of pedagogic practice of simulation-based theories developed by Basil Bernstein, an education sociologist, and to contribute with the improvement process of education planning, and especially the evaluation of learning trigger. The research shows that Bernstein's theory is a powerful tool semiotic pedagogical of practices which contributes to the planning and analysis of curricular educational device.
USMC Ground Surveillance Robot (GSR): Lessons Learned
NASA Astrophysics Data System (ADS)
Harmon, S. Y.
1987-02-01
This paper describes the design of an autonomous vehicle and the lessons learned during the implementation of that complex robot. The major problems encountered to which solutions were found include sensor processing bandwidth limitations, coordination of the interactions between major subsystems, sensor data fusion and system knowledge representation. Those problems remaining unresolved include system complexity management, the lack of powerful system monitoring and debugging tools, exploratory implementation of a complex system and safety and testing issues. Many of these problems arose from working with underdeveloped and continuously evolving technology and will probably be resolved as the technological resources mature and stabilize. Unfortunately, other problems will continue to plague developers throughout the evolution of autonomous system technology.
Overcoming Learning Time and Space Constraints through Technological Tool
ERIC Educational Resources Information Center
Zarei, Nafiseh; Hussin, Supyan; Rashid, Taufik
2015-01-01
Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigates how the Learning Management Blog (LMB) overcomes…
NASA Astrophysics Data System (ADS)
Chang, Spencer; Cohen, Timothy; Ostdiek, Bryan
2018-03-01
Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables—aided by physical intuition—that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus nonlinear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.
Effective collaborative learning in biomedical education using a web-based infrastructure.
Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang
2012-01-01
This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.
Data Mining and Machine Learning in Astronomy
NASA Astrophysics Data System (ADS)
Ball, Nicholas M.; Brunner, Robert J.
We review the current state of data mining and machine learning in astronomy. Data Mining can have a somewhat mixed connotation from the point of view of a researcher in this field. If used correctly, it can be a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, promising great scientific advance. However, if misused, it can be little more than the black box application of complex computing algorithms that may give little physical insight, and provide questionable results. Here, we give an overview of the entire data mining process, from data collection through to the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines, applications from a broad range of astronomy, emphasizing those in which data mining techniques directly contributed to improving science, and important current and future directions, including probability density functions, parallel algorithms, Peta-Scale computing, and the time domain. We conclude that, so long as one carefully selects an appropriate algorithm and is guided by the astronomical problem at hand, data mining can be very much the powerful tool, and not the questionable black box.
Naturalistic Decision Making For Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2009-06-23
Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operatormore » conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.« less
Online Learning Tools as Supplements for Basic and Clinical Science Education.
Ellman, Matthew S; Schwartz, Michael L
2016-01-01
Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.
Online Learning Tools as Supplements for Basic and Clinical Science Education
Ellman, Matthew S.; Schwartz, Michael L.
2016-01-01
Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered. PMID:29349323
Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi
2014-01-01
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).
Using Firefly Tools to Enhance Archive Web Pages
NASA Astrophysics Data System (ADS)
Roby, W.; Wu, X.; Ly, L.; Goldina, T.
2013-10-01
Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.
Educational software usability: Artifact or Design?
Van Nuland, Sonya E; Eagleson, Roy; Rogers, Kem A
2017-03-01
Online educational technologies and e-learning tools are providing new opportunities for students to learn worldwide, and they continue to play an important role in anatomical sciences education. Yet, as we shift to teaching online, particularly within the anatomical sciences, it has become apparent that e-learning tool success is based on more than just user satisfaction and preliminary learning outcomes-rather it is a multidimensional construct that should be addressed from an integrated perspective. The efficiency, effectiveness and satisfaction with which a user can navigate an e-learning tool is known as usability, and represents a construct which we propose can be used to quantitatively evaluate e-learning tool success. To assess the usability of an e-learning tool, usability testing should be employed during the design and development phases (i.e., prior to its release to users) as well as during its delivery (i.e., following its release to users). However, both the commercial educational software industry and individual academic developers in the anatomical sciences have overlooked the added value of additional usability testing. Reducing learner frustration and anxiety during e-learning tool use is essential in ensuring e-learning tool success, and will require a commitment on the part of the developers to engage in usability testing during all stages of an e-learning tool's life cycle. Anat Sci Educ 10: 190-199. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.
2018-01-01
SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600
Power System Simulation for Policymaking and Making Policymakers
NASA Astrophysics Data System (ADS)
Cohen, Michael Ari
Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Holmes, David R., III; Hanson, Dennis P.; Robb, Richard A.
2006-03-01
One of the greatest challenges for a software engineer is to create a complex application that is comprehensive enough to be useful to a diverse set of users, yet focused enough for individual tasks to be carried out efficiently with minimal training. This "powerful yet simple" paradox is particularly prevalent in advanced medical imaging applications. Recent research in the Biomedical Imaging Resource (BIR) at Mayo Clinic has been directed toward development of an imaging application framework that provides powerful image visualization/analysis tools in an intuitive, easy-to-use interface. It is based on two concepts very familiar to physicians - Cases and Workflows. Each case is associated with a unique patient and a specific set of routine clinical tasks, or a workflow. Each workflow is comprised of an ordered set of general-purpose modules which can be re-used for each unique workflow. Clinicians help describe and design the workflows, and then are provided with an intuitive interface to both patient data and analysis tools. Since most of the individual steps are common to many different workflows, the use of general-purpose modules reduces development time and results in applications that are consistent, stable, and robust. While the development of individual modules may reflect years of research by imaging scientists, new customized workflows based on the new modules can be developed extremely fast. If a powerful, comprehensive application is difficult to learn and complicated to use, it will be unacceptable to most clinicians. Clinical image analysis tools must be intuitive and effective or they simply will not be used.
Supporting geoscience with graphical-user-interface Internet tools for the Macintosh
NASA Astrophysics Data System (ADS)
Robin, Bernard
1995-07-01
This paper describes a suite of Macintosh graphical-user-interface (GUI) software programs that can be used in conjunction with the Internet to support geoscience education. These software programs allow science educators to access and retrieve a large body of resources from an increasing number of network sites, taking advantage of the intuitive, simple-to-use Macintosh operating system. With these tools, educators easily can locate, download, and exchange not only text files but also sound resources, video movie clips, and software application files from their desktop computers. Another major advantage of these software tools is that they are available at no cost and may be distributed freely. The following GUI software tools are described including examples of how they can be used in an educational setting: ∗ Eudora—an e-mail program ∗ NewsWatcher—a newsreader ∗ TurboGopher—a Gopher program ∗ Fetch—a software application for easy File Transfer Protocol (FTP) ∗ NCSA Mosaic—a worldwide hypertext browsing program. An explosive growth of online archives currently is underway as new electronic sites are being added continuously to the Internet. Many of these resources may be of interest to science educators who learn they can share not only ASCII text files, but also graphic image files, sound resources, QuickTime movie clips, and hypermedia projects with colleagues from locations around the world. These powerful, yet simple to learn GUI software tools are providing a revolution in how knowledge can be accessed, retrieved, and shared.
My Sky Tonight: Nurturing a Scientific Frame of Mind in Early Childhood
NASA Astrophysics Data System (ADS)
Manning, Jim; Manning, J.; Schultz, G. R.; Gurton, S.; Plummer, J.; Callanan, M.; Jipson, J.; Palmquist, S.
2013-06-01
The Astronomical Society of the Pacific (ASP), in collaboration with a team of researchers, evaluators, and informal education institutions, has embarked on an NSF-funded project designed to build capacity in informal science education (ISE) practitioners by supporting development of their understanding of early childhood astronomy knowledge and the building of pedagogical skills and tools supportive of early childhood learning in informal settings. While preschool-aged children have long been considered too young and too cognitively immature to benefit from science learning, a growing body of recent research shows that children’s curiosity about science topics begins in the years prior to school, and that a child’s early years lay a powerful foundation for subsequent learning. Further, informal science educator and learning researchers argue that more effectively building on young children’s inherent curiosity about the natural world could lead to stronger science learning outcomes than waiting to introduce science in classroom settings. Consequently, using the domain of astronomy as a basis, the ASP and its partners are embarking on a project to: 1) advance the knowledge base concerning astronomy conceptions and curiosities of young children and how they can be built upon to position children for later learning, 2) develop interactive learning experiences to be used by ISE practitioners and families with small children to nurture children’s science curiosity and reasoning, 3) increase participation in astronomy by families in general and underserved families in particular, and 4) improve practice by engaging ISE practitioners in the research and development of effective practices, providing implementation tools and methods. The presenter will share project status as it gets underway.
Machine Learning for Medical Imaging
Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L.
2017-01-01
Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. ©RSNA, 2017 PMID:28212054
Machine Learning for Medical Imaging.
Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L
2017-01-01
Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.
The Impact of Using SMS as Learning Support Tool on Students' Learning
ERIC Educational Resources Information Center
Gasaymeh, Al-Mothana M.; Aldalalah, Osamah M.
2013-01-01
This study aimed to investigate the impact of using Short Message Service (SMS) as learning support tool on students' learning in an introductory programming course. In addition, the study examined students' perceptions of the advantages and disadvantages of the use of SMS as a learning support tool in their class. The participants in this study…
Physics Matters, 1st Edition, with Student Access Card eGrade Plus 1 Term Set
NASA Astrophysics Data System (ADS)
Trefil, James
2004-04-01
Written by authors who have vast experience in communicating science to general audiences, Physics Matters conveys the principles of physics in a manner that is understandable to non-majors. In a prose style that is clear, engaging, and contemporary, it pays particular attention to the relevance of physics in comprehending our modern technological society and the issues created by those technologies. It offers a broad, relatively non-mathematical, and highly readable survey of all the standard topics in physics. Before you buy, make sure you are getting the best value and all the learning tools you'll need to succeed in your course. If your professor requires eGrade Plus, you can purchase it now at no additional cost! With this special eGrade Plus package you get the new text--no highlighting, no missing pages, no food stains--an activity book with class activities, self study and homework assignments, as well as a registration code to eGrade Plus, a suite of effective learning tools to help you get a better grade. eGrade Plus gives you: A complete online version of the textbook Video experiments Student web projects Self assessment tests Homework questions with links to the relevant section of the online book eGrade Plus is a powerful online tool that provides students with an integrated suite of teaching and learning resources and an online version of the text in one easy-to-use website.
Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation
ERIC Educational Resources Information Center
Scanlon, Eileen
2012-01-01
This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…
ERIC Educational Resources Information Center
Zhang, Lin
2014-01-01
Educators design and create various technology tools to scaffold students' learning. As more and more technology designs are incorporated into learning, growing attention has been paid to the study of technology-based learning tool. This paper discusses the emerging issues, such as how can learning effectiveness be understood in relation to…
MDAS: an integrated system for metabonomic data analysis.
Liu, Juan; Li, Bo; Xiong, Jiang-Hui
2009-03-01
Metabonomics, the latest 'omics' research field, shows great promise as a tool in biomarker discovery, drug efficacy and toxicity analysis, disease diagnosis and prognosis. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system, e.g., the mechanism of diseases. Traditional methods employed in metabonomic data analysis use multivariate analysis methods developed independently in chemometrics research. Additionally, with the development of machine learning approaches, some methods such as SVMs also show promise for use in metabonomic data analysis. Aside from the application of general multivariate analysis and machine learning methods to this problem, there is also a need for an integrated tool customized for metabonomic data analysis which can be easily used by biologists to reveal interesting patterns in metabonomic data.In this paper, we present a novel software tool MDAS (Metabonomic Data Analysis System) for metabonomic data analysis which integrates traditional chemometrics methods and newly introduced machine learning approaches. MDAS contains a suite of functional models for metabonomic data analysis and optimizes the flow of data analysis. Several file formats can be accepted as input. The input data can be optionally preprocessed and can then be processed with operations such as feature analysis and dimensionality reduction. The data with reduced dimensionalities can be used for training or testing through machine learning models. The system supplies proper visualization for data preprocessing, feature analysis, and classification which can be a powerful function for users to extract knowledge from the data. MDAS is an integrated platform for metabonomic data analysis, which transforms a complex analysis procedure into a more formalized and simplified one. The software package can be obtained from the authors.
The effects of utilizing a near-patient e-learning tool on medical student learning.
Selzer, Rob; Tallentire, Victoria R; Foley, Fiona
2015-01-01
This study aimed to develop a near-patient, e-learning tool and explore student views on how utilization of such a tool influenced their learning. Third year medical students from Monash University in Melbourne, Australia were invited to trial a novel, near-patient, e-learning tool in two separate pilots within the ward environment. All participating students were invited to contribute to focus groups which were audio-recorded, transcribed verbatim and thematically analyzed. Four focus groups were conducted with a total of 17 participants. The emerging themes revealed influences on the students' learning both prior to and during a clinical encounter, as well as following completion of an e-learning module. The unifying concept which linked all six themes and formed the central feature of the experience was patient-centered learning. This occurred through the acquisition of contextualized knowledge and the facilitation of workplace integration. Utilization of a near-patient e-learning tool influences medical student learning in a number of complex, inter-related ways. Clinical e-learning tools are poised to become more commonplace and provide many potential benefits to student learning. However, incorporation of technology into clinical encounters requires specific skills which should form an integral part of primary medical training.
Collaborative Action Research on Technology Integration for Science Learning
NASA Astrophysics Data System (ADS)
Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua
2012-02-01
This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.
Mediated learning in the workplace: student perspectives on knowledge resources.
Shanahan, Madeleine
2015-01-01
In contemporary clinical practice, student radiographers can use many types of knowledge resources to support their learning. These include workplace experts, digital and nondigital information sources (eg, journals, textbooks, and the Internet), and electronic communication tools such as e-mail and social media. Despite the range of knowledge tools available, there is little available data about radiography students' use of these resources during clinical placement. A 68-item questionnaire was distributed to 62 students enrolled in an Australian university undergraduate radiography program after they completed a clinical placement. Researchers used descriptive statistics to analyze student access to workplace experts and their use of digital and nondigital information sources and electronic communication tools. A 5-point Likert scale (1 = very important; 5 = not important) was used to assess the present importance and perceived future value of knowledge tools for workplace learning. Of the 53 students who completed and returned the questionnaire anonymously, most rely on the knowledge of practicing technologists and on print and electronic information sources to support their learning; some students also use electronic communication tools. Students perceive that these knowledge resources also will be important tools for their future learning as qualified health professionals. The findings from this study present baseline data regarding the value students attribute to multiple knowledge tools and regarding student access to and use of these tools during clinical placement. In addition, most students have access to multiple knowledge tools in the workplace and incorporate these tools simultaneously into their overall learning practice during clinical placement. Although a range of knowledge tools is used in the workplace to support learning among student radiographers, the quality of each tool should be critically analyzed before it is adopted in practice. Integrating practice-based learning with learning mediated by information sources provides a more complete paradigm of learning during clinical placement.
Bat detective-Deep learning tools for bat acoustic signal detection.
Mac Aodha, Oisin; Gibb, Rory; Barlow, Kate E; Browning, Ella; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R; Newson, Stuart E; Pandourski, Ivan; Parsons, Stuart; Russ, Jon; Szodoray-Paradi, Abigel; Szodoray-Paradi, Farkas; Tilova, Elena; Girolami, Mark; Brostow, Gabriel; Jones, Kate E
2018-03-01
Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.
Bat detective—Deep learning tools for bat acoustic signal detection
Barlow, Kate E.; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R.; Newson, Stuart E.; Pandourski, Ivan; Russ, Jon; Szodoray-Paradi, Abigel; Tilova, Elena; Girolami, Mark; Jones, Kate E.
2018-01-01
Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio. PMID:29518076
Development of a computer-assisted learning software package on dental traumatology.
Tolidis, K; Crawford, P; Stephens, C; Papadogiannis, Y; Plakias, C
1998-10-01
The development of computer-assisted learning software packages is a relatively new field of computer application. The progress made in personal computer technology toward more user-friendly operating systems has stimulated the academic community to develop computer-assisted learning for pre- and postgraduate students. The ability of computers to combine audio and visual data in an interactive form provides a powerful educational tool. The purpose of this study was to develop and evaluate a computer-assisted learning package on dental traumatology. This program contains background information on the diagnosis, classification, and management of dental injuries in both the permanent and the deciduous dentitions. It is structured into chapters according to the nature of the injury and whether injury has occurred in the primary or permanent dentition. At the end of each chapter there is a self-assessment questionnaire as well as references to relevant literature. Extensive use of pictures and video provides a comprehensive overview of the subject.
"Sustainability On Earth" WebQuests: Do They Qualify as Problem-Based Learning Activities?
NASA Astrophysics Data System (ADS)
Leite, Laurinda; Dourado, Luís; Morgado, Sofia
2015-02-01
Information and communication technologies (ICT), namely the Internet, can play a valuable educational role in several school subjects, including science education. The same applies to problem-based learning (PBL), that is, a student-centered active learning methodology that can prepare students for lifelong learning. WebQuests (WQs) combine PBL and Internet use, and they can reduce the probability of having students surfing the Internet without any clear purpose. The objective of this paper is to investigate to what extent WQs available from Portuguese schools' and universities' websites, focusing on the "Sustainability on Earth" eighth-grade school science theme, are consistent with a PBL perspective. Results from content analysis of 92 WQs indicate that the WQs selected for this paper are rarely consistent with PBL requirements. Teachers should be both aware of this issue and ready to improve the WQs available before using them in their science classes so that greater educational advantage can be generated from this powerful tool.
Gerlai, Robert
2017-08-01
Analysis of the zebrafish allows one to combine two distinct scientific approaches, comparative ethology and neurobehavioral genetics. Furthermore, this species arguably represents an optimal compromise between system complexity and practical simplicity. This mini-review focuses on a complex form of learning, relational learning and memory, in zebrafish. It argues that zebrafish are capable of this type of learning, and it attempts to show how this species may be useful in the analysis of the mechanisms and the evolution of this complex brain function. The review is not intended to be comprehensive. It is a short opinion piece that reflects the author's own biases, and it draws some of its examples from the work coming from his own laboratory. Nevertheless, it is written in the hope that it will persuade those who have not utilized zebrafish and who may be interested in opening their research horizon to this relatively novel but powerful vertebrate research tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Scalable Regression Tree Learning on Hadoop using OpenPlanet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wei; Simmhan, Yogesh; Prasanna, Viktor
As scientific and engineering domains attempt to effectively analyze the deluge of data arriving from sensors and instruments, machine learning is becoming a key data mining tool to build prediction models. Regression tree is a popular learning model that combines decision trees and linear regression to forecast numerical target variables based on a set of input features. Map Reduce is well suited for addressing such data intensive learning applications, and a proprietary regression tree algorithm, PLANET, using MapReduce has been proposed earlier. In this paper, we describe an open source implement of this algorithm, OpenPlanet, on the Hadoop framework usingmore » a hybrid approach. Further, we evaluate the performance of OpenPlanet using realworld datasets from the Smart Power Grid domain to perform energy use forecasting, and propose tuning strategies of Hadoop parameters to improve the performance of the default configuration by 75% for a training dataset of 17 million tuples on a 64-core Hadoop cluster on FutureGrid.« less
[The Italian instrument evaluating the nursing students clinical learning quality].
Palese, Alvisa; Grassetti, Luca; Mansutti, Irene; Destrebecq, Anne; Terzoni, Stefano; Altini, Pietro; Bevilacqua, Anita; Brugnolli, Anna; Benaglio, Carla; Dal Ponte, Adriana; De Biasio, Laura; Dimonte, Valerio; Gambacorti, Benedetta; Fasci, Adriana; Grosso, Silvia; Mantovan, Franco; Marognolli, Oliva; Montalti, Sandra; Nicotera, Raffaela; Randon, Giulia; Stampfl, Brigitte; Tollini, Morena; Canzan, Federica; Saiani, Luisa; Zannini, Lucia
2017-01-01
. The Clinical Learning Quality Evaluation Index for nursing students. The Italian nursing programs, the need to introduce tools evaluating the quality of the clinical learning as perceived by nursing students. Several tools already exist, however, several limitations suggesting the need to develop a new tool. A national project aimed at developing and validating a new instrument capable of measuring the clinical learning quality as experience by nursing students. A validation study design was undertaken from 2015 to 2016. All nursing national programs (n=43) were invited to participate by including all nursing students attending regularly their clinical learning. The tool developed based upon a) literature, b) validated tools already established among other healthcare professionals, and c) consensus expressed by experts and nursing students, was administered to the eligible students. 9606 nursing in 27 universities (62.8%) participated. The psychometric properties of the new instrument ranged from good to excellent. According to the findings, the tool consists in 22 items and five factors: a) quality of the tutorial strategies, b) learning opportunities; c) safety and nursing care quality; d) self-direct learning; e) quality of the learning environment. The tool is already used. Its systematic adoption may support comparison among settings and across different programs; moreover, the tool may also support in accrediting new settings as well as in measuring the effects of strategies aimed at improving the quality of the clinical learning.
[eLearning-radiology.com--sustainability for quality assurance].
Ketelsen, D; Talanow, R; Uder, M; Grunewald, M
2009-04-01
The aim of the study was to analyze the availability of published radiological e-learning tools and to establish a solution for quality assurance. Substantial pubmed research was performed to identify radiological e-learning tools. 181 e-learning programs were selected. As examples two databases expanding their programs with external links, Compare (n = 435 external links) and TNT-Radiology (n = 1078 external links), were evaluated. A concept for quality assurance was developed by an international taskforce. At the time of assessment, 56.4 % (102 / 181) of the investigated e-learning tools were accessible at their original URL. A subgroup analysis of programs published 5 to 8 years ago showed significantly inferior availability to programs published 3 to 5 years ago (p < 0.01). The analysis of external links showed 49.2 % and 61.0 % accessible links for the programs Compare (published 2003) and TNT-Radiology (published 2006), respectively. As a consequence, the domain www.eLearning-radiology.com was developed by the taskforce and published online. This tool allows authors to present their programs and users to evaluate the e-learning tools depending on several criteria in order to remove inoperable links and to obtain information about the complexity and quality of the e-learning tools. More than 50 % of investigated radiological e-learning tools on the Internet were not accessible after a period of 5 to 8 years. As a consequence, an independent, international tool for quality assurance was designed and published online under www.eLearning-radiology.com .
Interactive E-learning module in pharmacology: a pilot project at a rural medical college in India.
Gaikwad, Nitin; Tankhiwale, Suresh
2014-01-01
Many medical educators are experimenting with innovative ways of E-learning. E-learning provides opportunities to students for self-directed learning in addition to other advantages. In this study, we designed and evaluated an interactive E-learning module in pharmacology for effectiveness, acceptability and feasibility, with the aim of promoting active learning in this fact-filled subject. A quasi-experimental single-group pre-test/post-test study was conducted with fourth-semester students of the second professionals course (II MBBS), selected using non-probability convenience sampling method. An E-learning module in endocrine pharmacology was designed to comprise three units of interactive PowerPoint presentations. The pre-validated presentations were uploaded on the website according to a predefined schedule and the 42 registered students were encouraged to self-learning using these interactive presentations. Cognitive gain was assessed using an online pre- and post-test for each unit. Students' perceptions were recorded using an online feedback questionnaire on a 5-point Likert scale. Finally, focused group discussion was conducted to further explore students' views on E-learning activity. Significant attrition was observed during the E-learning activity. Of the 42 registered students, only 16 students completed the entire E-learning module. The summed average score of all three units (entire module) was increased significantly from 38.42 % (summed average pre-test score: 11.56/30 ± 2.90) to 66.46 % (summed average post-test score: 19.94/30 ± 6.13). The class-average normalized gain for the entire module was 0.4542 (45.42). The students accepted this E-learning activity well as they perceived it to be innovative, convenient, flexible and useful. The average rating was between 4 (agree) and 5 (strongly agree). The interactive E-learning module in pharmacology was moderately effective and well perceived by the students. The simple, cost-effective and readily available Microsoft PowerPoint tool appealed to medical educators to use this kind of simple E-learning technology blended with traditional teaching to encourage active learning among students especially in a rural setup is attractive.
Ten oral health strategies to keep kids pain-free & problem-free throughout childhood.
Herman, N G
2001-01-01
Emerging information, technology and therapies make it possible for most children today to grow up with good oral health. The most powerful vehicle we have to achieve this goal is an informed professional and parent. All the tools exist to promote oral health and prevent problems in children if we apply what we know and have learned. The challenge is to increase dissemination of this information, and to remind everyone that good oral health contributes significantly to one's overall general well-being.
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.
Kilic, Niyazi; Hosgormez, Erkan
2016-03-01
Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.
Vieira, Sandra; Pinaya, Walter H L; Mechelli, Andrea
2017-03-01
Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mechanistic models versus machine learning, a fight worth fighting for the biological community?
Baker, Ruth E; Peña, Jose-Maria; Jayamohan, Jayaratnam; Jérusalem, Antoine
2018-05-01
Ninety per cent of the world's data have been generated in the last 5 years ( Machine learning: the power and promise of computers that learn by example Report no. DES4702. Issued April 2017. Royal Society). A small fraction of these data is collected with the aim of validating specific hypotheses. These studies are led by the development of mechanistic models focused on the causality of input-output relationships. However, the vast majority is aimed at supporting statistical or correlation studies that bypass the need for causality and focus exclusively on prediction. Along these lines, there has been a vast increase in the use of machine learning models, in particular in the biomedical and clinical sciences, to try and keep pace with the rate of data generation. Recent successes now beg the question of whether mechanistic models are still relevant in this area. Said otherwise, why should we try to understand the mechanisms of disease progression when we can use machine learning tools to directly predict disease outcome? © 2018 The Author(s).
Learning from the Survivors and Teaching the Community (Invited)
NASA Astrophysics Data System (ADS)
Dudley, W. C.
2009-12-01
Interviewing tsunami survivors is an effective way to collect data that have both educational and scientific value. Critical eye witness insight can be gained into the human perception of tsunami events, as well as the reaction and response of victims. Furthermore, the survivors’ assessment of rescue and recovery efforts following the event, and of current warning, mitigation and education measures can be an important tool in evaluating the potential effectiveness of such efforts. Video interviews of tsunami survivors telling their stories can in themselves be a powerful education product for use in the local community and beyond. Mistakes made, lessons learned, and current challenges facing communities in Indonesia, Thailand, India, Sri Lanka, and the Maldives, as well as in Alaska and Hawaii, will be presented.
Teaching with Data: Resources for Designing Effective Activities
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.
2004-12-01
Faculty and teachers understand the power of engaging students directly with data and are tremendously enthusiastic about the possibilities of incorporating data-rich activities in their teaching. This enthusiasm reflects the desire to empower students to solve problems, to place learning in an exciting and authentic real world context that motivates learning, and to illuminate students' understanding of the nature of science. Data-rich activities provide abundant opportunities to motivate students to engage in learning, to integrate learning of facts and skills, and to build on prior knowledge. These are all factors that are identified by research as fundamental to the learning process (How People Learn, 1999, NRC). Data-rich activities can place learning in a context that enhances students' ability to use information in new situations. Seismological data offer many opportunities due to students' familiarity with and interest in earthquakes, and its use to probe the internal structure of the Earth. Three of the most challenging aspects of teaching with data are 1) presenting data with analysis tools that can be quickly mastered, 2) designing learning activities to match the level of student expertise with data analysis and critical thinking, and 3) creating assessments that capture learning beyond factual recall. The Using Data in the Classroom website (serc.carleton.edu/usingdata) helps faculty excel at teaching with data by providing easy access to a wide range of data, discussion of the ways in which data can be effectively used in the classroom, examples of data-rich activities at a variety of educational levels across a range of geoscience topics, and references to pedagogic information. The Earth Exploration Toolbook (serc.Carleton.edu/eet) supports teachers' use of particular datasets and tools by providing step-by-step instructions in the context of an example. The Investigating Earthquakes chapter focuses specifically on use of GIS to analyze USGS earthquake data (serc.Carleton.edu/eet/earthquakes).
The Implications of Cognitive Psychology for Computer-Based Learning Tools.
ERIC Educational Resources Information Center
Kozma, Robert B.
1987-01-01
Defines cognitive computer tools as software programs that use the control capabilities of computers to amplify, extend, or enhance human cognition; suggests seven ways in which computers can aid learning; and describes the "Learning Tool," a software package for the Apple Macintosh microcomputer that is designed to aid learning of…
Open Source for Knowledge and Learning Management: Strategies beyond Tools
ERIC Educational Resources Information Center
Lytras, Miltiadis, Ed.; Naeve, Ambjorn, Ed.
2007-01-01
In the last years, knowledge and learning management have made a significant impact on the IT research community. "Open Source for Knowledge and Learning Management: Strategies Beyond Tools" presents learning and knowledge management from a point of view where the basic tools and applications are provided by open source technologies.…
User Studies: Developing Learning Strategy Tool Software for Children.
ERIC Educational Resources Information Center
Fitzgerald, Gail E.; Koury, Kevin A.; Peng, Hsinyi
This paper is a report of user studies for developing learning strategy tool software for children. The prototype software demonstrated is designed for children with learning and behavioral disabilities. The tools consist of easy-to-use templates for creating organizational, memory, and learning approach guides for use in classrooms and at home.…
Factors Influencing Beliefs for Adoption of a Learning Analytics Tool: An Empirical Study
ERIC Educational Resources Information Center
Ali, Liaqat; Asadi, Mohsen; Gasevic, Dragan; Jovanovic, Jelena; Hatala, Marek
2013-01-01
Present research and development offer various learning analytics tools providing insights into different aspects of learning processes. Adoption of a specific tool for practice is based on how its learning analytics are perceived by educators to support their pedagogical and organizational goals. In this paper, we propose and empirically validate…
Textbook-Bundled Metacognitive Tools: A Study of LearnSmart's Efficacy in General Chemistry
ERIC Educational Resources Information Center
Thadani, Vandana; Bouvier-Brown, Nicole C.
2016-01-01
College textbook publishers increasingly bundle sophisticated technology-based study tools with their texts. These tools appear promising, but empirical work on their efficacy is needed. We examined whether LearnSmart, a study tool bundled with McGraw-Hill's textbook "Chemistry" (Chang & Goldsby, 2013), improved learning in an…
Improving Organizational Learning: Defining Units of Learning from Social Tools
ERIC Educational Resources Information Center
Menolli, André Luís Andrade; Reinehr, Sheila; Malucelli, Andreia
2013-01-01
New technologies, such as social networks, wikis, blogs and other social tools, enable collaborative work and are important facilitators of the social learning process. Many companies are using these types of tools as substitutes for their intranets, especially software development companies. However, the content generated by these tools in many…
Muhlestein, Whitney E; Akagi, Dallin S; Kallos, Justiss A; Morone, Peter J; Weaver, Kyle D; Thompson, Reid C; Chambless, Lola B
2018-04-01
Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.
ERIC Educational Resources Information Center
van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.
2016-01-01
E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…
Games that Enlist Collective Intelligence to Solve Complex Scientific Problems.
Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard
2016-03-01
There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article.
Games that Enlist Collective Intelligence to Solve Complex Scientific Problems
Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard
2016-01-01
There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article. PMID:27047610
Movies as a vehicle to teach addiction medicine.
Cape, Gavin
2009-06-01
Dependence on a substance and the role of medical practitioners in this health problem can be perceived as an enigma. Movies, as a tool for teaching, can be a powerful means of engaging, clarifying and educating students within the addiction medicine arena. Popular mythologies and stereotypes of drug use (including alcohol) and users in cinema can be explored within a learning environment aiding the understanding of this complex topic, thereby improving the therapeutic commitment to addiction medicine. There is a responsibility of the teacher to use this tool with care so as not to perpetuate the mythologies of addiction as often portrayed within commercial cinema. Tried and tested use of this potent educational aid, with suggestions for further development, are outlined in this article.
2014-06-18
Lindsay Lawlor, of San Diego, Calif., left, demonstrates his creation, a 17-foot-tall, robotic giraffe that "walks" on wheels and is powered by a 12-horsepower hybrid fuel-engine motor, during the first ever White House Maker Faire, which brings together students, entrepreneurs, and everyday citizens who are using new tools and techniques to launch new businesses, learn vital skills in science, technology, engineering, and math (STEM), and fuel the renaissance in American manufacturing, at the White House, Wednesday, June 18, 2014 in Washington. The President announced new steps the Administration and its partners are taking to support the ability of more Americans, young and old, to have to access to these tools and techniques and brings their ideas to life. Photo Credit: (NASA/Bill Ingalls)
Student Research in Computational Astrophysics
NASA Astrophysics Data System (ADS)
Blondin, J. M.
1999-12-01
Computational physics can shorten the long road from freshman physics major to independent research by providing students with powerful tools to deal with the complexities of modern research problems. At North Carolina State University we have introduced dozens of students to astrophysics research using the tools of computational fluid dynamics. We have used several formats for working with students, including the traditional approach of one-on-one mentoring, a more group-oriented format in which several students work together on one or more related projects, and a novel attempt to involve an entire class in a coordinated semester research project. The advantages and disadvantages of these formats will be discussed at length, but the single most important influence has been peer support. Having students work in teams or learn the tools of research together but tackle different problems has led to more positive experiences than a lone student diving into solo research. This work is supported by an NSF CAREER Award.
Kreps, Gary L
2002-01-01
The modern health care system is being irrevocably changed by the development and introduction of new health information technologies (such as health information systems, decision-support tools, specialized websites, and innovative communication devices). While many of these new technologies hold the promise of revolutionizing the modern health system and facilitating improvements in health care delivery, health education, and health promotion, it is imperative to carefully examine and assess the effectiveness of these technological tools to determine which products are most useful to apply in specific contexts, as well as to learn how to best utilize these products and processes. Without good evaluative information about new technologies, we are unlikely to reap the greatest benefits from these powerful new tools. This chapter examines the demand for evaluating health information technologies and suggests several strategies for conducting rigorous and relevant evaluation research.
Conversations with the community: the Methodist Hospital System's experience with social media.
Angelle, Denny; Rose, Clare L
2011-01-01
The Methodist Hospital System has maintained a social media presence on Facebook, Twitter, and YouTube since 2009. After initial unofficial excursions into the world of social media, we discovered that social media can be a useful tool to extend a conversation with our patients and the community at large and share our hospital's culture with a larger base of like-minded people. But with this new power comes a heightened responsibility--platforms that can potentially reach millions of viewers and readers also provide a potential for misuse that can jeopardize patient privacy and place hospitals at risk. Because of their unique restrictions, even hospitals that use the tools regularly have much left to learn about social media. With constant monitoring and stewardship and a commitment to educating staff, hospitals can effectively use social media tools for marketing and education.
NASA Astrophysics Data System (ADS)
Friedrich, J.
1999-08-01
As lecturers, our main concern and goal is to develop more attractive and efficient ways of communicating up-to-date scientific knowledge to our students and facilitate an in-depth understanding of physical phenomena. Computer-based instruction is very promising to help both teachers and learners in their difficult task, which involves complex cognitive psychological processes. This complexity is reflected in high demands on the design and implementation methods used to create computer-assisted learning (CAL) programs. Due to their concepts, flexibility, maintainability and extended library resources, object-oriented modeling techniques are very suitable to produce this type of pedagogical tool. Computational fluid dynamics (CFD) enjoys not only a growing importance in today's research, but is also very powerful for teaching and learning fluid dynamics. For this purpose, an educational PC program for university level called 'CFDLab 1.1' for Windows™ was developed with an interactive graphical user interface (GUI) for multitasking and point-and-click operations. It uses the dual reciprocity boundary element method as a versatile numerical scheme, allowing to handle a variety of relevant governing equations in two dimensions on personal computers due to its simple pre- and postprocessing including 2D Laplace, Poisson, diffusion, transient convection-diffusion.
Higher Learning: Developing Students' Powers of Learning in Higher Education
ERIC Educational Resources Information Center
Bourner, Tom
2009-01-01
This article is about student learning, specifically the problem of what a university can do to develop its students' powers of learning. The broad approach is to discover what we can learn from the university's long experience with developing students' critical faculties and then apply the lessons to developing students' powers of learning. The…
Developing a Tool to Measure the Impact of E-Learning on the Teachers of Higher Education
ERIC Educational Resources Information Center
Kumar, M. Rajesh; Kumar, R. Krishna
2008-01-01
The trend of using e-learning as a teaching tool is now rapidly expanding into education. Although e-learning environments are becoming popular there is minimal research on the impact of e-learning on the teachers. The purpose of this study is to develop a tool to measure the impact of e-learning on the teachers' of higher education in the Indian…
The experience of learning to speak up: a narrative inquiry on newly graduated registered nurses.
Law, Bernice Yee-Shui; Chan, Engle Angela
2015-07-01
To explore the process of learning to speak up in practice among newly graduated registered nurses. Speaking up is an important aspect of communication to ensure patient safety within a healthcare team. However, nurses have reported being hesitant about speaking up or being unable to be heard, despite adopting various safety tools. A power differential could be a factor in their hesitation to speak up. While a large number of new graduates are employed in the lower rungs of the hospital hierarchy to resolve local and global nursing shortages, the process of their learning to speak up remains under-explored. The narrative concept of experience is addressed through the three-dimensional space of a narrative inquiry. Eighteen new graduates were recruited. Stories of experiences of speaking up emerged naturally during repeated unstructured interviews and ongoing email conversations with three participants. The complex process of learning to speak up is schematically represented. Three interrelated narrative threads were identified: (1) learning to speak up requires more than one-off training and safety tools, (2) mentoring speaking up in the midst of educative and miseducative experiences and (3) making public spaces safe for telling secret stories. Speaking up requires ongoing mentoring to see new possibilities for sustaining professional identities in the midst of miseducative experiences under the potential shaping of the Chinese culture and generational differences. Appreciative inquiry might be a new approach that can be used to promote positive cultural changes to encourage newly graduated registered nurses to learn to speak up to ensure patient safety. Cultivating a safe and open culture of communication and mentoring new graduates to speak up will benefit patient safety now and in the future by helping to retain committed patient advocates who could mentor future generations. © 2015 John Wiley & Sons Ltd.
Teaching and Learning Physics in a 1:1 Laptop School
NASA Astrophysics Data System (ADS)
Zucker, Andrew A.; Hug, Sarah T.
2008-12-01
1:1 laptop programs, in which every student is provided with a personal computer to use during the school year, permit increased and routine use of powerful, user-friendly computer-based tools. Growing numbers of 1:1 programs are reshaping the roles of teachers and learners in science classrooms. At the Denver School of Science and Technology, a public charter high school where a large percentage of students come from low-income families, 1:1 laptops are used often by teachers and students. This article describes the school's use of laptops, the Internet, and related digital tools, especially for teaching and learning physics. The data are from teacher and student surveys, interviews, classroom observations, and document analyses. Physics students and teachers use an interactive digital textbook; Internet-based simulations (some developed by a Nobel Prize winner); word processors; digital drop boxes; email; formative electronic assessments; computer-based and stand-alone graphing calculators; probes and associated software; and digital video cameras to explore hypotheses, collaborate, engage in scientific inquiry, and to identify strengths and weaknesses of students' understanding of physics. Technology provides students at DSST with high-quality tools to explore scientific concepts and the experiences of teachers and students illustrate effective uses of digital technology for high school physics.
Slide shows vs graphic tablet live drawing for anatomy teaching.
Alsaid, B
2016-12-01
Blackboard drawing is the traditional and still widely learned method for anatomy teachers. However, for practical reasons, more and more lessons are done using slide shows. New digital learning tools are developed to create a more attractive teaching method. The objective of this study was to compare the use of graphic tablet live drawing versus slide shows. Sixty-five second-year students of the Faculty of Medicine participated in this study during their first semester of 2013-2014 academic year. The selected lecture dealt about neuroanatomy; two brain sections were taught: median sagittal and transverse. The sagittal section was presented via a slide show. The transverse section was taught using a graphics tablet using drawing software. Students were evaluated three times: before the lecture, immediately after the lecture and 8 weeks later. Means were compared using a t-test. Scores were significantly higher immediately after the lecture and 8 weeks later tests in comparing the transverse section (using the graphics tablet) versus the sagittal section (using PowerPoint ® ). Student satisfaction regarding the use of the tablet was high. The graphics tablet is a usable and efficient drawing tool in anatomy teaching. This tool requires a specific teacher training and preparation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Wilson, Linda L.; Mott, Donald W.; Batman, Deb
2004-01-01
This article provides a description of the "Asset-Based Context Matrix" (ABC Matrix). The ABC Matrix is an assessment tool for designing interventions for children in natural learning environments. The tool is based on research evidence indicating that children's learning is enhanced in contextually meaningful learning environments. The ABC Matrix…
iSELF: The Development of an Internet-Tool for Self-Evaluation and Learner Feedback
ERIC Educational Resources Information Center
Theunissen, Nicolet; Stubbé, Hester
2014-01-01
This paper describes the theoretical basis and development of the iSELF: an Internet-tool for Self-Evaluation and Learner Feedback to stimulate self-directed learning in ubiquitous learning environments. In ubiquitous learning, learners follow their own trails of interest, scaffolded by coaches, peers and tools for thinking and learning.…
Developing an Intelligent Diagnosis and Assessment E-Learning Tool for Introductory Programming
ERIC Educational Resources Information Center
Huang, Chenn-Jung; Chen, Chun-Hua; Luo, Yun-Cheng; Chen, Hong-Xin; Chuang, Yi-Ta
2008-01-01
Recently, a lot of open source e-learning platforms have been offered for free in the Internet. We thus incorporate the intelligent diagnosis and assessment tool into an open software e-learning platform developed for programming language courses, wherein the proposed learning diagnosis assessment tools based on text mining and machine learning…
On Recommending Web 2.0 Tools to Personalise Learning
ERIC Educational Resources Information Center
Juškeviciene, Anita; Kurilovas, Eugenijus
2014-01-01
The paper aims to present research results on using Web 2.0 tools for learning personalisation. In the work, personalised Web 2.0 tools selection method is presented. This method takes into account student's learning preferences for content and communication modes tailored to the learning activities with a view to help the learner to quickly and…
Academic perceptions amongst educators towards eLearning tools in dental education.
Handal, Boris; Groenlund, Catherine; Gerzina, Tania
2011-04-01
This paper reports an explorative study about academic educators' perceptions towards learning management systems (LMS) and eLearning tools as used in dental education. Fifty-five educators participated in an online survey which explored their views on eLearning tools within the context of their own professional training background and teaching needs. In general, educators felt that the eLearning LMS (also known as WebCT/Blackboard) was a tool that suited their teaching and learning needs in terms of flexibility, interactivity and accessibility despite a significant level of self-reported lack of competence in the technology. The paper describes current eLearning professional development initiatives in light of these findings. © 2011 FDI World Dental Federation.
ERIC Educational Resources Information Center
D'Amato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara
2007-01-01
A multi-tool approach incorporating traditional lectures, multimedia learning objects, and a laboratory activity were introduced as the concepts surrounding hydrogen fuel-cell technology in college chemistry courses. The new tools are adaptable, facilitating use in different educational environments and address variety of learning styles to…
Creating visual explanations improves learning.
Bobek, Eliza; Tversky, Barbara
2016-01-01
Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.
Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S.; Leswing, Karl
2017-01-01
Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm. PMID:29629118
MEAT: An Authoring Tool for Generating Adaptable Learning Resources
ERIC Educational Resources Information Center
Kuo, Yen-Hung; Huang, Yueh-Min
2009-01-01
Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…
Digital interactive learning of oral radiographic anatomy.
Vuchkova, J; Maybury, T; Farah, C S
2012-02-01
Studies reporting high number of diagnostic errors made from radiographs suggest the need to improve the learning of radiographic interpretation in the dental curriculum. Given studies that show student preference for computer-assisted or digital technologies, the purpose of this study was to develop an interactive digital tool and to determine whether it was more successful than a conventional radiology textbook in assisting dental students with the learning of radiographic anatomy. Eighty-eight dental students underwent a learning phase of radiographic anatomy using an interactive digital tool alongside a conventional radiology textbook. The success of the digital tool, when compared to the textbook, was assessed by quantitative means using a radiographic interpretation test and by qualitative means using a structured Likert scale survey, asking students to evaluate their own learning outcomes from the digital tool. Student evaluations of the digital tool showed that almost all participants (95%) indicated that the tool positively enhanced their learning of radiographic anatomy and interpretation. The success of the digital tool in assisting the learning of radiographic interpretation is discussed in the broader context of learning and teaching curricula, and preference (by students) for the use of this digital form when compared to the conventional literate form of the textbook. Whilst traditional textbooks are still valued in the dental curriculum, it is evident that the preference for computer-assisted learning of oral radiographic anatomy enhances the learning experience by enabling students to interact and better engage with the course material. © 2011 John Wiley & Sons A/S.
White, David B.
1991-01-01
An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.
Adaptive System Modeling for Spacecraft Simulation
NASA Technical Reports Server (NTRS)
Thomas, Justin
2011-01-01
This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).
Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time-to-Event Analysis.
Gong, Xiajing; Hu, Meng; Zhao, Liang
2018-05-01
Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time-to-event data synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the proportional hazard function, or with high-dimensional data featured by a large number of predictor variables. Our results showed that ML-based methods outperformed the Cox model in prediction performance as assessed by concordance index and in identifying the preset influential variables for high-dimensional data. The prediction performances of ML-based methods are also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML-based methods provide a powerful tool for time-to-event analysis, with a built-in capacity for high-dimensional data and better performance when the predictor variables assume nonlinear relationships in the hazard function. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue
Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.
Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.
Large-scale deep learning for robotically gathered imagery for science
NASA Astrophysics Data System (ADS)
Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.
2016-12-01
With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.
Analysis of Facial Injuries Caused by Power Tools.
Kim, Jiye; Choi, Jin-Hee; Hyun Kim, Oh; Won Kim, Sug
2016-06-01
The number of injuries caused by power tools is steadily increasing as more domestic woodwork is undertaken and more power tools are used recreationally. The injuries caused by the different power tools as a consequence of accidents are an issue, because they can lead to substantial costs for patients and the national insurance system. The increase in hand surgery as a consequence of the use of power tools and its economic impact, and the characteristics of the hand injuries caused by power saws have been described. In recent years, the authors have noticed that, in addition to hand injuries, facial injuries caused by power tools commonly present to the emergency room. This study aimed to review the data in relation to facial injuries caused by power saws that were gathered from patients who visited the trauma center at our hospital over the last 4 years, and to analyze the incidence and epidemiology of the facial injuries caused by power saws. The authors found that facial injuries caused by power tools have risen continually. Facial injuries caused by power tools are accidental, and they cause permanent facial disfigurements and functional disabilities. Accidents are almost inevitable in particular workplaces; however, most facial injuries could be avoided by providing sufficient operator training and by tool operators wearing suitable protective devices. The evaluation of the epidemiology and patterns of facial injuries caused by power tools in this study should provide the information required to reduce the number of accidental injuries.
Developing 21st century skills through the use of student personal learning networks
NASA Astrophysics Data System (ADS)
Miller, Robert D.
This research was conducted to study the development of 21st century communication, collaboration, and digital literacy skills of students at the high school level through the use of online social network tools. The importance of this study was based on evidence high school and college students are not graduating with the requisite skills of communication, collaboration, and digital literacy skills yet employers see these skills important to the success of their employees. The challenge addressed through this study was how high schools can integrate social network tools into traditional learning environments to foster the development of these 21st century skills. A qualitative research study was completed through the use of case study. One high school class in a suburban high performing town in Connecticut was selected as the research site and the sample population of eleven student participants engaged in two sets of interviews and learned through the use social network tools for one semester of the school year. The primary social network tools used were Facebook, Diigo, Google Sites, Google Docs, and Twitter. The data collected and analyzed partially supported the transfer of the theory of connectivism at the high school level. The students actively engaged in collaborative learning and research. Key results indicated a heightened engagement in learning, the development of collaborative learning and research skills, and a greater understanding of how to use social network tools for effective public communication. The use of social network tools with high school students was a positive experience that led to an increased awareness of the students as to the benefits social network tools have as a learning tool. The data supported the continued use of social network tools to develop 21st century communication, collaboration, and digital literacy skills. Future research in this area may explore emerging social network tools as well as the long term impact these tools have on the development of lifelong learning skills and quantitative data linked to student learning.
Development of Northeast Asia Nuclear Power Plant Accident Simulator.
Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff
2017-06-15
A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Kemp, Jeremy William
2011-01-01
This quantitative survey study examines the willingness of online students to adopt an immersive virtual environment as a classroom tool and compares this with their feelings about more traditional learning modes including our ANGEL learning management system and the Elluminate live Web conferencing tool. I surveyed 1,108 graduate students in…
ERIC Educational Resources Information Center
Olkun, Sinan; Altun, Arif; Deryakulu, Deniz
2009-01-01
It is important for teachers of mathematics to know how pupils react to certain mathematical situations and what these reactions imply, in order to design more effective instructional environments based on their learning needs. This study reports the development processes of a digital learning tool (Learning Tool for Elementary School Teachers…
Integration of Web 2.0 Tools in Learning a Programming Course
ERIC Educational Resources Information Center
Majid, Nazatul Aini Abd
2014-01-01
Web 2.0 tools are expected to assist students to acquire knowledge effectively in their university environment. However, the lack of effort from lecturers in planning the learning process can make it difficult for the students to optimize their learning experiences. The aim of this paper is to integrate Web 2.0 tools with learning strategy in…
Computer Assisted Learning for Biomedical Engineering Education: Tools
2001-10-25
COMPUTER ASSISTED LEARNING FOR BIOMEDICAL ENGINEERING EDUCATION : TOOLS Ayhan ÝSTANBULLU1 Ýnan GÜLER2 1 Department of Electronic...of Technical Education , Gazi University, 06500 Ankara, Türkiye Abstract- Interactive multimedia learning environment is being proposed...Assisted Learning (CAL) are given and some tools used in this area are explained. Together with the developments in the area of distance education
ERIC Educational Resources Information Center
Rolka, Christine; Remshagen, Anja
2015-01-01
Contextualized learning is considered beneficial for student success. In this article, we assess the impact of context-based learning tools on student grade performance in an introductory computer science course. In particular, we investigate two central questions: (1) does the use context-based learning tools, robots and animations, affect…
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Splendidly blended: a machine learning set up for CDU control
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2017-06-01
As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.
"Development Radar": The Co-Configuration of a Tool in a Learning Network
ERIC Educational Resources Information Center
Toiviainen, Hanna; Kerosuo, Hannele; Syrjala, Tuula
2009-01-01
Purpose: The paper aims to argue that new tools are needed for operating, developing and learning in work-life networks where academic and practice knowledge are intertwined in multiple levels of and in boundary-crossing across activities. At best, tools for learning are designed in a process of co-configuration, as the analysis of one tool,…
2009-01-01
Background The rapid advancement of computer and information technology in recent years has resulted in the rise of e-learning technologies to enhance and complement traditional classroom teaching in many fields, including bioinformatics. This paper records the experience of implementing e-learning technology to support problem-based learning (PBL) in the teaching of two undergraduate bioinformatics classes in the National University of Singapore. Results Survey results further established the efficiency and suitability of e-learning tools to supplement PBL in bioinformatics education. 63.16% of year three bioinformatics students showed a positive response regarding the usefulness of the Learning Activity Management System (LAMS) e-learning tool in guiding the learning and discussion process involved in PBL and in enhancing the learning experience by breaking down PBL activities into a sequential workflow. On the other hand, 89.81% of year two bioinformatics students indicated that their revision process was positively impacted with the use of LAMS for guiding the learning process, while 60.19% agreed that the breakdown of activities into a sequential step-by-step workflow by LAMS enhances the learning experience Conclusion We show that e-learning tools are useful for supplementing PBL in bioinformatics education. The results suggest that it is feasible to develop and adopt e-learning tools to supplement a variety of instructional strategies in the future. PMID:19958511
Bhattacharyya, Rahul; Davidson, Donald J; Sugand, Kapil; Bartlett, Matthew J; Bhattacharya, Rajarshi; Gupte, Chinmay M
2017-10-04
Virtual-reality and cadaveric simulations are expensive and not readily accessible. Innovative and accessible training adjuncts are required to help to meet training needs. Cognitive task analysis has been used extensively to train pilots and in other surgical specialties. However, the use of cognitive task analyses within orthopaedics is in its infancy. The purpose of this study was to evaluate the effectiveness of a novel cognitive task analysis tool to train novice surgeons in diagnostic knee arthroscopy in high-fidelity, phantom-limb simulation. Three expert knee surgeons were interviewed independently to generate a list of technical steps, decision points, and errors for diagnostic knee arthroscopy. A modified Delphi technique was used to generate the final cognitive task analysis. A video and a voiceover were recorded for each phase of this procedure. These were combined to produce the Imperial Knee Arthroscopy Cognitive Task Analysis (IKACTA) tool that utilizes written and audiovisual stimuli to describe each phase of a diagnostic knee arthroscopy. In this double-blinded, randomized controlled trial, a power calculation was performed prior to recruitment. Sixteen novice orthopaedic trainees who performed ≤10 diagnostic knee arthroscopies were randomized into 2 equal groups. The intervention group (IKACTA group) was given the IKACTA tool and the control group had no additional learning material. They were assessed objectively (validated Arthroscopic Surgical Skill Evaluation Tool [ASSET] global rating scale) on a high-fidelity, phantom-knee simulator. All participants, using the Likert rating scale, subjectively rated the tool. The mean ASSET score (and standard deviation) was 19.5 ± 3.7 points in the IKACTA group and 10.6 ± 2.3 points in the control group, resulting in an improvement of 8.9 points (95% confidence interval, 7.6 to 10.1 points; p = 0.002); the score was determined as 51.3% (19.5 of 38) for the IKACTA group, 27.9% (10.6 of 38) for the control group, and 23.4% (8.9 of 38) for the improvement. All participants agreed that the cognitive task analysis learning tool was a useful training adjunct to learning in the operating room. To our knowledge, this is the first cognitive task analysis in diagnostic knee arthroscopy that is user-friendly and inexpensive and has demonstrated significant benefits in training. The IKACTA will provide trainees with a demonstrably strong foundation in diagnostic knee arthroscopy that will flatten learning curves in both technical skills and decision-making.
Applicability of internet search index for asthma admission forecast using machine learning.
Luo, Li; Liao, Chengcheng; Zhang, Fengyi; Zhang, Wei; Li, Chunyang; Qiu, Zhixin; Huang, Debin
2018-04-15
This study aimed to determine whether a search index could provide insight into trends in asthma admission in China. An Internet search index is a powerful tool to monitor and predict epidemic outbreaks. However, whether using an internet search index can significantly improve asthma admissions forecasts remains unknown. The long-term goal is to develop a surveillance system to help early detection and interventions for asthma and to avoid asthma health care resource shortages in advance. In this study, we used a search index combined with air pollution data, weather data, and historical admissions data to forecast asthma admissions using machine learning. Results demonstrated that the best area under the curve in the test set that can be achieved is 0.832, using all predictors mentioned earlier. A search index is a powerful predictor in asthma admissions forecast, and a recent search index can reflect current asthma admissions with a lag-effect to a certain extent. The addition of a real-time, easily accessible search index improves forecasting capabilities and demonstrates the predictive potential of search index. Copyright © 2018 John Wiley & Sons, Ltd.
Learning about the scale of the solar system using digital planetarium visualizations
NASA Astrophysics Data System (ADS)
Yu, Ka Chun; Sahami, Kamran; Dove, James
2017-07-01
We studied the use of a digital planetarium for teaching relative distances and sizes in introductory undergraduate astronomy classes. Inspired in part by the classic short film The Powers of Ten and large physical scale models of the Solar System that can be explored on foot, we created lectures using virtual versions of these two pedagogical approaches for classes that saw either an immersive treatment in the planetarium or a non-immersive version in the regular classroom (with N = 973 students participating in total). Students who visited the planetarium had not only the greatest learning gains, but their performance increased with time, whereas students who saw the same visuals projected onto a flat display in their classroom showed less retention over time. The gains seen in the students who visited the planetarium reveal that this medium is a powerful tool for visualizing scale over multiple orders of magnitude. However the modest gains for the students in the regular classroom also show the utility of these visualization approaches for the broader category of classroom physics simulations.
Your Personal Analysis Toolkit - An Open Source Solution
NASA Astrophysics Data System (ADS)
Mitchell, T.
2009-12-01
Open source software is commonly known for its web browsers, word processors and programming languages. However, there is a vast array of open source software focused on geographic information management and geospatial application building in general. As geo-professionals, having easy access to tools for our jobs is crucial. Open source software provides the opportunity to add a tool to your tool belt and carry it with you for your entire career - with no license fees, a supportive community and the opportunity to test, adopt and upgrade at your own pace. OSGeo is a US registered non-profit representing more than a dozen mature geospatial data management applications and programming resources. Tools cover areas such as desktop GIS, web-based mapping frameworks, metadata cataloging, spatial database analysis, image processing and more. Learn about some of these tools as they apply to AGU members, as well as how you can join OSGeo and its members in getting the job done with powerful open source tools. If you haven't heard of OSSIM, MapServer, OpenLayers, PostGIS, GRASS GIS or the many other projects under our umbrella - then you need to hear this talk. Invest in yourself - use open source!
Journal Writing as an Adult Learning Tool. Practice Application Brief No. 22.
ERIC Educational Resources Information Center
Kerka, Sandra
Journals can be valuable tools for fostering adult learning and experience. Research has supported the following assumptions about learning from journals: (1) articulating connections between new and existing knowledge improves learning; (2) writing about learning is a way of demonstrating what has been learned; (3) journal writing accentuates…
Field Learning as a powerful tool of Education for geoscience, environment and disaster prevention.
NASA Astrophysics Data System (ADS)
Matsumoto, I.; LI, W.
2015-12-01
Field learning in through elementary school to University is very important for cultivation of science, environment and disaster prevention literacy. In Japan, we have various natural disasters such as earthquakes and volcanoes based on its geological settings ( Island-arc with subduction zone settings). And, it is a challenge environmental problem such as global warming prevention and energy problem to be solved by a human. For the above problem solving, it said that science education plays very important role. Especially learning with direct experience in the field is not only to get the only knowledge, we believe that greater development of science literacy, environmental literacy and disaster prevention literacy. In this presentation, we propose the new teaching method of field learning not only provided by school but also provided by outside school. We show following four studies that are (1) function of running water and origin of the land (science education and disaster prevention), (2) environmental consciousness of student (environmental education), (3) radiation education (scientific technology and its utilization) and (4) astronomical observation (acquisition of time and space concept). We were led to the preliminary conclusion of above four categories in practice research in and out of school. That is, the teacher is teaching the essence and phenomena of science to focus on science learning of school, in addition to environmental awareness, disaster prevention awareness, use of scientific technology are also important to teach at the same time. To do this, it is to make effective use of field learning. It can be said that the field study is a perfect and power place to perform learning such simultaneity. Because, natural field is originally the place can learn along with the feeling through the five senses of human. It is important especially for the growth stage of the student.
Ferber, Julia; Schneider, Gudrun; Havlik, Linda; Heuft, Gereon; Friederichs, Hendrik; Schrewe, Franz-Bernhard; Schulz-Steinel, Andrea; Burgmer, Markus
2014-01-01
To improve the synergy of established methods of teaching, the Department of Psychosomatics and Psychotherapy, University Hospital Münster, developed a web-based elearning tool using video clips of standardized patients. The effect of this blended-learning approach was evaluated. A multiple-choice test was performed by a naive (without the e-learning tool) and an experimental (with the tool) cohort of medical students to test the groups' expertise in psychosomatics. In addition, participants' satisfaction with the new tool was evaluated (numeric rating scale of 0-10). The experimental cohort was more satisfied with the curriculum and more interested in psychosomatics. Furthermore, the experimental cohort scored significantly better in the multiple-choice test. The new tool proved to be an important addition to the classical curriculum as a blended-learning approach which improves students' satisfaction and knowledge in psychosomatics.
Design and Development of a Self-Assessment Tool and Investigating its Effectiveness for E-Learning
ERIC Educational Resources Information Center
Domun, Manisha; Bahadur, Goonesh K.
2014-01-01
One of the most effective tools in e-learning is the Self-Assessment Tool (SAT) and research has shown that students need to accurately assess their own performance thus improving their learning. The study involved the design and development of a self-assessment tool based on the Revised Blooms taxonomy Framework. As a second step in investigating…
Fulton Suri, J
2001-11-15
To stay relevant and applicable in a rapidly changing world, ergonomics must meet several challenges. The paper explores these challenges and how the profession might respond. It is proposed that there are opportunities, and a need, to embrace empathy as a legitimate and useful tool. Empathy has value in three main areas. In research we can broaden our understanding of people and situations, learning 'why' as well as 'how and what' people do. Second, by identifying with the emotional as well as intellectual concerns of sponsors and colleagues from other professions, we inspire trust and confidence, adding value to our collective efforts in collaborative work. Third, through methods such as role-playing and story telling, empathy is a powerful tool for getting ergonomics issues across to implementers and influencing outcomes. Care is needed to balance empathy with systematic observation in the tradition of the scientific method; the power of empathy is in combining it with objective methods to make full use of our abilities as human scientists.
Education review: applied medical informatics--informatics in medical education.
Naeymi-Rad, F; Trace, D; Moidu, K; Carmony, L; Booden, T
1994-05-01
The importance of informatics training within a health sciences program is well recognized and is being implemented on an increasing scale. At Chicago Medical School (CMS), the Informatics program incorporates information technology at every stage of medical education. First-year students are offered an elective in computer topics that concentrate on basic computer literacy. Second-year students learn information management such as entry and information retrieval skills. For example, during the Introduction to Clinical Medicine course, the student is exposed to the Intelligent Medical Record-Entry (IMR-E), allowing the student to enter and organize information gathered from patient encounters. In the third year, students in the Internal Medicine rotation at Norwalk Hospital use Macintosh power books to enter and manage their patients. Patient data gathered by the student are stored in a local server in Norwalk Hospital. In the final year, we teach students the role of informatics in clinical decision making. The present senior class at CMS has been exposed to the power of medical informatics tools for several years. The use of these informatics tools at the point of care is stressed.
Lin, Zu-Chun
2013-05-01
The aim of nursing education is to prepare students with critical thinking, high interests in profession and high proficiency in patient care. Cooperative learning promotes team work and encourages knowledge building upon discussion. It has been viewed as one of the most powerful learning methods. Technology has been considered an influential tool in teaching and learning. It assists students in gathering more information to solve the problems and master skills better. The purpose of this study was to compare the effect of technology-based cooperative learning with technology-based individual learning in nursing students' critical thinking in catheterization knowledge gaining, error discovering, skill acquisitions, and overall scores. This study used a pretest-posttest experimental design. Ninety-eight students were assigned randomly to one of two groups. Questionnaires and tests were collected at baseline and after completion of intervention. The results of this study showed that there was no significant difference in related catheterization skill performance. However, the remaining variables differed greatly between the two groups. CONCLUSIONS AND APPLICATIONS: This study's findings guide the researchers and instructors to use technology-based cooperative learning more appropriately. Future research should address the design of the course module and the availability of mobile devices to reach student-centered and learn on the move goals. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lovorn, Michael; Sunal, Cynthia Szymanski; Christensen, Lois McFadyen; Sunal, Dennis W.; Shwery, Craig
2012-01-01
This article explores perspectives and strands of thought among teachers from five countries about power dynamics in learning environments, perspectives on power of dominant cultures and impacts of power on concepts of citizenship and social justice. Discourses revealed teachers have some understanding of how power impacts teaching and learning,…
ERIC Educational Resources Information Center
Pape, Liz
2010-01-01
Blended learning is using online tools to communicate, collaborate and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…
Modes of Learning in Religious Education
ERIC Educational Resources Information Center
Afdal, Geir
2015-01-01
This article is a contribution to the discussion of learning processes in religious education (RE) classrooms. Sociocultural theories of learning, understood here as tool-mediated processes, are used in an analysis of three RE classroom conversations. The analysis focuses on the language tools that are used in conversations; how the tools mediate;…
NASA Astrophysics Data System (ADS)
Achtor, T. H.; Rink, T.
2010-12-01
The University of Wisconsin’s Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellites and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is Java-based, open-source, freely available software that operates on Linux, Macintosh and Windows systems. The software tools provide powerful new data manipulation and visualization capabilities that work with geophysical data in research, operational and educational environments. McIDAS-V provides unique capabilities to support innovative techniques for evaluating research results, teaching and training. McIDAS-V is based on three powerful software elements. VisAD is a Java library for building interactive, collaborative, 4 dimensional visualization and analysis tools. The Integrated Data Viewer (IDV) is a reference application based on the VisAD system and developed by the Unidata program that demonstrates the flexibility that is needed in this evolving environment, using a modern, object-oriented software design approach. The third tool, HYDRA, allows users to build, display and interrogate multi and hyperspectral environmental satellite data in powerful ways. The McIDAS-V software is being used for training and education in several settings. The McIDAS User Group provides training workshops at its annual meeting. Numerous online tutorials with training data sets have been developed to aid users in learning simple and more complex operations in McIDAS-V, all are available online. In a University of Wisconsin-Madison undergraduate course in Radar and Satellite Meteorology, McIDAS-V is used to create and deliver laboratory exercises using case study and real time data. At the high school level, McIDAS-V is used in several exercises in our annual Summer Workshop in Earth and Atmospheric Sciences to provide young scientists the opportunity to examine data with friendly and powerful tools. This presentation will describe the McIDAS-V software and demonstrate some of the capabilities of McIDAS-V to analyze and display many types of global data. The presentation will also focus on describing how McIDAS-V can be used as an educational window to examine global geophysical data. Consecutive polar orbiting passes of NASA MODIS and CALIPSO observations
Macellini, S.; Maranesi, M.; Bonini, L.; Simone, L.; Rozzi, S.; Ferrari, P. F.; Fogassi, L.
2012-01-01
Macaques can efficiently use several tools, but their capacity to discriminate the relevant physical features of a tool and the social factors contributing to their acquisition are still poorly explored. In a series of studies, we investigated macaques' ability to generalize the use of a stick as a tool to new objects having different physical features (study 1), or to new contexts, requiring them to adapt the previously learned motor strategy (study 2). We then assessed whether the observation of a skilled model might facilitate tool-use learning by naive observer monkeys (study 3). Results of study 1 and study 2 showed that monkeys trained to use a tool generalize this ability to tools of different shape and length, and learn to adapt their motor strategy to a new task. Study 3 demonstrated that observing a skilled model increases the observers' manipulations of a stick, thus facilitating the individual discovery of the relevant properties of this object as a tool. These findings support the view that in macaques, the motor system can be modified through tool use and that it has a limited capacity to adjust the learnt motor skills to a new context. Social factors, although important to facilitate the interaction with tools, are not crucial for tool-use learning. PMID:22106424
Analyzing microtomography data with Python and the scikit-image library.
Gouillart, Emmanuelle; Nunez-Iglesias, Juan; van der Walt, Stéfan
2017-01-01
The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.
ERIC Educational Resources Information Center
Bolger, Benjamin B.; Rowland, Gordon; Reuning-Hummel, Carrie; Codner, Stephen
2011-01-01
Powerful and transformative learning experiences display characteristics in common with each other. Emerging communication technologies may increase opportunities for powerful and transformative learning experiences. To explore this question, there are four sections to this article. First, it is observed that there are many interesting synergies…
The Personal Digital Library (PDL)-based e-learning: Using the PDL as an e-learning support tool
NASA Astrophysics Data System (ADS)
Deng, Xiaozhao; Ruan, Jianhai
The paper describes a support tool for learners engaged in e-learning, the Personal Digital Library (PDL). The characteristics and functionality of the PDL are presented. Suggested steps for constructing and managing a PDL are outlined and discussed briefly. The authors believe that the PDL as a support tool of e-learning will be important and essential in the future.
ERIC Educational Resources Information Center
Kelly, Nick; Thompson, Kate; Yeoman, Pippa
2015-01-01
This paper describes theory-led design as a way of developing novel tools for learning analytics (LA). It focuses upon the domain of automated discourse analysis (ADA) of group learning activities to help an instructor to orchestrate online groups in real-time. The paper outlines the literature on the development of LA tools within the domain of…
Empowering students with the hidden curriculum.
Neve, Hilary; Collett, Tracey
2017-11-27
The hidden curriculum (HC) refers to unscripted, ad hoc learning that occurs outside the formal, taught curriculum and can have a powerful influence on the professional development of students. While this learning may be positive, it may conflict with that taught in the formal curriculum. Medical schools take a range of steps to address these negative effects; however, the existence and nature of the concept tends to be hidden from students. Since 2007, our medical school has incorporated into its small group programme an educational activity exploring the concept of the hidden curriculum. We undertook a qualitative evaluation of our intervention, conducting a thematic analysis of students' wiki reflections about the HC. We also analysed students' responses to a short questionnaire about the educational approach used. The majority of students felt that the HC session was important and relevant. Most appeared able to identify positive and negative HC experiences and consider how these might influence their learning and development, although a few students found the concept of the HC hard to grasp. Revealing and naming the hidden curriculum can make students aware of its existence and understand its potential impact. The hidden curriculum may also be a useful tool for triggering debate about issues such as power, patient centredness, personal resilience and career stereotypes in medicine. Supporting students to think critically about HC experiences may empower them to make active choices about which messages to take on board. The hidden curriculum can have a powerful influence on the professional development of students. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Adaptive management of social-ecological systems: the path forward
Allen, Craig R.
2015-01-01
Adaptive management remains at the forefront of environmental management nearly 40 years after its original conception, largely because we have yet to develop other methodologies that offer the same promise. Despite the criticisms of adaptive management and the numerous failed attempts to implement it, adaptive management has yet to be replaced with a better alternative. The concept persists because it is simple, allows action despite uncertainty, and fosters learning. Moving forward, adaptive management of social-ecological systems provides policymakers, managers and scientists a powerful tool for managing for resilience in the face of uncertainty.
Report on the ''ESO Python Boot Camp — Pilot Version''
NASA Astrophysics Data System (ADS)
Dias, B.; Milli, J.
2017-03-01
The Python programming language is becoming very popular within the astronomical community. Python is a high-level language with multiple applications including database management, handling FITS images and tables, statistical analysis, and more advanced topics. Python is a very powerful tool both for astronomical publications and for observatory operations. Since the best way to learn a new programming language is through practice, we therefore organised a two-day hands-on workshop to share expertise among ESO colleagues. We report here the outcome and feedback from this pilot event.
A new proof of the generalized Hamiltonian–Real calculus
Gao, Hua; Mandic, Danilo P.
2016-01-01
The recently introduced generalized Hamiltonian–Real (GHR) calculus comprises, for the first time, the product and chain rules that makes it a powerful tool for quaternion-based optimization and adaptive signal processing. In this paper, we introduce novel dual relationships between the GHR calculus and multivariate real calculus, in order to provide a new, simpler proof of the GHR derivative rules. This further reinforces the theoretical foundation of the GHR calculus and provides a convenient methodology for generic extensions of real- and complex-valued learning algorithms to the quaternion domain.
How Not To Drown in Data: A Guide for Biomaterial Engineers.
Vasilevich, Aliaksei S; Carlier, Aurélie; de Boer, Jan; Singh, Shantanu
2017-08-01
High-throughput assays that produce hundreds of measurements per sample are powerful tools for quantifying cell-material interactions. With advances in automation and miniaturization in material fabrication, hundreds of biomaterial samples can be rapidly produced, which can then be characterized using these assays. However, the resulting deluge of data can be overwhelming. To the rescue are computational methods that are well suited to these problems. Machine learning techniques provide a vast array of tools to make predictions about cell-material interactions and to find patterns in cellular responses. Computational simulations allow researchers to pose and test hypotheses and perform experiments in silico. This review describes approaches from these two domains that can be brought to bear on the problem of analyzing biomaterial screening data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Earth and Space Science Informatics: Raising Awareness of the Scientists and the Public
NASA Astrophysics Data System (ADS)
Messerotti, M.; Cobabe-Ammann, E.
2009-04-01
The recent developments in Earth and Space Science Informatics led to the availability of advanced tools for data search, visualization and analysis through e.g. the Virtual Observatories or distributed data handling infrastructures. Such facilities are accessible via web interfaces and allow refined data handling to be carried out. Notwithstanding, to date their use is not exploited by the scientific community for a variety of reasons that we will analyze in this work by considering viable strategies to overcome the issue. Similarly, such facilities are powerful tools for teaching and for popularization provided that e-learning programs involving the teachers and respectively the communicators are made available. In this context we will consider the present activities and projects by stressing the role and the legacy of the Electronic Geophysical Year.
Honeybees in a virtual reality environment learn unique combinations of colour and shape.
Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A
2017-10-01
Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.
Problem-based learning in an on-line biotechnology course
NASA Astrophysics Data System (ADS)
Cheaney, James Daniel
Problem-based learning (PBL) is a pedagogical tool that uses a "real world" problem or situation as a context for learning. PBL encourages student development of critical thinking skills, a high professional competency, problem-solving ability, knowledge acquisition, the ability to work productively as a team member and make decisions in unfamiliar situations, and the acquisition of skills that support self-directed life-long learning, metacognition, and adaptation to change. However, little research has focused on the use of PBL in on-line "virtual" classes. We conducted two studies exploring the use of PBL in an on-line biotechnology course. In the first study, ethical, legal, social, and human issues were used as a motivation for learning about DNA testing technologies, applications, and bioethical issues. In the second study, we combined PBL pedagogy with a rich multimedia environment of streaming video interviews, physical artifacts, and extensive links to articles and databases to create a multidimensional immersive PBL environment called "Robert's World". In "Robert's World", a man is determining whether to undergo a pre-symptomatic DNA test for an untreatable, incurable, fatal genetic disease for which he has a family history. In both studies, design and implementation issues of the on-line PBL environment are discussed, as are differences between on-line PBL and face-to-face PBL. Both studies provide evidence to suggest that PBL stimulates higher-order learning in students. However, in both studies, student performance on an exam testing acquisition of lower-order factual learning was lower for PBL students than for students who learned the same material through a traditional lecture-based approach. Possible reasons for this lower level of performance are explored. Student feedback expressed engagement with the issues and material covered, with reservations about some aspects of the PBL format, such as the lack of flexibility provided in cooperative learning. We conclude that on-line PBL is a powerful tool in helping to develop higher-order learning in students. The reasons for the decrease in student understanding of factual information are unclear. However, there are certain circumstances unique to on-line classes to keep in mind when implementing on-line PBL. These are summarized in concluding recommendations.
NASA Astrophysics Data System (ADS)
Oman, Auna
This action research project investigated fourth grade students¡¦ motivation to learn science using a digital science techbook. Participants in the study included 29 fourth grade students in two different classrooms. One classroom of 16 students used a digital science techbook to learn science while the other classroom of 13 students used a traditional paper science textbook to learn science. Students in both classrooms answered five sets of questions regarding their experience using a digital science techbook and a paper science techbook to understand science, find science information, solve science problems, learn science, and assess learning science was fun. Results were compiled and coded based on positive and negative responses to conditions. A chi-square was used to analyze the ordinal data. Overall differences between techbooks vs. textbook were significant, X2 (1, N = 29) = 23.84, p = .000, justifying further examination of individual survey items. Three items had statistically significant difference for finding science information, solving science problems, and learning science. A gender difference was also found in one item. Females preferred to use paper science textbooks to understand science, while males preferred digital techbooks to learn science. The fourth graders in this study indicated that digital techbooks were a powerful learning tool for increasing interest, excitement and learning science. Even though students reported paper science textbooks as easy to use, they found using digital science techbooks a far more appealing way to learn science.
NASA Astrophysics Data System (ADS)
Spellman, K.
2017-12-01
A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.
Ma, Wei; Cheng, Feng; Liu, Yongmin
2018-06-11
Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light-matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.
NASA Astrophysics Data System (ADS)
Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén
Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.
The Comprehensive Evaluation of Electronic Learning Tools and Educational Software (CEELTES)
ERIC Educational Resources Information Center
Karolcík, Štefan; Cipková, Elena; Hrušecký, Roman; Veselský, Milan
2015-01-01
Despite the fact that digital technologies are more and more used in the learning and education process, there is still lack of professional evaluation tools capable of assessing the quality of used digital teaching aids in a comprehensive and objective manner. Construction of the Comprehensive Evaluation of Electronic Learning Tools and…
Discovering the Motivations of Students When Using an Online Learning Tool
ERIC Educational Resources Information Center
Saadé, Raafat George; Al Sharhan, Jamal
2015-01-01
In an educational setting, the use of online learning tools impacts student performance. Motivation and beliefs play an important role in predicting student decisions to use these learning tools. However, IT-personality entailing playfulness on the web, perceived personal innovativeness, and enjoyment may have an impact on motivations. In this…
ERIC Educational Resources Information Center
Pape, Liz
2010-01-01
"Blended learning" is using online tools to communicate, collaborate, and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…
An Online Authoring Tool for Creating Activity-Based Learning Objects
ERIC Educational Resources Information Center
Ahn, Jeong Yong; Mun, Gil Seong; Han, Kyung Soo; Choi, Sook Hee
2017-01-01
As higher education increasingly relies on e-learning, the need for tools that will allow teachers themselves to develop effective e-learning objects as simply and quickly as possible has also been increasingly recognized. This article discusses the design and development of a novel tool, Enook (Evolutionary note book), for creating activity-based…
Evaluation of Knowla: An Online Assessment and Learning Tool
ERIC Educational Resources Information Center
Thompson, Meredith Myra; Braude, Eric John
2016-01-01
The assessment of learning in large online courses requires tools that are valid, reliable, easy to administer, and can be automatically scored. We have evaluated an online assessment and learning tool called Knowledge Assembly, or Knowla. Knowla measures a student's knowledge in a particular subject by having the student assemble a set of…
Development and Testing of the Collaboration in the Clinical Learning Environment (CCLE) Tool
ERIC Educational Resources Information Center
Hooven, Katie J.
2016-01-01
The purpose of this study was to develop and psychometrically test the Collaboration in the Clinical Learning Environment (CCLE) Tool. The researcher acknowledged two distinct populations that required input into this particular tool development: staff nurses who work on floors that are considered clinical learning environments for students, and…
29 CFR 1910.242 - Hand and portable powered tools and equipment, general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2011-07-01 2011-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...
29 CFR 1910.242 - Hand and portable powered tools and equipment, general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2010-07-01 2010-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...
On-the-Job Evidence-Based Medicine Training for Clinician-Scientists of the Next Generation
Leung, Elaine YL; Malick, Sadia M; Khan, Khalid S
2013-01-01
Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes. PMID:24151345
On-the-Job Evidence-Based Medicine Training for Clinician-Scientists of the Next Generation.
Leung, Elaine Yl; Malick, Sadia M; Khan, Khalid S
2013-08-01
Clinical scientists are at the unique interface between laboratory science and frontline clinical practice for supporting clinical partnerships for evidence-based practice. In an era of molecular diagnostics and personalised medicine, evidence-based laboratory practice (EBLP) is also crucial in aiding clinical scientists to keep up-to-date with this expanding knowledge base. However, there are recognised barriers to the implementation of EBLP and its training. The aim of this review is to provide a practical summary of potential strategies for training clinician-scientists of the next generation. Current evidence suggests that clinically integrated evidence-based medicine (EBM) training is effective. Tailored e-learning EBM packages and evidence-based journal clubs have been shown to improve knowledge and skills of EBM. Moreover, e-learning is no longer restricted to computer-assisted learning packages. For example, social media platforms such as Twitter have been used to complement existing journal clubs and provide additional post-publication appraisal information for journals. In addition, the delivery of an EBLP curriculum has influence on its success. Although e-learning of EBM skills is effective, having EBM trained teachers available locally promotes the implementation of EBM training. Training courses, such as Training the Trainers, are now available to help trainers identify and make use of EBM training opportunities in clinical practice. On the other hand, peer-assisted learning and trainee-led support networks can strengthen self-directed learning of EBM and research participation among clinical scientists in training. Finally, we emphasise the need to evaluate any EBLP training programme using validated assessment tools to help identify the most crucial ingredients of effective EBLP training. In summary, we recommend on-the-job training of EBM with additional focus on overcoming barriers to its implementation. In addition, future studies evaluating the effectiveness of EBM training should use validated outcome tools, endeavour to achieve adequate power and consider the effects of EBM training on learning environment and patient outcomes.
Concept Mapping Using Cmap Tools to Enhance Meaningful Learning
NASA Astrophysics Data System (ADS)
Cañas, Alberto J.; Novak, Joseph D.
Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.
Online course delivery modes and design methods in the radiologic sciences.
Kowalczyk, Nina; Copley, Stacey
2013-01-01
To determine the current status of online education in the radiologic sciences and to explore learning management systems, course design methods, and online educational tools used in the radiologic sciences. A random sample of 373 educators from Joint Review Committee-accredited radiography, radiation therapy, and nuclear medicine technology educational programs was invited to participate in this study with an online survey. The majority of the programs responding to the survey do not offer online core courses. However, the institutions that do provide online core radiologic courses reported limited use of online tools for course delivery. BlackBoard was reported as the most commonly used learning management system. No significant relationships were identified in reference to self-reported instructor information technology self-efficacy and the instructors' age, years of teaching in higher education, years of teaching online, or use of asynchronous and synchronous technologies. Survey results did demonstrate a significant relationship between the type of institution and the use of synchronous technologies, suggesting that university-based programs were more likely to use this technology. Although the results suggest that online distance education is still not prevalent in radiologic science education, the past 3 years have seen a substantial increase in online course activity. This increase emphasizes the importance of adequate educator instruction and continuing education in the use of interactive technologies for online content delivery. Most educators report receiving 1 to 4 hours of training prior to online course implementation, but additional postimplementation training is necessary to improve the success of online delivery and further integrate interactive learning activities into an online format. The traditional classroom setting is still the primary course offering for radiologic science programs. PowerPoint remains the primary content delivery tool, suggesting a need for educators to incorporate tools that promote student interactions and interactive learning. Although the results did not reveal a significant relationship between assessed factors, the small correlations identified suggest that the younger instructors have a higher information technology self-efficacy. In addition, survey results suggest that instructors responding to this survey received limited training in reference to online course methods and design both before and after implementing an online course. Although educators may not have a choice regarding the system adopted by their university or college, they should seek additional training regarding the best tools available for online course delivery methods.
Hidden physics models: Machine learning of nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Raissi, Maziar; Karniadakis, George Em
2018-03-01
While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
A lab-controlled simulation of a letter-speech sound binding deficit in dyslexia.
Aravena, Sebastián; Snellings, Patrick; Tijms, Jurgen; van der Molen, Maurits W
2013-08-01
Dyslexic and non-dyslexic readers engaged in a short training aimed at learning eight basic letter-speech sound correspondences within an artificial orthography. We examined whether a letter-speech sound binding deficit is behaviorally detectable within the initial steps of learning a novel script. Both letter knowledge and word reading ability within the artificial script were assessed. An additional goal was to investigate the influence of instructional approach on the initial learning of letter-speech sound correspondences. We assigned children from both groups to one of three different training conditions: (a) explicit instruction, (b) implicit associative learning within a computer game environment, or (c) a combination of (a) and (b) in which explicit instruction is followed by implicit learning. Our results indicated that dyslexics were outperformed by the controls on a time-pressured binding task and a word reading task within the artificial orthography, providing empirical support for the view that a letter-speech sound binding deficit is a key factor in dyslexia. A combination of explicit instruction and implicit techniques proved to be a more powerful tool in the initial teaching of letter-sound correspondences than implicit training alone. Copyright © 2013 Elsevier Inc. All rights reserved.
Engaged Learning Using the Internet: SURWEB as a Student-Focused Learning Tool.
ERIC Educational Resources Information Center
Barker, Bruce O.; Bills, Lynn
The engaged learning model centers on information and communications technologies as tools to assist teachers in helping students take responsibility for their own learning, become knowledge explorers, and collaborate with others to find information and to seek answers to problems. This paper defines engaged learning, and outlines the following…
Integrated Authoring Tool for Mobile Augmented Reality-Based E-Learning Applications
ERIC Educational Resources Information Center
Lobo, Marcos Fermin; Álvarez García, Víctor Manuel; del Puerto Paule Ruiz, María
2013-01-01
Learning management systems are increasingly being used to complement classroom teaching and learning and in some instances even replace traditional classroom settings with online educational tools. Mobile augmented reality is an innovative trend in e-learning that is creating new opportunities for teaching and learning. This article proposes a…
A Study of the Effects of Digital Learning on Learning Motivation and Learning Outcome
ERIC Educational Resources Information Center
Lin, Ming-Hung; Chen, Huang-Cheng; Liu, Kuang-Sheng
2017-01-01
In the modern society when intelligent mobile devices become popular, the Internet breaks through the restrictions on time and space and becomes a ubiquitous learning tool. Designing teaching activity for digital learning and flexibly applying technology tools are the key issues for current information technology integrated education. In this…
Ferdinand, Nicola K; Kray, Jutta
2017-03-01
This study aimed at investigating the ability to learn regularities across the life span and examine whether this learning process can be supported or hampered by verbalizations. For this purpose, children (aged 8-10 years) and younger (aged 19-30 years) and older (aged 70-80 years) adults took part in a sequence learning experiment. We found that verbalizing sequence-congruent information during learning is a powerful tool to generate explicit knowledge and it is especially helpful for younger adults. Although recent research suggests that implicit learning can be influenced by directing the participants' attention to relevant aspects of the task, verbalizations had a much weaker influence on implicit than explicit learning. Our results show that verbalizing during learning slows down reaction times (RTs) but does not influence the amount of implicit learning. Especially older adults were not able to overcome the cost of the dual-task situation. Younger adults, in contrast, show an initial dual-tasking cost that, in the case of a helpful verbalization, is overcome with practice and turns into a RT and learning benefit. However, when the verbalization is omitted this benefit is lost, that is, better implicit learning seems to be confined to situations in which the supporting verbalization is maintained. Additionally, we did not find reliable age differences in implicit learning in the no verbalization groups, which speaks in favor of age-invariant models of implicit learning across the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The value of online learning and MRI: finding a niche for expensive technologies.
Cook, David A
2014-11-01
The benefits of online learning come at a price. How can we optimize the overall value? Critically appraise the value of online learning. Narrative review. Several prevalent myths overinflate the value of online learning. These include that online learning is cheap and easy (it is usually more expensive), that it is more efficient (efficiency depends on the instructional design, not the modality), that it will transform education (fundamental learning principles have not changed), and that the Net Generation expects it (there is no evidence of pent-up demand). However, online learning does add real value by enhancing flexibility, control and analytics. Costs may also go down if disruptive innovations (e.g. low-cost, low-tech, but instructionally sound "good enough" online learning) supplant technically superior but more expensive online learning products. Cost-lowering strategies include focusing on core principles of learning rather than technologies, using easy-to-learn authoring tools, repurposing content (organizing and sequencing existing resources rather than creating new content) and using course templates. Online learning represents just one tool in an educator's toolbox, as does the MRI for clinicians. We need to use the right tool(s) for the right learner at the right dose, time and route.
NASA Astrophysics Data System (ADS)
DeVore, Seth; Marshman, Emily; Singh, Chandralekha
2017-06-01
As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar introductory physics courses and then propose a framework for helping students engage effectively with the learning tools. The tutorials were developed via research in physics education and were found to be effective for a diverse group of introductory physics students in one-on-one implementation. Instructors encouraged the use of these tools in a self-paced learning environment by telling students that they would be helpful for solving the assigned homework problems and that the underlying physics principles in the tutorial problems would be similar to those in the in-class quizzes (which we call paired problems). We find that many students in the courses in which these interactive electronic learning tutorials were assigned as a self-study tool performed poorly on the paired problems. In contrast, a majority of student volunteers in one-on-one implementation greatly benefited from the tutorials and performed well on the paired problems. The significantly lower overall performance on paired problems administered as an in-class quiz compared to the performance of student volunteers who used the research-based tutorials in one-on-one implementation suggests that many students enrolled in introductory physics courses did not effectively engage with the tutorials outside of class and may have only used them superficially. The findings suggest that many students in need of out-of-class remediation via self-paced learning tools may have difficulty motivating themselves and may lack the self-regulation and time-management skills to engage effectively with tools specially designed to help them learn at their own pace. We conclude by proposing a theoretical framework to help students with diverse prior preparations engage effectively with self-paced learning tools.
Shim, Miseon; Hwang, Han-Jeong; Kim, Do-Won; Lee, Seung-Hwan; Im, Chang-Hwan
2016-10-01
Recently, an increasing number of researchers have endeavored to develop practical tools for diagnosing patients with schizophrenia using machine learning techniques applied to EEG biomarkers. Although a number of studies showed that source-level EEG features can potentially be applied to the differential diagnosis of schizophrenia, most studies have used only sensor-level EEG features such as ERP peak amplitude and power spectrum for machine learning-based diagnosis of schizophrenia. In this study, we used both sensor-level and source-level features extracted from EEG signals recorded during an auditory oddball task for the classification of patients with schizophrenia and healthy controls. EEG signals were recorded from 34 patients with schizophrenia and 34 healthy controls while each subject was asked to attend to oddball tones. Our results demonstrated higher classification accuracy when source-level features were used together with sensor-level features, compared to when only sensor-level features were used. In addition, the selected sensor-level features were mostly found in the frontal area, and the selected source-level features were mostly extracted from the temporal area, which coincide well with the well-known pathological region of cognitive processing in patients with schizophrenia. Our results suggest that our approach would be a promising tool for the computer-aided diagnosis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.