Science.gov

Sample records for powerhouse debris pile

  1. Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020

    SciTech Connect

    L. M. Dittmer

    2007-11-30

    The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  3. 4. POWERHOUSE, GROUND LEVEL, GENERATOR AND EXCITER LOCATED IN POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. POWERHOUSE, GROUND LEVEL, GENERATOR AND EXCITER LOCATED IN POWERHOUSE AT GROUND LEVEL LOOKING NORTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 511: Waste Dumps (Piles and Debris) Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Pastor, Laura

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 511, Waste Dumps (Piles & Debris). The CAU is comprised of nine corrective action sites (CASs) located in Areas 3, 4, 6, 7, 18, and 19 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 511 is comprised of nine CASs: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 511 with no further corrective action. To achieve this, corrective action investigation (CAI) and closure activities were performed from January 2005 through August 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris)'' (NNSA/NSO, 2004) and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 511 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs. Analytes detected during the CAI were evaluated against appropriate preliminary action levels to identify the COCs for each

  5. 38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal conveyor, blast stoves, "A" furnace, stoves, "B" furnace, stoves, "C" furnace, bottle cars. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  6. Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1

    SciTech Connect

    David A. Strand

    2004-08-01

    This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada

  7. 284-E Powerhouse trench engineering study

    SciTech Connect

    Crane, A.F.

    1997-01-20

    This document provides the basis for future use of the 284-E Powerhouse Trench as a transport conduit for effluents discharged from the 284-E Powerhouse in accordance with the requirements of the State Waste Discharge Permit, ST 4502.

  8. 1921 POWERHOUSE, EAST AND NORTH ELEVATIONS, VERTICAL VIEW; FACING WESTSOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1921 POWERHOUSE, EAST AND NORTH ELEVATIONS, VERTICAL VIEW; FACING WEST-SOUTHWEST - Shoshone Falls Hydroelectric Project, 1921 Powerhouse, North Bank of Snake River, Tipperary Corner, Jerome County, ID

  9. 8. FIRST FLOOR POWERHOUSE SPACE. VIEW TO NORTH. Commercial ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. FIRST FLOOR POWERHOUSE SPACE. VIEW TO NORTH. - Commercial & Industrial Buildings, Key City Electric Street Railroad, Powerhouse & Storage Barn, Eighth & Washington Streets, Dubuque, Dubuque County, IA

  10. Big Pile or Small Pile?

    ERIC Educational Resources Information Center

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-01-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece…

  11. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  12. 9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. POWERHOUSE, LOWER LEVEL, LOOKING NORTHWEST, PRESSURE CASE WHICH CONTAINS THE WATER TURBINE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  13. 13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WEST ELEVATION, POWERHOUSE, WITH FIGURES AND AUTOMOBILES Historic photograph no. 1646, no date, held at Media Arts and Services Department, Pacific Gas & Electric Co., San Francisco, CA. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  14. 5. ROSS POWERHOUSE: SAME CAMERA STATION AS ABOVE PHOTO BUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROSS POWERHOUSE: SAME CAMERA STATION AS ABOVE PHOTO BUT LOOKING EAST. NOTE INFORMATION DISPLAY FOR TOURISTS AT FLOOR LEVEL, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  15. 3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  16. 1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL SPILLWAY AT LEFT CENTER, VIEW EAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  17. 6. POWERHOUSE, GENERATOR AND GOVERNOR LOCATED AT GROUND LEVEL LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE, GENERATOR AND GOVERNOR LOCATED AT GROUND LEVEL LOOKING NORTHWEST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  18. 6. VIEW FROM THE ROOF OF GORGE POWERHOUSE LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW FROM THE ROOF OF GORGE POWERHOUSE LOOKING EAST TO THE FORMER GRAVITY OIL STORAGE BUILDING, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  19. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. View of Irving Powerhouse. Looking across Fossil Creek (westsouthwest) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Irving Powerhouse. Looking across Fossil Creek (west-southwest) - Childs-Irving Hydroelectric Project, Irving System, Irving Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  1. Dam located to east of powerhouse, view from south. This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dam located to east of powerhouse, view from south. This dam holds back the waters of the Chattahoochee River to form the mill pond north of Riverdale Cotton Mill - Riverdale Cotton Mill, Powerhouse & Dam, Valley, Chambers County, AL

  2. View of powerhouse and dam from third floor of original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of powerhouse and dam from third floor of original section of Langdale Cotton Mill, looking northeast - Langdale Cotton Mill, Powerhouse & Dam, 5910 Nineteenth Avenue, Valley, Chambers County, AL

  3. 33. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DETAIL INTERIOR VIEW OF LEVEL +55 IN POWERHOUSE #1, SHOWING TURBINE/GENERATOR CONTROL PANEL FOR TURBINE/GENERATOR UNIT NO 1. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  4. TAILRACE, WITH POWERHOUSES (SOUTH ELEVATIONS), VERTICAL VIEW; FACING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TAILRACE, WITH POWERHOUSES (SOUTH ELEVATIONS), VERTICAL VIEW; FACING NORTHEAST - Shoshone Falls Hydroelectric Project, Tailrace, North Bank of Snake River, South side of powerhouse complex, Tipperary Corner, Jerome County, ID

  5. SKIDWAY AND WEST ELEVATION OF 1921 POWERHOUSE, GROUND FLOOR ENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SKIDWAY AND WEST ELEVATION OF 1921 POWERHOUSE, GROUND FLOOR ENTRY AT LOWER RIGHT, VERTICAL VIEW; FACING NORTHEAST - Shoshone Falls Hydroelectric Project, Skidway, North Bank of Snake River, immediately North/Northeast of the 1921 Powerhouse, Tipperary Corner, Jerome County, ID

  6. 18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE DRAIN. TAG INDICATES THE SCROLL CASE DRAIN WAS OPEN, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  7. 8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, MOSAIC TILE FLOOR, AS SEEN FROM VISITORS GALLERY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  8. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  9. 20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE SCROLL CASE, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  10. 4. ANODIZED ALUMINUM WATER FOUNTAIN, DIABLO POWERHOUSE, CUSTOMMADE FOR THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ANODIZED ALUMINUM WATER FOUNTAIN, DIABLO POWERHOUSE, CUSTOM-MADE FOR THE VISITORS LOBBY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  11. 12. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 SMALL PELTONDOBLE IMPULSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. POWERHOUSE INTERIOR SHOWING EXCITER No. 2 SMALL PELTON-DOBLE IMPULSE WHEEL, HAND-CONTROLLED GATE VALVE, AND NOZZLE. VIEW TO SOUTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  12. 6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HANDCONTROLLED GATE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. POWERHOUSE INTERIOR SHOWING EXCITER No. 1. HAND-CONTROLLED GATE VALVE SHOWN ON NOZZLE TO PELTON-DOBLE IMPULSE WHEEL. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  13. 19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. LOWER OIL ROOM DIABLO POWERHOUSE: SHARPLES OIL CENTRIFUGE AND OIL TANK, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. 10. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC GENERATOR SHOWING CABLING FROM ARMATURE TO COMMUTATOR. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  15. 11. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC GENERATOR SHOWING COPPER COMMUTATOR AND CARBON BRUSHES. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  16. 13. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. POWERHOUSE INTERIOR, DETAIL OF EXCITER No. 2 GENERAL ELECTRIC INDUCTION MOTOR NAMEPLATE. VIEW TO EAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  17. 14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION MOTOR IN SERIES BETWEEN PELTON-DOBLE IMPULSE WHEEL AND GENERAL ELECTRIC GENERATOR. VIEW TO EAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  18. 4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  19. 1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF GOVERNANCE EQUIPMENT IN FRONT OF GENERATORS AT UNIT 2 (FOREGROUND) AND UNIT 3 (BACKGROUND). VIEW TO SOUTH-SOUTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT

  20. View of north wall (electrical panel), interior of Childs Powerhouse. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north wall (electrical panel), interior of Childs Powerhouse. Looking east - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  1. View of Childs Powerhouse electrical panel and operator station. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Childs Powerhouse electrical panel and operator station. In forground generator #2 and its exciter are visible. Looking north - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  2. View of west end of Childs Powerhouse, including transformer station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of west end of Childs Powerhouse, including transformer station and associated sheds. Looking downstream (east) - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  3. 7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, WOODEN PERSONAL FACILITY LOCATED IN POWERHOUSE LOWER LEVEL LOOKING SOUTH - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  4. 5. POWERHOUSE, GROUND LEVEL, LOOKING SOUTHEAST GENERATOR, GOVERNOR, EXCITER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. POWERHOUSE, GROUND LEVEL, LOOKING SOUTHEAST GENERATOR, GOVERNOR, EXCITER AND KILOWATT-HOUR RECORDER LOCATED IN POWERHOUSE AT GROUND LEVEL LOOKING SOUTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  5. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  6. 21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY VALVE AND DRAIN FOR SCROLL CASE FOR UNIT 32. THESE ARE LOCATED ON THE SAME LEVEL IN THE POWERHOUSE AS THE LOWER OIL ROOM, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  7. 4. NORTH EXTERIOR SIDE OF KERN RIVER No. 1 POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH EXTERIOR SIDE OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING TAILRACES FOR (LEFT TO RIGHT IN PHOTO) GENERATOR UNITS Nos. 4 AND 3, EXCITER No. 1, AND GENERATOR UNITS Nos. 2 AND 1. POWERHOUSE BUILDING NORTH EXIT DOOR IS IN CENTER OF WALL. VIEW TO SOUTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  8. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  9. 15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERVIEW OF TULE RIVER POWERHOUSE FROM FLUME SECTION JUST SOUTHEAST OF FOREBAY SHOWING BYPASSED SEGMENT OF OLD HIGHWAY 190 IN FRONT OF POWERHOUSE A PHOTO RIGHT CENTER. TAILRACE FROM POWERHOUSE DISCHARGES PROJECT WATER BACK INTO TULE RIVER MIDDLE FORK JUST OUT OF VIEW AT EXTREME LEFT OF PHOTO. VIEW TO SOUTHWEST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  10. 83. OVERVIEW OF PARTIALLY COMPLETED POWERHOUSE WITH TWO UNITS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. OVERVIEW OF PARTIALLY COMPLETED POWERHOUSE WITH TWO UNITS IN OPERATION, LOOKING UPSTREAM, Print No. 274, June 1904 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  11. 9. North Plant, View of Canopied Loading Dock with Powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. North Plant, View of Canopied Loading Dock with Powerhouse to Left, Looking Northwest - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  12. Big Pile or Small Pile?

    NASA Astrophysics Data System (ADS)

    Branca, Mario; Quidacciolu, Rossana G.; Soletta, Isabella

    2013-10-01

    The construction of a voltaic pile (battery) is a simple laboratory activity that commemorates the invention of this important device and is of great help in teaching physics. The voltaic pile is often seen as a scientific toy, with the "pile" being constructed from fruit. These toys use some strips of copper and zinc inserted in a piece of fruit to produce a low-intensity electrical current to power a digital device. In a voltaic pile of this type, the zinc acts as an anode while the copper acts as a cathode. The reduction reaction [i.e.,2H+(aq)+2e⇋H2(g)] occurs on the copper (the cathode). The two electrons that are needed for the reduction are taken from the metal (copper), which remains positively charged, while the anode is the zinc, which is oxidized through the reaction Zn∘(m)⇋Zn+2(aq )+2e, and the two electrons remain on the metal, which is negatively charged. If the two pieces of metal are connected by an external conductor, electrons flow from the zinc to the copper. The electromotive force of this system is about 0.76 V, which is the reduction potential of zinc, as can be found in the table of standard reduction potentials.

  13. 33. DIABLO POWERHOUSE: VOLTAGE REGULATOR FOR SPARE EXCITER. ORIGINAL EQUIPMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. DIABLO POWERHOUSE: VOLTAGE REGULATOR FOR SPARE EXCITER. ORIGINAL EQUIPMENT, BALANCE BEAM TYPE REGULATOR WHICH IS POSSIBLY ONE OF THE LAST OF ITS TYPE IN WORKING SERVICE IN THE COUNTRY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. 18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SHEAR PIN, UNIT 24 GORGE POWERHOUSE. THE WICKET GATES ON THE TURBINE ARE EACH EQUIPPED WITH A SHEAR PIN AND OIL PRESSURE GAUGE. IF A GATE JAMS, THE PIN SMEARS AND THE CHANGE IN OIL PRESSURE TRIGGERS AN ALARM, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  15. 8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE, LOWER LEVEL, LEFT, GOVERNOR DRIVE MOTOR WITH BELT ON RIGHT, HYDRAULIC PUMP WITH RESERVOIR TANK, STEAM HEAT PIPES ON BACK WALL LOOKING NORTHEAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  16. 2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT WITH BRIDGE OVER CANAL SPILLWAY IN FOREGROUND AND MILL COMPLEX IN BACKGROUND - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  17. 92. View of east facade of powerhouse, showing rear door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. View of east facade of powerhouse, showing rear door of the building; the steel tanks adjacent to the powerhouse are surge tanks, each penstock has two surge tanks; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  18. 18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  19. 37. WEST REAR OF POWERHOUSE AND CAR BARN: West rear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. WEST REAR OF POWERHOUSE AND CAR BARN: West rear of powerhouse and car barn, showing the turntable and tracks used to move cars in and out of the building's repair and storage area. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. 9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF KERN RIVER No. 1 POWERHOUSE BUILDING SHOWING EXCITER No 2. Ca. 1930 GENERAL ELECTRIC ALTERNATING CURRENT MOTOR REPLACEMENT FOR ALLIS-CHALMERS IMPULSE WHEEL IS VISIBLE ON RIGHT ALONG WITH COUPLING TO EXCITER SHAFT. VIEW TO NORTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA

  1. 27. DIABLO POWERHOUSE UPPER OIL ROOM: OBSOLETE WESTINGHOUSE DIELECTRIC OIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIABLO POWERHOUSE UPPER OIL ROOM: OBSOLETE WESTINGHOUSE DIELECTRIC OIL TESTING SET. OIL IS USED AS AN INSULATOR IN TRANSFORMERS AND ITS CONDUCTIVITY USED TO BE TESTED USING EQUIPMENT SUCH AS THIS, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. 23. VIEW TO NORTH OF UNITS 57, NEW POWERHOUSE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW TO NORTH OF UNITS 5-7, NEW POWERHOUSE GENERATOR FLOOR; HYBRID LOMBARD-WOODWARD GOVERNOR FOR UNIT 5 AT LOWER LEFT; GOVERNOR OIL PUMP AT LEFT CENTER - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY

  3. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  4. 4. VIEW NORTHEAST FROM ELEVATOR TOWER BRIDGE OF NEW POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST FROM ELEVATOR TOWER BRIDGE OF NEW POWERHOUSE ROOF WITH FRAMEWORK FOR WIRES (RIGHT), AND PENSTOCKS FROM TOP OF GORGE (LEFT) - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY

  5. 33. EAST FRONT AND SOUTH SIDE OF POWERHOUSE 1965: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. EAST FRONT AND SOUTH SIDE OF POWERHOUSE - 1965: Photocopy of July 1965 photograph showing south side and east front of powerhouse and car barn. Note addition of the decorative canopy at the corner of the building. At this date the structure displayed a coat of light green paint. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  6. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  7. 1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXT VIEW OF POWERHOUSE GENERATING FLOOR SHOWING ARRANGEMENT OF GOVERNANCE EQUIPMENT IN FRONT OF GENERATORS WITH UNIT 1 IN FOREGROUND AND UNITS 2-6 IN BACKGROUND. VIEW TO THE SOUTH-SOUTHWEST. - Ryan Hydroelectric Facility, Powerhouse, On Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  8. 2. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE, WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE, WITH THE MODERN SUBSTATION AND OLD SWITCHING BUILDING IN THE LEFT FOREGROUND AND THE POWER PLANT IN THE RIGHT FOREGROUND, LOOKING SOUTH. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  9. 1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF THE POST FALLS POWERHOUSE LOOKING DOWNSTREAM. POWER PLANT AND INTAKE GATES ARE IN THE LEFT FOREGROUND, AND THE ATTACHED 'OLD SWITCHING BUILDING' (NOW ABANDONED) IS IN THE RIGHT BACKGROUND, LOOKING NORTHWEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  10. 90. View of east facade of powerhouse, and abandoned lightning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of east facade of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  11. 89. View of west and south facades of powerhouse, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. View of west and south facades of powerhouse, and abandoned lightning arrester houses on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  12. 24. MITSUBISHI BIPLANE VALVE GORGE POWERHOUSE SEEN FROM THE SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. MITSUBISHI BIPLANE VALVE GORGE POWERHOUSE SEEN FROM THE SOUTH. THE MITSUBISHI BIPLANE VALVES WERE INSTALLED IN 1980 AND REPLACED LARNER-JOHNSON NEEDLE VALVES ON UNITS 21, 22, AND 23, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  13. View looking out of the Irving Powerhouse showing the exiting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking out of the Irving Powerhouse showing the exiting water flowing south into the inlet of the Childs System. Looking south - Childs-Irving Hydroelectric Project, Irving System, Irving Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  14. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  15. Model study of St. Stephen powerhouse fish passage facilities, Cooper River rediversion project, South Carolina. Final report

    SciTech Connect

    Hite, J.E.; Murphy, T.E.

    1998-09-01

    This report documents a model study of the St. Stephen Power Plant, located in Berkely County, South Carolina. A previous model study revealed that the fish lift at the powerhouse could be improved by providing auxiliary attraction flows to the fish entrances. An auxiliary attraction flow (AAF) system was proposed that uses a siphon to obtain the auxiliary attraction water from the reservoir. The model investigations reported herein address the flow conditions at the discharge end of the siphon; the hydraulic aspects of the siphon are not addressed. Three different models were used to evaluate flow conditions at the discharge end of the AAF system. A 1:25-scale model of the St. Stephen powerhouse was used to improve the fish entrance conditions and to evaluate the outlet conditions for the initial AAF system. As the investigations progressed, the design of the siphon discharge system was modified to include downstream fish migration and debris passage.

  16. Coal fired powerhouse wastewater pressure filtration

    SciTech Connect

    Martin, H.L.; Diener, G.A.

    1994-05-01

    The Savannah River Site`s permit for construction of an industrial wastewater treatment facility to remove solids from the boiler blow-down and wet ash scrubber effluent of the A-Area coal fired powerhouse was rejected. Conventional clarification technology would not remove arsenic from the combined effluent sufficient to achieve human health criteria in the small receiving surface stream. Treatability studies demonstrated that an existing facility, which will no longer be needed for metal finishing wastewater, can very efficiently process the powerhouse wastewater to less than 35 {mu}g/L arsenic. Use of cationic and anionic polymers to flocculate both the wastewater and filter aid solids formed a ``bridged cake`` with exceptionally low resistance to flow. This will double the capacity of the Oberlin pressure filters with the Tyvek T-980 sub micron filter media. The affects of high sheer agitation and high temperature in the raw wastewater on the filtration process were also studied and adequate controls were demonstrated.

  17. OVERVIEW OF POWERHOUSES FROM SOUTH SIDE OF RIVER; FACING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF POWERHOUSES FROM SOUTH SIDE OF RIVER; FACING NORTH - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  18. Powerhouse east, north and west elevations and operating machinery, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Powerhouse - east, north and west elevations and operating machinery, battery storage building, and typical span of steel service bridge - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  19. 8. Credit SHS. View of east elevation of powerhouse and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Credit SHS. View of east elevation of powerhouse and water discharging from tailrace Note the absence of upper level windows on facade. Photo e. October 1901. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  20. Interior of Left Powerhouse showing the Whiting (Company's) "Tiger" crane ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Left Powerhouse showing the Whiting (Company's) "Tiger" crane with a capacity of 350 tons, looking west. Note the terrazzo floor below depicting a Francis turbine. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  1. 6. PLANT 2 POWERHOUSE AND TRANSFORMER BUILDING. NOTE ABSENCE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PLANT 2 POWERHOUSE AND TRANSFORMER BUILDING. NOTE ABSENCE OF DIAMOND-SHAPED WINDOWS VISIBLE ON TRANSFORMER BUILDING IN PRE-1970 PHOTOGRAPHS. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 2, Bishop Creek, Bishop, Inyo County, CA

  2. VIEW LOOKING NORTHEAST SHOWING A CORNER DETAIL OF THE POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST SHOWING A CORNER DETAIL OF THE POWERHOUSE AND THE SOUTHERN SECTION OF THE DAM. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  3. 2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FOREMAN'S HOUSE, SURGE TANK AND TOP OF POWERHOUSE. VIEW TO EAST-NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  4. 5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HOUSE No. 16 AND SURGE TANK. ROOF OF POWERHOUSE IN BACKGROUND. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  5. 72. Credit FM. Overview of powerhouse from gallery. Notice cooling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Credit FM. Overview of powerhouse from gallery. Notice cooling duct on generator (now removed) and spare gate valve in far corner. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. POWERHOUSES, SOUTH ELEVATIONS SHOWING OIL HOUSE, FILER SUBSTATION, AND DRAFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POWERHOUSES, SOUTH ELEVATIONS SHOWING OIL HOUSE, FILER SUBSTATION, AND DRAFT TUBE OUTLET (TAILRACE), VERTICAL VIEW; FACING WEST - Shoshone Falls Hydroelectric Project, Canyon Road, North Bank of Snake River below Shoshone Falls, Tipperary Corner, Jerome County, ID

  7. POWERHOUSE MAIN FLOOR INCLUDING WORKBENCH AND ARC WELDER IN RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POWERHOUSE MAIN FLOOR INCLUDING WORKBENCH AND ARC WELDER IN RIGHT FOREGROUND. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  8. 151. Interior of north addition to powerhouse, currently used as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. Interior of north addition to powerhouse, currently used as a machine shop, looking east. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  9. 40. William E. Barrett, Photographer, August 1975. ROOF OF POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. William E. Barrett, Photographer, August 1975. ROOF OF POWERHOUSE SHOWING HOPPERS FOR SAWDUST USED TO FIRE STEAM BOILERS. DUCTS AT LEFT LEAD FROM PLANNING MILL AND OTHER MANUFACTURING OPERATIONS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  10. Interior of Right Powerhouse, generator room, looking east. The unit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, generator room, looking east. The unit in the foreground is turbine-generator No. 11. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  11. 154. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    154. Detail of lightning arrester on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  12. 156. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    156. Detail of lightning arrester on hillside above powerhouse; looking west. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  13. 155. Detail of lightning arrester on hillside above powerhouse; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. Detail of lightning arrester on hillside above powerhouse; looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  14. Interior of powerhouse looking southeast; view of operator's platform showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking southeast; view of operator's platform showing type "Q" Lombard Governor, backshot needles, 20-ton traveling crane, and main oil pressure tank (lower left). - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  15. 64. ELECTRIC MOTOR HAYES STREET POWERHOUSE 1905: Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. ELECTRIC MOTOR - HAYES STREET POWERHOUSE - 1905: Photocopy of April 1905 photograph showing an early electric motor installation used to drive the winding machinery at the Hayes Street powerhouse of the United Railroads of San Francsico. A portion of the steam engine originally used to power the machinery is visible behind the winding sheave in the left background of the photograph. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  16. Interior of Right Powerhouse, looking northeast, showing shaft from Francis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, looking northeast, showing shaft from Francis turbine (below) extending to the generator (above). This is unit G-11, a Francis turbine that is identical to the others in the Right Powerhouse: manufactured in 1950 by the Newport News Shipbuilding and Drydock Company, Newport News, Virginia; 165,000 horsepower, 330 ft. head, 120 rpm. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  17. Interior of Right Powerhouse, looking east, showing turbinegenerator unit No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Right Powerhouse, looking east, showing turbine-generator unit No. 11, which is undergoing repair. This is generator is identical to the other eight units located in the Right Powerhouse: Westinghouse AC generator, 108,000 kva, 13,800 volts, 4,200 amps, 3 phase, 60 cycle, 1220 exciter amps, 250 exciter volts. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  18. 27. VIEW TO SOUTHWEST AT START OF POWERHOUSE RECONSTRUCTION: Photocopy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW TO SOUTHWEST AT START OF POWERHOUSE RECONSTRUCTION: Photocopy of December 1906 photograph showing the start of reconstruction work on the powerhouse and car barn. View towards the southwest corner of the building. Note the winding sheaves under a partially completed protective shed on the left of the photograph. Also visible are the tension sheaves, and behind them the batteries of elephant boilers arrayed along the west wall of the building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  19. Defining powerhouse fruits and vegetables: a nutrient density approach.

    PubMed

    Di Noia, Jennifer

    2014-06-05

    National nutrition guidelines emphasize consumption of powerhouse fruits and vegetables (PFV), foods most strongly associated with reduced chronic disease risk; yet efforts to define PFV are lacking. This study developed and validated a classification scheme defining PFV as foods providing, on average, 10% or more daily value per 100 kcal of 17 qualifying nutrients. Of 47 foods studied, 41 satisfied the powerhouse criterion and were more nutrient-dense than were non-PFV, providing preliminary evidence of the validity of the classification scheme. The proposed classification scheme is offered as a tool for nutrition education and dietary guidance.

  20. A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE IN BACKGROUND. A LINE POLE 1 IS A MODERN REPLACEMENT STRUCTURE WITH BROWN PORCELAIN SUSPENSION-TYPE INSULATORS. VIEW TO EAST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  1. Historic view of interior of powerhouse looking east; showing operator's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic view of interior of powerhouse looking east; showing operator's platform containing control panel (center), and telephone booth (left) this booth was needed to reduce plant noise while using telephone. (photographer unknown, ca. 1920.) - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  2. 11. Credit JTL. North elevation of powerhouse showing sliding wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit JTL. North elevation of powerhouse showing sliding wood doors used for easy installation and removal of equipment. Note painted surface indicating location of transformer annex (now removed). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  3. View of Sandbox and Spill Gate above Irving Powerhouse. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Sandbox and Spill Gate above Irving Powerhouse. The Sandbox and Spill Gate are covered by the shed. Looking southeast - Childs-Irving Hydroelectric Project, Irving System, Sandbox & Spill Gate, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  4. View of Dry Falls Dam Powerhouse (right) and headgates to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Dry Falls Dam Powerhouse (right) and headgates to Main Canal (left) leading to Bacon Siphon and on to Billy Clapp Lake, looking northeast - Columbia Basin Project, Banks Lake Dry Falls Dam & Main Canal Headworks, South end of Banks Lake, Northwest of Coulee City, Grand Coulee, Grant County, WA

  5. 29. Coke oven byproduct building "XX" with ammonia stills; powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Coke oven by-product building "XX" with ammonia stills; powerhouse with 8 sisters (stacks) in background; conveyor #20 (with break) on right, pulevrized coal storage bunker on left. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  6. Interior of powerhouse looking southwest; view of north side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking southwest; view of north side of operator's platform showing main oil pressure tank (left), and hydraulic gate valves (added CA. 1930) at the base of the platform. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  7. 63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, LOOKING DOWN THE SHAFT FROM JUST ABOVE NORMAL WATER LEVEL. LADDER IS ON DOWNSTREAM WALL. PHOTOGRAPHER STOOD ON DECK SHOWN IN LOWER LEFT CORNER - Swan Falls Dam, Snake River, Kuna, Ada County, ID

  8. 17. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF BUILTIN BUFFET IN DINING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. POWERHOUSE FOREMAN'S BUNGALOW. DETAIL OF BUILT-IN BUFFET IN DINING ROOM AND END OF COLONNADE. VIEW TO SOUTH-SOUTHWEST. - Thompson Falls Hydroelectric Project, Power Foreman's Bungalow, On island between Forebay Channel & ClarkFord River, Thompson Falls, Sanders County, MT

  9. 14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINEGENERATOR UNIT NO. 18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINE-GENERATOR UNIT NO. 18, MANUFACTURED BY GENERAL ELECTRIC IN 1949 AND RATED AT 150 MEGAWATTS. IT WAS RETIRED FROM SERVICE SEVERAL YEARS AGO. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  10. 19. DETAIL OF INTERIOR OF POWERHOUSE SHOWING (LEFT TO RIGHT): ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF INTERIOR OF POWERHOUSE SHOWING (LEFT TO RIGHT): SUBMERSIBLE TURBINE-GENERATOR (REMOVED FROM PENSTOCK AND PLACED HERE TEMPORARILY); GENERATOR; AND GOVERNOR - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  11. Interior of powerhouse looking northwest; view of the housing for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking northwest; view of the housing for the pelton wheels with operator's platform containing six backshot needle valves and type "Q" Lombard Governor (center); overhead is the 20-ton traveling crane (manufactured by northern engineering works of Detroit Michigan). - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  12. Historic view of interior of powerhouse looking east; showing operator's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic view of interior of powerhouse looking east; showing operator's platform containing needle valves and type "Q" Lombard Governor (center), traveling crane (manufactured by the Northern Crane Co. of Detroit, Michigan), and plant operator, Walter Mann, (left) and his stepfather, Mr. Lockwood. (photographer unknow, ca.1920.) - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  13. Interior of powerhouse looking northeast; view of the housing for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of powerhouse looking northeast; view of the housing for one of the two pelton wheels (both of which were manufactured by the Pelton Water Wheel Company of San Francisco, California, 1910) with type "Q" Lombard Governor and backshot needle valves on operator's platform. - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  14. VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LOCATION OF CHILDS POWER PLANT (SHOWING POWERHOUSE AND TRANSFORMER FRAMEWORK AT LEFT, BELOW POWER LINES AND THE MAINTENANCE AND RESIDENTIAL COMPOUND UPSTREAM TO RIGHT) ALONG VERDE RIVER FROM FS ROAD #502. LOOKING UPSTREAM (WEST-SOUTHWEST) - Childs-Irving Hydroelectric Project, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  15. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  16. Are cometary nuclei primordial rubble piles?

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  17. A Pile of Legos.

    ERIC Educational Resources Information Center

    DePino, Andrew, Jr.

    1994-01-01

    Describes the relationships a high school built with neighborhood industry, a national laboratory, a national museum, and a large university while trying to build a scale model of the original atomic pile. Provides suggestions for teachers. (MVL)

  18. 76 FR 7834 - Goshen Powerhouse, LLC; Notice of Declaration of Intention and Soliciting Comments, Protests, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Energy Regulatory Commission Goshen Powerhouse, LLC; Notice of Declaration of Intention and Soliciting... Intention. b. Docket No: DI11-2-000. c. Date Filed: January 20, 2011. d. Applicant: Goshen Powerhouse, LLC... from the generators to a load base. When a Declaration of Intention is filed with the Federal...

  19. A simplified analysis method for piled raft and pile group foundations with batter piles

    NASA Astrophysics Data System (ADS)

    Kitiyodom, Pastsakorn; Matsumoto, Tatsunori

    2002-11-01

    A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile-soil-pile, pile-soil-raft and raft-soil-raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads.

  20. Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).

    SciTech Connect

    Collins, Chris; Corbett, Catherine; Ebberts, Blaine

    2009-07-27

    The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed to

  1. The Grizzly Powerhouse: A modern high-head hydrogenerating facility

    SciTech Connect

    Siebensohn, F.B.

    1995-12-31

    With the emphasis on the modernization of existing plants, there are not all that many new hydropower stations being built nowadays. A noteworthy exception from this trend is the Grizzly Powerhouse, located in the High Sierra near Quincy in northern California. This new $75 million facility is an addition to the existing 65 MW Bucks Creek hydroelectric project on the North Fork Feather River watershed in Plumas County, that is owned and operated by Pacific Gas and Electric Company. The Grizzly project is a cooperative development between Pacific Gas and Electric and the City of Santa Clara. The City paid for the powerhouse and will receive its electricity for at least 30 years. Pacific Gas and Electric has an option to buy the Grizzly project thereafter. The energy generated serves about 15,000 homes in Santa Clara and meets approximately seven percent of the City`s current peak power needs. AMERICAN HYDRO CORPORATION of York, Pennsylvania was the Prime Contractor for the supply of the power generation equipment, and as such was responsible for the performance of the system components. These included the turbine with the inlet/shut-off valve, the pressure relief valve, the governor and the generator with its excitation system.

  2. Flexible pile thermal barrier insulator

    NASA Technical Reports Server (NTRS)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S. (Inventor)

    1978-01-01

    A flexible pile thermal barrier insulator included a plurality of upstanding pile yarns. A generally planar backing section supported the upstanding pile yarns. The backing section included a plurality of filler yarns forming a mesh in a first direction. A plurality of warp yarns were looped around said filler yarns and pile yarns in the backing section and formed a mesh in a second direction. A binder prevented separation of the yarns in the backing section.

  3. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    NASA Astrophysics Data System (ADS)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  4. Comets, Asteroids and Rubble Piles: not just debris

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2010-12-01

    The National Center for Interactive Learning at the Space Science Institute (NCIL @ SSI) is developing a variety of asteroids related education activities as part of several E/PO projects, including Finding NEO (funded through NSF and NASA SMD); Great Balls of Fire! (funded through NSF); and a partnership with the WISE (Wide-field Infrared Survey Explorer) mission. These activities range from a web site to traveling exhibits in three different sizes. The Killer Asteroids web site (www.killerasteroids.org) includes background information on comets and asteroids as well as a number of interactive activities and games. These include a game that compares the risk of death from an asteroid impact to other hazards; a game and video vignettes on the role of backyard astronomers in light curve research; a physics-based asteroid deflection game; and a Google Earth -based "drop a rock on your house" activity. In addition, the project is developing a small, portable exhibit suitable for use in libraries or visitors centers. Great Balls of Fire! includes two separate traveling exhibitions: a 3000 square foot exhibition for science centers, and a 500 square foot version for smaller venues. Both will begin national tours in the summer of 2011. The Great Balls of Fire! exhibit program includes a free Education Program for docents and educators, and an Outreach Program to amateur astronomers around the country through the Astronomical Society of the Pacific’s (ASP) Astronomy from the Ground Up program. The project will facilitate partnerships between host venues and local astronomy clubs that can interact with the public using a toolkit of activities developed by ASP. Great Balls of Fire! Represents a collaboration between scientists, educators, exhibit designers, graphic artists, evaluators, education researchers, and three teams of middle school students who acted as advisors. The project’s exhibit design firm is Jeff Kennedy Associates Inc. We will present a summary of the different components of these projects and how different audiences can take advantage of them, from science centers and libraries that can host the exhibits, to home and classroom use through the web site.

  5. 8. Pennsylvania Railroad: 30th Street Station Powerhouse. Philadelphia, Philadelphia Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Pennsylvania Railroad: 30th Street Station Powerhouse. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 88.11. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  6. 67. Credit PG&E. Shot along length of powerhouse; exciters in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Credit PG&E. Shot along length of powerhouse; exciters in the left foreground, 2000 kVA generator on right. Photo taken 10 November 1927. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  7. G.E. SLATE SWITCHBOARD WITH RELAYS IN GLINES POWERHOUSE. ALSO NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    G.E. SLATE SWITCHBOARD WITH RELAYS IN GLINES POWERHOUSE. ALSO NOTE 1926 PHONE BOOTH (STILL IN OPERATION). PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  8. 172. Credit PG&E. Kilarc powerhouse on right; transformers and high ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    172. Credit PG&E. Kilarc powerhouse on right; transformers and high voltage switches are in building on the left. Photo taken 10 November 1927. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  9. 26. EAST FRONT AND SOUTH SIDE OF F&CH RWY POWERHOUSE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. EAST FRONT AND SOUTH SIDE OF F&CH RWY POWERHOUSE: Photocopy of a recently discovered c. 1904 photograph showing south side and east front of powerhouse and car barn. View is looking north along Mason Street. Cars exited the building and passed onto the mainline through the large doorway just to the right of the smokestack. Note the cable car descending Washington Street past the building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  10. Space Shuttle Debris Transport

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

  11. Piled Embankment Design Comparison

    NASA Astrophysics Data System (ADS)

    Drusa, Marián; Kais, Ladislav; Vlček, Jozef; Mečár, Martin

    2015-05-01

    There are currently several national standards or regulations for the design of the piled embankment, providing suitable solutions for foundation of transport structure on soft, high compressible subsoil, [1]. The most widely used and the best-known standard is British Standard BS8006 [2], which was confronted with another analytical design methodologies (Ebgeo, CUR). Today's popularity and versatility of FEM numerical models brings many advantages, which analytical methods cannot achieved, but must be verified by proposed scaled physical model, which was currently being developed by Department of Geotechnics, University of Žilina.

  12. TBM tunnel friction values for the Grizzly Powerhouse Project

    SciTech Connect

    Stutsman, R.D.; Rothfuss, B.D.

    1995-12-31

    Tunnel boring machine (TBM) driven water conveyance tunnels are becoming increasingly more common. Despite advances in tunnel engineering and construction technology, hydraulic performance data for TBM driven tunnels remains relatively unavailable. At the Grizzly Powerhouse Project, the TBM driven water conveyance tunnel was designed using friction coefficients developed from a previous PG&E project. A range of coefficients were selected to bound the possible hydraulic performance variations of the water conveyance system. These friction coefficients, along with the water conveyance systems characteristics, and expected turbine characteristics, were used in a hydraulic transient analysis to determine the expected system pressure fluctuations, and surge chamber performance. During startup test data, these performance characteristics were measured to allow comparison to the original design assumptions. During construction of the tunnel, plaster casts were made of the actual excavated tunnel unlined and fiber reinforced shotcrete lined surfaces. These castings were used to measure absolute roughness of the surfaces so that a friction coefficient could be developed using the Moody diagram and compare them against the design values. This paper compares the assumed frictional coefficient with computed coefficients from headlosses measured during startup testing, and plaster cast measurement calculations. In addition, a comparison of coefficients will be presented for an other TBM driven water conveyance tunnel constructed in the 1980`s.

  13. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  14. Evaluation of Fish Losses through Screen Gaps at Modified and Unmodified Intakes of Bonneville Dam Second Powerhouse in 2003

    SciTech Connect

    Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.

    2004-06-14

    This report was prepared by the Pacific Northwest National Lab., Richland, Washington, BAE Systems, Inc., a subcontractor to the U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, Mississippi. This study examined the effect of gatewell modifications on the proportion of fish lost through the gap between the top of submerged traveling screens (STSs) and the ceilings of intakes in one un-modified and two modified turbine units at Bonneville Dam Second Powerhouse (B2). Combined modifications reduced the proportion of flow through the gap from 44% to 16% and increased the proportion moving up the gatewell from 56% to 84%. We used a Dual-Frequency Identification Sonar (DIDSON) acoustic camera to record proportions of juvenile salmonids moving up into the gatewell and through the gap. The acoustic camera was used to record images of fish passing up into the gatewell and through the gap for 8-h on three successive nights in every intake of units 13, 15, and 17 (i.e., 9 intakes x 3 nights = 27 nights each season). Only 28.6% of the objects detected in spring and 12.9% in summer were determined to be fish. Other objects included sticks and debris. Although the true magnitude of STS gap-loss is unknown, both acoustic camera and netting estimates indicate that gatewell modifications reduce relative gap loss by about 67%.

  15. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  16. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  17. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  18. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  19. Test Pile Reactivity Loss Due to Trichloroethylene

    SciTech Connect

    Plumlee, K.E.

    2001-03-09

    The presence of trichloroethylene in the test pile caused a continual decrease in pile reactivity. A system which removed, purified, and returned 12,000 cfh helium to the pile has held contamination to a negligible level and has permitted normal pile operation.

  20. Bonneville Powerhouse 2 3D CFD for the Behavioral Guidance System

    SciTech Connect

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2010-02-01

    In 2008 and 2009, a 700 ft long, 10-ft deep floating forebay guidance wall called a behavioral guidance structure (BGS) was deployed in the Bonneville Powerhouse 2 forebay. The US Army Corps of Engineers, Portland District (CENWP) contracted with the Pacific Northwest National Laboratory (PNNL) to develop computational tools to assess the impact of the BGS on forebay hydraulics (this study). The tools developed here to provide a characterization of forebay hydraulics to be integrated with acoustic telemetry studies designed to measure the impact on juvenile salmon guidance and survival through Bonneville Powerhouse 2. In previous work, PNNL performed computational fluid dynamics (CFD) studies for the Bonneville forebay for CENWP. In this study, the existing model was modified to include the BGS. The model included a bay-by-bay spillway, a truncated Powerhouse 1 forebay, Powerhouse 2 turbine intakes and corner collector, and the forebay bathymetry extending approximately 1.5km upstream from the tip of Cascade Island. Model validation outcomes were similar to that of past studies. Additional checks were included on the impact of the differencing scheme to flow solution. It was found that using upwind differencing was adequate and it was possible to use a truncated computational mesh of this model that included a BGS upstream of Powerhouse 2 and increased spatial resolution in the vicinity of the BGS. This model has been validated, run, and provided to CENWP to use for additional analysis of the Powerhouse 2 forebay hydraulics. The PNNL particle tracking software (PT6) was used to assess the impacts of mass and relative buoyancy on particle fate. The particle tracker was run for the Half Load case for the clean forebay and for the forebay with the BGS in place and the Corner Collector on. All tracker cases showed that the BGS moved the particles across the forebay increasing the number of particles exiting the model through the Corner Collector and (for streamlines

  1. Threat from Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2015-12-01

    While chondrites are the most common meteoroids to enter our atmosphere, they represent a small fraction of recovered falls. Most stony meteorites disrupt during entry, consumed by ablation or lost by weathering; in contrast, small iron meteorites (<10 m) disrupt and disperse to create strewnfields due to interacting atmospheric bow shocks [e.g., Passey and Melosh, 1980]. The Carancas impact crater in 2007, however, challenged our understanding [Tancredi et al., 2008]: (a) first eyewitness of a crater formed by a stony meteorite; (b) undetected thermal entry at altitude; (c) no accessory meteorite falls; (d) "explosion" (not low-speed compression) crater; (e) infrasound/seismic data indicating a high-speed entry/collision; and (f) petrologic evidence for shock deformation/melting in breccias indicative of speeds >4 km/s. Although a monolithic chondrite (~ 10 m across) might allow surviving entry, most objects of this size contain multiple flaws, ensuring atmospheric disruption. Hence, an alternative "needle model" was proposed wherein a small rubble-pile object gradually re-shaped itself during entry [Schultz, 2008], a process that minimizes drag, thermal signatures of entry, and catastrophic disruption. First proposed to account for smaller than expected craters on Venus [Schultz, 1992], such a process resembles subsequent Shoemaker-Levy entry models [Boslough and Crawford, 1997] that predicted much deeper entry than standard models. Laboratory experiments at the NASA Ames Vertical Gun Range simulated this process by breaking-up hypervelocity projectiles into a cloud of debris and tracking its path at near-full atmospheric pressure. The resulting cloud of fragments exhibited less deceleration than a solid sphere at the same speed. Moreover, shadowgraphs revealed constituent fragments "surfing" the pressure jump within the mach cone/column. Previous models proposed that crater-forming impacts must be >50-100 m in diameter in order to survive entry [Bland and

  2. NORTH EMBANKMENT IN FOREGROUND, WITH (LR) SUBSTATION (MI98D), POWERHOUSE (MI98C), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH EMBANKMENT IN FOREGROUND, WITH (L-R) SUBSTATION (MI-98-D), POWERHOUSE (MI-98-C), AND COOKE DAM POND IN BACKGROUND. VIEW TO SOUTH - Cooke Hydroelectric Plant, North Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  3. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M Sulloway

    2007-10-31

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  4. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M. Sulloway

    2007-09-26

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  5. Bonneville Powerhouse 2 Fish Guidance Efficiency Studies: CFD Model of the Forebay

    SciTech Connect

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2012-07-01

    In ongoing work, U.S. Army Corps of Engineers, Portland District (CENWP) is seeking to better understand and improve the conditions within the Bonneville Powerhouse 2 (B2) turbine intakes to improve survival of downstream migrant salmonid smolt. In this study, the existing B2 forebay computational fluid dynamics (CFD) model was modified to include a more detailed representation of all B2 turbine intakes. The modified model was validated to existing field-measured forebay ADCP velocities. The initial CFD model scenarios tested a single project operation and the impact of adding the Behavior Guidance System (BGS) or Corner Collector. These structures had impacts on forebay flows. Most notable was that the addition of the BGS and Corner Collector reduced the lateral extent of the recirculation areas on the Washington shore and Cascade Island and reduced the flow velocity parallel to the powerhouse in front of Units 11 and 12. For these same cases, at the turbine intakes across the powerhouse, there was very little difference in the flow volume into the gatewell for the clean forebay, and the forebay with the BGS in place and/or the Corner Collector operating. The largest differences were at Units 11 to 13. The CFD model cases testing the impact of the gatewell slot fillers showed no impact to the forebay flows, but large differences within the gatewells. With the slot fillers, the flow above the standard traveling screen and into the gatewell increased (about 100 cfs at each turbine intake) and the gap flow decreased across the powerhouse for all cases. The increased flow up the gatewell was further enhanced with only half the units operating. The flow into the gatewell slot was increased about 35 cfs for each bay of each intake across the powerhouse; this change was uniform across the powerhouse. The flows in the gatewell of Unit 12, the most impacted unit for the scenarios, was evaluated. In front of the vertical barrier screen, the CFD model with slot fillers

  6. Modeling debris-covered glaciers: response to steady debris deposition

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  7. Pullout capacity of batter pile in sand.

    PubMed

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  8. Pullout capacity of batter pile in sand

    PubMed Central

    Nazir, Ashraf; Nasr, Ahmed

    2012-01-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted. PMID:25685412

  9. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  10. SPECS: Orbital debris removal

    NASA Astrophysics Data System (ADS)

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  11. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    SciTech Connect

    Davenport M.

    2009-04-15

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered

  12. Flood-deposited wood debris and its contribution to heterogeneity and regeneration in a semi-arid riparian landscape.

    PubMed

    Pettit, Neil E; Naiman, Robert J

    2005-09-01

    We investigated whether large woody debris (LWD) piles create nodes of environmental resources that contribute to the recovery of riparian vegetation and that also augment the heterogeneity and resilience of the riverine system. River and riparian systems are typified by a large degree of heterogeneity and complex interactions between abiotic and biotic elements. Disturbance such as floods re-distribute the resources, such as LWD, and thereby add greater complexity to the system. We examined this issue on a semi-arid savanna river where approximately a 100-year return interval flood in 2000 uprooted vegetation and deposited substantial LWD. We investigated the micro-environment within the newly established LWD piles and compared this with conditions at adjacent reference sites containing no LWD. We found soil nutrient concentrations to be significantly higher in LWD piles compared with the reference plots (total N +19%, available P +51%, and total C +36%). Environmental variables within LWD piles and reference sites varied with landscape position in the river-riparian landscape and with LWD pile characteristics. Observed differences were generally between piles located in the terrestrial and riparian areas as compared to piles located on the macro-channel floor. After 3 years the number and cover of woody species were significantly higher when associated with LWD piles, regardless of landscape position or pile type. We conclude that LWD piles formed after large floods act as resource nodes by accumulating fine sediments and by retaining soil nutrients and soil moisture. The subsequent influence of LWD deposition on riparian heterogeneity is discerned at several spatial scales including within and between LWD piles, across landscape positions and between channel types. LWD piles substantially influence the initial developmental of riparian vegetation as the system regenerates following large destructive floods. PMID:16025355

  13. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  14. Transport, retention, and ecological significance of woody debris within a large ephemeral river

    USGS Publications Warehouse

    Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.

    1999-01-01

    The spatiotemporal patterns and ecological significance of the retention of coarse particulate organic matter and large woody debris have been intensively studied in perennial rivers and streams but are virtually unknown in ephemeral systems. We examined the influence of 2 features characteristic of ephemeral systems, downstream hydrologic decay and in-channel tree growth, on the distribution, transport, and retention of woody debris following a flood having a ~2.6-y recurrence interval in the ephemeral Kuiseb River in southwestern Africa. A total of 2105 pieces of wood were painted at 8 sites along the river channel to measure retention patterns. The flood had a peak discharge of 159 m3/s at the upper end of the study area, decaying to <1 m3/s by 200 km downstream. Downstream export of wood from marking sites totaled 59.5% (n = 1253). Transport distances ranged from 1 to 124 km, and 34.8% (n = 436) of the exported wood was recovered. Marked wood retained within marking sites was significantly longer than exported wood (p < 0.001, t-test). Once in transport, there was little correlation between wood length and distance traveled (r = 0.11, correlation analysis, n = 369). Length influenced the site of retention; material retained on debris piles was significantly longer than that stranded on channel sediments (p < 0.001, t-test). In-channel growth of Faidherbia trees significantly influenced wood retention; 83.7% of marked wood not moved by the flood was associated with debris piles on Faidherbia trees. Similarly, 65% of the exported wood retained within downstream debris piles was associated with Faidherbia trees. In contrast to many perennial systems, we observed a general increase in wood retention downstream, peaking in the river's lower reaches in response to hydrologic decay. Debris piles induced sediment deposition and the formation of in-channel islands. Following flood recession, debris piles and their associated sediments provided moist, organic

  15. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  16. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  17. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  18. Remote sensing-based detection and quantification of roadway debris following natural disasters

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan A. N.; Aros-Vera, Felipe; Holguín-Veras, José

    2016-05-01

    Rapid knowledge of road network conditions is vital to formulate an efficient emergency response plan following any major disaster. Fallen buildings, immobile vehicles, and other forms of debris often render roads impassable to responders. The status of roadways is generally determined through time and resource heavy methods, such as field surveys and manual interpretation of remotely sensed imagery. Airborne lidar systems provide an alternative, cost-effective option for performing network assessments. The 3D data can be collected quickly over a wide area and provide valuable insight about the geometry and structure of the scene. This paper presents a method for automatically detecting and characterizing debris in roadways using airborne lidar data. Points falling within the road extent are extracted from the point cloud and clustered into individual objects using region growing. Objects are classified as debris or non-debris using surface properties and contextual cues. Debris piles are reconstructed as surfaces using alpha shapes, from which an estimate of debris volume can be computed. Results using real lidar data collected after a natural disaster are presented. Initial results indicate that accurate debris maps can be automatically generated using the proposed method. These debris maps would be an invaluable asset to disaster management and emergency response teams attempting to reach survivors despite a crippled transportation network.

  19. Benefits of Active Debris Removal on the LEO Debris Population

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, a great deal of fragments can be expected to be created by explosions and collisions. In spite of prevention of satellite and rocket upper stage explosions and other mitigation measures, debris population in low Earth orbit may not be stabilized. To better limit the growth of the future debris population, it is necessary to remove the existing debris actively. This paper studies about the effectiveness of active debris removal in low Earth orbit where the collision rate with and between space debris is high. This study does not consider economic problems, but investigates removing debris which may stabilize well the current debris population based on the concept of Japan Aerospace Exploration Agency.

  20. Pile Spacing Optimization of Short Piled Raft Foundation System for Obtaining Minimum Settlement on Peat

    NASA Astrophysics Data System (ADS)

    Suro, S. M.; Bakar, I.; Sulaeman, A.

    2016-07-01

    Short Piled Raft is a modified piled raft foundation system, which represents combination between raft foundation and pile foundation, but the length of pile is relatively shorter. The basic concept of the Short Piled Raft foundation system considers the passive soil pressure creating a stiff condition of slab-pile system. This means that the thin concrete slab floats on the supporting soil, while the piles serve as stiffeners concrete slab and also to reduce settlement of the foundation. Slab to pile ratio of such system has been mentioned by several researchers, however the optimum pile spacing of stability performance for obtaining minimum settlement on peat haven't been clearly discussed. In this study, finite element method to simulate the stability performance related to settlement of Short Piled Raft foundation system was used. Short Piled Raft foundation system with concrete slab of 7.0 m x 7.0 m square was assumed to be built on peat with the thickness of 3.5 m. The material properties of pile and raft were constant. The outer diameter of galvanized steel pipe as pile was 0.30 m; raft thickness was considered to be constant of 0.15 m and the length of pile was 3.0 m, while the pile spacing varied from 0.50 to 3.00 m. Point load varied from 0 to 100 kN with increment of 20 kN was also considered as a static load, acted on the centre of the concrete slab. Optimization was done by comparing each numerical result of simulations, thus conclusion can easily be drawn. The optimum pile spacing was 1.00 m which produced minimum settlement of 30.11 mm under the load of 100 kN.

  1. Underwater Sound Propagation from Marine Pile Driving.

    PubMed

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  2. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  3. Emissions from the burning of vegetative debris in air curtain destructors.

    PubMed

    Miller, C Andrew; Lemieux, Paul M

    2007-08-01

    Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.

  4. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  5. In Brief: Marine debris plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-09-01

    A new U.S. federal interagency report on preventing and reducing marine debris focuses on responses to debris already in the environment, prevention of debris, research and development, and coordination among agencies. The report, released on 22 September, was prepared by 11 federal agencies and is intended to guide the strategies of federal agencies and the Interagency Marine Debris Coordinating Committee. The report is available at http://ocean.ceq.gov/about/docs/SIMOR_IMDCC_Report.pdf.

  6. Similar view to WA1832; Historic view just west of powerhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Similar view to WA-18-32; Historic view just west of powerhouse during reconstruction of penstocks and replacement of original Francis Turbine with pelton wheels, in 1912; Derrick used to lift construction materials in center, the stairway to the right leads to the transformer house, the gable-roof building to the right is a workshop (built CA 1904), whitewashed building to the left is the company hotel (built CA. 1904, and the gable-roof building in the distance is a barn (built CA. 1904). (photographer unknown, ca 1912.) - Nooksack Falls Hydroelectric Plant, Route 542, Glacier, Whatcom County, WA

  7. Effects of Lateral Loads on a Single Pile

    NASA Astrophysics Data System (ADS)

    Phanikanth, V. S.; Choudhury, D.

    2012-09-01

    Design of piles under lateral loads requires estimation of ultimate load carrying capacity of the pile and also, the pile deflections need to be evaluated to determine the allowable loads. For estimating the pile response, structural engineers invariably utilize the simplified method prescribed in the Indian code IS 2911-2002 (Indian Standard Code of Practice for Design of Pile Foundations, 2002). The method is based on replacing the pile soil system by an equivalent cantilever, the length of which is a function of subgrade reaction of the surrounding soil and the pile geometry. However, the method described is applicable only for flexible piles, where the maximum depth coefficient L/ T is equal to or exceeds 4.0. To estimate the pile response for rigid piles, simplified procedures are not suggested and hence in the present study, an attempt has been made to evaluate the pile response under lateral loads using detailed soil-pile analysis. Parametric studies are carried out for various pile lengths and various soil stiffness. The pile responses thus obtained are compared with the method given in IS 2911-2002. It was observed that the pile response based on IS 2911-2002 compared reasonably well with the detailed soil-pile model even for L/ T ≥ 2.5. However IS 2911-2002 underestimates the pile head deflections for L/ T < 2.5 for both free headed and fixed head piles and hence detailed soil-pile analysis is essential for such situations. The variation of pile response with soil stiffness is also evaluated using these methods and the results are presented. The soil-pile analysis is carried out using subgrade modulus approach. The soil stiffness is assumed to vary linearly along the pile depth and hence the study is applicable for cohesionless soils which can be used for practical design of single pile subjected to lateral loads.

  8. Monitoring and Evaluation of the Prototype Surface Collector at Bonneville First Powerhouse in 2000: Synthesis of Results

    SciTech Connect

    Carlson, Thomas J

    2001-06-01

    This report describes research done to evaluate the Prototype Surface Collector at Bonneville Dam, Powerhouse I, on the Columbia River. The surface collector is being evaluated as a means for bringing downstream migrating salmon and steelhead through the powerhouse while avoiding the turbines. The report describes evaluations conducted by PNNL, National Marine Fisheries Service, and various contractors using radio telemetry, hydroacoustics, and computational fluid dynamics models. The evaluation will provide information to the U.S. Army Corps of Engineers for their 2001 decision on whether to use surface flow bypass or extended-length submersible bar screens for long-term smolt passage at Bonneville Dam.

  9. Observations of Debris Impact on Buildings and Infrastructure after the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Cox, D.; Naito, C.; Yu, K.; Mizutani, N.; Tsujio, D.

    2011-12-01

    We present observations of the performance of structural systems (buildings, bridges, port infrastructure) after the 2011 Tohoku Tsunami. In particular, our observations focused on the hydraulic, hydrodynamic and impact demands. While it is likely that hydraulic and hydrodynamic demands resulted in considerable destruction, debris impact events provided significant contribution to some of the losses observed. Current knowledge on how to quantify the effects of impact demands from tsunami generated debris is limited. Methods provided by code sources including ASCE 7, AASHTO LRFD, and the Coastal Construction Manual result in order of magnitude differences in expected demands. This RAPID investigation examined the demands generated by debris in different coastal communities including the Sendai plain (Natori, Sendai Port) and the ria coast (Onagawa, Rikuzentakata, Kesennuma, Minamisanriku). Our investigation quantifies debris type, damage type, and debris flow characteristics. Observations indicate that the Tohoku event generated a spectrum of debris ranging from wood, vehicles, and shipping containers, to entire houses and ships. The structural system types observed included reinforced concrete buildings, steel moment frame buildings, wood frame houses. Damages to fuel storage containers were also a focus of this investigation. In general, our observations show that debris loads can add significantly to the overall loads, particularly when the debris size is large relative to the impacted structure. In addition. the occurrence of impact events was not necessarily associated with all types of debris, and some structural systems were more sensitive to a type of impact demand. For example, open systems such as pile supported buildings which offered little flow resistance were more susceptible to debris strikes than bluff sided buildings. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1138668. Any opinions, findings

  10. Space debris- ECSL Study

    NASA Astrophysics Data System (ADS)

    Lafferranderie, G.

    2002-01-01

    Despite several attempts and despite the worldwide recognition of the need of attacking it, the space debris legal issues has not been put in the agenda as a separate issue on the agenda of the COPUOS Legal Subcommittee. However for the first time, mention will appear in 2002 but only under item 5 of the Legal Subcommittee: report of activities of international organisations, here the European Centre for Space Law (ECSL). ECSL report will describe the method followed, a questionnaire widely distributed to interested persons and on a personal basis. The questionnaire tries to identify the basic concerns. From the responses received and from also analysis of positions expressed in various colloquia, articles, etc. some directions could be drawn up: do we need a "legal definition" of space debris? For which purposes? Are we in a situation fro presenting now such a legal definition able to cope with the technical evolution of the space object? Which type of legal or technical description "instrument" will be the most appropriate? Etc. One particular question is emerging: the basis of the liability for damages caused in outer space. The author wish is simply to draw the attention on concrete, immediate concerns while identifying also simple ways able to offer a framework to deal with the legal impacts coming from space debris issue. I have envisioned two other subjects that I have abandoned: .

  11. Portable Powerhouses.

    ERIC Educational Resources Information Center

    Myslewski, Rik; Garcia, Nathan

    1998-01-01

    Reviews and compares the following nine laptop computers, focusing on their capabilities for multimedia presentations: Apple Macintosh PowerBook G3, Chem USA ChemBook 9780, Compaq Armada 7792DMT, Dell Inspiron 3000 mZ66xT, Hewlett-Packard OmniBook 3000CTX, IBM ThinkPad 770, Micro Express NP8233MMX, NEC Versa 6260, and Panasonic CF-63. Evaluation…

  12. Nonlinear Seismic Response Of Single Piles

    SciTech Connect

    Cairo, R.; Conte, E.; Dente, G.

    2008-07-08

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  13. 116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT PENSTOCK 52 IN THE FALL OF 1926. THE PILES FOR SUPPORTING THE HORIZONTAL ELEMENTS OF THE NEW FOREBAY APRON ARE IN PLACE BETWEEN THE NEW SHEET PILING AND THE FOREBAY WALL. VISIBLE BEYOND THE NEW SHEET PILING IS THE TIMBER SHEET PILING DRIVEN IN 1903 BY VON SCHON TO PREVENT WASHOUTS. (1006) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  14. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  15. Flexible Shields for Protecting Spacecraft Against Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Crews, Jeanne Lee

    2004-01-01

    A report presents the concept of Flexshield a class of versatile, lightweight, flexible shields for protecting spacecraft against impacts by small meteors and orbiting debris. The Flexshield concept incorporates elements of, but goes beyond, prior spacecraft-shielding concepts, including those of Whipple shields and, more recently, multi-shock shields and multi-shock blankets. A shield of the Flexshield type includes multiple outer layers (called bumpers in the art) made, variously, of advanced ceramic and/or polymeric fibers spaced apart from each other by a lightweight foam. As in prior such shields, the bumpers serve to shock an impinging hypervelocity particle, causing it to disintegrate vaporize, and spread out over a larger area so that it can be stopped by an innermost layer (back sheet). The flexibility of the fabric layers and compressibility of the foam make it possible to compress and fold the shield for transport, then deploy the shield for use. The shield can be attached to a spacecraft by use of snaps, hook-and-pile patches, or other devices. The shield can also contain multilayer insulation material, so that it provides some thermal protection in addition to mechanical protection.

  16. Microplastic debris in sandhoppers

    NASA Astrophysics Data System (ADS)

    Ugolini, A.; Ungherese, G.; Ciofini, M.; Lapucci, A.; Camaiti, M.

    2013-09-01

    Adults of the sandhopper Talitrus saltator were fed with dry fish food mixed with polyethylene microspheres (diameter 10-45 μm). Observations of homogenized guts revealed the presence of microspheres independently of their dimensions. The gut resident time (GRT) was recorded and most of the microspheres are expelled in 24 h. Microspheres are totally expelled in one week. Preliminary investigations did not show any consequence of microsphere ingestion on the survival capacity in the laboratory. FT-IR analyses carried out on faeces of freshly collected individuals revealed the presence of polyethylene and polypropylene. This confirms that microplastic debris could be swallowed by T. saltator in natural conditions.

  17. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  18. Grouting of uranium mill tailings piles

    SciTech Connect

    Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.

    1984-03-01

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10/sup -3/ cm/s to values approaching 10/sup -7/ cm/s using silicate grouts and to 10/sup -8/ cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table.

  19. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  20. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  1. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  2. Orbital Debris Studies at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Krisko, Paula; Whitlock, Dave

    2007-01-01

    Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.

  3. Seabirds and floating plastic debris.

    PubMed

    Cadée, Gerhard C

    2002-11-01

    80% of floating plastic debris freshly washed ashore on a Dutch coast showed peckmarks made by birds at sea. They either mistake these debris for cuttlebones or simply test all floating objects. Ingestion of plastic is deleterious for marine organisms. It is urgent to set measures to plastic litter production.

  4. Lateral load tests on large pipe piles in coral

    SciTech Connect

    Vines, W.R.; Hong, I.S.

    1984-05-01

    Results are presented for lateral load tests on 36-, 48-, 80-, and 132-in. diameter pipe piles in 26- to 67-ft water depths at a port site in Saudi Arabia. Primary soil types at the site are crushed coral and sand, with layers of intact weak coral. Pile loads were measured with load cells, deflections were measured with potentiometers, and pile slopes were measured with a slope indicator. Pile top deflections and pile deflected shapes are reported at several load levels. Maximum test loads ranged from 72 to 559 kips, and maximum pile top deflections were from 3.6 to 55 inches. Comparison of test results to expectations of behavior based on state-of-the-practice analytical methods shows that the character of pile deflected shapes were predicted well, but that deflections were generally over-predicted in the analyses. Comparison of test pile and reaction pile deflected shapes shows secondary but significant differences.

  5. Space debris modeling at NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOVLE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard (NSS) 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been completed with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NSS 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of

  6. An Introduction to Space Debris

    NASA Astrophysics Data System (ADS)

    Wright, David

    2008-04-01

    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  7. Implementation of the hazardous debris rule

    SciTech Connect

    Sailer, J.E.

    1993-01-05

    Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

  8. JSC Orbital Debris Website Description

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  9. 6. CANNERY PILINGS Foundation of a portion of the cannery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CANNERY PILINGS Foundation of a portion of the cannery over water. Crumbling cement footings and decomposing pilings make portions of this area unsafe. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  10. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  11. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  12. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... constructed in compacted layers not exceeding 2 feet in thickness and shall not have any slope exceeding 2... stability of the refuse pile. (j) All fires in refuse piles shall be extinguished, and the method used...

  13. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  14. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  15. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  16. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  17. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  18. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  19. Effect of Woody Debris abundance on daytime refuge use by cotton mice.

    SciTech Connect

    Hinkelman, Travis, M.; Loeb, Susan, C.

    2007-07-01

    Abstract - Daytime refuges are important to nocturnal rodents for protection from predators and environmental extremes. Because refuges of forest-dwelling rodents are often associated with woody debris, we examined refuge use by 37 radio-collared Peromyscus gossypinus (cotton mice) in experimental plots with different levels of woody debris. Treatment plots had six times (≈ 60 m3/ha) the volume of woody debris as control plots (≈ 10 m3/ha). Of 247 refuges, 159 were in rotting stumps (64%), 32 were in root boles (13%), 19 were in brush piles (8%), and 16 were in logs (6%); 10 refuges could not be identified. Stumps were the most common refuge type in both treatments, but the distribution of refuge types was significantly different between treatment and control plots. Root boles and brush piles were used more on treatment plots than on control plots, and logs were used more on control plots than on treatment plots. Refuge type and vegetation cover were the best predictors of refuge use by cotton mice; root bole refuges and refuges with less vegetation cover received greater-than-expected use by mice. Abundant refuges, particularly root boles, may improve habitat quality for cotton mice in southeastern pine forests.

  20. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  1. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the...

  2. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the...

  3. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Refuse piles; abandonment. 77.215-4 Section 77.215-4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be...

  4. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Refuse piles; abandonment. 77.215-4 Section 77.215-4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be...

  5. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Refuse piles; abandonment. 77.215-4 Section 77.215-4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be...

  6. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; abandonment. 77.215-4 Section 77.215-4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be...

  7. 30 CFR 77.215-4 - Refuse piles; abandonment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Refuse piles; abandonment. 77.215-4 Section 77.215-4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Surface Installations § 77.215-4 Refuse piles; abandonment. When a refuse pile is to be...

  8. 30 CFR 77.215-1 - Refuse piles; identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; identification. 77.215-1 Section... COAL MINES Surface Installations § 77.215-1 Refuse piles; identification. A permanent identification marker, at least six feet high and showing the refuse pile identification number as assigned by...

  9. 30 CFR 77.215-3 - Refuse piles: certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles: certification. 77.215-3 Section... COAL MINES Surface Installations § 77.215-3 Refuse piles: certification. (a) Within 180 days following written notification by the District Manager that a refuse pile can present a hazard, the person...

  10. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surge and storage piles. 77.209 Section 77.209... Installations § 77.209 Surge and storage piles. No person shall be permitted to walk or stand immediately above a reclaiming area or in any other area at or near a surge or storage pile where the...

  11. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed,...

  12. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed,...

  13. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed,...

  14. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of...

  15. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of...

  16. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of...

  17. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of...

  18. 29 CFR 1926.603 - Pile driving equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Pile driving equipment. 1926.603 Section 1926.603 Labor... Operations § 1926.603 Pile driving equipment. (a) General requirements. (1) Boilers and piping systems which are a part of, or used with, pile driving equipment shall meet the applicable requirements of...

  19. 30 CFR 77.215-1 - Refuse piles; identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marker, at least six feet high and showing the refuse pile identification number as assigned by the... specified in paragraphs (a) or (b) of this section as applicable. (a) For existing refuse piles, markers shall be placed before May 1, 1976. (b) For new or proposed refuse piles, markers shall be placed...

  20. 30 CFR 77.215-1 - Refuse piles; identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marker, at least six feet high and showing the refuse pile identification number as assigned by the... specified in paragraphs (a) or (b) of this section as applicable. (a) For existing refuse piles, markers shall be placed before May 1, 1976. (b) For new or proposed refuse piles, markers shall be placed...

  1. 30 CFR 77.215-1 - Refuse piles; identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marker, at least six feet high and showing the refuse pile identification number as assigned by the... specified in paragraphs (a) or (b) of this section as applicable. (a) For existing refuse piles, markers shall be placed before May 1, 1976. (b) For new or proposed refuse piles, markers shall be placed...

  2. 30 CFR 77.215-1 - Refuse piles; identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marker, at least six feet high and showing the refuse pile identification number as assigned by the... specified in paragraphs (a) or (b) of this section as applicable. (a) For existing refuse piles, markers shall be placed before May 1, 1976. (b) For new or proposed refuse piles, markers shall be placed...

  3. Bonneville Second Powerhouse Tailrace and High Flow Outfall: ADCP and drogue release field study

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.; Guensch, Gregory R.

    2001-03-20

    The Bonneville Project is one of four US Army Corps of Engineers operated dams along the Lower Columbia River. Each year thousands of smelt pass through this Project on their way to the Pacific Ocean. High flow outfalls, if specifically designed for fish passage, are thought to have as good or better smelt survival rates as spillways. To better understand the hydrodynamic flow field around an operating outfall, the Corps of Engineers commissioned measurement of water velocities in the tailrace of the Second Powerhouse. These data also are necessary for proper calibration and verification of three-dimensional numerical models currently under development at PNNL. Hydrodynamic characterization of the tailrace with and without the outfall operating was accomplished through use of a surface drogue and acoustic Doppler current profiler (ADCP). Both the ADCP and drogue were linked to a GPS (global positioning system); locating the data in both space and time. Measurements focused on the area nearest to the high flow outfall, however several ADCP transects and drogue releases were performed away from the outfall to document ambient flow field conditions when the outfall was not operating.

  4. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  5. Removing orbital debris with lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; Victor George, E.; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-05-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  6. Argonne nuclear pioneers: Chicago Pile 1

    SciTech Connect

    Agnew, Harold; Nyer, Warren

    2012-01-01

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  7. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Technological Requirements (MTR)? No. Placing hazardous remediation wastes into a staging pile does not constitute land disposal of hazardous wastes or create a unit that is subject to the minimum technological... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS...

  8. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Technological Requirements (MTR)? No. Placing hazardous remediation wastes into a staging pile does not constitute land disposal of hazardous wastes or create a unit that is subject to the minimum technological... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS...

  9. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Technological Requirements (MTR)? No. Placing hazardous remediation wastes into a staging pile does not constitute land disposal of hazardous wastes or create a unit that is subject to the minimum technological... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS...

  10. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Technological Requirements (MTR)? No. Placing hazardous remediation wastes into a staging pile does not constitute land disposal of hazardous wastes or create a unit that is subject to the minimum technological... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS...

  11. 40 CFR 264.554 - Staging piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Technological Requirements (MTR)? No. Placing hazardous remediation wastes into a staging pile does not constitute land disposal of hazardous wastes or create a unit that is subject to the minimum technological... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS...

  12. Argonne nuclear pioneers: Chicago Pile 1

    ScienceCinema

    Agnew, Harold; Nyer, Warren

    2016-07-12

    On December 2, 1942, 49 scientists, led by Enrico Fermi, made history when Chicago Pile 1 (CP-1) went critical and produced the world's first self-sustaining, controlled nuclear chain reaction. Seventy years later, two of the last surviving CP-1 pioneers, Harold Agnew and Warren Nyer, recall that historic day.

  13. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  14. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  15. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  16. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  17. Numerical analysis of kinematic soil-pile interaction

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-08

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  18. Hydroplaning and submarine debris flows

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  19. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  20. Picking up Clues from the Discard Pile

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif

  1. Performance of a prototype surface collector for juvenile salmonids at Bonneville dam's first powerhouse on the Columbia River, Oregon

    USGS Publications Warehouse

    Evans, S.D.; Adams, N.S.; Rondorf, D.W.; Plumb, J.M.; Ebberts, B.D.

    2008-01-01

    During April-July 2000, we radio-tagged and released juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) to evaluate a prototype surface flow bypass at Bonneville Dam on the Columbia River. The mock bypass, called a prototype surface collector (PSC), had six vertical slot entrances that were each 6 m wide and 12 m deep. The PSC was retrofitted to the upstream face of Bonneville Dam's First Powerhouse. Our objectives were to: (1) assess species-specific differences in movement patterns and behaviour of fish within 6 m of the face of the PSC, (2) estimate the efficiency and effectiveness of the PSC and (3) evaluate factors affecting the performance of the PSC. We found that 60-72% of the fish, depending on species, detected within 6 m of the PSC entered it. Of the fish that passed the First Powerhouse at turbines 1-6, 79-83% entered the PSC. Diel period was a significant contributor to PSC performance for all species, and day of year was a significant contributor to PSC performance for subyearling Chinook salmon. The PSC was twice as effective (%fish/%flow) as the spillway, passing 2.5:1 steelhead and subyearling Chinook salmon and 2.4:1 yearling Chinook salmon per unit of water. If fully implemented, the PSC would increase the percentage of fish that pass the First Powerhouse through non-turbine routes from 65-77% (without the PSC) to 76-85% (with the PSC), depending on species. Published in 2008 by John Wiley & Sons, Ltd.

  2. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  3. Polyhedron Modeling of Rubble-Pile Asteroids

    NASA Technical Reports Server (NTRS)

    Korycansky, D. G.; Asphaug, E.

    2005-01-01

    We report on progress in modeling of asteroids as collections of rigid polyhedra ("rubble piles"). Such models are (idealized) candidates for asteroid structures: aggregates of irregular rocky subunits that are held together by self-gravity and friction. We have taken several steps toward greater realism and physical interest in construction of the models (although the gravitational fields are being treated in a simplified manner). -

  4. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method

    NASA Astrophysics Data System (ADS)

    Chang, Ping-Yu; Chen, Chien-Chih; Chang, Shu-Kai; Wang, Tzu-Bin; Wang, Chien-Ying; Hsu, Shu-Kun

    2012-03-01

    A massive debris flow induced by Typhoon Morakot buried the southern Taiwan village of Siaolin in Jiaxian township and caused the deaths of an estimated 474 people. To reconstruct the mechanisms triggering the tragic debris flow, researchers must identify the subsurface structures of the debris-flow sediments. For this purpose, we conducted 2-D, electrical resistivity imaging (ERI) surveys along networked lines where the village once stood. With the imaging results, we identified three layers, including the basement of Yenshuikeng Shale, the newly accumulated debris-flow deposits; and the old fluvial deposits amid the basement and the debris-flow sediments. According to the resistivity results, the bottom of the debris-flow deposits is under the old ground surface in three eroded areas, C1, C2 and C3. Resistivity anomalies in the debris-flow sediment layer are well correlated with the locations of houses and the major roads in the piling area (P1) and the eroded area (C2). Hence these findings indicate that the basal erosion of the debris flow may have occurred in areas C1, C2 and C3 since a specific mass movement may undercut into the basal sediments or rocks and forms a filled trench in its basement. These eroded areas may be related to different events of mass movements due to their different orientations of basal erosion. From the resistivity image we estimated the volume of debris flow is underestimated for about 24.5 per cent to the estimated volume of the debris flow from digital terrain models (DTMs) in the study area. We conclude that the volume of a debris flow may be underestimated because of the basal erosion if only data from DTMs are used for its calculations and present new means for its correction by combining DTM and ERI results.

  5. DebriSat Project Update and Planning

    NASA Technical Reports Server (NTRS)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  6. NASA Orbital Debris Requirements and Best Practices

    NASA Technical Reports Server (NTRS)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  7. Physical Properties of Supraglacial Debris on Mars

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Carter, L. M.

    2016-09-01

    The thickness and physical properties of surface debris preserving glacial ice in the mid-latitudes of Mars is assessed using crater morphology and radar sounding data. We suggest that this debris layer is much thicker than has been hypothesized.

  8. Morphological clues to wet granular pile stability.

    PubMed

    Scheel, M; Seemann, R; Brinkmann, M; Di Michiel, M; Sheppard, A; Breidenbach, B; Herminghaus, S

    2008-03-01

    When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems. PMID:18264104

  9. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement

  10. UN COPUOS Space Debris Guidelines

    NASA Astrophysics Data System (ADS)

    Portelli, Claudio

    The Space systems today provide growing benefits to enhance the quality of humankind. However as a by product, the orbiting objects inevitably leaves some debris which after 50 years of space activities represent a concern for all space agencies and manufacturers and operators. Since last year no international agreement was in place to mitigate the growing population of space debris objects. The successful result obtained at UN COPUOS in 2007 and available in the OOSA web site, now gives to the public, a set of voluntary international guidelines that could, if adopted by each space fairing Country, help in maintaining the present space environment. More further steps are necessary in the future to define a legal and normative framework. The paper will present the seven established UN Space Debris guidelines as well as examples of the minimum steps to be carried out at national level to enable the UN COPUOS to start the discussion of the legal aspect associated with the space debris issue.

  11. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  12. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  13. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  14. Applying Knowledge from Terrestrial Debris-Covered Glaciers to Constrain the Evolution of Martian Debris-Covered Ice

    NASA Astrophysics Data System (ADS)

    Koutnik, M. R.; Pathare, A. V.; Todd, C.; Waddington, E.; Christian, J. E.

    2016-09-01

    We will discuss the application of terrestrial knowledge on debris emplacement, the effects of debris on glacier-surface topography, debris transport by ice flow, deformation of debris-laden ice, and atmosphere-glacier feedbacks to Mars ice.

  15. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  16. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  17. Damage identification of piles based on vibration characteristics.

    PubMed

    Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen

    2014-01-01

    A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062

  18. Reducing Local Scouring at Bridge Piles Using Collars and Geobags

    PubMed Central

    Akib, Shatirah; Liana Mamat, Noor; Basser, Hossein; Jahangirzadeh, Afshin

    2014-01-01

    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles. PMID:25247201

  19. Reducing local scouring at bridge piles using collars and geobags.

    PubMed

    Akib, Shatirah; Liana Mamat, Noor; Basser, Hossein; Jahangirzadeh, Afshin

    2014-01-01

    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.

  20. Damage Identification of Piles Based on Vibration Characteristics

    PubMed Central

    Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen

    2014-01-01

    A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062

  1. Reducing local scouring at bridge piles using collars and geobags.

    PubMed

    Akib, Shatirah; Liana Mamat, Noor; Basser, Hossein; Jahangirzadeh, Afshin

    2014-01-01

    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles. PMID:25247201

  2. An optimal trajectory design for debris deorbiting

    NASA Astrophysics Data System (ADS)

    Ouyang, Gaoxiang; Dong, Xin; Li, Xin; Zhang, Yang

    2016-01-01

    The problem of deorbiting debris is studied in this paper. As a feasible measure, a disposable satellite would be launched, attach to debris, and deorbit the space debris using a technology named electrodynamic tether (EDT). In order to deorbit multiple debris as many as possible, a suboptimal but feasible and efficient trajectory set has been designed to allow a deorbiter satellite tour the LEO small bodies per one mission. Finally a simulation given by this paper showed that a 600 kg satellite is capable of deorbiting 6 debris objects in about 230 days.

  3. Detecting debris flows using ground vibrations

    USGS Publications Warehouse

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  4. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  5. A theoretical analysis of the bearing performance of vertically loaded large-diameter pipe pile groups

    NASA Astrophysics Data System (ADS)

    Ding, Xuanming; Zhang, Ting; Li, Ping; Cheng, Ke

    2016-02-01

    This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups. The interactions between group piles result in different bearing performance of both a single pile and pile groups. Considering the pile group effect and the skin friction from both outer and inner soils, an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups. The analytical solution was verified by centrifuge and field testing results. An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups. The results reveal that the axial forces in group piles are not the same. The larger the distance from central pile, the larger the axial force. The axial force in the central pile is the smallest, while that in corner piles is the largest. The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length. The axial force in side piles varies little with the variations of pile spacing, pile length, and shear modulus of the soil and is approximately equal to the average load shared by one pile. For a pile group, the larger the pile length is, the larger the influence radius is. As a result, the pile group effect is more apparent for a larger pile length. The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.

  6. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  7. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  8. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  9. Occupational PAH Exposures during Prescribed Pile Burns

    PubMed Central

    Robinson, M. S.; Anthony, T. R.; Littau, S. R.; Herckes, P.; Nelson, X.; Poplin, G. S.; Burgess, J. L.

    2008-01-01

    Wildland firefighters are exposed to particulate matter and gases containing polycyclic aromatic hydrocarbons (PAHs), many of which are known carcinogens. Our objective was to evaluate the extent of firefighter exposure to particulate and PAHs during prescribed pile burns of mainly ponderosa pine slash and determine whether these exposures were correlated with changes in urinary 1-hydroxypyrene (1-HP), a PAH metabolite. Personal and area sampling for particulate and PAH exposures were conducted on the White Mountain Apache Tribe reservation, working with 21 Bureau of Indian Affairs/Fort Apache Agency wildland firefighters during the fall of 2006. Urine samples were collected pre- and post-exposure and pulmonary function was measured. Personal PAH exposures were detectable for only 3 of 16 PAHs analyzed: naphthalene, phenanthrene, and fluorene, all of which were identified only in vapor-phase samples. Condensed-phase PAHs were detected in PM2.5 area samples (20 of 21 PAHs analyzed were detected, all but naphthalene) at concentrations below 1 μg m−3. The total PAH/PM2.5 mass fractions were roughly a factor of two higher during smoldering (1.06 ± 0.15) than ignition (0.55 ± 0.04 μg mg−1). There were no significant changes in urinary 1-HP or pulmonary function following exposure to pile burning. In summary, PAH exposures were low in pile burns, and urinary testing for a PAH metabolite failed to show a significant difference between baseline and post-exposure measurements. PMID:18515848

  10. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  11. ROCK PILE MOUNTAIN WILDERNESS STUDY AREA, MISSOURI.

    USGS Publications Warehouse

    Pratt, Walden P.; Ellis, Clarence

    1984-01-01

    A geologic and mineral-occurrence survey of the Rock Pile Mountain Wilderness study area in southeastern Missouri indicates the area has little promise for the occurrence of energy and mineral resources. Exploratory drill holes on private land along the west side of the area encountered no mineralization, and none of the rocks or sediments exposed in the area contain any detectable evidence of significant mineralization. Drilling through the Bonneterre Formation, supplemented by geochemical studies of the drill-hole samples, would test the remote possibility of lead mineralization close to the contact with Precambrian rocks.

  12. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  13. Comparison of space debris estimates

    SciTech Connect

    Canavan, G.H.; Judd, O.P.; Naka, R.F.

    1996-10-01

    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  14. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  15. Circumstellar Debris Disks and SIRTF

    NASA Astrophysics Data System (ADS)

    Backman, D. E.

    2000-05-01

    At least 15% of nearby main sequence stars are found to have far-IR excesses representing thermal emission from optically thin dust clouds. Famous prototypes of this class of objects include the Vega and beta Pictoris systems. Because destruction times for observed grains are much shorter than the system ages, the dust is known to be ``2nd generation" material released recently from hypothetical asteroid or comet parent bodies and not primordial grains persisting since system formation. The best local analogs to the main sequence debris disk systems are the inner solar system's zodiacal dust cloud and a presumed dust component of the Kuiper Belt. Planetary masses are probably required to drive planetesimals into shattering collisions and star-grazing orbits that produce dust, thus debris disks may allow inference of presence and location of planets. SIRTF will give us much-improved understanding of the frequency of debris disks around field main sequence stars, as well as the amount, size and composition of dust grains versus stellar age. This will help place our solar system into context of evolution of planetary material around normal stars.

  16. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  17. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  18. 6. UPPER NOTTINGHAM TAILING PILE LOOKING DOWN STREAM BED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UPPER NOTTINGHAM TAILING PILE LOOKING DOWN STREAM BED TO LOWER NOTTINGHAM. COLLAPSED BUILDINGS, 'B' AND 'C' AND TOP EDGE OF TAILING PILES ARE VISIBLE IN CENTRAL ARE OF PRINT. CAMERA POINTED SOUTHWEST. - Florida Mountain Mining Sites, Upper Nottingham Mine, West face of Florida Mountain, head of Jacobs Gulch, Silver City, Owyhee County, ID

  19. Assessment of timber piles in Clallam County, Washington

    NASA Astrophysics Data System (ADS)

    Pandey, Arun K.; Tyler, Ross; Arnette, Clyde G.; Anthony, Ronald W.

    1998-03-01

    Timber bridges are very common in state and rural highway systems. According to the National Bridge Inventory (NBI), there are 41,743 timber bridges in the United States and another 42,102 bridges with timber decks as a part of the superstructure. As these bridges age, there is a critical need for reliable inspection and assessment methods for evaluating timber members. Under an FHWA mandate, these bridges also need to be evaluated for scour susceptibility. Knowledge of the length of timber piles supporting the bridge is a vital component in calculating scour resistance of a bridge. However, records of timber pile lengths are often nonexistent or incomplete due to the construction practices for timber piles. This paper presents nondestructive evaluation (NDE) techniques used for assessing timber piles on 10 bridges in Clallam County, Washington. Stress wave velocity and resistance drilling techniques were used to determine the presence of and quantify the extent of decay in the piles. A longitudinal stress wave technique was used for determining the length of timber piles. Determination of piles with decay aided in establishing maintenance and repair needs on the bridge substructures. Pile length estimates enabled Clallam County Road Department to determine the scour-susceptibility of these bridges.

  20. Navy-ship plastic waste recycled into marine pilings

    SciTech Connect

    March, F.A.

    1996-02-01

    Seaward International Inc., developed a new, composite, structurally reinforced, plastic-composite marine piling fabricated from 100 percent recycled plastic. A cooperative research program was begun in 1995 between the Navy and Seaward to develop a use for Navy ships waste plastic as a core in the construction of the marine piling.

  1. View south along subtle ridgeline across a pile of removed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south along subtle ridgeline across a pile of removed gravestones to Doughty-Beck monument, another gravestone pile, and Mill Street houses. - Mount Zion Cemetery/ Female Union Band Cemetery, Bounded by 27th Street right-of-way N.W. (formerly Lyons Mill Road), Q Street N.W., & Mill Road N.W., Washington, District of Columbia, DC

  2. Packing bunkers and piles to maximize forage preservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage is a valuable commodity stored on dairy farms. Bunker and pile silos have increased in use due to increasing herd size. Losses in feed value in bunker and pile silos are frequently higher than they should be because producers are not packing them sufficiently to exclude oxygen during the stor...

  3. 30 CFR 77.214 - Refuse piles; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; general. 77.214 Section 77.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... covered with clay or other inert material as the piles are constructed. (c) A fireproof barrier of clay...

  4. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  5. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  6. Centrifuge Modeling of Piles Subjected to Lateral Loads

    NASA Astrophysics Data System (ADS)

    Brant, Logan; Ling, Hoe I.

    There are many applications where piles are employed to absorb and deflect lateral impact loads. Structural elements of this type are used to protect infrastructure and are commonly found at marine sites. A series of model tests have been conducted using Columbia University's centrifuge facility to better understand the performance of piles subjected to these loading conditions. A device was designed to install and laterally load single model piles during centrifuge flight. This device uniquely contains two lateral loading systems, one which allows static testing and another appropriate for dynamic tests. This research examines the behavior of tubular steel piles embedded within dry or saturated soil and subjected to varied rates of lateral loading. This investigation provides insight on the contribution of lateral loading rates to the behavior of piles.

  7. Distributed fibre optic strain measurements on a driven pile

    NASA Astrophysics Data System (ADS)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  8. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  9. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.; ,

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  10. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  11. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. PMID:25680883

  12. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  13. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  14. Small asteroids - rubble piles or boulders?

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.

    2013-10-01

    The asteroid rotation spin barrier at ~2.2 h period among asteroids 10 km > D > 200 m doesn’t prove all such asteroids are rubble piles, and the faster rotations among smaller asteroids doesn’t require monolithic strength, either. Only a very modest strength, perhaps no more than van der Waals force, might suffice to hold regolith together on a small super-fast rotator (Sanchez & Scheeres, 2013, arXif:1306.1622v1). The problem is that for a constant or only slowly varying strength with respect to diameter, the spin barrier becomes proportional to 1/D below the size where material strength is dominant, or perhaps a bit steeper if strength increases with decreasing D. What we observe in the distribution of asteroid spins versus diameter is that below D ~ 200 m, the spin barrier goes up at least ~D-3.5, if not abruptly. Models with constant or slowly varying strength fail to fit this observation, and the abrupt transition cannot be an observational selection effect: the void in the phase space of rotations would be among the easiest rotations to observe, e.g. the one conspicuous exception, 2001 OE84 (D ~ 0.7 km, P = 0.5 h) was easily and unambiguously measured (Pravec, et al. 2002, Proc. ACM 2002, ESA SP-500, 743-745). This abrupt transition is most easily explained as a real transition in material properties of asteroids in the size range ~200 m diameter, from “rubble pile” to “boulder”, although neither term may be fully descriptive of the actual structure. Two other lines of evidence suggest that this transition in properties is real: the dip in the size-frequency distribution of NEAs is maximum at ~150 m, suggesting that a transition to stronger material structure occurs about there, and we observe, e.g., Tunguska and the recent Chelyabinsk bolide, that bodies in the tens of meters size range entering the atmosphere behave more like solid rocks than rock piles (Boslough & Crawford 2008, Int. J. Imp. Eng. 35, 1441-1448). I encourage those doing computer

  15. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    NASA Astrophysics Data System (ADS)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  16. Analysis of Wave Fields induced by Offshore Pile Driving

    NASA Astrophysics Data System (ADS)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  17. Unsaturated flow modeling of a retorted oil shale pile.

    SciTech Connect

    Bond, F.W.; Freshley, M.D.; Gee, G.W.

    1982-10-01

    The objective of this study was to demonstrate the capabilities of the UNSAT1D model for assessing this potential threat to the environment by understanding water movement through spent shale piles. Infiltration, redistribution, and drainage of water in a spent shale pile were simulated with the UNSAT1D model for two test cases: (1) an existing 35 m pile; and (2) a transient pile growing at a rate of 10 m/year for 5 years. The first test case simulated three different layering scenarios with each one being run for 1 year. The second test case simulated two different initial moisture contents in the pile with each simulation being run for 30 years. Grand Junction and Rifle, Colorado climatological data were used to provide precipitation and potential evapotranspiration for a wet (1979) and dry (1976) year, respectively. Hydraulic properties obtained from the literature on Paraho process spent shale soil, and clay were used as model input parameters to describe water retention and hydraulic conductivity characteristics. Plant water uptake was not simulated in either test case. The two test cases only consider the evaporation component of evapotranspiration, thereby maximizing the amount of water infiltrating into the pile. The results of the two test cases demonstrated that the UNSAT1D model can adequately simulate flow in a spent shale pile for a variety of initial and boundary conditions, hydraulic properties, and pile configurations. The test cases provided a preliminary sensitivity analysis in which it was shown that the material hydraulic properties, material layering, and initial moisture content are the principal parameters influencing drainage from the base of a pile. 34 figures, 4 tables.

  18. Small Orbital Debris Mitigation Mission Architecture

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2011-01-01

    Small orbital debris in LEO (1-10 cm in size) presents a clear and present danger to operational LEO spacecraft. This debris field has dramatically increased (nearly doubled) in recent years following the Chinese ASAT Test in 2007 and the Iridium/Cosmos collision in 2009. Estimates of the number of small debris have grown to 500,000 objects after these two events; previously the population was 300,000 objects. These small, untracked debris objects (appproximately 500,000) outnumber the larger and tracked objects (appproximately 20,000) by a factor 25 to 1. Therefore, the risk of the small untracked debris objects to operational spacecraft is much greater than the risk posed by the larger and tracked LEO debris objects. A recent study by The Aerospace Corporation found that the debris environment will increase the costs of maintaining a constellation of government satellites by 5%, a constellation of large commercial satellites by 11%, and a constellation of factory built satellites by 26% from $7.6 billion to $9.57 billion. Based upon these facts, the NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office (ACO) performed an architecture study on Small Orbital Debris Active Removal (SODAR) using a space-based nonweapons- class laser satellite for LEO debris removal. The goal of the SODAR study was to determine the ability of a space-based laser system to remove the most pieces of debris (1 cm to 10 cm, locations unknown), in the shortest amount of time, with the fewest number of spacecraft. The ESA developed MASTER2005 orbital debris model was used to probabilistically classify the future debris environment including impact velocity, magnitude, and directionality. The study ground rules and assumptions placed the spacecraft into a high inclination Low Earth Orbit at 800 km as an initial reference point. The architecture study results found that a spacecraft with an integrated forward-firing laser is capable of reducing the small orbital debris flux within

  19. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  20. Piled tool will level subsea well template for Heidrun TLP

    SciTech Connect

    Not Available

    1992-01-13

    This paper reports on piled leveling tools that were contracted for use during the installation of the subsea well template for Conoco Norway Inc.'s Heidrun tension leg platform (TLP) in the Norwegian sector of the North Sea. The leveling tools are employed after a template has been positioned on the seafloor and anchor pilings have been driven through the template sleeves. One or more tools are lowered and landed on anchor pilings at the low side of the template. No diver support or guidelines are required.

  1. Riding a Trail of Debris

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet.

    Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower.

    This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.

  2. Orbital Debris Observations with WFCAM

    NASA Technical Reports Server (NTRS)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  3. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  4. Debris avalanche triggered by sill intrusions in basaltic volcanoes (Piton des Neiges, La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.

    2014-12-01

    Debris avalanches derived from the flanks of volcanic islands are among the largest on Earth. Debris avalanches are rare, catastrophic destabilizations that still keep geologists debating about the mechanisms that initiate them and make them travel huge runout distances. To shed light on the trigger of such destabilizations, we studied the inland scar of a debris avalanche deposit cropping out at Piton des Neiges, a dormant and eroded basaltic volcano of La Réunion Island. The avalanche deposit rests on a pile of 50-70 sill intrusions with a shallow northward dip, i.e. toward the sea. We measured the anisotropy of magnetic susceptibility in a transect across the uppermost sill of the pile in contact with the avalanche deposit. This transect reveals a strongly asymmetric magnetic fabric, consistent with a north-directed shear movement of the upper intrusion wall. This suggests that the upper sill induced a co-intrusive shear displacement of the volcano flank toward the sea. The upper sill margin in contact with the avalanche is striated, showing that this intrusion is older than the avalanche. Striae indicate a northward direction of avalanche runout. The upper sill margin also displays a magmatic lineation consistent with a magma flow in the intrusion toward the north. There is thus a striking kinematic consistency between the directions of intrusion propagation and avalanche runout, both oriented toward the sea. From the above results, we propose that repeated sill intrusions, such as observed on Piton des Neiges, increase the instability of a volcanic edifice. Each injection induces an incremental slip of the overlying rock mass, which may eventually end up into a landslide. Sill intrusions associated with seaward displacements of volcano flank, such as inferred for the April 2007 eruption of Piton de la Fournaise (also in La Réunion), should therefore be considered as a potential trigger of debris avalanches.

  5. TMI-2 leadscrew debris pyrophoricity study

    SciTech Connect

    Clark, R L; Allen, R P; McCoy, M W

    1984-04-01

    Debris removed from the surface of a leadscrew from the TMI-2 Reactor Building was examined to assess the potential for the debris to become pyrophoric. Elemental analyses were performed to identify candidate phases that could be pyrophoric, and x-ray diffraction was used to determine if any of these phases was actually present. However, none of the candidate phases were found. Based on differential scanning calorimetry, no exothermic reactions were observed upon heating the debris to 500/sup 0/C in air. Particle size distributions for the debris were obtained from analyses of micrographs of the debris. A light blockage instrument was also used to determine the particle size distribution. These analyses indicated that particles larger than 10 ..mu..m accounted for most of the debris volume, although the majority of the particles were actually smaller than 10 ..mu..m. Gamma spectroscopy indicated that most of the radioactivity in the debris, and on the leadscrew after debris removal, was due to mixed fission products such as /sup 137/Cs and /sup 134/Cs.

  6. Interagency Report on Orbital Debris, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.

  7. Debris-flow susceptibility map of Slovenia

    NASA Astrophysics Data System (ADS)

    Komac, M.; Kumelj, Š.; Ribičič, M.

    2009-04-01

    Until now debris-flow susceptibility was relatively poorly investigated in Slovenia. Regarding lack of such studies »Map of debris-flow susceptibility in Slovenia in scale 1.250.000« was elaborated using GIS and the latest spatial data was used; among them the latest lithological map of Slovenia in scale 1:250.000. For the creation of debris-flow susceptibility map of Slovenia in scale 1:250.000 seven considered most important factors were used that were divided into two groups: 1) initial factors that precondition debris-flows: lithology, slope angle, slope potential, 48-hours precipitation and 2) transport factors that contribute to higher probability of the transport of debris-flow material: terrain convexity, energy potential of streams, distance to surface water. Using linear weighted sum the precondition information layer was derived, and the same principal was used to derive transport information layer. Both layers were joined into final susceptibility assessment, again with consideration of their importance to contribute to debris-flow occurrence. Different weights were applied to chosen parameters, which resulted in several different models that were evaluated according to historical or recent debris-flow phenomena. Expert estimation was used to define the torrential areas with high probability of the debris-flow occurrence. The emphasis was on location rather than on the time of the debris-flow occurrence. There were unfortunately no adequate representative data about debris-flow in Slovenia (debris flow cadastre does not exist and not many historical studies have been done so far) for the quantitative statistical analysis. Hence only expert estimation approach was possible, based on the experience and historical events gathered from chronicles and eyewitness. Such an approach is mainly limited by subjectivity and has difficulties with sound argumentation, but at the given state it was the only possible approach. Based upon spatial analyses of four

  8. Debris hazard for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Madler, Ronald A.; Maclay, Timothy D.; Mcnamara, Roger; Culp, Robert D.

    1992-01-01

    The scientific mission of the Earth Observing System (EOS) is modeled to analyze the potential hazard of space debris and its impact on the effectiveness of the program. Specific attention is given to the hazard posed by untrackable debris and the velocities and impact rates of such debris. The NASA Debris Flux Model (DFM) is utilized, and the results are compared to those of the Frag model which predicts the background environment from known parameters and the Screen model for estimating collision probabilities. The probability of damaging impacts is shown to be significant and to increase over time; an EOS spacecraft has a 10 percent chance of being struck by a 1-cm object traveling at 14 km/s. The present analyses demonstrate the need to design the EOS spacecraft for a LEO environment in which collisions with debris are very likely.

  9. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  10. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  11. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  12. As Traffic Piles Up, So Does Air Pollution

    MedlinePlus

    ... 160914.html As Traffic Piles Up, So Does Air Pollution To minimize exposure, researchers recommend shutting windows and ... Doing so can reduce your exposure to toxic air pollution from a traffic jam by up to 76 ...

  13. Airborne thermography of temperature patterns in sugar beet piles

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  14. Biodeterioration of concrete piling in the Arabian Gulf

    SciTech Connect

    Jadkowski, T.K.; Wiltsie, E.A.

    1985-03-01

    Concrete is one of the most widely used materials in marine construction because of its characteristic durability in sea environments. Recent inspection of concrete piles installed in the Arabian Gulf has revealed that concrete with high content of calcareous aggregate is susceptible to biodeterioration. Marine rock borers and sponges, which are common in areas where the seabed is composed of limestone rock, have been identified as the marine species responsible for the biodeterioration. Boring organisms pose a significant threat to concrete pile structural integrity. Boreholes deteriorate concrete and expose outer pile reinforcement to seawater. This paper describes the causes and magnitude of biodeterioration of piles installed in the Arabian Gulf and presents design parameters and material specifications for the selected preventive repair system.

  15. 4. West side of pier showing distinct piling configuration. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. West side of pier showing distinct piling configuration. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  16. 2. Pilings at end of Pier 11, low tide, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Pilings at end of Pier 11, low tide, view to north. - Charlestown Navy Yard, Pier 11, Charlestown Waterfront at confluence of Little Mystic Channel & Mystic River at northernmost ent of Navy Yard, Boston, Suffolk County, MA

  17. 12. Underneath view of pilings and chain supports on sw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Underneath view of pilings and chain supports on sw side near midsection; looking SE at low tide. - Pacific Creosoting Plant, West Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  18. 21. View looking W from Brooklyn shore with pier pilings ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View looking W from Brooklyn shore with pier pilings in left foreground. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  19. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK TOP, WITH VERTICAL ELEMENTS IN BACKGROUND, LEVEL 0’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  20. 69. VIEW OF DECK AND PILINGS FROM LIFEGUARD TOWER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. VIEW OF DECK AND PILINGS FROM LIFEGUARD TOWER AT 2ND TEE, LOOKING NORTH, SHOWING NEPTUNE'S LOCKER AND CAPTAIN'S GALLEY IN BACKGROUND AT RIGHT - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  1. 1. GENERAL VIEW OF ENGINE PILE OF AGGREGATE AND MEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF ENGINE PILE OF AGGREGATE AND MEN WAITING WITH WHEELBARROWS FILLED WITH AGGREGATE. TAKE DEC. 7, 1927. - Marsh Rainbow Arch Bridge, West Eighth Street North, Newton, Jasper County, IA

  2. 8. Roaring Fork Motor Nature Trail, handbuilt rock pile. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Roaring Fork Motor Nature Trail, hand-built rock pile. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  3. VIEW OF SOUTHERN QUARRY, FACING SOUTH, WITH ROCK PILES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTHERN QUARRY, FACING SOUTH, WITH ROCK PILES IN FOREGROUND - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  4. 48. EXCAVATING AND DRIVING PILES FOR SHOOFLY BRIDGE, YOLO COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. EXCAVATING AND DRIVING PILES FOR SHOOFLY BRIDGE, YOLO COUNTY SIDE OF RIVER, November 7, 1934 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  5. 10. Substructure of bridge, showing timber bents, piles, crossbracing, caps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Substructure of bridge, showing timber bents, piles, cross-bracing, caps and stringers under deck. View to northeast. - Outlet Creek Bridge, Sullivan Lake Ranger Administrative Site, Metaline Falls, Pend Oreille County, WA

  6. Passage probabilities of juvenile Chinook salmon through the powerhouse and regulating outlet at Cougar Dam, Oregon, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Smith, Collin D.

    2012-01-01

    Cougar Dam near Springfield, Oregon, is one of several federally owned and operated flood-control projects within the Willamette Valley of western Oregon that were determined by the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service in 2008 to impact the long-term viability of several salmonid stocks. In response to this ruling, the U.S. Army Corps of Engineers is looking for means to reduce impacts to salmonids, including improving downstream passage of juvenile salmonids at Cougar Dam. This study of juvenile Chinook salmon (Oncorhynchus tshawytscha) passage at Cougar Dam was conducted to inform decisions about potential improvements for downstream fish passage. The primary objective of the study was to estimate route-specific passage probabilities of yearling Chinook salmon at Cougar Dam. The study was conducted using fish from a nearby hatchery surgically implanted with radio transmitters and passive integrated transponder (PIT) tags and released near the entrance of a temperature control tower through which all water going through the dam must pass. Water passing through the temperature control tower may be routed through a penstock to a powerhouse with two Francis turbines, or to a spillway-like structure called the regulating outlet. Secondary objectives of the study were to estimate the probability that fish enter a bypass at a non-federal facility downstream, and to estimate dam-passage and in-river fish survival. Dam operating conditions during the study included an average forebay elevation of 1,580 feet (National Geodetic Vertical Datum of 1929) and an average of 48.2 percent of the total dam discharge of 1,106 cubic feet per second passing through a regulating outlet opening of 1.25 feet. Dam passage probability was greatest at night (0.8741 standard error [SE] 0.0265) and primarily through the regulating outlet (0.8896 SE 0.0617 day; 0.9417 SE 0.0175 night). The joint probability of entering the bypass at Leaburg Dam

  7. Processing Satellite Imagery To Detect Waste Tire Piles

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  8. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  9. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  10. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  11. Slime thickness evaluation of bored piles by electrical resistivity probe

    NASA Astrophysics Data System (ADS)

    Chun, Ok-Hyun; Yoon, Hyung-Koo; Park, Min-Chul; Lee, Jong-Sub

    2014-09-01

    The bottoms of bored piles are generally stacked with soil particles, both while boreholes are being drilled, and afterward. The stacked soils are called slime, and when loads are applied on the pile, increase the pile settlement. Thus to guarantee the end bearing capacity of bored piles, the slime thickness should be precisely detected. The objective of this study is to suggest a new method for evaluating the slime thickness, using temperature compensated electrical resistivity. Laboratory studies are performed in advance, to estimate and compare the resolution of the electrical resistivity probe (ERP) and time domain reflectometry (TDR). The electrical properties of the ERP and TDR are measured using coaxial type electrodes and parallel type two-wire electrodes, respectively. Penetration tests, conducted in the fully saturated sand-clay mixtures, demonstrate that the ERP produces a better resolution of layer detection than TDR. Thus, field application tests using the ERP with a diameter of 35.7 mm are conducted for the investigation of slime thickness in large diameter bored piles. Field tests show that the slime layers are clearly identified by the ERP: the electrical resistivity dramatically increases at the interface between the slurry and slime layer. The electrical resistivity in the slurry layer inversely correlates with the amount of circulated water. This study suggests that the new electrical resistivity method may be a useful method for the investigation of the slime thickness in bored piles.

  12. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  13. Conoco installs eight-pile rig on four-pile platform

    SciTech Connect

    Albaugh, E.K.

    1983-11-01

    Rig 122 recently became the largest standard self-contained drilling rig ever to be mounted on a four-pile, tender-style platform. The conversion sacrificed none of the rig's deep drilling capability, and enabled Conoco to utilize a self-contained platform drilling rig on a satellite platform in the same field. Two cantilever beams, extending some 42 ft beyond platform columns on two sides, support rig weight. Modifications to the rig include separation of pump and engine packages, a pipe-rack extension and a novel skidding system.

  14. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  15. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  16. Debris transport around high-speed snowplows

    NASA Astrophysics Data System (ADS)

    Nakhla, Hany Kamel

    2001-08-01

    The distribution of airborne debris around high-speed snowplows affects visibility and thus road safety. A combination of calculations, windtunnel experiments, and road trials are presented to provide knowledge of debris distributions and to obtain understanding of the mechanisms that can reduce suspended debris. Measurements obtained around windtunnel models show the influence of a variety of plow geometries on the location of debris around plowing trucks. Debris trajectories were calculated around plows with and without overplow deflectors by solution of Reynolds-averaged Navier-Stokes equations with cutting-edge and particle-tracking models. Calculations extrapolated windtunnel results over the wide range of snow conditions from light powder to slushy ice. Road trials compared visibility of conventional and modified snowplows with image analysis that quantified visible area, contrast and color intensity. In full scale tests, snow did not blow overtop of plow configurations that had trap angles less than 50 degrees, as predicted in windtunnel and computational results. Packing and junction flaps deflected discharge snow back into the consolidated discharge stream and decreased the amount of loose debris. Side-mounted hopper vanes kept rearward- facing surfaces clearer and made rear lighting and signage more effective. The visible area of high-speed snowplows outfitted with overplow deflector, packing flap, junction flap and hopper vanes was measured to be more than 50% larger than conventional plows for following motorists in all wind conditions and this was linked to reductions in the quantity of debris in the downstream snow cloud.

  17. The Supercritical Pile Model for GRBs

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2005-01-01

    We present the spectral and temporal radiative signatures expected within the "Supercritical Pile" model of Gamma Ray Bursts (GRB). This model is motivated by the need for a process that provides the dissipation necessary in GRB and presents a well defined scheme for converting the energy stored in the relativistic protons of the Relativistic Blast Waves (RBW) associated with GRB into radiation; at the same time it leads to spectra which exhibit a peak in the burst nuF(sub nu) distribution at an energy E(sub p) approx. equal to 1 MeV in the observer s frame, in agreement with observation and largely independent of the Lorentz factor r of the associated relativistic outflow. Futhermore, this scheme does not require (but does not preclude) acceleration of particles at the shock other than that provided by the isotropization of the flow bulk kinetic energy on the RBW frame. In the present paper we model in detail the evolution of protons, electrons and photons from a RBW to produce detailed spectra of the prompt GRB phase as a function of time from across a very broad range spanning roughly 4 log10Gamma decades in frequency. The model spectra are in general agreement with observations and provide a means for the delineating of the model parameters through direct comparison with trends observed in GRB properties.

  18. The Supercritical Pile Model for GRBs

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2006-01-01

    We present the spectral and temporal radiative signatures expected within the Supercritical Pile model of Gamma Ray Bursts (GRB). This model is motivated by the need for a process that provides the dissipation necessary in GRB and presents a well defined scheme for converting the energy stored in the relativistic protons of the Relativistic Blast Waves (RBW) associated with GRB into radiation; at the same time it leads to spectra which exhibit a peak in the burst nuF(sub nu) distribution at an energy E(sub p) approximately equal to 1 MeV in the observer s frame, in agreement with observation and largely independent of the Lorentz factor GAMMA of the associated relativistic outflow. Furthermore, this scheme does not require (but does not preclude) acceleration of particles at the shock other than that provided by the isotropization of the flow bulk kinetic energy on the RBW frame. In the present paper we model in detail the evolution of protons, electrons and photons from a RBW to produce detailed spectra of the prompt GRB phase as a function of time from across a very broad range spanning roughly 4 log10 GAMMA decades in frequency. The model spectra are in general agreement with observations and provide a means for the delineating of the model parameters through direct comparison with trends observed in GRB properties.

  19. The Supercritical Pile Model for GRBs

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2005-01-01

    We present the spectral and tempora1 radiative signatures expected within the "Supercritical Pile" model of Gamma Ray Bursts (GRB). This model is motivated by the need for a process that provides the dissipation necessary in GRB and presents a well defined theme for converting the energy stored in the relativistic protons of the Relativistic Blast Waves (RBW) associated with GRB into radiation; at the same it leads to spectra which exhibit a peak in the burst vFv, distribution at an energy Ep l. MeV in the observer's frame, in agreement with observation and largely independent of the Lorentz factor P of the associated relativistic outflow. Furthermore, this scheme does not require (but does not preclude) acceleration of particles at the shock other than that provided by the isotropization of the flow kinetic energy on the RBW frame. In the present paper we model in detail the evolution of protons, electrons and photons from a RBW within the framework of this model to produce detailed spectra of the prompt GRB phase as a function of time from across a very broad range spanning roughly 4log10P decades in frequency. The model spectra are in general agreement with observations and provide a means for the delineating of the model parameters through direct comparison with trends observed in GRB properties.

  20. The Supercritical Pile Model for GRBs

    NASA Astrophysics Data System (ADS)

    Mastichiadis; Kazanas

    2006-02-01

    We present the spectral and temporal radiative signatures expected withinthe quot;Supercritical Pile\\" model of Gamma Ray Bursts (GRB). This modelis motivated by the need for a process that provides the dissipationnecessary in GRB and presents a well defined scheme for converting theenergy stored in the relativistic protons of theRelativistic Blast Waves (RBW) associated with GRB into radiation; at thesame time it leads to spectra which exhibit a peak in the burst nuF_{nu} distribution at an energy E_p simeq 1 MeV in theobserverapos;s frame, in agreement with observation and largelyindependent of the Lorentz factor Gamma of the associated relativisticoutflow. Futhermore, this scheme does not require (but does notpreclude) acceleration of particles at the shock other than that providedby the isotropization of the flow bulk kinetic energy on the RBW frame. Inthe present paper we model in detail the evolution of protons, electronsand photons from a RBW within the framework of this model to producedetailed spectra of the prompt GRB phase as a function of time from acrossa very broad range spanning roughly 4 log_{10} Gamma decades$ in frequency. The model spectra are in generalagreement with observations and provide a means for the delineating of themodel parameters through direct comparison with trends observed in GRBproperties.

  1. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  2. Parametric study on the effects of pile inclination angle on the response of batter piles in offshore jacket platforms

    NASA Astrophysics Data System (ADS)

    Aminfar, Ali; Ahmadi, Hamid; Aminfar, Mohammad Hossein

    2016-06-01

    Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. The pile seems to have an operationally optimal degree of inclination of approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.

  3. Collector/Compactor for Waste or Debris

    NASA Technical Reports Server (NTRS)

    Mangialiardi, John K.

    1987-01-01

    Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.

  4. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  5. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  6. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    PubMed

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems. PMID:26949962

  7. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

    PubMed Central

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-01-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems. PMID:26949962

  8. Behavioral responses of cotton mice (Peromyscus gossypinus) to large amounts of coarse woody debris.

    SciTech Connect

    Hinkleman, Travis M.

    2004-08-01

    stumps (65%), root boles (13%), brush piles (8%), and logs (7%). Mice used different frequencies of refuge types between treatments; root bole and brush pile refuges were used more on treatment plots whereas stump and log refuges were used more on control plots. Refuge type, log volume, and tree basal area were significant predictors of refuge selection on control plots whereas refuge type and size were significant predictors of refuge selection on treatment plots. Refuges were significantly more dispersed on treatment plots. Mice used refuges more intensely and switched refuges less in the winter than the summer, regardless of woody debris abundance. The extensive and selective use of logs by cotton mice suggests that logs may be an important resource. However, logs are not a critical habitat component. Over half of the paths on control plots were not associated with logs, and logs were used infrequently as refuges. Nonetheless, refuges were highly associated with woody debris (e.g., stumps, root boles), which suggests that woody debris may be a critical habitat component.

  9. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2002-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

  11. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; Stuble, Martin

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  12. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... property acquired through a FEMA hazard mitigation program to uses compatible with open space, recreation... to remove debris from private property in urban, suburban and rural areas, including large...

  13. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  14. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  15. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  16. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-08-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  17. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  18. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  19. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  20. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  1. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in

  2. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net

  3. Search for the Data of Space Debris Initial Distribution

    NASA Astrophysics Data System (ADS)

    Ping-Ping, Zhang; Bao-Jun, Pang

    Space debris environment model is one of the kernels of the research on space debris Space debris environment model is based on the data of space debris that is if we have the data of space debris orbit parameter we can determine the state of space debris distribution and then the spacecraft risk assessment can be executed Because numbers of small size space debris cannot be detected or observed we have not small size space debris data The short of small size space debris data leads to the engineering model inaccurate model needs to be updated while in the status of seriously short of data the model can not be updated in time In allusion to the problem of scarcity of data on the basis of modern computer arithmetic this paper is trying to search new data with old data and the results of the model is close to other engineering models Key words space debris data

  4. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products.

  5. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. PMID:25749316

  6. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  7. Expanding capabilities of the debris analysis workstation

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Sorge, Marlon E.; Mains, Deanna L.; Shubert, Ann J.; Gerhart, Charlotte M.; Yates, Ken W.; Leake, Michael

    1996-10-01

    Determining the hazards from debris-generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the United States Air Force (USAF) Phillips Laboratory (PL) Space Debris Research Program has developed a simulation software package called the Debris Analysis Workstation (DAW). This software provides an analysis capability for assessing a wide variety of debris hazards. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for Department of Defense space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts who are not debris experts. The current version of DAW includes models for spacecraft breakup, debris orbital lifetime, collision hazard risk assessment, and collision dispersion, as well as a satellite catalog database manager, a drag inclusive propagator, a graphical user interface, and data visualization routines. Together they provide capabilities to conduct several types of analyses, ranging from range safety assessments to satellite constellation risk assessment. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated system is an object oriented language layer scheduled to be added soon. Other candidate component models under consideration for incorporation include additional orbital propagators, error estimation routines, other dispersion models, and other breakup models. At present, DAW resides on a SUNR workstation, although future versions could be tailored for other platforms, depending on the need.

  8. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  9. LDEF meteoroid and debris database

    NASA Astrophysics Data System (ADS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photo-documented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  10. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  11. Postdetonation nuclear debris for attribution

    PubMed Central

    Fahey, A. J.; Zeissler, C. J.; Newbury, D. E.; Davis, J.; Lindstrom, R. M.

    2010-01-01

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the “Nuclear Forensics and Attribution Act,” scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  12. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  13. Very Fine Aerosols from the World Trade Center Collapse Piles: Anaerobic Incineration

    SciTech Connect

    Cahill, T A; Cliff, S S; Shackelford, J; Meier, M; Dunlap, M; Perry, K D; Bench, G; Leifer, R

    2004-02-27

    By September 14, three days after the initial World Trade Center collapse, efforts at fire suppression and heavy rainfall had extinguished the immediate surface fires. From then until roughly mid-December, the collapse piles continuously emitted an acrid smoke and fume in the smoldering phase of the event. Knowledge of the sources, nature, and concentration of these aerosols is important for evaluation and alleviation of the health effects on workers and nearby residents. In this paper, we build on our earlier work to ascribe these aerosols to similar processes that occur in urban incinerators. The simultaneous presence of finely powdered (circa 5 {micro}m) and highly basic (pH 11 to 12) cement dust and high levels of very fine (< 0.25 {micro}m) sulfuric acid fumes helps explain observed health impacts. The unprecedented levels of several metals in the very fine mode can be tied to liberation of those metals that are both present in elevated concentrations in the debris and have depressed volatility temperatures caused by the presence of organic materials and chlorine.

  14. Morphodynamics of debris flow-dominated channels

    NASA Astrophysics Data System (ADS)

    Huebl, Johannes

    2013-04-01

    The mountain environment is mainly shaped by mass movements and glacial, debris flow and fluvial erosion. Therefore the landform ensemble of torrential catchments includes features of several thousand years. Many of them contribute as debris sources to the development of debris flow activity. But the torrential channel is not formed by different types of slope failures only, channel erosion itself plays a dominant role in the development of debris flows. Today LIDAR data allow us to identify different types of debris sources and subsequent channel features. In combination with the lithological setting this information helps us to understand the general morphodynamics of mountain channels. A deeper insight into the development of mountain channels lacks of consistent data sets. Different approaches try to estimate erosional rates of torrents during design events. These methods are mainly based on field survey and on the experience of the person doing this job. To decrease the uncertainty of these data, the collected data have to be checked against already existing data of documented former events. The development of the erosional processes in torrents is directly linked with the dominating morphodynamic process, leading to essential estimates of debris flow hydrographes.

  15. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  16. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  17. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  18. Removing orbital debris with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; George, E. Victor; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-07-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight segmented design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most costeffective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  19. Numerical experiments with rubble piles: equilibrium shapes and spins

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Elankumaran, Pradeep; Sanderson, Robyn E.

    2005-02-01

    We present numerical experiments investigating the shape and spin limits of self-gravitating "perfect" rubble piles that consist of identical, smooth, rigid, spherical particles with configurable normal coefficient of restitution and no sliding friction. Such constructs are currently employed in a variety of investigations, ranging from the formation of asteroid satellites to the dynamical properties of Saturn's densest rings. We find that, owing to cannonball stacking behavior, rubble piles can maintain non-spherical shapes without bulk spin, unlike a fluid, and can spin faster than a perfect fluid before shedding mass, consistent with the theory for the more general continuum rubble pile model (Holsapple, 2004, Icarus 172, 272-303). Rubble piles that reassemble following a catastrophic disruption reconfigure themselves to lie within stability limits predicted by the continuum theory. We also find that coarse configurations consisting of a small number of particles are more resistant to tidal disruption than fine configurations with many particles. Overall this study shows that idealized rubble piles behave qualitatively in a manner similar to certain granular materials, at least in the limit where global shape readjustments and/or mass shedding begins. The limits obtained here may provide constraints on the possible internal structure of some small Solar System bodies that have extreme shapes or are under high stress. Amalthea is presented as a case study.

  20. Rubble-Pile Minor Planet Sylvia and Her Twins

    NASA Astrophysics Data System (ADS)

    2005-08-01

    from a primordial asteroid. "It could be up to 60 percent empty space," said co-discoverer Daniel Hestroffer (Observatoire de Paris, France). "It is most probably a "rubble-pile" asteroid", Marchis added. These asteroids are loose aggregations of rock, presumably the result of a collision. Two asteroids smacked into each other and got disrupted. The new rubble-pile asteroid formed later by accumulation of large fragments while the moonlets are probably debris left over from the collision that were captured by the newly formed asteroid and eventually settled into orbits around it. "Because of the way they form, we expect to see more multiple asteroid systems like this." Marchis and his colleagues will report their discovery in the August 11 issue of the journal Nature, simultaneously with an announcement that day at the Asteroid Comet Meteor conference in Armação dos Búzios, Rio de Janeiro state, Brazil.

  1. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  2. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. PMID:23914794

  3. Design of Jetty Piles Using Artificial Neural Networks

    PubMed Central

    2014-01-01

    To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost. PMID:25177724

  4. A simple approach for calculating pile skin friction in clays

    SciTech Connect

    Mirza, U.A.A.

    1995-12-31

    A simple method is presented for calculating static shaft resistance of a pile driven into clay. The method is based on correlations established for North Sea clays between index properties and strengths. Application of the method to half a dozen full scale pile load tests which are part of the API RP2A`s data base and include a wide range of plasticity properties, overconsolidation ratios and strengths, is described. Except for short piles in very stiff to hard clays, the predictions agree very well with the measurements. The correlations presented allows an assessment of residual skin friction and indicate the importance of the liquidity index of the clay in static capacity calculations.

  5. Identification of Defects in Piles Through Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Liao, Shutao T.; Roesset, Jose M.

    1997-04-01

    The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)

  6. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  7. Electrostatic Tractor Analysis for GEO Debris Remediation

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.

    The high value of operating in the geostationary ring, coupled with increasing numbers of orbital debris, highlights the need for GEO debris remediation techniques. One recent proposed technique for GEO debris mitigation is the electrostatic tractor. Here, a tug vehicle approaches a target debris object and emits a focused electron beam onto it. This results in a negative charge on the debris, and a positive charge on the tug vehicle. Due to the near proximity of the highly charged objects (20 meters or less) an attractive electrostatic force on the order of milliNewtons results. This electrostatic force is used in conjunction with low thrusting by the tug vehicle to tow the debris object into a disposal orbit 200-300 kilometers above the GEO belt. During the tugging period, the charged relative motion between tug and deputy is stabilized through a feedback control law. This is accomplished using a novel relative motion description that isolates separation distance from the relative orientation. The equations of motion for the relative motion description are derived from the Clohessy-Wiltshire equations, assuming the debris object is in a nearly circular orbit. Lyapunov stability theory is used to derive an asymptotically stable control law for the tug thrusters during the towing period. The control law requires an estimate of the electrostatic force magnitude, and the impacts of improperly modeled charging on control response are determined. If the electrostatic force is under-predicted too severely, a collision may result. A bound on the control gains is determined to prevent such a collision. Expected reorbiting performance levels achievable with the electrostatic tractor are computed. An open-loop analytical performance study is performed where variational equations are used to predict how much general orbital elements may be changed using the electrostatic tractor over one orbital period for a towed object at geosynchronous altitude. In contrast to earlier

  8. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  9. Debris analysis workstation: from concept to reality

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Maethner, Scott R.; Shubert, Ann J.; Yates, Ken W.

    1995-06-01

    Determining the hazards from debris generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the US Air Force Phillips Laboratory Space Debris Research Program is developing a simulation platform called the Debris Analysis Workstation (DAW) which provides an analysis capability for assessing a wide variety of debris studies. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for DoD space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts that are not debris experts. DAW has gone from concept to reality with the recent deliveries of Versions 0.1 to 0.4 to a number of customers. The current version of DAW incorporates a spacecraft break-up model, drag inclusive propagator, a collision dispersion model, a graphical user interface, and data visualization routines, which together provide capabilities to conduct missile intercept range safety analyses. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated, user-friendly system, is an object oriented language layer that is scheduled to be added in 1995. Other candidate component models that are under consideration for incorporation include additional orbital propagators, error estimation routines, dispersion models, and other breakup models. At present, DAW resides on a SUN workstation, although future versions could be tailored for other platforms, depending on the need.

  10. Orbital Debris Engineering Model (ORDEM) v.3

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew

    2013-01-01

    A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.

  11. 27. The top of a typical pile, F Reactor in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. The top of a typical pile, F Reactor in February 1945 in this case, showing the vertical safety rods (VSRs) and the cables that support them. The rods could be dropped into the pile to effect a rapid shutdown. The four silvered-colored drums on the left contained boron solution and are part of the last ditch safety system. Should the VSRs channels become blocked by an occurrence such as an earthquake, the solution could be dumped into the VSR channels to help shut down the reactor. D-8334 - B Reactor, Richland, Benton County, WA

  12. Effects of Impulsive Pile-Driving Exposure on Fishes.

    PubMed

    Casper, Brandon M; Carlson, Thomas J; Halvorsen, Michele B; Popper, Arthur N

    2016-01-01

    Six species of fishes were tested under aquatic far-field, plane-wave acoustic conditions to answer several key questions regarding the effects of exposure to impulsive pile driving. The issues addressed included which sound levels lead to the onset of barotrauma injuries, how these levels differ between fishes with different types of swim bladders, the recovery from barotrauma injuries, and the potential effects exposure might have on the auditory system. The results demonstrate that the current interim criteria for pile-driving sound exposures are 20 dB or more below the actual sound levels that result in the onset of physiological effects on fishes.

  13. Effects of Impulsive Pile-Driving Exposure on Fishes.

    PubMed

    Casper, Brandon M; Carlson, Thomas J; Halvorsen, Michele B; Popper, Arthur N

    2016-01-01

    Six species of fishes were tested under aquatic far-field, plane-wave acoustic conditions to answer several key questions regarding the effects of exposure to impulsive pile driving. The issues addressed included which sound levels lead to the onset of barotrauma injuries, how these levels differ between fishes with different types of swim bladders, the recovery from barotrauma injuries, and the potential effects exposure might have on the auditory system. The results demonstrate that the current interim criteria for pile-driving sound exposures are 20 dB or more below the actual sound levels that result in the onset of physiological effects on fishes. PMID:26610952

  14. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect

    J. L. Rempe

    2005-11-01

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  15. Linking social drivers of marine debris with actual marine debris on beaches.

    PubMed

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.

  16. Linking social drivers of marine debris with actual marine debris on beaches.

    PubMed

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved. PMID:22704152

  17. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    SciTech Connect

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-10-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  18. Characterization of marine debris in North Carolina salt marshes.

    PubMed

    Viehman, Shay; Vander Pluym, Jenny L; Schellinger, Jennifer

    2011-12-01

    Marine debris composition, density, abundance, and accumulation were evaluated in salt marshes in Carteret County, North Carolina seasonally between 2007 and 2009. We assessed relationships between human use patterns and debris type. Wave effects on marine debris density were examined using a GIS-based forecasting tool. We assessed the influence of site wave exposure, period, and height on debris quantity. Presence and abundance of debris were related to wave exposure, vegetation type and proximity of the strata to human population and human use patterns. Plastic pieces accounted for the majority of all debris. Small debris (0-5 cm) was primarily composed of foam pieces and was frequently affiliated with natural wrack. Large debris (>100 cm) was encountered in all marsh habitat types surveyed and was primarily composed of anthropogenic wood and derelict fishing gear. Marsh cleanup efforts should be targeted to specific habitat types or debris types to minimize further damage to sensitive habitats.

  19. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  20. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may...

  1. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  2. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may...

  3. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  4. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  5. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may...

  6. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  7. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  8. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may...

  9. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  10. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may...

  11. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored,...

  12. Debris Disks Around Nearby Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Michael

    2006-07-01

    We propose to obtain HST/ACS F606W coronagraphic imaging of two young {10-50 Myr}, nearby {25-55 pc} M dwarfs to resolve their debris disks in scattered light. Little is known about debris disks around M dwarfs, as very few examples are known and only one, the AU Mic debris disk, has been spatially resolved thus far. IR/sub-mm photometry of our targets indicate large quantities of exceptionally cold dust, comparable to the prototype AU Mic system, and make them excellent candidates for resolved studies with physical resolutions of 1-2 AU. HST/ACS provides an excellent capability for detection of disks in scattered light. Modeling the disk images will allow us to quantify the radial and vertical structure and to search for disk sub-structure, a potential probe of the planet formation process in these young systems. Our program can expand the census of young resolved debris disks, of which very few are currently known. M dwarfs have been largely over-looked in myriad imaging searches: our program will complement the many current programs focusing on the higher-mass AFGK stars. Because our targets belong to nearby young moving groups with known resolved disks around higher mass stars, a key potential outcome of our program is comparative study of coeval debris disks over a range of stellar masses.

  13. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Debris-flow mobilization from landslides

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  15. Comparison of national space debris mitigation standards

    NASA Astrophysics Data System (ADS)

    Kato, A.

    2001-01-01

    Several national organizations of the space faring nations have established Space Debris Mitigation Standards or Handbooks to promote efforts to deal with the space debris issue. This paper introduces the characteristics of each document and compares the structure, items and level of requirements. The contents of these standards may be slightly different from each other but the fundamental principles are almost the same; they are (1) prevention of on-orbit breakups, (2) removal of mission terminated spacecraft from the useful orbit regions, and (3) limiting the objects released during normal operations. The Inter-Agency Space Debris Coordination Committee has contributed considerably to this trend. The Committee also found out by its recent survey that some commercial companies have begun to adopt the debris mitigation measures for their projects. However, the number of organizations that have initiated this kind of self-control is still limited, so the next challenge of the Committee is to promote the Space Debris Mitigation Guidelines world-wide. IADC initiated this project in October 1999 and a draft is being circulated among the member agencies.

  16. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  17. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  18. ESA Technologies for Space Debris Remediation

    NASA Astrophysics Data System (ADS)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  19. Orbiting meteoroid and debris counting experiment

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Armstrong, Dwayne; Crockett, Sharon K.; Jones, James L., Jr.; Kassel, Philip C., Jr.; Wortman, J. J.

    1995-01-01

    The Orbiting Meteoroid and Debris Counting Experiment (OMDC) flew for approximately 90 days in a highly elliptical earth orbit onboard the Clementine Interstage Adapter (ISA) Spacecraft. This experiment obtained data on the impact flux of natural micrometeoroids and it provided limited information on the population of small mass man-made debris as a function of altitude in near earth space. The flight of the OMDC experiment on the ISA spacecraft also demonstrated that the ultra-lightweight, low-power, particle impact detector system that was used is a viable system for flights on future spacecraft to monitor the population of small mass man-made debris particles and to map the cosmic dust environment encountered on interplanetary missions. An overview of the ISA spacecraft mission, the approach to the OMDC experiment, and the data obtained by the experiment are presented.

  20. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.

  1. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave

    1990-01-01

    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.

  2. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  3. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  4. 11. DETAILS: CONCRETE SHEET PILING, CORNERS #4 & #6, DWG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAILS: CONCRETE SHEET PILING, CORNERS #4 & #6, DWG. NO. 11, 1-1/2" = 1 FT., FEB. 12, 1908, MADE BY E.C.L., APPROVED BY O.F. LACKEY - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  5. OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND MINE MANAGER'S HOME, LOOKING SOUTH SOUTHEAST. RIGHT, TAILINGS PILES ARE AT CENTER WITH CYANIDE PLANT FOUNDATIONS TO THE LEFT OF THE PILES. PARKING LOT IS AT UPPER LEFT. THE AREA BETWEEN THE COLLAPSED TANK AT CENTER LEFT AND THE REMAINS OF THE MANAGER'S HOUSE AT LOWER RIGHT IS A TAILINGS HOLDING AREA. TAILINGS FROM THE MILL WERE HELD HERE. THE LARGE SETTLING TANKS WERE CHARGED FROM THIS HOLDING AREA BY A TRAM ON RAILS AND BY A SLUICEWAY SEEN AS THE DARK SPOT ON THE CENTER LEFT EDGE OF THE FRAME. AFTER THE TAILINGS WERE LEACHED, THEY WERE DEPOSITED ON THE LARGE WASTE PILE AT CENTER RIGHT. THE TANK AT CENTER RIGHT EDGE IS WHERE THE WATER PIPELINE ENTERED THE WORKS. A STRAIGHT LINE OF POSTS IN THE GROUND GO ACROSS THE CENTER FROM LEFT TO RIGHT, WHICH ORIGINALLY SUSPENDED THE WATER PIPELINE GOING FROM THE WATER HOLDING TANK AT RIGHT UP TO THE SECONDARY WATER TANKS ABOVE THE MILL. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  6. SPH simulations of impacts on rubble pile asteroids

    NASA Astrophysics Data System (ADS)

    Deller, J.; Lowry, S.; Price, M. C.; Sierks, H.; Snodgrass, C.

    2013-09-01

    Many rubble pile asteroids with low bulk densities, like Itokawa, must include a high level of macroporosity, probably more than 40% [1]. Although little is known about their internal structure, numerical simulations of impact events on these rubble pile asteroids rely on assumptions on how the voids are distributed. While most hydrocodes do not distinguish between microand macroporosity, Benavidez et al. [2] introduced a rubble pile model where the asteroid is represented as a spherical target shell filled with an uneven distribution of basalt spheres ranging in radius from 8% to 20% of the asteroid's radius. In this study, we present a new approach to create rubble pile simulants for the use in impact simulations and quantify the dependence of impact outcomes on the internal structure of the target. The formation of the asteroid is modelled as a gravitational aggregation of spherical 'pebbles', that form the building blocks of our target. This aggregate is then converted into a high-resolution Smoothed Particle Hydrodynamics (SPH) model, which also accounts for macroporosity inside the pebbles'. To simulate high-velocity impacts on these models, we use the SPH solver in the code Autodyn. We will compare impact event outcomes for a large set of internal configurations to explore the parameter space of our model-building process. The analysis of the fragment size distribution and the disruption threshold will quantify the specific influence of each set-up parameter. This work is ongoing and we will present preliminary results at the meeting.

  7. 11. Historic drawing, Pier 10. Plan of deck and pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Historic drawing, Pier 10. Plan of deck and pilings, 1932. Photographic copy of original. Boston National Historical Park Archives, Charlestown Navy Yard. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  8. VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WESTSOUTHWEST, BASEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PROCESS DEVELOPMENT PILE (PDP) TANK, LOOKING WEST-SOUTHWEST, BASEMENT LEVEL -15’. EDGE O FRESONANCE TEST REACTOR (RTR), LATER KNOWN AS LATTICE TEST REACTOR (LTR), VISIBLE TO RIGHT OF PDP TANK - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. 8. Historic view, Pier 9. Plan of deck and pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic view, Pier 9. Plan of deck and pilings, 1932. Photographic copy of original. Boston National Historical Park Archives, Charlestown Navy Yard. - Charlestown Navy Yard, Pier 9, Between Piers 8 & 10, along Mystic River on Charlestown Waterfront at eastern edge of Navy Yard, Boston, Suffolk County, MA

  10. Suppression of Pile-Up Noise in a Jet Cone

    NASA Astrophysics Data System (ADS)

    Savine, Alexandre

    2002-01-01

    Multiple low-pT (min-bias) interactions within a beam crossing at a high luminosity hadronic collider contribute to pile-up noise in the calorimetric measurements of jets. I show how to minimize this noise by taking advantage of correlations in these background events. Substantial reductions are possible.

  11. 3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF EMPIRE STATE MINE WITH TAILING PILE IN BOTTOM LEFT AND COLLAPSED ADIT LOCATED BELOW DARK SHADOWS IN FAR RIGHT/LOWER THIRD. COLLAPSED BUILDING AND PARTIAL VIEW OF ORE CHUTE/BIN IS VISIBLE ON HILLSIDE ABOVE TAILINGS. CAMERA POINTED NORTH/NORTHWEST. - Florida Mountain Mining Sites, Empire State Mine, West side of Florida Mountain, Silver City, Owyhee County, ID

  12. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  13. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  14. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  15. 29 CFR 1926.1439 - Dedicated pile drivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Dedicated pile drivers. 1926.1439 Section 1926.1439 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction §...

  16. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outslope of the refuse pile if required for stability, control of erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  17. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outslope of the refuse pile if required for stability, control of erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  18. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... outslope of the refuse pile if required for stability, control or erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  19. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... outslope of the refuse pile if required for stability, control or erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  20. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... outslope of the refuse pile if required for stability, control of erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  1. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outslope of the refuse pile if required for stability, control or erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  2. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outslope of the refuse pile if required for stability, control or erosion, conservation of soil moisture... weather seeps, the design shall include diversions and underdrains as necessary to control erosion... area stabilization. Slope protection shall be provided to minimize surface erosion at the site....

  3. 1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE IN LEFT BACKGROUND. TIPPLE AND CLEANING PLANT TO RIGHT. IN CENTER IS A TANK USED FOR TREATING MINE REFUSE AND ACID RUNOFF. - Eureka No. 40, Tipple & Cleaning Plant, East of State Route 56, north of Little Paint Creek, Scalp Level, Cambria County, PA

  4. Enhanced In-pile Instrumentation for Material Testing Reactors

    SciTech Connect

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

    2012-07-01

    An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

  5. Detail section extending from shore. Note the paired support pilings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail section extending from shore. Note the paired support pilings, concrete curbs with rectangular openings for drainage, and large-diameter metal pipe suspended under the deck. USS MISSOURI in background - U.S. Naval Base, Pearl Harbor, Gasoline Wharf, Offshore, near the intersection of Hornet Avenue & Curtis Street, Ford Island, Pearl City, Honolulu County, HI

  6. Dynamic Response of Intact Piles to Impulse Loads

    NASA Astrophysics Data System (ADS)

    Liao, Shutao T.; Roesset, Jose M.

    1997-04-01

    The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in estimating the length and cross-sectional area of intact piles. Three-dimensional (3-D) axisymmetric finite element models were developed to simulate the testing. The results obtained were compared to one-dimensional solutions to evaluate the importance of 3-D effects. Extensive parametric studies were then performed on piles without defects. In each parametric study, the results from the direct use of time histories of displacements or velocities, the mobility function and the Fourier transform of the recorded displacements (impact-echo method) were compared in order to assess their relative advantages and disadvantages. The effects of the relative stiffness of the surrounding soil to that of the pile and of the embedment depth were also investigated for all three methods. In a companion paper the use of these procedures to detect defects such as bulbs (increases in the cross-sectional area of the pile) or necks (decreases in area) is studied. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 255-275 (1997)

  7. Hot Spots from Dislocation Pile-up Avalanches

    NASA Astrophysics Data System (ADS)

    Armstrong, Ronald; Grise, William

    2005-07-01

    The model of hot spots developed at dislocation pile-up avalanches has been employed to explain both: greater drop- weight heights being required to initiate chemical decomposition of smaller crystals [1]; and, the susceptibility to shear banding of energetic and reference inert materials, for example, adiabatic shear banding in steel [2]. The evidence for RDX (cyclotrimethylenetrinitramine) is that few dislocations are needed in the pile-ups thus providing justification for assessing dynamic pile-up release on a numerical basis for few dislocation numbers [3]. For release from a viscous obstacle, previous and new computations lead to a local temperature plateau occurring at the origin of pile-up release [4], in line with the physical concept of a hot spot. [1] R.W. Armstrong, C.S. Coffey, V.F. DeVost and W.L. Elban, J. Appl. Phys. 68 (1990) 979. [2] R.W. Armstrong and F.J. Zerilli, Mech. Mater. 17 (1994) 319. [3] R.W. Armstrong, Proc. Eighth Intern. Seminar: New Trends in Research of Energetic Materials, April 19- 21, 2005, Pardubice, CZ. [4] W.R. Grise, NRC/AFOSR Summer Faculty Fellowship Program, AFRL/MNME, Eglin Air Force Base, FL, 2003.

  8. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario. PMID:25234870

  9. The impact of wind energy turbine piles on ocean dynamics

    NASA Astrophysics Data System (ADS)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  10. 61. Picking Floor, Large Pile of Waste Rock and Wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Picking Floor, Large Pile of Waste Rock and Wood date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  11. 30 CFR 77.215 - Refuse piles; construction requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Refuse piles; construction requirements. 77.215 Section 77.215 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... controlling or extinguishing a fire. (c) Clay or other sealants shall be used to seal the surface of...

  12. Behavior of pile group with elevated cap subjected to cyclic lateral loads

    NASA Astrophysics Data System (ADS)

    Chen, Yun-min; Gu, Ming; Chen, Ren-peng; Kong, Ling-gang; Zhang, Zhe-hang; Bian, Xue-cheng

    2015-06-01

    The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.

  13. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  14. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  15. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  18. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  19. Discrete Element Modelling of Floating Debris

    NASA Astrophysics Data System (ADS)

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed

    2016-04-01

    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  20. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  1. Patterns In Debris Disks: No Planets Required?

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  2. Field monitoring of static, dynamic, and statnamic pile loading tests using fibre Bragg grating strain sensors

    NASA Astrophysics Data System (ADS)

    Li, Jin; Correia, Ricardo P.; Chehura, Edmon; Staines, Stephen; James, Stephen W.; Tatam, Ralph; Butcher, Antony P.; Fuentes, Raul

    2009-10-01

    Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown.

  3. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  4. Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

    SciTech Connect

    Mueller, Robert P.; Simmons, Mary Ann

    2007-12-29

    The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).

  5. Evaluation of in-pile and out-of-pile stress relaxation in 316L stainless steel under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Kikuchi, Masahiko; Kita, Satoshi; Yonekawa, Minoru; Nakano, Junichi; Tsuji, Hirokazu; Nakajima, Hajime

    2002-12-01

    Stress relaxation of tensile type specimens under fast neutron irradiation at 288 °C has been studied for 316L stainless steel (SS) in the Japan Materials Testing Reactor. In-pile stress-relaxation tests were carried out at fast neutron fluence levels of 1.3×10 24, 5.5×10 24 and 1.5×10 25 n/m 2 ( E>1 MeV). These tests were carried out at the applied total strain levels of 0.06%, 0.1%, 0.3% and 0.75%. In order to evaluate the thermal stress-relaxation behavior and to distinguish it from the irradiation induced stress-relaxation behavior, out-of-pile stress-relaxation tests were also performed at 288 °C in air using an electric furnace. This paper describes results of in-pile and out-of-pile stress-relaxation tests on 316L SS tensile specimens. These results are compared with the literature data by Foster et al. [J. Nucl. Mater. 252 (1998) 89] which were mainly obtained from bend beam specimens. Moreover, these experimental results are compared with analytical results obtained using Nagakawa's model [J. Nucl. Mater. 212-215 (1994) 541].

  6. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  7. Blast deflector traps smoke and debris from explosive trains

    NASA Technical Reports Server (NTRS)

    Wilkowski, J. C.

    1968-01-01

    Blast deflector protects interior areas and personnel from the smoke and debris of explosive trains. It contains open-cell foam to absorb the pressure loads generated by explosive charges and control the smoke and debris.

  8. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.

  9. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  10. An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand

    PubMed Central

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  11. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  12. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    NASA Astrophysics Data System (ADS)

    Silva, I. Matías; Combe, Gaël; Foray, Pierre; Flin, Frédéric; Lesaffre, Bernard

    2013-06-01

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 μm were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  13. An Overview of NASA's Oribital Debris Environment Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.

  14. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  15. Activity of the Russian Federation on the Space Debris Problems

    NASA Astrophysics Data System (ADS)

    Loginov, S.; Yakovlev, M.; Mikhailov, M.; Garlov, A.; Feldstein, V.; Oleynikov, I.; Makarov, Y.; Bulynin, Y.; Trushlyakov, V.

    2013-08-01

    Research of space debris problems in the Russian Federation is carried out in following aspects 1) observation, 2) modelling, 3) protection and 4) mitigation. The Russian Federation is devoted to the international efforts on space debris problem resolution and is already implementing practical steps on space debris mitigation on a voluntary basis within its own national mechanisms taking into account the COPUOS UN and IADC Space Debris Mitigation Guidelines.

  16. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2013-01-01

    Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.

  17. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.

  18. Procedure for estimating orbital debris risks

    NASA Technical Reports Server (NTRS)

    Crafts, J. L.; Lindberg, J. P.

    1985-01-01

    A procedure for estimating the potential orbital debris risk to the world's populace from payloads or spent stages left in orbit on future missions is presented. This approach provides a consistent, but simple, procedure to assess the risk due to random reentry with an adequate accuracy level for making programmatic decisions on planned low Earth orbit missions.

  19. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  20. Signposts of Multiple Planets in Debris Disks

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; Rieke, G. H.

    2014-01-01

    We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.

  1. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  2. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  3. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  4. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  5. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  6. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  7. An Overview of NASA's Orbital Debris Engineering Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).

  8. A new debris sensor based on dual excitation sources for online debris monitoring

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian

    2015-09-01

    Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.

  9. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  10. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  11. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  12. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  13. Impact simulations on the rubble pile asteroid (2867) Steins

    NASA Astrophysics Data System (ADS)

    Deller, Jakob; Lowry, Stephen; Snodgrass, Colin; Price, Mark; Sierks, Holger

    2015-04-01

    Images from the OSIRIS camera system on board the Rosetta spacecraft (Keller et al. 2010) have revealed several interesting features on asteroid (2867) Steins. Its macro porosity of 40%, together with the shape that looks remarkably like a YORP evolved body, both indicate a rubble pile structure. A large crater on the southern pole is evidence for collisional evolution of this rubble pile asteroid. We have developed a new approach for simulating impacts on asteroid bodies that connects formation history to their collisional evolution. This is achieved by representing the interior as a 'rubble pile', created from the gravitational aggregation of spherical 'pebbles' that represent fragments from a major disruption event. These 'pebbles' follow a power-law size function and constitute the building blocks of the rubble pile. This allows us to explicitly model the interior of rubble pile asteroids in hyper-velocity impact simulations in a more realistic way. We present preliminary results of a study validating our approach in a large series of simulated impacts on a typical small main-belt rubble pile asteroid using the Smoothed Particle Hydrodynamics solver in LS-DYNA. We show that this approach allows us to explicitly follow the behavior of a single 'pebble', while preserving the expected properties of the bulk asteroid as known from observations and experiments (Holsapple 2009). On the example of Steins, we use this model to relate surface features like the northern hill at 75/100 degrees lon/lat distance to the largest crater (Jorda et al. 2012), or the catena of depletion pits, to the displacement of large fragments in the interior of the asteroid during the impact. We do this by following the movement of pebbles below the surface feature in simulations that recreate the shape of the impact crater. We show that while it is not straightforward to explain the formation of the hill-like structure, the formation of cracks possibly leading to depletion zones can be

  14. Picking up Clues from the Discard Pile (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through its left eye and right eye that have been combined into this stereo view. The image appears three dimensional when seen through red-blue glasses.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA

  15. Photometric Studies of Orbital Debris at GEO

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick; Cowardin, H. M.; Barker, E.; Abercromby, K. J.; Foreman, G.; Horstman, M.

    2010-01-01

    Orbital debris represents a significant risk to operational spacecraft. We report on BVRI observations from the Cerro Tololo Inter-American Observatory (CTIO) to determine the characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Calibrated sequences in R-B-V-I-R filters for 50 objects have been obtained with the 0.9-m. The colors are largely redder than solar in both B-R and R-I for objects with small brightness variations. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. We have observed a subset of objects with synchronized CCD cameras on the two telescopes. The 0.9-m observes in B, and the Schmidt in R. The cameras are linked together so that the start time and exposure duration are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece. We will compare our observations with laboratory measurements of selected pieces of actual spacecraft materials. This work is supported by NASA's Orbital Debris Program Office.

  16. Evaluating tsunami hazards from debris flows

    NASA Astrophysics Data System (ADS)

    Walder, J.; Watts, P.

    2003-04-01

    Water-wave hazards associated with debris flows entering water depend on the location of the affected area relative to the debris-flow entry point. Three distinct regions (splash zone, near field, and far field) may be identified may be identified on hydrodynamic grounds. The splash zone is nearly always small compared to the overall domain of interest. In the case of debris-flow generated tsunamis in lakes and reservoirs, commonly the entire water body lies within the near field, that is, beyond the zone of complex splashing but close enough to the source that wave-propagation effects do not predominate, in contrast to the case of tsunamis in the ocean. Scaling analysis of the equations governing water-wave propagation shows that near-field wave amplitude and wavelength should depend on specific measures of debris-flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two sets of flume experiments with solid-block "wavemakers." To first order, measured near-field wave amplitude/water depth depends simply on a dimensionless measure of the quantity (submerged travel time/wavemaker volume per unit width). This functional relationship also does a good job of describing wave-amplitude data from previous laboratory investigations with both rigid and deformable wavemakers. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wavemaker travel time, which is itself given approximately by a simple function of wavemaker length/water depth. Wavemaker shape and rigidity do not otherwise influence wave features. These scaling relations for near-field amplitude, wavelength, and submerged travel time, when combined with a correction for near-field wavefront speading in actual water bodies (which are rarely flume-like), allow us to construct a proxy source for computational tsunami propagation. We apply our results to assess hazards associated with potential debris

  17. Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis

    NASA Technical Reports Server (NTRS)

    Hahn, Joseph M.; Rettig, Terrence W.

    1998-01-01

    A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.

  18. Protecting the mitochondrial powerhouse.

    PubMed

    Scheibye-Knudsen, Morten; Fang, Evandro F; Croteau, Deborah L; Wilson, David M; Bohr, Vilhelm A

    2015-03-01

    Mitochondria are the oxygen-consuming power plants of cells. They provide a critical milieu for the synthesis of many essential molecules and allow for highly efficient energy production through oxidative phosphorylation. The use of oxygen is, however, a double-edged sword that on the one hand supplies ATP for cellular survival, and on the other leads to the formation of damaging reactive oxygen species (ROS). Different quality control pathways maintain mitochondria function including mitochondrial DNA (mtDNA) replication and repair, fusion-fission dynamics, free radical scavenging, and mitophagy. Further, failure of these pathways may lead to human disease. We review these pathways and propose a strategy towards a treatment for these often untreatable disorders.

  19. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    PubMed

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna. PMID:27574986

  20. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986