Sample records for ppb cs ppm

  1. Concentrations of trace elements in Great Lakes fishes

    USGS Publications Warehouse

    Lucas, Henry F.; Edgington, David N.; Colby, Peter J.

    1970-01-01

    The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.

  2. Elemental distribution in seaweed, Gelidium abbottiorum along the KwaZulu-Natal Coastline, South Africa.

    PubMed

    Misheer, Natasha; Kindness, Andrew; Jonnalagadda, Sreekanth B

    2006-01-01

    The total concentrations of 7 selected metals, namely manganese, iron, zinc, titanium, boron, arsenic and mercury, were monitored for one annual cycle covering four seasons in the seaweed, Gelidium abbottiorum, at four sampling sites at Zinkwasi, Ballito, Treasure beach and Park Rynie along the South-East coastline of KwaZulu-Natal, South Africa to assess the current status of the marine environment. Inductively Coupled Plasma Optical Emission Spectrophotometry, Mercury Cold Vapour AAS, and Hydride Generation AAS were used for the determination of metal concentrations. Mn concentrations were particularly high in the G. abbottiorum species, followed by Fe, As and B concentrations which were in the 3-8 ppm range. Ti and Zn were in the 100-400 ppb range, while Hg was low and below 100 ppb. A typical sample of G. abbottiorum at Treasure beach, a site close to Durban metropolis in winter had Mn (8.6 ppm), Fe (4.6 ppm), As (5.6 ppm), B (3.0 ppm), Ti (420 ppb), Zn (167 ppb) and Hg (7.5 ppb). All metals recorded a decrease in concentrations from winter to spring with the exception of Hg. The Hg levels increased considerably from winter to spring.

  3. High-precision quasi-continuous atmospheric greenhouse gas measurements at Trainou tower (Orléans forest, France)

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Lopez, M.; Yver Kwok, C.; Messager, C.; Ramonet, M.; Wastine, B.; Vuillemin, C.; Truong, F.; Gal, B.; Parmentier, E.; Cloué, O.; Ciais, P.

    2014-07-01

    Results from the Trainou tall tower measurement station installed in 2006 are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and radon-222 activity. Air is sampled from four sampling heights (180, 100, 50 and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53" N, 2°06'45" E, 131 m a.s.l.). The station is equipped with a custom-built CO2 analyser (CARIBOU), which is based on a commercial non-dispersive, infrared (NDIR) analyser (Licor 6252), and a coupled gas chromatography (GC) system equipped with an electron capture detector (ECD) and a flame ionization detector (FID) (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. The ultimately achieved short-term repeatability (1 sigma, over several days) for the GC system is 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) central laboratory for the same species as well for stable isotopes of CO2. The comparison between in situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.40 ppm for CO2, 0.7 ± 7.3 ppb for CH4, 0.6 ± 0.6 ppb for N2O, 0.01 ± 0.10 ppt for SF6, 1.5± 5.3 ppb for CO and 4.8± 6.9 ppb for H2 for the years 2008-2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr-1 for CO2, 4 ppb yr-1 for CH4, 0.78 ppb yr-1 for N2O and 0.29 ppt yr-1 for SF6. For all species, the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during nighttime whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.

  4. A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines

    PubMed Central

    Tang, Zhonglin; Yang, Jianhua; Yu, Junyun; Cui, Bo

    2010-01-01

    We have developed a novel colorimetric sensor based on a digital camera and white LED illumination. Colorimetric sensor arrays (CSAs) were made from a set of six chemically responsive dyes impregnated on an inert substrate plate by solution casting. Six common amine aqueous solutions, including dimethylamine, triethylamine, diisopropylamine, aniline, cyclohexylamine, and pyridine vaporized at 25 °C and six health-related trimethylamine (TMA) concentrations including 170 ppm, 51 ppm, 8 ppm, 2 ppm, 125 ppb and 50 ppb were analyzed by the sensor to test its ability for the qualitative discrimination and quantitative detection of volatile amines. We extracted the feature vectors of the CSA's response to the analytes from a fusional color space, which was obtained by conducting a joint search algorithm of sequential forward selection and sequential backward selection (SFS&SBS) based on the linear discriminant criteria (LDC) in a mixed color space composed of six common color spaces. The principle component analysis (PCA) followed by the hierarchical cluser analysis (HCA) were utilized to discriminate 12 analytes. Results showed that the colorimetric sensor grouped the six amine vapors and five TMA concentrations correctly, while TMA concentrations of 125 ppb and 50 ppb were indiscriminable from each other. The limitation of detection (LOD) of the sensor for TMA was found to be lower than 50 ppb. The CSAs were reusable for TMA concentrations below 8 ppm. PMID:22163560

  5. Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air.

    PubMed

    Mallik, Arun Kumar; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2018-01-26

    A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH 3 ) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication.

  6. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    NASA Technical Reports Server (NTRS)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  7. Effects of aflatoxin and carotenoids on growth performance and immune response in mule ducklings.

    PubMed

    Cheng, Y H; Shen, T F; Pang, V F; Chen, B J

    2001-01-01

    The purpose of this study was to investigate if carotenoids could alleviate the adverse effects caused by aflatoxin with respect to growth performance and immune response. In two experiments, a total of 320 mule ducklings were assigned to 5 treatments, i.e. control, aflatoxin B(1) (AFB(1)) 200 ppb, AFB(1) +beta-carotene (BC) 200 ppm, AFB(1)+BC 400 ppm, and AFB(1)+astaxanthin (AS) 200 ppm. In experiment 1, the addition of beta-carotene or astaxanthin in the diet containing AFB(1) 200 ppb resulted in a significant decrease in average daily gain as compared with the control. AFB(1) 200 ppb alone and the addition of BC or AS on top of AFB(1) resulted in a significantly lower daily feed intake than for the control group. There were no significant differences in relative organ weights among treatment groups. Both treatments of BC 400 ppm and AS 200 ppm had significantly more macrophages harvested per duck than the control and AFB(1) 200 ppb treatments. However, there were no significant differences among treatments in percentages of phagocytotic macrophages and number of Candida albican phagocytized by phagocytotic macrophages. In experiment 2, blood biochemical parameters and antibody titers were evaluated. There were no significant differences among treatments in total bilirubin content and alkaline phosphatase activity in the serum or in antibody titers against fowl cholera. However, AFB(1) treatment had the highest activities of AST and ALT in the serum. The addition of BC 400 ppm on top of AFB(1) significantly reduced ALT activity as compared with the AFB(1) 200 ppb treatment. These results suggest that carotenoids could provide a slightly toxic alleviating effect on growth performance, enhance the chemotaxis ability of macrophages, and reduce ALT activity elevated by AFB(1).

  8. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat

    PubMed Central

    Jiang, Wenhui; Liu, Tianxiang; Nan, Wenzhi; Jeewani, Diddugodage Chamila; Niu, Yanlu; Li, Chunlian; Shi, Xue; Wang, Cong; Wang, Jiahuan; Li, Yang; Wang, Zhonghua

    2018-01-01

    Abstract Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production. PMID:29562292

  9. Distribution of trace gases and aerosols in the Siberian air shed during wildfires of summer 2012

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Paris, Jean-Daiel; Nedelec, Philippe; Antokhin, Pavel N.; Arshinova, Victoriya; Arshinov, Mikhail Yu.; Belan, Sergey B.; Davydov, Denis K.; Ivlev, Georgii A.; Fofonov, Alexandre V.; Kozlov, Artem V.; Rasskazchikova, Tatyana M.; Savkin, Denis E.; Simonenkov, Denis V.; Sklyadneva, Tatyana K.; Tolmachev, Gennadii N.

    2017-04-01

    During the last two decades, three strong biomass burning events have been observed in Russia: two of them in 2002 and 2010 in the European part of Russia, and another one in 2012 in West and East Siberia. In this paper we present results of the extensive airborne study of the vertical distribution of trace gases and aerosols carried out during strong wildfire event happened in summer 2012 in Siberia. For this purpose, the Optik TU-134 aircraft laboratory was used as a research platform. A large-scale airborne campaign has been undertaken along the route Novosibirsk-Mirny-Yakutsk-Bratsk-Novosibirsk on 31st of July and 1st of August, 2012. Flight pattern consisted of a number of ascents and descents between close to the ground and 8 km altitude that enabled 20 vertical profiles to be obtained. Campaign was conducted under the weather conditions of low-gradient baric field that determined the low speed transport of air masses, as well as the accumulation of biomass burning emissions in the region under study. Highest concentrations of CO2, CH4 and CO over wildfire spots reached 432 ppm, 2367 ppb, and 4036 ppb, correspondingly. If we exclude from the analysis the data obtained when crossing smoke plumes, we can find a difference between background concentrations measured in the atmosphere over regions affected by biomass burning and clean areas. Enhancement of CO2 over the wildfire areas changed with altitude. On average, it was 10.5 ppm in the atmospheric boundary layer (ABL) and 5-6 ppm in the free troposphere. Maximum CO2 enhancements reached 27 ppm and 24 ppm, correspondingly. The averaged CH4 enhancement varied from 75 ppb in the boundary layer to 30 ppb in the upper troposphere, and a little bit lower than 30 ppb in the middle troposphere. Maximum CH4 enhancements reached 202 ppb, 108 ppb, and 50-60 ppb, correspondingly. The averaged and maximum enhancements of CO differed by an order of magnitude. Thus, in the ABL the maximum difference in concentration between clean and wildfire areas reached 2300 ppb, while averaged one was 170 ppb. In the middle troposphere maximum enhancements varied from 1000 to 1700 ppb. The vertical distribution of ozone has its own peculiarities. Ozone concentration decreased in the layers with enhanced aerosol concentration and it increased in the areas with lower aerosol content. At the same time, photochemical production ozone was observed at the plume edges in the zone of fresh air entrainment. This work was supported by the Russian Foundation for Basic Research (grant No 17-05-00374).

  10. Seaweeds along KwaZulu-Natal coast of South Africa-3: elemental uptake by Ulva lactuca (Sea lettuce).

    PubMed

    Misheer, Natasha; Kindness, A; Jonnalagadda, S B

    2006-01-01

    The elemental uptake by Ulva lactuca (Sea lettuce), a marine macro-algae (chlorophyta, green alga) grown richly along KwaZulu-Natal coastline. The total elemental concentrations of seven important elements, namely manganese, iron, arsenic, boron, titanium, zinc and mercury, selected based on their abundance in U. lactuca were investigated for one year cycle (June 2002 to May 2003). The four selected sampling sites, Zinkwasi, Ballito, Treasure Beach and Park Ryrie are spread over 150 km wide along the KwaZulu-Natal coastline from North to South. The Ulva lectuca possess good manganese and arsenic accumulating ability and an excellent bio-indicator for most of the metals studied. A typical U. lectuca sample at Zinkwasi (in winter) recorded Mn (25.3 +/- 1.16 ppm), Fe (21.0 +/- 0.85 ppm), As (6.2 +/- 0.30 ppm), B (935 +/- 14 ppb), Ti (863 +/- 34 ppb), Zn (421 +/- 21 ppb), and Hg (61.3 +/- 1.2 ppb). The general trend found at all sites was high elemental concentrations in winter and a decrease in concentrations from winter to spring and summer. Iron uptake was lowest in summer and autumn at all sites. Ulva lactuca recorded highest mercury levels (>400 ppb) during the spring season at the Treasure Beach site near Durban.

  11. A modeling analysis of alternative primary and secondary US ozone standards in urban and rural areas

    NASA Astrophysics Data System (ADS)

    Nopmongcol, Uarporn; Emery, Chris; Sakulyanontvittaya, Tanarit; Jung, Jaegun; Knipping, Eladio; Yarwood, Greg

    2014-12-01

    This study employed the High-Order Decoupled Direct Method (HDDM) of sensitivity analysis in a photochemical grid model to determine US anthropogenic emissions reductions required from 2006 levels to meet alternative US primary (health-based) and secondary (welfare-based) ozone (O3) standards. Applying the modeling techniques developed by Yarwood et al. (2013), we specifically evaluated sector-wide emission reductions needed to meet primary standards in the range of 60-75 ppb, and secondary standards in the range of 7-15 ppm-h, in 22 cities and at 20 rural sites across the US for NOx-only, combined NOx and VOC, and VOC-only scenarios. Site-specific model biases were taken into account by applying adjustment factors separately for the primary and secondary standard metrics, analogous to the US Environmental Protection Agency's (EPA) relative response factor technique. Both bias-adjusted and unadjusted results are presented and analyzed. We found that the secondary metric does not necessarily respond to emission reductions the same way the primary metric does, indicating sensitivity to their different forms. Combined NOx and VOC reductions are most effective for cities, whereas NOx-only reductions are sufficient at rural sites. Most cities we examined require more than 50% US anthropogenic emission reductions from 2006 levels to meet the current primary 75 ppb US standard and secondary 15 ppm-h target. Most rural sites require less than 20% reductions to meet the primary 75 ppb standard and less than 40% reductions to meet the secondary 15 ppm-h target. Whether the primary standard is protective of the secondary standard depends on the combination of alternative standard levels. Our modeling suggests that the current 75 ppb standard achieves a 15 ppm-h secondary target in most (17 of 22) cities, but only half of the rural sites; the inability for several western cities and rural areas to achieve the seasonally-summed secondary 15 ppm-h target while meeting the 75 ppb primary target is likely driven by higher background O3 that is commonly reported in the western US. However, a 70 ppb primary standard is protective of a 15 ppm-h secondary standard in all cities and 18 of 20 rural sites we examined, and a 60 ppb primary standard is protective of a 7 ppm-h secondary standard in all cities and 19 of 20 rural sites. If EPA promulgates separate primary and secondary standards, exceedance areas will need to develop and demonstrate control strategies to achieve both. This HDDM analysis provides an illustrative screening assessment by which to estimate emissions reductions necessary to satisfy both standards.

  12. Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection.

    PubMed

    Fallows, Eric A; Cleary, Thomas G; Miller, J Houston

    2009-02-01

    A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO(2), HCN, and C(2)H(2), near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO(2), HCN, and C(2)H(2) were obtained every 25-30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420 parts in 10(6) (ppm) CO, 1600 ppm CO(2), 530 parts in 10(9) (ppb) HCN, and 440 ppb C(2)H(2). Peak gas concentrations from the small room were 270 ppm CO, 2100 ppm CO(2), and 310 ppb C(2)H(2).

  13. Health assessment for Tyler Refrigeration Pit, Smyrna, Delaware, Region 3. CERCLIS No. DED980705545. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tyler Refrigeration Pit site from 1952 until 1969 was used to dispose of metal cleaning solvents and paint room wastes. On-site contamination consists of toluene (25 ppm), 1,1-dichloroethane (10 ppm), and 1,1,1-trichloroethane (15 ppm) in soil. Off-site contamination consists of trichloroethylene (70 ppb) in groundwater. The presence of trichloroethylene in the public water supply, exceeding the Safe Drinking Water Act's Maximum Contaminant Level of 5 ppb, is considered to be a public health threat. From the information available, ATSDR cannot comment on the public health implications of the Tyler Refrigeration Pit.

  14. Enhanced Raman Monitor Project

    NASA Technical Reports Server (NTRS)

    Westenskow, Dwayne

    1996-01-01

    Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.

  15. Traffic-related air pollution: Exposure and health effects in Copenhagen street cleaners and cemetery workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raaschou-Nielsen, O.; Nielsen, M.L.; Gehl, J.

    This questionaire-based study found a significantly higher prevalence of chronic bronchitis, asthma, and several other symptoms in 116 Copenhagen street cleaners who were exposed to traffic-related air pollution at levels that were slightly lower than the 1987 World Health Organization-recommended threshold values, compared with 115 Copenhagen cemetery workers exposed to lower pollution levels. Logistic regression analysis, controlling for age and smoking, was conducted, and odds ratios and 95% confidence intervals were calculated to be 2.5 for chronic bronchitis (95% confidence interval = 1.2-5.1), 2.3 for asthma (95% confidence interval = 1.0-5.1), and 1.8-7.9 for other symptoms (95% confidence interval =more » 1.0-28.2). Except for exposure to air pollution, the two groups were comparable, i.e., they had similar terms of employment and working conditions. the exposure ranges during an 8-h work day, averaged from readings taken at five monitored street positions, were: 41-257 ppb nitric oxide (1-h max: 865 ppb); 23-43 ppb nitrogen dioxide (1-h max: 208 ppb); 1.0-4.3 ppm carbon monoxide (8-h max: 7.1 ppm); 14-28 ppb sulfur dioxide (1-h max; 112 ppb); and 10-38 ppb ozone (1-h max: 72 ppb). 33 refs., 7 tabs.« less

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, H.E.; Weaver, T.A.

    1979-01-01

    During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less

  17. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1,200 degree C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, W.E.; Crocket, J.H.; Fleet, M.E.

    1990-08-01

    Iron-nickel monosulfide and basalt glass containing trace amounts of PGE equilibrated at 1,200{degree}C, and f{sub o{sub 2}} = 10{sup {minus}9.2} (close to the wustite-magnetite buffer) and f{sub s{sub 2}} = 10{sup {minus}0.9}, have been analyzed for noble metals by radiochemical and instrumental neutron activation analysis. The average contents of PGE in coexisting Fe-Ni sulfide and basalt glass, respectively, are Pd, 50 ppm and 0.5 ppb; Ir, 50 ppm and 0.5 ppb; Pt, 100 ppm and 10 ppb; and Au, 0.7 ppm and 0.8 ppb. The sulfide liquid-silicate melt partition coefficients (D values) for the noble metals are (9 {plus minus}more » 7) {times} 10{sup 4} for Pd, (1 {plus minus} 0.7) {times} 10{sup 5} for Ir, (9 {plus minus} 6) {times} 10{sup 3} Pt, and (1 {plus minus} 0.9) {times} 10{sup 3} for Au. The noble metals are strongly partitioned into sulfide liquid, but the affinity of Pd and Ir for sulfide liquid is about 50 times greater than that of Pt and about 500 times greater than that of Au. The D values indicate that equilibrium partitioning between immiscible sulfide liquid and basalt magma would result in fractionation of the noble metals, which differs significantly from that generally observed in nature.« less

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Trinidad NTMS Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, W.A.; LaDelfe, C.M.; Weaver, T.A.

    1978-10-01

    During the field seasons of 1976 and 1977, 1,060 natural water and 1,240 waterborne sediment samples were collected from 1,768 locations in the Trinidad, Colorado, NTMS quadrangle. The samples from this 19,600-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detection limit of 0.02 parts per billion (ppb) to 88.3 ppb, with a mean value of 4.05 ppb. The concentrations in sediments ranged from 1.3 parts per million (ppM) to 721.9 ppM, with a mean value of 5.55 ppM. Based on simple statistical analyses ofmore » these data, arbitrary anomaly thresholds were set at 20 ppb for water samples and 12 ppM for sediment samples. By this definition, fifty-eight water and 39 sediment samples were considered anomalous. At least five areas delineated by the data appear to warrant more detailed investigations. Twenty-six anomalous water samples outline a broad area corresponding to the axis of the Apishapa uplift, seven others form a cluster in Huerfano Park, and five others outline a small area in the northern part of the San Luis Valley. Twenty-three anomalous sediment samples outline an area corresponding generally to Precambrian metamorphic rocks in the Culebra Range, and seven anomalous sediment samples form a cluster near Crestone Peak in the Sangre de Cristo Mountains.« less

  19. Promoting effects of potassium dibasic phosphate on early-stage renal carcinogenesis in unilaterally nephrectomized rats treated with N-ethyl-N-hydroxyethylnitrosamine.

    PubMed

    Hiasa, Y; Konishi, N; Nakaoka, S; Nakamura, T; Nishii, K; Ohshima, M

    1992-07-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early-stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N-ethyl-N-hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not.

  20. Promoting Effects of Potassium Dibasic Phosphate on Early‐stage Renal Carcinogenesis in Unilaterally Nephrectomized Rats Treated with N‐Ethyl‐N‐hydroxyethylnitrosamine

    PubMed Central

    Konishi, Noboru; Nakaoka, Shingo; Nakamura, Toshimitsu; Nishii, Kiyoji; Ohshima, Masato

    1992-01-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early‐stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N‐ethyl‐N‐hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not. PMID:1517146

  1. Effects of selenium on mallard duck reproduction and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 andmore » 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.« less

  2. Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls).

    PubMed

    Bell, Steven E J; Sirimuthu, Narayana M S

    2004-11-01

    Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I(nic)/I(pyr) against the concentration of nicotine were non-linear but plotting I(nic)/I(pyr) against [nicotine](x)(x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R(2) typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.

  3. Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire

    NASA Astrophysics Data System (ADS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; Simpson, I. J.; Wisthaler, A.; Mikoviny, T.; Diskin, G. S.; Beyersdorf, A. J.; Choi, Y.; Ryerson, T. B.; Jimenez, J. L.; Campuzano-Jost, P.; Loewenstein, M.; Gore, W.

    2016-02-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4 (ppm CO2)-1 on 26 August, 6.5 ppb CH4 (ppm CO2)-1 on 29 August and 18.3 ppb CH4 (ppm CO2)-1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4 (ppm CO2)-1 during the primary burning period to 18.3 ppb CH4 (ppm CO2)-1 during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  4. Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice

    PubMed Central

    Rodriguez, Karina F.; Ungewitter, Erica K.; Crespo-Mejias, Yasmin; Liu, Chang; Nicol, Barbara; Kissling, Grace E.; Yao, Humphrey Hung-Chang

    2015-01-01

    Background Mice exposed to high levels of arsenic in utero have increased susceptibility to tumors such as hepatic and pulmonary carcinomas when they reach adulthood. However, the effects of in utero arsenic exposure on general physiological functions such as reproduction and metabolism remain unclear. Objectives We evaluated the effects of in utero exposure to inorganic arsenic at the U.S. Environmental Protection Agency (EPA) drinking water standard (10 ppb) and at tumor-inducing levels (42.5 ppm) on reproductive end points and metabolic parameters when the exposed females reached adulthood. Methods Pregnant CD-1 mice were exposed to sodium arsenite [none (control), 10 ppb, or 42.5 ppm] in drinking water from gestational day 10 to birth, the window of organ formation. At birth, exposed offspring were fostered to unexposed dams. We examined reproductive end points (age at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) in the exposed females when they reached adulthood. Results Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal opening. Fertility was not affected when females were exposed to the 10-ppb dose. However, the number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. In both 10-ppb and 42.5-ppm groups, arsenic-exposed females had significantly greater body weight gain, body fat content, and glucose intolerance. Conclusion Our findings revealed unexpected effects of in utero exposure to arsenic: exposure to both a human-relevant low dose and a tumor-inducing level led to early onset of vaginal opening and to obesity in female CD-1 mice. Citation Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH. 2016. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124:336–343; http://dx.doi.org/10.1289/ehp.1509703 PMID:26295903

  5. Airborne Measurements and Emission Estimates of Greenhouse Gases and Other Trace Constituents From the 2013 California Yosemite Rim Wildfire

    NASA Technical Reports Server (NTRS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Tanaka, T.; Roby, M. C.; Hamill, P.; Clements, C. B.; Lareau, N.; Contezac, J.; Blake, D. R.; hide

    2015-01-01

    This paper presents airborne measurements of multiple atmospheric trace constituents including greenhouse gases (such as CO2, CH4, O3) and biomass burning tracers (such as CO, CH3CN) downwind of an exceptionally large wildfire. In summer 2013, the Rim wildfire, ignited just west of the Yosemite National Park, California, and burned over 250,000 acres of the forest during the 2-month period (17 August to 24 October) before it was extinguished. The Rim wildfire plume was intercepted by flights carried out by the NASA Ames Alpha Jet Atmospheric eXperiment (AJAX) on 29 August and the NASA DC-8, as part of SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys), on 26 and 27 August during its intense, primary burning period. AJAX revisited the wildfire on 10 September when the conditions were increasingly smoldering, with slower growth. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of AJAX (e. g. CO). Data analyses are presented in terms of emission ratios (ER), emission factors (EF) and combustion efficiency and are compared with previous wildfire studies. ERs were 8.0 ppb CH4/(ppm CO2) on 26 August, 6.5 ppb CH4 (ppm CO2)1 on 29 August and 18.3 ppb CH4 (ppm CO2)1 on 10 September 2013. The increase in CH4 ER from 6.5 to 8.0 ppb CH4/(ppm CO2) during the primary burning period to 18.3 ppb CH4/(ppm CO2) during the fire's slower growth period likely indicates enhanced CH4 emissions from increased smoldering combustion relative to flaming combustion. Given the magnitude of the Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western United States to date, this study provides a valuable dataset to support forestry and regional air quality management, including observations of ERs of a wide number of species from the Rim wildfire.

  6. Impact of Small Holder Dairy Farm on the Air Quality in Gunungpati District, Semarang Municipality

    NASA Astrophysics Data System (ADS)

    Widiastuti, E.; Kustono; Adiarto; Nurliyani; Sugiharto, S.

    2018-02-01

    The study aimed to investigate the impact of small holder dairy farm on the air quality in the farm and surrounding area. The study was conducted in three farmer groups in the District of Gunungpati, including the farmer groups in the villages of Nangkasawit, Plalangan and Sumurejo. Samplings of air quality were conducted in four points (locations), i.e., inside the barn, 100 m, 200 m and 300 m from the area of farm. Parameters observed were emission of NH3 CO2, H2S and CH4. Results showed that the levels of NH3 in the barn, 100 m, 200 m and 300 m from the farm area in Nangkasawit village were 0.211, 0.107, 0.104 and 0,035 ppm, respectively. The levels of NH3 in Plalangan village were 0.289, 0.231, 0.13 and 0.108 ppm, respectively, and in Sumurejo village were 0.109, 0.110, 0.082 and 0.046 ppm, respectively. The levels of H2S in Nangkasawit, Plalangan and Sumurejo villages at the entire points of observations were <0,002 ppm, with the acceptable standard level of H2S was 0.02 ppm. In four locations of observations, the levels of CH4 in Nangkasawit village were 809, 603, 599 and 521 ppb, in Plalangan village 999, 720, 645 and 582 ppb and in Sumurejo village 932, 824, 526 and 521 ppb. The levels of CO2 in Nangkasawit village were 26.55, 28.35, 28.44 and 30.05 ppm, in Plalangan village 24.65, 25.10, 23.44, 21.05 ppm and in Sumurejo village 28.50, 27.35, 30.68, 31.50 ppm, with the standard level of CO2 should be 30.000 ppm. In conclusion, the air quality was better (lower contamination) with the farther distance of locations from the barn.

  7. Ultrasensitive Analyzer for Realtime, In-Situ Airborne and Terrestrial Measurements of OCS, CO2, CO, and H2O

    NASA Astrophysics Data System (ADS)

    Provencal, R. A.; Gupta, M.; Baer, D. S.; Genty, B.

    2012-12-01

    Extensive research has suggested that OCS plays a critical role in Earth's environment. Due to its long atmospheric lifetime of ~ 35 years, OCS is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere with tropical stratospheric levels exceeding 400 pptv as determined by remote satellite sensing. During volcanically-quiet periods, OCS is primarily responsible for the stratospheric aerosol layer, and flight data suggests that OCS may be used as an inverse tracer for biogenic volatile organic carbon compounds, including those thought to be responsible for the formation of secondary organic aerosols. Additionally, since the primary source and sink of non-anthropogenic OCS are considered to be the ocean emission and terrestrial vegetation uptake respectively, preliminary experimental and modeling studies have suggested that OCS/CO2 ratios may provide a tool to measure photosynthesis and help distinguish it from respiration. These results, and other similar data, have led researchers to propose that simultaneous measurements of OCS and CO2 can constrain the parameterizations of respiration and photosynthesis in carbon cycle models, and OCS gradients in the continental growing season may have broad use as a measurement-based tracer of photosynthesis. Despite the importance of carbonyl sulfide in atmospheric processes, the OCS atmospheric budget is poorly determined. Its primary sources are ocean outgassing, industrial processes (many of which produce CS2 that then oxidized into OCS), and biomass burning. Its primary sinks are vegetation and soils. However, the budget is poorly balanced with very high uncertainty. Improved, in-situ terrestrial flux and airborne measurements of OCS are required to improve this budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. In this work, we have fabricated a mid-infrared Off-Axis ICOS system operating near 4.86 microns for the simultaneous quantification of OCS, CO2, CO, and H2O in ambient air. The sensor was thoroughly tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1-sigma at 1 Hz) and linear (R-squared > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). The instrument's time response (1/e) was limited by the gas flow rate through the measurement cell and can readily exceed 10 Hz for eddy flux studies. Cross-interference measurements showed that there was no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm), CO, or H2O.

  8. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    USGS Publications Warehouse

    Hein, James; Conrad, Tracey A.; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.

    2016-01-01

    The southern third of NER has Fe-Mn crusts with the highest Co (0.91%), Ni (0.43%), ΣREY (0.33%), Cu (0.22%), Te (146 ppm), Pt (1.5 ppm), Ru (52 ppb), and Rh (99 ppb) contents. These are among the highest Pt, Ru, and Rh concentrations measured in marine Fe-Mn deposits. Because of these high metal concentrations, exploration is warranted for the southern sector of the NER, especially at shallower-water sites where the platinum group elements (PGE) and Co are likely to be even more enriched.

  9. Measurements of Criteria Pollutants in Suburban Locations in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Fentanes, O.; Sanchez, A.; Garcia, A.; Martinez, A.

    2004-12-01

    In the town of Santa Ana in the southern part of the Mexico City Metropolitan Area (MCMA) at an approximate height of 370 meters above the Valley of Mexico, a series of criteria pollutants (nitrogen dioxide, ozone, sulfur dioxide, and carbon monoxide) and meteorological parameters (wind speed and direction, temperature and relative humidity) were measured during the MCMA-2003 field campaign during April 2003. Santa Ana is considered a border site, agriculture being the predominant activity. The generated data in Santa Ana was compared with those from two representative atmospheric monitoring stations from the southeast zone (CENICA Supersite) and southwest (Revolucion Station) of Mexico City. The carbon monoxide and ozone concentrations measured in Santa Ana are atypical for a rural area. The sulfur dioxide and nitrogen dioxide concentrations are characteristic of the local activity. The average obtained during the measurement time for carbon monoxide was 0.86 ppm, the presence of the contaminant was within a 0.3 to 1.5 ppm range, 5 to 95 percentile, and does not follow the observed behavior of the monitoring stations that are located inside the urban area, although during the night (10 pm to 6 am) the carbon monoxide in Santa Ana was preset in levels from 0.4 to 1.5 ppm, 5 to 95 percentiles, average 0.92 ppm, above the reported concentrations at Revolucion Station, levels from 0.1 to 1.7 ppm, 5 to 95 percentiles; average 0.72 ppm. The presence of this contaminant can be attributed to transportation and accumulation phenomena. The ozone daytime behavior is similar to the one observed in the CENICA and Revolucion stations, but with a lower magnitude, the daily maximum generally occuring 2 or 3 hours after the urban stations. The one-hour average maximum values were 133 ppb in Santa Ana area and 188 ppb in the city. During the night the average concentrations were 37 ppb in Santa Ana and 17 ppb in the urban area. Nevertheless, the ozone average value in Santa Ana during the study was 49 ppb, slightly higher than the one obtained in the urban area, which was 44 ppb. The presence of this contaminant can be possibly attributed to the transportation and accumulation factors as well as to the low reactivity due to the absence of NOx, as explained in Dommen Josef and Prévôt, S.H. André, 2002, Characterization of the photooxidant formation in the metropolitan area of Milan from aircraft measurements, Journal of Geophysical Research, 107 (D22): 8197, doi: 10.1029/2000JD000283.

  10. Sublethal effects in Avocet and Stilt hatchlings from selenium-contaminated sites

    USGS Publications Warehouse

    Hoffman, D.J.; Marn, C.M.; Marois, Katherine C.; Sproul, E.; Dunne, M.; Skorupa, J.P.

    2002-01-01

    Excess selenium (Se) in the aquatic food chain is embryotoxic and teratogenic to avocets, stilts, and other waterbirds. American avocet (Recurvirostra americana) and black-necked stilt (Himantopus mexicanus) eggs were collected from three sites in the Tulare Lake Basin of California, USA, and hatched in the laboratory. These sites included the Tulare Lake Drainage District?north (TLDD-N, water 2.5 ppb Se), TLDD?south (TLDD-S, water 8.6 ppb Se), and Westfarmers (WF, water 190 ppb Se). Highest egg Se concentrations occurred at WF (geometric mean 31.4 ppm dry wt for avocets and 20.5 ppm dry wt for stilts). Mean egg Se concentrations were 6.7 ppm for avocets and 8.4 ppm for stilts at TLDD-S, and 3.3 ppm for avocets and 2.3 ppm for stilts at TLDD-N. Hatching success and incidence of malformations did not differ among sites, but yolk sac?free hatching weights and bone lengths were less for avocets at the WF site, whereas liver weights and liver to body weight ratios were greater at that site. With increasing Se concentration, oxidative stress was most apparent in avocet hatchlings from WF: hepatic glutathione (GSH) peroxidase activity increased, glucose-6-phosphate dehydrogenase activity decreased, and oxidized glutathione (GSSG) concentration as well as the ratio of GSSG to reduced GSH concentration increased. In stilts, hepatic GSH concentration was lower in WF hatchlings. In conclusion, our findings of Se-impaired embryo growth and hepatotoxicity in avocet hatchlings suggest that oxidative stress observed in hatchlings may be related to these biological effects and may serve as a potential bioindicator of subsequent impaired functions.

  11. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A comparison of the abundance of some of these elements is made with those reported on oceanic tholeiites from the Atlantic and Pacific oceans. Trace elements with large ionic radii (Th, U, Cs) are present in significantly greater concentrations in the two continental tholeiitic series than in the oceanic tholeiites. However, this does not seem to be true for lithophilic elements of smaller ionic radii (Zr and Nb). These trace element distribution patterns, when considered with other minor element and isotopic studies, indicate that 1. (1) crustal contamination does not entirely account for differences between continental and oceanic tholeiites, and 2. (2) the oceanic tholeiites do not necessarily delimit the geochemical characteristics of the mantle. ?? 1968.

  12. Determination of transfer rate and nature of the residue(s) in milk from {sup 14}C-atrazine cows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalacker, F.W.; Ash, S.G.; Simoneaux, B.J.

    1996-10-01

    In order to determine the rate of transfer and the nature of the atrazine residues present in milk, lactating dairy cattle were treated with atrazine at three concentrations, 0.764 ppm, 0.0747 ppm and 0.0085 ppm (dry weight of food consumed). The concentrations were selected to bridge the gap between the concentration used for EPA metabolism studies (10 ppm) and the potential exposure level of dairy cattle to atrazine and its chlorotriazine metabolites through feed. The cattle were dosed following the morning milking for nine consecutive days with a single capsule bolus of {sup 14}C-atrazine. Milk was collected twice daily andmore » aliquots of each milking and the individual cow`s daily pool of milk were analyzed by liquid scinitllation counting (LSC). The concentrations of {sup 14}C-residues in the milk plateaued on approximately day 3 and the mean {sup 14}C-atrazine levels in milk were 11.2 ppb, 1.13 ppb and 0.152 ppb for the high, middle and low dosed animals, respectively. The transfer of radioactive level of exposure to {sup 14}C-atrazine. The nature of the residues in milk were determined by extracting milk samples and analysis by HPLC, TLC or Aminex chromatography. Diaminchlorotriazine was the only chlorinated metabolite in the milk, constituting approximately 65% to 75% of the total radioactive residues (TRR).« less

  13. Clinical characteristics associated with pacing-induced cardiac dysfunction: a high incidence of undiagnosed cardiac sarcoidosis before permanent pacemaker implantation.

    PubMed

    Wakabayashi, Yasushi; Mitsuhashi, Takeshi; Akashi, Naoyuki; Hayashi, Takekuni; Umemoto, Tomio; Sugawara, Yoshitaka; Fujita, Hideo; Momomura, Shin-Ichi

    2018-06-21

    Previous studies suggested that right ventricular pacing was associated with pacing-induced cardiac dysfunction (PICD). The purpose of this study was to investigate the clinical characteristics including the incidence of undiagnosed cardiac sarcoidosis (CS) in patients with atrioventricular block (AVB) who manifest PICD. We retrospectively investigated consecutive patients with permanent pacemaker (PPM) undergoing a first-generator replacement surgery with a new PPM or an upgrade procedure to a cardiac resynchronization therapy (CRT) device between December 1, 2011 and June 30, 2017. Patients with AVB showing normal echocardiographic findings before PPM implantation were included and divided into 2 groups: patients with post-PPM left ventricular ejection fraction (LVEF) < 40% and/or undergoing an upgrade procedure to CRT (PICD group) and patients with post-PPM LVEF ≥ 40% who underwent replacement surgery with a new PPM (no-PICD group). There were 15 and 41 patients in the PICD and no-PICD groups, respectively. A wider-paced QRS duration just after the PPM implantation and/or lower pre-PPM LVEF was observed in the PICD group. Furthermore, 46.7% of the PICD patients (7/15) satisfied the diagnostic criteria for CS according to the guideline of the Japanese Circulation Society, although no patients fulfilled these criteria before PPM implantation. In conclusion, a high incidence of CS was observed in patients with AVB who had PICD. However, none of these patients was diagnosed with CS before PPM implantation.

  14. Platinum Group Elements (PGE) geochemistry of komatiites and boninites from Dharwar Craton, India: Implications for mantle melting processes

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Manikyamba, C.; Santosh, M.; Ganguly, Sohini; Khelen, Arubam C.; Subramanyam, K. S. V.

    2015-06-01

    High MgO volcanic rocks having elevated concentrations of Ni and Cr are potential hosts for platinum group elements (PGE) owing to their primitive mantle origin and eruption at high temperatures. Though their higher PGE abundance is economically significant in mineral exploration studies, their lower concentrations are also valuable geochemical tools to evaluate petrogenetic processes. In this paper an attempt has been made to evaluate the PGE geochemistry of high MgO volcanic rocks from two greenstone belts of western and eastern Dharwar Craton and to discuss different mantle processes operative at diverse geodynamic settings during the Neoarchean time. The Bababudan greenstone belt of western and Gadwal greenstone belt of eastern Dharwar Cratons are dominantly composed of high MgO volcanic rocks which, based on distinct geochemical characteristics, have been identified as komatiites and boninites respectively. The Bababudan komatiites are essentially composed of olivine and clinopyroxene with rare plagioclase tending towards komatiitic basalts. The Gadwal boninites contain clinopyroxene, recrystallized hornblende with minor orthopyroxene, plagioclase and sulphide minerals. The Bababudan komatiites are Al-undepleted type (Al2O3/TiO2 = 23-59) with distinctly high MgO (27.4-35.8 wt.%), Ni (509-1066 ppm) and Cr (136-3036 ppm) contents. These rocks have low ΣPGE (9-42 ppb) contents with 0.2-2.4 ppb Iridium (Ir), 0.2-1.4 ppb Osmium (Os) and 0.4-4.4 ppb Ruthenium (Ru) among Iridium group PGE (IPGE); and 1.4-16.2 ppb Platinum (Pt), 2.8-19 ppb Palladium (Pd) and 0.2-9.8 ppb Rhodium (Rh) among Platinum group PGE (PPGE). The Gadwal boninites are high-Ca boninites with CaO/Al2O3 ratios varying between 0.8 and 1.0, with 12-24 wt.% MgO, 821-1168 ppm Ni and 2307-2765 ppm Cr. They show higher concentration of total PGE (82-207 ppb) with Pt concentration ranging from 13 to 19 ppb, Pd between 65 and 180 ppb and Rh in the range of 1.4-3 ppb compared to the Bababudan komatiites. Ir, Os and Ru concentrations range from 0.6 to 2.2 ppb, 0.2 to 0.6 ppb and 1.4 to 2.6 ppb respectively in IPGE. The PGE abundances in Bababudan komatiites were controlled by olivine fractionation whereas that in Gadwal boninites were influenced by fractionation of chromite and sulphides. The Al-undepleted Bababudan komatiites are characterized by low CaO/Al2O3, (Gd/Yb)N, (La/Yb)N, with positive Zr, Hf, Ti anomalies and high Cu/Pd, Pd/Ir ratios at low Pd concentrations suggesting the derivation of parent magma by high degrees (>30%) partial melting of mantle under anhydrous conditions at shallow depth with garnet as a residual phase in the mantle restite. The komatiites are geochemically analogous to Al-undepleted Munro type komatiites and their PGE compositions are consistent with Alexo and Gorgona komatiites. The S-undersaturated character of Bababudan komatiites is attributed to decompression and assimilation of lower crustal materials during magma ascent and emplacement. In contrast, the higher Al2O3/TiO2, lower (Gd/Yb)N, for Gadwal boninites in combination with negative Nb, Zr, Hf, Ti anomalies and lower Cu/Pd at relatively higher Pd/Ir and Pd concentrations reflect high degree melting of refractory mantle wedge under hydrous conditions in an intraoceanic subduction zone setting. Higher Pd/Ir ratios and S-undersaturation of these boninites conform to influx of fluids derived by dehydration of subducted slab resulting into high fluid pressure and metasomatism of mantle wedge.

  15. Composition of the spring Siberian troposphere during YAK-AEROSIB 2010: Influence of biomass burning, stratospheric intrusion and the Eyjafjöll eruption

    NASA Astrophysics Data System (ADS)

    Paris, J.; Berchet, A.; Arshinov, M.; Nedelec, P.; Stohl, A.; Ancellet, G.; Law, K.; Belan, B. D.; Ramonet, M.; Ciais, P.

    2010-12-01

    Despite their potential relevance to atmospheric environment issues, measurements in Siberia, in the outflow of Europe and upstream of Eastern Asia and the Arctic, are sparse. Impacts of remote and regional sources on this air shed’s composition remain virtually unexplored. We document the tropospheric composition and address these issues using CO2, CO, O3 and novel CH4 measurement data from the 2010 YAK-AEROSIB intensive airborne campaign over Siberia. The campaign took place in April, spring being highly relevant here because of longer lifetime of pollutants, transported especially to the Arctic. We analysed the data by comparing trace gases concentrations enhancements, FLEXPART simulations of backward transport and by comparison with other campaigns. We illustrate our findings by three case studies. Typical observed mixing ratios of trace gases were 394 ppm CO2, 140 ppb CO, 59 ppb O3 and 1843 ppb CH4 across the campaign. CO2 increased by ~4 ppm relative to a similar 2006 spring campaign (Paris et al., 2010), a slightly slower pace than the hemispheric increase of 1.75 ppm/yr (as estimated over the period 2006-2008). This difference could be due to different transport pattern, with more air from the Arctic, and hence less affected by pollution, than in 2006; vegetation respiration is low in largely snow-covered Siberia. CO mixing ratio is also ~5 ppb lower than our 2006 spring values, possibly also explained by a pervasive airmass of Arctic origin in 2010. But large enhancements of CO and other trace gases have been observed. CO enhancements were connected to biomass burning through tracer correlation and FLEXPART simulations convolved with fire emissions. We find that contributions from fires in agricultural areas in Western Russia and Northern Kazakhstan influence significantly CO concentrations over Siberia (+50 ppb) strongly correlated (r=0.86) to an O3 enhancement of ~+5 ppb (regression slope 2.5 ppb/ppb). O3 concentrations as high as 210 ppb were observed during flight from Bratsk to Novosibirsk, simultaneously with lower CO and CO2 concentrations. This high concentration occurred at 6 km altitude immediately before crossing a cold front and are interpreted as a stratospheric dry intrusion in the troposphere. We use this event to discuss the diffusivity of Flexpart in the analysis of such events. Finally, a consistent strong O3 depletion at 6 km altitude over Siberia is tentatively attributed to the Eyjafjoll eruption based on FLEXPART backward simulation.

  16. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.

  17. Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.

    2009-05-01

    Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.

  18. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.

    PubMed

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2016-12-01

    Fusarium head blight (FHB) disease caused by Fusarium graminearum is one of the most important diseases of wheat in humid and warm areas. This disease significantly reduces yield as well as seed quality. The aim of this work was to evaluate the possibility of control of FHB by chitosan (CS) and chitosan nanoparticles (CS/NPs). In vitro, the application of various concentrations of CS and CS/NPs showed significant inhibition of both radial mycelial growth and number of colonies formed against F. graminearum. The application of 1000 and 5000ppm concentration of CS and CS/NPs produced maximum inhibition of radial mycelial growth in comparison to the control, respectively. The microscopic examination, of treated F. graminearum with the CS and CS/NPs, showed dehydration and deformation in mycelial growth and some hyphae were collapsed. The maximum percentage reduction number of colonies was observed in 5000ppm concentration of both CS and CS/NPs. To test the effect of CS and CS/NPs on spore germination, four concentrations were used for 4 and 24h incubation. The 24h incubation of F. graminearum spores with a 5000ppm solution of CS greatly reduced the number of germinating spores. In greenhouse trials, the disease severity percentage was low when CS and CS/NPs were applied before fungus inoculation on the plants and 1000ppm concentration. The spores of F. graminearum germinated on the anther, hyphae penetrated into anther and colonized the palea, lemma and glume after 24 and 72 hpi, respectively. Wherease, the spikelets treated with CS and CS/NPs were infected slowly. Light microscopy and TEM observations indicated that mycelium penetrated into the cells through stoma and transited to other cells by cell wall or plasmodesmata. Mycelial growth caused conidia into cells but CS and CS/NPs prevented of it's growth. Results showed that CS and CS/NPs could be a useful biological pesticide for controlling FHB. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Validation of a LC-fluorescence method for determination of free captopril in human plasma, using a pre-column derivatization reaction with monobromobimane.

    PubMed

    Tache, Florentin; Farca, Alexandru; Medvedovici, Andrei; David, Victor

    2002-05-15

    Both derivatization of free captopril in human plasma samples using monobromobimane as fluorescent label and the corresponding HPLC-fluorescence detection (FLD) method were validated. Calibration curve for the fluorescent captopril derivative in plasma samples is linear in the ppb-ppm range with a detection limit of 4 ppb and an identification limit of 10 ppb (P%: 90; nu > or = 5). These methods were successfully applied on bioequivalence studies carried out on some marketed pharmaceutical formulations.

  20. Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus.

    PubMed

    Alkas, Fehmi Burak; Shaban, Jehad Abdullah; Sukuroglu, Ayca Aktas; Kurt, Mehmet Ali; Battal, Dilek; Saygi, Sahan

    2017-09-22

    The presence of heavy metals/metalloids in the ecosystem has been an increasing ecological and global public health concern due to their potential to cause adverse health effects. For this reason, the accumulation of some heavy metals such as Cr, Mn, Ni, Cu, As, Cd, Pb was assessed by way of ICP-MS in water, sediment and fish (Cyprinus carpio) sampled from Gonyeli Lake, North Cyprus. The results showed that these metals/metalloids are found widespread throughout the study area. In water, most concentrated element was manganese with 92.1 ppb and least concentrated was lead with 0.914 ppb. In sediment, copper had the highest concentration with 613 ppm, and cadmium the lowest with 1.57 ppm. In fish tissues (muscle and gills), the most concentrated element was manganese with 12.5 ppm and the least concentrated cadmium with 0.017 ppm. These results indicate that future remediation efforts are indispensable for the rehabilitation of the lake.

  1. Correlation of Aflatoxin Contamination With Zinc Content of Chicken Feed †

    PubMed Central

    Jones, Frank T.; Hagler, Winston M.; Hamilton, Pat B.

    1984-01-01

    Feed samples from chicken houses in five commercial chicken operations were analyzed for Zn, Mn, Fe, Cu, Cd, and aflatoxin content. Mean aflatoxin content of these samples was 14 ppb (14 ng/g) as opposed to 1.2 ppb in samples taken when the feed was made. Aflatoxin content of the feed samples correlated (r = 0.325) significantly (P < 0.05) with Zn content but not with Mn, Fe, or Cu, all of which correlated significantly with Zn. Zn content of unamended feed (<20 ppm [20 μg/g]) is normally supplemented with a mineral premix containing Zn, Mn, Fe, and Cu to meet the nutrient requirements of chickens (40 ppm of Zn). The mean zinc concentration of the feed samples (117 ppm) was about threefold greater than the nutrient requirement and ranged from 58 to 162 ppm in individual samples. These field survey results parallel earlier reports of augmented production of aflatoxin in monocultures of aflatoxigenic fungi in corn and other ingredients supplemented with Zn. These results suggest that stricter control of Zn levels during manufacture could reduce aflatoxin contamination of feed consumed by chickens. PMID:16346486

  2. Correlation of aflatoxin contamination with zinc content of chicken feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, F.T.; Hagler, W.M. Jr.; Hamilton, P.B.

    Feed samples from chicken houses in five commercial chicken operations were analyzed for Zn, Mn, Fe, Cu, Cd, and aflatoxin content. Mean aflatoxin content of these samples was 14 ppb (14 ng/g) as opposed to 1.2 ppb in samples taken when the feed was made. Aflatoxin content of the feed samples correlated significantly with Zn content but not with Mn, Fe, or Cu, all of which correlated significantly with Zn. Zn content of unamended feed (<20 ppm (20 ..mu..g/g) is normally supplemented with a mineral premix containing Zn, Mn, Fe, and Cu to meet the nutrient requirements of chickens (40more » ppm of Zn). The mean zinc concentration of the feed samples (117 ppm) was about threefold greater than the nutrient requirement and ranged from 58 to 162 ppm in individual samples. These field survey results parallel earlier reports of augmented production of aflatoxin in monocultures of aflatoxigenic fungi in corn and other ingredients supplemented with Zn. These results suggest that stricter control of Zn levels during manufacture could reduce aflatoxing contamination of feed consumed by chickens.« less

  3. Emissions of mercury in Southern Africa derived from long-term observations at Cape Point, South Africa

    NASA Astrophysics Data System (ADS)

    Brunke, E.-G.; Ebinghaus, R.; Kock, H. H.; Labuschagne, C.; Slemr, F.

    2012-05-01

    Mercury emissions in South Africa have so far been estimated only by a bottom-up approach from activities and emission factors for different processes. In this paper we derive GEM/CO (GEM being gaseous elemental mercury, Hg0), GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios from plumes observed during long-term monitoring of these species at Cape Point between March 2007 and December 2009. The average observed GEM/CO, GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios were 2.40 ± 2.65 pg m-3 ppb-1 (n = 47), 62.7 ± 80.2 pg m-3 ppb-1 (n = 44), 3.61 ± 4.66 pg m-3 ppb-1 (n = 46), 35.6 ± 25.4 ppb ppm-1 (n = 52), 20.2 ± 15.5 ppb ppm-1 (n=48), and 0.876 ± 1.106 ppb ppm-1 (n=42), respectively. The observed CO/CO2, CH4/CO2, and CH4/CO emission ratios agree within the combined uncertainties of the observations and emissions with the ratios calculated from EDGAR (version 4.2) CO2, CO, and CH4 inventories for South Africa and Southern Africa (South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, and Mozambique) in 2007 and 2008 (inventories for 2009 are not available yet). Total elemental mercury emission of 13.1, 15.2, and 16.1 t Hg yr-1 are estimated independently using the GEM/CO, GEM/CO2, and GEM/CH4 emission ratios and the annual mean CO, CO2, and CH4 emissions, respectively, of South Africa in 2007 and 2008. The average of these independent estimates of 14.8 ± 1.5 t GEM yr-1 is much less than the total emission of 257 t Hg yr-1 from older inventories. Considering that emission of GEM represents only 50-78% of all mercury emissions, our estimates come close to the total mercury emission estimates ranging between 40-50 t Hg yr-1 from more recent inventories.

  4. The Comparative Effects of CS and Various Pollutants on Fresh Water Phytoplankton Colonies of ’Wolffia papulifera’ Thompson

    DTIC Science & Technology

    Varying concentrations of nine potential pollutants were tested for effects in vitro against colonies of Wolffia papulifera. Death was observed in...colonies of Wolffia exposed to 100 ppm or above of CS, DDT, Malathion, Diazinon, and indole acetic acid (IAA) and to 1000 ppm of Aldrin, Dieldrin, Sevin...of Aldrin and Malathion; and 0.01 ppm of 2,4-D. Teratogenic effects were observed in Wolffia colonies exposed to Malathion at 1 ppm, of 2,4-D at 0.1

  5. Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe.

    PubMed

    Fu, Jingni; Zhang, Luning

    2018-01-16

    Relying on the nanometer-thick water core and large surface area-to-volume ratio (∼2 × 10 8 m -1 ) of common black film (CBF), we are able to use a pH-sensitive dye (carboxy-seminaphthorhodafluor-1, SNARF-1) to detect ammonia and acetic acid gas adsorption into the CBF, with the limit of detection reaching 0.8 ppm for NH 3 gas and 3 ppb for CH 3 COOH gas in the air. Data analysis reveals that fluorescence signal change is linearly proportional to the gas concentration up to 15 ppm and 65 ppb for NH 3 and CH 3 COOH, respectively.

  6. Concentrations of CH4, CO, CO2, H2, H2O and N2O in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Heidt, L. E.; Lueb, R. H.; Martell, E. A.

    1975-01-01

    On 23 May 1973 a cryogenic air sampler was flown on an Aerobee rocket from White Sands Missile Range. A large air sample was collected between 40 and 50 km altitude and successfully recovered for water vapor and trace gas analysis. The results were as follows: water vapor, 4.0 (+1.3 or - 0.9) ppmV; methane, 0.37 + or - 0.01 ppmV; molecular hydrogen, 0.47 + or - 0.02 ppmV; carbon monoxide, 0.05 + or - 0.01 ppmV; carbon dioxide, 316.2 + or - 2.8 ppmV; and nitrous oxide, 3 + or - 7 ppb.

  7. Overlapping but distinct effects of genistein and ethinyl estradiol (EE2) in female Sprague-Dawley rats in multigenerational reproductive and chronic toxicity studies

    PubMed Central

    Delclos, K. Barry; Weis, Constance C.; Bucci, Thomas J.; Olson, Greg; Mellick, Paul; Sadovova, Natalya; Latendresse, John R.; Thorn, Brett; Newbold, Retha R.

    2009-01-01

    Genistein and ethinyl estradiol (EE2) were examined in multigenerational reproductive and chronic toxicity studies that had different treatment intervals among generations. Sprague-Dawley rats received genistein (0, 5, 100, or 500 ppm) or EE2 (0, 2, 10, or 50 ppb) in a low phytoestrogen diet. Nonneoplastic effects in females are summarized here. Genistein at 500 ppm and EE2 at 50 ppb produced similar effects in continuously exposed rats, including decreased body weights, accelerated vaginal opening, and altered estrous cycles in young animals. At the high dose, anogenital distance was subtly affected by both compounds, and a reduction in litter size was evident in genistein-treated animals. Genistein at 500 ppm induced an early onset of aberrant cycles relative to controls in the chronic studies. EE2 significantly increased the incidence of uterine lesions (atypical focal hyperplasia and squamous metaplasia). These compound-specific effects appeared to be enhanced in the offspring of prior exposed generations. PMID:19159674

  8. Polychlorinated biphenyl exposure and effects in transformer repair workers.

    PubMed Central

    Emmett, E A

    1985-01-01

    Fifty-five present and past transformer repair workers exposed to polychlorinated biphenyls (PCBs) and 56 unexposed comparison workers were evaluated in a clinical-epidemiologic study. The groups were similar in most demographic variables. Adipose tissue lipid and serum PCBs concentrations were higher in current exposed workers (geometric means adipose 2.1 ppm, serum 12.2 ppb). Concentrations in comparison (0.6 ppm and 4.6 ppb) and previously exposed (0.83 ppm and 5.9 ppb) workers were lower. Statistically significant differences in serum albumin and lactic dehydrogenase, but not in other liver function tests, were seen between the exposed and comparison groups; however, after adjustment for confounding variables, no correlations were observed between liver function tests and either adipose or serum PCBs concentrations. Statistically significant correlation both before and after adjustment for confounding variables were seen with adipose PCBs and 24-hr urinary 17-hydroxycorticosteroid excretion and with serum PCBs and serum gamma-glutamyl transpeptidase. Both associations could reflect microsomal enzyme induction among other possibilities. No differences were seen in fasting serum triglycerides, total cholesterol, LDL, HDL or VLDL cholesterol between the two exposure groups. A statistically significant correlation between serum PCBs and serum triglycerides, total cholesterol, and VLDL cholesterol was removed by adjusting for confounding variables. No correlation was seen between adipose PCBs concentrations and any serum lipid component. Partition phenomena could account for these findings.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2863134

  9. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  10. Effects of lead and hydrocarbons from snowmobile exhaust on brook trout (Salvelinus fontinalis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, E.S.

    1975-01-01

    Lead and hydrocarbons from snowmobile exhaust were found in the water at high levels during the week following ice-out in a Maine pond. Fingerling brook trout (Salvelinus fontinalis) held in fish cages in the pond showed lead and hydrocarbon uptake. These contaminants accumulated during the previous winter when snowmobile operation on the pond was equivalent to one snowmobile burning 250 liters of fuel per season on a .405 hectare pond with average depth of 1 m. Lead content of the water rose from 4.1 ppb before snowmobiling to 135 ppb at ice-out; exposed trout contained 9 to 16 times moremore » lead than controls. Hydrocarbon levels undetectable prior to snowmobiling reached 10 ppm in the water and 1 ppm in exposed fish. Trout held in aquaria for 3 weeks in melted snow containing three different concentrations of snowmobile exhaust also showed lead and hydrocarbon uptake. Their digestive tract tissue contained the most lead (2 ppm) and gills the least (0.2 ppm). Stamina, as measured by the ability to swim against a current, was significantly less in trout exposed to snowmobile exhaust than in control fish. (auth)« less

  11. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain.

    PubMed

    Teimouri, Aref; Azami, Sanaz Jafarpour; Keshavarz, Hossein; Esmaeili, Fariba; Alimi, Rasoul; Mavi, Sara Ayazian; Shojaee, Saeedeh

    2018-01-01

    Natural polysaccharides such as chitosan (CS) are widely used as antimicrobial agents. In recent years, and considering that CS has a strong antimicrobial potential, interest has been focused on antimicrobial activity of chitosan nanoparticles (CS NPs). The main factors affecting the antibacterial activity of chitosan include molecular weight (MW) and concentration. In this regard, the aim of this study was to produce various MWs and concentrations of CS NPs, through the ionic gelation method, and investigate their potential anti-parasitic activity against tachyzoites of Toxoplasma gondii RH strain. The MWs and degree of deacetylation of the CS were characterized using viscometric and acid-base titration methods, respectively. The efficacy of various MWs and concentrations of NPs was assessed by performing in vitro experiments for tachyzoites of T. gondii RH strain, such as MTT assay, scanning electron microscopy, bioassay in mice and PCR. In vivo experiment was carried out in BALB/c mice which were inoculated with tachyzoites of T. gondii RH strain and treated with various MWs of CS NPs. The results of in vitro and in vivo experiments revealed that anti- Toxoplasma activity strengthened as the CS NPs concentration increased and the MW decreased. In vitro experiment showed 100% mortality of tachyzoites at 500 and 1,000 ppm concentrations of low molecular weight (LMW) CS NPs after 180 min and at 2,000 ppm after 120 min. Furthermore, a 100% mortality of tachyzoites was observed at 1,000 and 2,000 ppm concentrations of medium molecular weight (MMW) CS NPs and at 2,000 ppm concentration of high molecular weight (HMW) CS NPs after 180 min. Growth inhibition rates of tachyzoites in peritoneal exudates of mice receiving low, medium and high MWs of CS NPs were found to be 86%, 84% and 79% respectively, compared to those of mice in sulfadiazine treatment group (positive control). Various MWs of CS NPs exhibited great anti- Toxoplasma efficiency against tachyzoites of RH strain, with the greatest efficacy shown by LMW CS NPs in both experiments. It seems that CS NPs can be used as an alternative natural medicine in the treatment of toxoplasmosis.

  12. Polychlorinated biphenyl (Aroclor< 1254) residues in rainbow trout: effects on sensitivity to nine fishery chemicals

    USGS Publications Warehouse

    Bills, T.D.; Marking, L.L.; Mauck, W.L.

    1981-01-01

    The influence of background polychlorinated biphenyl (PCB) residues in rainbow trout (Salmo gairdneri) on the susceptibility of the fish to nine chemicals routinely or occasionally used in fishery operations was evaluated. Rainbow trout fry were divided into three groups: one was exposed to 0.01 ppb and another to 0.1 ppb of the PCB Aroclor (R) 1254; the third (control) group was unexposed. After 30 days of exposure, whole body residues were 0.28 and 2.31 ppm for fish exposed to 0.01 and 0.1 ppb, respectively; control fish had residue concentrations of 0.04 ppm. Acute toxicity tests showed that both groups of exposed fish were more sensitive to rotenone and 2,4-D. Exposure did not significantly affect sensitivity to 2-[digeranylamino]-ethanol (GD-174), 3-trifluoromethyl-4-nitrophenol (TFM), nifurpirinol (Furanace), tricaine methanesulfonate (MS-222), or copper sulfate. Fishery managers should be aware that sensitivity of fish to control chemicals may be altered by the presence of contaminants in the water or residues of contaminants in the fish.

  13. Geologic reconnaissance and geochemical sampling survey of molybdenum mineralization near Schiestler Peak, Temple Peak Quadrangle, Sublette County, Wyoming

    USGS Publications Warehouse

    Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.

    1982-01-01

    A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.

  14. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  15. Precise Measurements of the Masses of Cs, Rb and Na A New Route to the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Rainville, Simon; Bradley, Michael P.; Porto, James V.; Thompson, James K.; Pritchard, David E.

    2001-01-01

    We report new values for the atomic masses of the alkali 133Cs, 87Rb, 85Rb, and 23Na with uncertainties ≤ 0.2 ppb. These results, obtained using Penning trap single ion mass spectrometry, are typically two orders of magnitude more accurate than previously measured values. Combined with values of h/m atom from atom interferometry measurements and accurate wavelength measurements for different atoms, these values will lead to new ppb-level determinations of the molar Planck constant N A h and the fine structure constant α. This route to α is based on simple physics. It can potentially achieve the several ppb level of accuracy needed to test the QED determination of α extracted from measurements of the electron g factor. We also demonstrate an electronic cooling technique that cools our detector and ion below the 4 K ambient temperature. This technique improves by about a factor of three our ability to measure the ion's axial motion.

  16. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  17. Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids

    PubMed Central

    Miles, Jesse C.; Hua, Jessica; Sepulveda, Maria S.; Krupke, Christian H.

    2017-01-01

    The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental exposures including concentrations that are representative of what invertebrates experience in the field. In laboratory toxicity experiments, LC50 values ranged from 0.002 ppm to 1.2 ppm for aquatic invertebrates exposed to clothianidin. However, freshwater snails and amphibian larvae showed high tolerance to the chemical with no mortality observed at the highest dissolvable concentration of the insecticide. We also observed behavioral effects of clothianidin. Water bugs, Belostoma flumineum, displayed a dose-dependent reduction in feeding rate following exposure to clothianidin. Similarly, crayfish, Orconectes propinquus, exhibited reduced responsiveness to stimulus with increasing clothianidin concentration. Using a semi-natural mesocosm experiment, we manipulated clothianidin concentration (0.6, 5, and 352 ppb) and the presence of predatory invertebrates to explore community-level effects. We observed high invertebrate predator mortality with increases in clothianidin concentration. With increased predator mortality, prey survival increased by 50% at the highest clothianidin concentration. Thus, clothianidin contamination can result in a top-down trophic cascade in a community dominated by invertebrate predators. In our Indiana field study, we detected clothianidin (max = 176 ppb), imidacloprid (max = 141 ppb), and acetamiprid (max = 7 ppb) in soil samples. In water samples, we detected clothianidin (max = 0.67 ppb), imidacloprid (max = 0.18 ppb), and thiamethoxam (max = 2,568 ppb). Neonicotinoids were detected in >56% of soil samples and >90% of the water samples, which reflects a growing understanding that neonicotinoids are ubiquitous environmental contaminants. Collectively, our results underscore the need for additional research into the effects of neonicotinoids on aquatic communities and ecosystems. PMID:28334022

  18. Superfund Record of Decision Amendment (EPA Region 6): Texarkana Wood Preserving Co. , Texarkana, TX, March 13, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This decision document presents an amendment to the selected remedial action for the Texarkana Wood Preserving Co. Superfund Site. This amendment fundamentally changes the Record of Decision (ROD) executed by the Regional Administrator on September 25, 1990. This amended remedy will seal and contain soils contaminated with greater than 3 ppm (parts per million) benzo(a)pyrene equivalents, 2450 ppm total poly aromatic hydrocarbons (PAH), 20 ppb (parts per billion) as 2,3,7,8 TCDD equivalents and 150 ppm pentachlorophenol beneath a soil cap.

  19. Uranium hydrogeochemical and stream sediment reconnaissance of the Cortez NTMS Quadrangle, Colorado/Utah, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.

    1979-05-01

    During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less

  20. Rb, Sr, Nd, and Sm concentrations in quartz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, G.R.; Weis, D.; Wasserburg, G.J.

    1987-09-01

    The concentrations of Rb, Sr, Nd and Sm in quartz crystals from Crystal Peak, Colorado; Steward Mine, California; Tomas Gonzaga, Minas Gerais, Brazil; and Coleman Mines, Arkansas, were determined by isotope dilution mass spectrometry. Concentrations ranged from: 1.17 to 177 ppb Rb; 3.26 to 1027 ppm Sr; 0.0159 to 0.48 ppm Sm; 0.127 to 2.81 ppb Nd. In the Brazilian crystal, concentrations of these elements were correlated with the amount of fluid inclusion water measured visually by turbidity and quantitatively with infrared adsorption spectroscopy. The highest Rb content was found for a crystal free of visible inclusions, indicating that smallmore » amounts of Rb can also occur in quartz itself. Rb and Sr contents are much lower in synthetic quartz grown commercially from the Arkansas quartz.« less

  1. A review of developmental and reproductive toxicity of CS2 and H2 S generated by the pesticide sodium tetrathiocarbonate.

    PubMed

    Silva, Marilyn

    2013-04-01

    Sodium tetrathiocarbonate (STTC) is an example of a pesticide that when prepared for use in aqueous solution releases two toxic products carbon disulfide (CS2 ) (active ingredient) and hydrogen sulfide (H2 S) in ambient air in equimolar concentrations resulting in potential exposure to workers and bystanders. CS2 and H2 S are pollutants that are generated from several pesticides as well as in industrial settings. Registrant submitted reports and open literature studies for STTC, CS2 and H2 S were reviewed. Previous reports suggest that CS2 was a concern as a developmental and reproductive toxicant. H2 S was also examined since it is a neurotoxicant and potentially harmful to developing fetuses. STTC did not induce developmental or reproductive effects in animal studies. CS2 was a developmental neurobehavioral toxin in rat pups (inhalation no observed effect level [NOEL]=0.01 ppm). Reproductive effects occurred in male and female factory workers after CS2 exposure (NOEL=1 ppm). H2 S had developmental effects in rats at doses at or above those observed for nasal pathology (NOEL=10 ppm) but was not a reproductive or developmental toxin in humans. The database for CS2 indicates a strong potential for developmental neurotoxicity in animals at low doses but it is lacking in acceptable, well-performed studies. There is also a lack of studies performed with CS2 and H2 S as a mixture. © 2013 Wiley Periodicals, Inc.

  2. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides.

    PubMed

    Cui, Hui-Fang; Wu, Wen-Wen; Li, Meng-Meng; Song, Xiaojie; Lv, Yuanxu; Zhang, Ting-Ting

    2018-01-15

    A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO 2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as CS @ TiO 2 -CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO 2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized CS @ TiO 2 -CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036μM (7.9 ppb) to 22.6μM, with a limit of detection of 29nM (6.4 ppb) and a total detection time of about 25min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Barnes, S.-J.; Karykowski, B. T.

    2016-06-01

    A chill sequence at the base of the Lower Zone of the western Bushveld Complex at Union Section, South Africa, contains aphanitic Mg-rich basaltic andesite and spinifex-textured komatiite. The basaltic andesite has an average composition of 15.2 % MgO, 52.8 % SiO2, 1205 ppm Cr, and 361 ppm Ni, whereas the komatiite has 18.7 % MgO, 1515 ppm Cr, and 410 ppm Ni. Both rock types have very low concentrations of immobile incompatible elements (0.14-0.72 ppm Nb, 7-31 ppm Zr, 0.34-0.69 ppm Th, 0.23-0.27 wt% TiO2), but high PGE contents (19-23 ppb Pt, 15-16 ppb Pd) and Pt/Pd ratios (Pt/Pd 1.4). Strontium and S isotopes show enriched signatures relative to most other Lower Zone rocks. The rocks could represent a ~20 % partial melt of subcontinental lithospheric mantle. This would match the PGE content of the rocks. However, this model is inconsistent with the high SiO2, Fe, and Na2O contents and, in particular, the low K2O, Zr, Hf, Nb, Ta, Th, LREE, Rb, and Ba contents of the rocks. Alternatively, the chills could represent a komatiitic magma derived from the asthenosphere that underwent assimilation of the quartzitic floor accompanied by crystallization of olivine and chromite. This model is consistent with the lithophile elements and the elevated Sr and S isotopic signatures of the rocks. However, in order to account for the high Pt and Pd contents of the magma, the mantle must have been twice as rich in PGE as the current estimate for PUM, possibly due to a component of incompletely equilibrated late veneer.

  4. The effect of aldicarb on nematode population and its persistence in carrots, soil and hydroponic solution.

    PubMed

    Lue, L P; Lewis, C C; Melchor, V E

    1984-04-01

    Aldicarb, Temik 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredient)/ha and carrots (Daucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 61 to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot greater than in soil greater than in hydroponic solution.

  5. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

    DOE PAGES

    Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...

    2015-06-30

    A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Albuquerque NTMS Quadrangle, New Mexico, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, L.W.; Bolivar, S.L.

    1979-06-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less

  8. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh

    A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less

  9. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2014-08-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring till winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinaceae, L.), a perennial bioenergy crop in Eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O/CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emission, lasting for about two weeks after fertilization in late May, was characterised by an up to two orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.1 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O/CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced cumulatively highest N2O estimates (with 29% higher value during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reason for these episodic higher and lower estimates by the two instruments is not currently known, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and, in particular, simultaneous accurate determination of water vapour concentration due to its large impact on small N2O fluxes through spectroscopic and dilution corrections. The instrument CW-TILDAS-CS was characterised by the lowest noise level (std around 0.12 ppb at 10 Hz sampling rate), as compared to N2O/CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). Both instruments based on Continuous-Wave Quantum Cascade Lasers, CW-TILDAS-CS and N2O/CO-23d, were able to determine the same sample of low N2O fluxes with high mutual coefficient of determination at 30 min averaging level and with minor systematic difference over the observation period of several months.

  10. Use of Bioassay test for the environmental evaluation of mining residues and their leachates: the singular case of the Portman Bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen; Molina, Jose; Tudela, Maria Luz; Hernández-Córdoba, Manuel

    2010-05-01

    The aim of the present study was to evaluate the toxicity of sediments and their pore-water extracts from sites contaminated by mining activities using two assays: bacteria and plants. The acute toxicity in pore-waters was determined using the Microtox® bioassay, which uses the naturally luminescent marine bacterium Vibrio fischeri. Phytotoxicity in soil samples was tested by way of the seed germination and root elongation technique in three plant species, Sorghum saccharatum, Sinapis alba and Lepidium sativum. The aim of applying these assays is to establish a method for evaluating the real risks within a risk analysis process, considering both present and future risks, bearing in mind that the uses to which soil is put (urban, recreational or industrial) may change. In the zone studied, mining activities have led to heavy metal contamination with the risk of runoff and wind dispersion of the contaminated material. For this study, 6 sediment samples were collected from Portman Bay (Murcia, SE Spain). The soil extract was prepared by saturation with distilled water and allowing it to stand for four hours. Then, the soil was subjected to a vacuum pressure to extract the soil solution through filter paper. The Zn and Fe content was determined by flame atomic absorption spectrometry (FAAS). The Pb, Cd and Cu content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was analysed by atomic fluorescence spectrometry using an automated continuous flow hydride generation (As-AFS) spectrometer. Total Pb concentration varied from 600 to 2500 ppm, with a mean value of 1200 ppm. The average content of Zn was 5300 ppm. The mean concentration of Cd and Cu was 23 and 59 ppm, respectively. Total As concentrations varied from 180 to 470 ppm, with an average value 280 ppm. Finally, the total Fe content ranged from 37% to 47%, with an average value of 40%. Pore-water samples showed neutral pH values and average electrical conductivity was 8.4 ds m-1. Mean heavy metal content in leachates from Portman Bay was 6.8 ppm for Pb, 0.1 ppm for Zn, 17 ppb for Cd, 5.6 ppb for Cu, 3.7 ppb for As and 0.6 ppm for Fe. The bioassays showed different sensitivities to the target metals. The Vibrio fischeri luminescence inhibition assay showed less sensitivity to the toxicants in the sediments than phytotoxicity assay. According to our results it is highly advisable to complement chemical analyses with environmental toxicity testing to characterise the risks presented by contaminated soils. Finally, these methods satisfy the requirements of environmental toxicology in their reliability, sensitivity, reproducibility, rapidity and low cost.

  11. Quantitative analysis of trace element concentrations in some gem-quality diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J.; Pearson, D. G.; Klein-Ben David, O.; Nowell, G. M.; Ottley, C. J.; Chinn, I.

    2009-09-01

    The geochemical signature of diamond-forming fluids can be used to unravel diamond-forming processes and is of potential use in the detection of so-called 'conflict' diamonds. While fluid-rich fibrous diamonds can be analyzed by a variety of techniques, very few data have been published for fluid-poor, gem-quality diamonds because of their very low impurity levels. Here we present a new ICPMS-based (ICPMS: inductively coupled plasma mass spectrometry) method for the analysis of trace element concentrations within fluid-poor, gem-quality diamonds. The method employs a closed-system laser ablation cell. Diamonds are ablated and the products trapped for later pre-concentration into solutions that are analyzed by sector-field ICPMS. We show that our limits of quantification for a wide range of elements are at the sub-pg to low pg level. The method is applied to a suite of 10 diamonds from the Cullinan Mine (previously known as Premier), South Africa, along with other diamonds from Siberia (Mir and Udachnaya) and Venezuela. The concentrations of a wide range of elements for all the samples (expressed by weight in the solid) are very low, with rare earth elements along with Y, Nb, Cs ranging from 0.01 to 2 ppb. Large ion lithophile elements (LILE) such as Rb and Ba vary from 1 to 30 ppb. Ti ranges from ppb levels up to 2 ppm. From the combined, currently small data set we observe two kinds of diamond-forming fluids within gem diamonds. One group has enrichments in LILE over Nb, whereas a second group has normalized LILE abundances more similar to those of Nb. These two groups bear some similarity to different groups of fluid-rich diamonds, providing some supporting evidence of a link between the parental fluids for both fluid-inclusion-rich and gem diamonds.

  12. Aflatoxins and fumonisins contamination of home-made food (weanimix) from cereal-legume blends for children.

    PubMed

    Kumi, J; Mitchell, N J; Asare, G A; Dotse, E; Kwaa, F; Phillips, T D; Ankrah, N-A

    2014-09-01

    Weanimix is an important food for children in Ghana. Mothers are trained to prepare homemade weanimix from beans, groundnuts and maize for their infants. Groundnuts and maize are prone to aflatoxin contamination while fumonisin contaminates maize. Aflatoxin, is produced by the Asperguillus fungi while fumonisin, is produced by Fusarium fungi. These mycotoxins occur in tropical areas worldwide due to favorable climate for their growth. The objective of the study was to determine the levels of aflatoxin and fumonisin in homemade weanimix in the Ejura-Sekyedumase district in the Ashanti Region of Ghana. Thirty six homemade weanimix samples (50g each) were collected from households. Aflatoxin and fumonisin were measured using a fluorometric procedure described by the Association of Official Analytical Chemist (AOAC official method 993.31, V1 series 4). Aflatoxin and fumonisin were detected in all 36 samples, range 7.9-500ppb. Fumonisin levels range: 0.74-11.0ppm). Thirty (83.3%) of the thirty six samples were over the action limit of 20ppb for aflatoxin with an overall mean of 145.2 ppb whiles 58.3% of the samples had fumonisins above the action limit of 4 ppm with an overall mean of 4.7 ppm. There were significant aflatoxin and fumonisin contamination of homemade weanimix. Children fed on this nutritional food were being exposed to unacceptable levels of aflatoxin and fumonisin. Therefore there is a critical need to educate mothers on the dangers of mycotoxin exposure and to develop strategies to eliminate exposure of children fed homemade weanimix to aflatoxin and fumonisin.

  13. Emissions of mercury in southern Africa derived from long-term observations at Cape Point, South Africa

    NASA Astrophysics Data System (ADS)

    Brunke, E.-G.; Ebinghaus, R.; Kock, H. H.; Labuschagne, C.; Slemr, F.

    2012-08-01

    Mercury emissions in South Africa have so far been estimated only by a bottom-up approach from activities and emission factors for different processes. In this paper we derive GEM/CO (GEM being gaseous elemental mercury, Hg0), GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios from plumes observed during long-term monitoring of these species at Cape Point between March 2007 and December 2009. The average observed GEM/CO, GEM/CO2, GEM/CH4, CO/CO2, CH4/CO2, and CH4/CO emission ratios were 2.40 ± 2.65 pg m-3 ppb-1 (n = 47), 62.7 ± 80.2 pg m-3 ppm-1 (n = 44), 3.61 ± 4.66 pg m-3 ppb-1 (n = 46), 35.6 ± 25.4 ppb ppm-1 (n = 52), 20.2 ± 15.5 ppb ppm-1 (n = 48), and 0.876 ± 1.106 ppb ppb-1 (n = 42), respectively. The observed CO/CO2, CH4/CO2, and CH4/CO emission ratios agree within the combined uncertainties of the observations and emissions with the ratios calculated from EDGAR (version 4.2) CO2, CO, and CH4 inventories for South Africa and southern Africa (South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, and Mozambique) in 2007 and 2008 (inventories for 2009 are not available yet). Total elemental mercury emission of 13.1, 15.2, and 16.1 t Hg yr-1 are estimated independently using the GEM/CO, GEM/CO2, and GEM/CH4 emission ratios and the annual mean CO, CO2, and CH4 emissions, respectively, of South Africa in 2007 and 2008. The average of these independent estimates of 14.8 t GEM yr-1 is much less than the total emission of 257 t Hg yr-1 shown by older inventories which are now considered to be wrong. Considering the uncertainties of our emission estimate, of the emission inventories, and the fact that emission of GEM represents 50-78 % of all mercury emissions, our estimate is comparable to the currently cited GEM emissions in 2004 and somewhat smaller than emissions in 2006. A further increase of mercury emissions due to increasing electricity consumption will lead to a more pronounced difference. A quantitative assessment of the difference and its significance, however, will require emission inventories for the years of observations (2007-2009) as well as better data on the speciation of the total mercury emissions in South Africa.

  14. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  15. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars

    NASA Astrophysics Data System (ADS)

    Navarro-González, Rafael; Vargas, Edgar; de la Rosa, José; Raga, Alejandro C.; McKay, Christopher P.

    2010-12-01

    The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected, with traces of chloromethane at 15 ppb, at Viking landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm, with traces of dichloromethane at 0.04-40 ppb, at Viking landing site 2. These chlorohydrocarbons were considered to be terrestrial contaminants, although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert containing 32 ± 6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated, nearly all the organics present are decomposed to water and carbon dioxide, but a small amount is chlorinated, forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500°C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. Reinterpretation of the Viking results therefore suggests ≤0.1% perchlorate and 1.5-6.5 ppm organic carbon at landing site 1 and ≤0.1% perchlorate and 0.7-2.6 ppm organic carbon at landing site 2. The detection of organics on Mars is important to assess locations for future experiments to detect life itself.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a meanmore » of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.« less

  17. Platinum-Group Elements in Basalts Derived From the Icelandic Mantle Plume -Past and Present.

    NASA Astrophysics Data System (ADS)

    Momme, P.; Oskarsson, N.; Gronvold, K.; Tegner, C.; Brooks, K.; Keays, R.

    2001-12-01

    Paleogene basalts ( ~55Ma) derived from the ancestral Iceland mantle plume and extruded during continental rifting are exposed along the Blosseville Kyst in central East Greenland. These basalts comprise three intercalated series, viz: a low-Ti, high-Ti and a very high-Ti series. The two Ti-rich series are interpreted to represent continental flood basalts formed by low degrees of partial melting (degree of melting F=3-9%) while the low-Ti series are believed to have formed by higher degrees of partial melting (F:15-25%). All three of the East Greenland basalt series are enriched in the PGE, relative to normal MORB. During differentiation of the low-Ti series, Pd increase from 11 to 24 ppb whereas Pt and Ir decrease from 12 and 0.6 ppb to 3 and <0.05 ppb respectively. The primitive basalts (molar Mg#60) of the dominant high-Ti series contain ~6-10 ppb Pd, ~7-10 ppb Pt and ~0.2 ppb Ir whereas the most evolved basalts (Mg#43) contain 25 ppb Pd, 5 ppb Pt and <0.05 ppb Ir. The PGE-rich nature of these basalts is surprising because low degree partial melts are generally S-saturated and hence strongly depleted in the PGE (cf, Keays, 1995). However, our data indicates that all of the East Greenland magmas were S-undersaturated and as they underwent differentiation, Pd behaved incompatibly while Ir and Pt behaved compatibly. Primitive Holocene Icelandic olivine tholeiites contain 120 ppm Cu, 6 ppb Pd, 4 ppb Pt and 0.2 ppb Ir while their picritic counterparts contain 74 ppm Cu, 17 ppb Pd, 7 ppb Pt and 0.3 ppb Ir. Both the olivine tholeiites and the picrites are believed to have formed by high degrees of partial melting (15-25%) which would have exhausted all of the sulphides in the mantle source region and produced S-undersaturated magmas. In Icelandic samples with 10-14wt% MgO, Cu and the PGEs vary systematically between the primitive picrite and olivine tholeiite compositions given above i.e there is an inverse correlation between Cu and the PGEs. This is best explained by mixing between parental olivine tholeiite and picrite magmas. The low Cu/Pd ratio in the most primitive picrite probably reflect derivation from a depleted mantle where Cu was less efficiently retained in sulphides compared to Pd during previous melt extraction episodes. Whithin the analysed suite of olivine tholeiites, Ir decreases from 0.15 to 0.06 ppb, Pd increases from ~6 to ~15 ppb and Pt/Pd ratio decreases from 0.8-0.2 during differentiation (7-4wt% MgO); these variations provide further evidence that the olivine tholeiite magmas remained S-undersaturated throughout their differentiation. To summarize, (1) Continental flood basalts and low-Ti tholeiites in the Paleogene East Greenland flood basalt sequence, as well as Holocene Icelandic olivine tholeiites are PGE-rich relative to normal MORB. (2) Their PGE-contents vary as a function of S-undersaturated differentiation. (3) Cu-PGE variations in Icelandic samples with 10-14 wt% MgO suggest that they represent mixtures between distinct tholeiitic (Cu/Pd: 20000) and depleted picritic (Cu/Pd: 4400) parental liquids. Reference: Keays RR (1995) The role of komatiitic magmatism and S-saturation in the formation of ore deposits. Lithos 34:1-18.

  18. Mobility of gold during metamorphism of the Dalradian in Scotland

    NASA Astrophysics Data System (ADS)

    Pitcairn, I. K.; Skelton, A. D. L.; Wohlgemuth-Ueberwasser, C. C.

    2015-09-01

    Mobility of Au and related metals during metamorphism has been suggested to be the source of metals enriched in orogenic Au deposits. This study investigates the mobility of Au, As, and Sb during metamorphism of the Dalradian metasedimentary rocks of Scotland. The metamorphic processes in the Dalradian of Scotland are extremely well studied, and the terrane is an ideal area to investigate mobility of these metals. Our results show that of the 25 major and trace elements analysed, only Au, As, Sb, S and volatile contents as shown by loss on ignition (LOI) values show systematic variation with the metamorphic grade of the samples. Average Au concentrations decrease from 1.1 ± 0.55 ppb and 0.72 ± 0.34 ppb in chlorite and biotite zone rocks down to 0.4 ± 0.22 ppb and 0.34 ± 0.13 ppb in kyanite and sillimanite zone rocks. Average As concentrations decrease from 4.8 ppm (range 0.5 to 17.8 ppm) and 1.96 ± 1.9 ppm in chlorite and biotite zone rocks down to 0.24 ± 0.15 ppm and 0.2 ± 0.12 ppm in kyanite and sillimanite zone rocks. Average Sb concentrations decrease from 0.18 ± 0.15 ppm and 0.11 ± 0.10 ppm in chlorite and biotite zone rocks down to 0.04 ± 0.02 ppm in both kyanite and sillimanite zone rocks. Sulphur and LOI concentrations also show significant decreases. Mass balance calculations indicate that compared to chlorite and biotite zone samples, sillimanite zone samples have an average mass loss of 62 ± 14%, 94 ± 4% and 74 ± 14% for Au, As, and Sb respectively. Every 1 km3 of chlorite-biotite zone mixed psammitic-pelitic protolith rock that is metamorphosed to sillimanite zone conditions would release 1.5 t Au, 8613 t As, 270 t Sb, and 1.02 Mt S. The mobility of these elements is strongly controlled by the paragenesis of sulphide minerals. Pyrite, sphalerite, galena and cobaltite (as well as gersdorffite) decrease in abundance with increasing metamorphic grade in the Dalradian metasedimentary rocks. A critical aspect of the sulphide paragenesis is the transition of pyrite to pyrrhotite. This transition is complete by mid greenschist facies in the Loch Lomond samples but is more gradual at Glen Esk occurring between biotite and sillimanite zones. The Au, As, and Sb content of the sulphide assemblage also decreases with increasing metamorphic grade, and we suggest that this is a controlling factor on the mobility of these metals from the Dalradian metasedimentary rocks during metamorphism. Chlorite may be an important host mineral for As in the greenschist facies rocks. Breakdown of chlorite indirectly drives the mobility of Au, As, and Sb, as this produces the bulk of metamorphic fluid that drives transition between pyrite and pyrrhotite. We suggest that there is potential for significant undiscovered mineralisation in the Central and SW Highlands of Scotland. However, as the total mass of gold mobilised is lower than observed in other metasedimentary terranes such as the Otago and Alpine Schist's, New Zealand, very efficient fluid focussing and trapping mechanisms would be required to form large deposits in the Dalradian of Scotland.

  19. A retrieved upper limit of CS in Neptune's atmosphere

    NASA Astrophysics Data System (ADS)

    Iino, T.; Mizuno, A.; Nagahama, T.; Hirota, A.; Nakajima, T.

    2012-12-01

    We present our new result of CS(J=7-6), CO(J=3-2) observations of Neptune's atmosphere carried out with 10-m ASTE sub-mm waveband telescope on August 2010. As a result, while CS line was not detected with 6.4 mK 1-sigma r.m.s. noise level, CO line was detected as 282 mK with 9.7 mK noise level in antenna temperature scale. All of the observations were carried out with 512 MHz bandwidth and 500 kHz resolution, the total integration time for CS and CO were 23 m 40 s and 11 m 00 s, respectively. Abundances have been obtained from the comparison between the intensity and the synthesis spectra modeled by plane parallel 1-D radiative transfer code assuming various mixing ratio of each gas. The retrieved upper limit of CS mixing ratio was 0.03 ppb throughout tropopause to stratosphere. CO mixing ratio have been retrieved 1.0 ppm with errors +0.3 and -0.2 ppm, and the result was consistent with previous observation [1]. The origin of abundant CO in Neptune's atmosphere has been long discussed since its mixing ratio is 30 - 500 times higher than the value of other gas giants [2][3][4]. Assuming that all of CO is produced by thermochemical equilibrium process in deep interior of Neptune, required O/H value in interior is 440 times higher than the solar value [5]. For this reason, it is claimed that the external CO supply source, such as the impact of comet or asteroid, is also the possible candidates of the origin of CO along with the internal supply source [6]. In this observation, we searched the remnant gas of cometary impact in Neptune's atmosphere. Along with CO and HCN, CS could be one of the possible candidate of the remnant gas of cometary impact since CS was largely produced after the impact of comet SL/9 on Jupiter while many other major sulfur compounds have not been detected. Actually, derived < 0.00003 [CS]/[CO] value from our observations is 1000 times more smaller than the value of Jupiter of 0.037 [7]. Our observation result shows the depletion of CS in comparison with the case of Jupiter represents the two implications to external supply scenario: (1)From the numerical simulation, it is suggested that the sulfur compounds produced after the impact of comet changes with the abundance of oxygen in both comet and air [8]. Considering Neptune's water vapor rich environment [9], it is possible that other sulfur compounds such as SO or SO2 would have been produced after the impact. We are preparing the new line survey observation of sulfur compounds from these chemical aspects. (2): In contrary to (1), in the case that CS was produced along with CO by the impact, photo-dissociation process distinguishes the total amount of both CO and CS. Considering the difference of photo-dissociation lifetime of CO and CS, we estimated the required time elapsed after the impact to achieve the derived [CS]/[CO] value and was longer than 30 years. This value is consistent with previous study estimated by vertical transportation of CO [5]. References: [1]Marten et al., 2005. A&A 429, 1097-1105. [2]Lellouch et al., 2004. A&A 309, L91-94 [4]Noll et al., 1988. ApJ Part 1, 324, 1210-1218. [5]Lodders et al., 1994. Icarus 112, 368-375 [6]Lellouch et al., 2005. A&A 430, L37-40. [7]Moreno et al., 2003. Planetary and Space Sciences 51, 591-611 [8]Zahnle et al.,1995. GRL 22, 1593-1596 [9]Feuchtgruber et al., 1999. Proceeding of the conference "The universe as seen by ISO"

  20. Effect of cleaning, milling, and baking on deoxynivalenol in wheat.

    PubMed Central

    Abbas, H K; Mirocha, C J; Pawlosky, R J; Pusch, D J

    1985-01-01

    Samples of wheat naturally infected by Fusarium graminearum Schwabe were obtained from mills in Oklahoma, Missouri, Kansas, and Minnesota and fields in Nebraska and Kansas in 1982; they were analyzed for deoxynivalenol (DON). The wheat was milled, and DON was found throughout all the milling fractions (bran, shorts, reduction flour, and break flour). The DON recoveries for each mill run ranged from 90 to 98%. These samples, regardless of DON concentration, also gave similar fractional distributions of DON. The greatest (21 ppm [21 micrograms/g]) concentration of DON was found in the bran, and the smallest (1 ppm) was found in the break flour. Cleaning and milling were not effective in removing DON; DON was not destroyed in the bread baked from the naturally contaminated whole wheat flour, but the effect on its concentration in the samples analyzed varied, the reduction ranging from 19 to 69%. The percent reduction found in the cleaned wheat ranged from 6 to 19%. DON concentrations in the following commercially made breads, caraway rye, seedless rye, and pumpernickel, were 45 ppb (ng/g), 39 ppb, and 0 ppb, respectively. The limits of detection by gas chromatography-mass spectrometry and high-pressure liquid chromatography for DON were 0.5 and 10 ng, respectively. PMID:4051489

  1. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    USGS Publications Warehouse

    Bennett, J.P.; Jepsen, E.A.; Roth, J.A.

    2006-01-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.

  2. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  3. Study on methenamine detection in starch products through SERS technology

    NASA Astrophysics Data System (ADS)

    Cui, Yu; Qu, Zhou

    2016-01-01

    Using silver sol as a strengthened base, this paper concludes that l0ppb-0.1ppb methenamine aqueous solution has a better signal in 1052cm-1 Raman feature. And the lower limit of the aqueous solution is about 0.1ppb. Adding corresponding amount methenamine in vermicelli sample, the lower limit is about 10ppm. This is a safest and pollution-free detection process. Furthermore, the pretreatment process is simple, which will be finished in 20 minutes. Hence, it is better than other detection methods. SERS technology provides a simple, rapid and efficient detection method for field measurement and real time detection modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  4. Current and historical individual data about exposure of workers in the rayon industry to carbon disulfide and their validity in calculating the cumulative dose.

    PubMed

    Göen, Thomas; Schramm, Axel; Baumeister, Thomas; Uter, Wolfgang; Drexler, Hans

    2014-08-01

    The objective of the study was to investigate how exposure to carbon disulfide (CS2) in a rayon-manufacturing plant has changed within two decades and whether it is possible to calculate valid data for the individual cumulative exposure. The data for CS2 concentration in air and biological exposure monitoring (2-thio-1,3-thiaxolidine-4-carboxylic acid (TTCA) in urine) from two cross-sectional studies, performed in 1992 (n = 362) and 2009 (n = 212) in a German rayon-manufacturing plant, were compared to data obtained from company-internal measurements between the studies. Using the data from the cross-sectional studies and company-internal data, cumulative external exposure and the cumulative internal exposure were calculated for each worker. External and internal CS2 exposure of the employees decreased from 1992 (medians 4.0 ppm and 1.63 mgTTCA/g creatinine) to 2009 (medians 2.5 ppm and 0.86 mg/g). However, company-internal CS2 data do not show a straight trend for this period. The annual medians of the company-internal measurement of external exposure to CS2 have varied between 2.7 and 8.4 ppm, in which median values exceeded 5 ppm generally since 2000. The annual medians for the company-internal biomonitoring assessment ranged between 1.2 and 2.8 mg/g creatinine. The cumulative CS2 exposure ranged from 8.5 to 869.5 ppm years for external exposure and between 1.30 and 176.2 mg/g creatinine years for the internal exposure. Significant correlations were found between the current air pollution and the internal exposure in 2009 but also between the cumulative external and internal CS2 exposure. Current exposure data, usually collected in cross-sectional studies, rarely allow a reliable statement on the cumulative dose, because of higher exposure in the past and of fluctuating courses of exposure. On the other hand, company-internal exposure data may be affected by non-representative measurement strategies. Some verification of the reliability of cumulative exposure data may be possible by testing the correlation between cumulative exposure data of external assessment and biological monitoring.

  5. Acute toxic responses of the freshwater planarian, Dugesia dorotocephala, to methylmercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, J.B.; Morita, M.; Ragin, J.

    1981-07-01

    Toxic responses of planaria to various aquatic habitat concentrations of methylmercury chloride (MMC) were investigated. One hundred percent lethality occurred within 5 h in 2 ppM MMC, 24 h in 1 ppM MMC, and 5 days in 0.5 ppM MMC. No deaths occurred in 0.2 ppM MMC over a 10 day period, however, non-lethal toxic responses were observed. Varying degrees of head resorption, progressing caudally from the snout were observed. With continuing exposure, partial head regeneration and recovery toward more normal appearance occurred by 10 days. Teratogenic effects were observed in surgical decapitation experiments. Head regeneration was retarded in 0.1more » and 0.2 ppM MMC. Malformations, visible lesions, or gross behavioral abnormalities were produced by 2 week exposure of planaria to concentrations of 20 ppB MMC or lower. (RJC)« less

  6. Summary of airborne chlorine and hydrogen chloride gas measurements for August 20 and September 5, 1977 Voyager launches at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.

    1978-01-01

    Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.

  7. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently of the same magnitude as the fluxes when N2O exchange was small at the measurement site. Both instruments based on continuous-wave quantum cascade laser, CW-TILDAS-CS and N2O / CO-23d, were able to determine the same sample of low N2O fluxes with a high mutual coefficient of determination at the 30 min averaging level and with minor systematic difference over the observation period of several months. This enables us to conclude that the new-generation instrumentation is capable of measuring small N2O exchange with high precision and accuracy at sites with low fluxes.

  8. Benzene exposure: An overview of monitoring methods and their findings

    PubMed Central

    Weisel, Clifford P.

    2014-01-01

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person’s total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites, differences in metabolic rates compared to occupational or animal doses, and the presence of polymorphisms need to be considered when evaluating risks from environmental exposures to individuals or potentially susceptible populations. PMID:20056112

  9. Health assessment for Bee Cee Manufacturing Company, Malden, Missouri, Region 7. CERCLIS No. MOD980860522. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Bee Cee Manufacturing site (BCM) is listed on the National Priorities List. The 2-acre site is located in Malden (Dunklin County), Missouri. BCM is a former manufacturer of aluminum storm windows and doors. Preliminary on-site sludge sampling results have identified chromium (9 ppm) and aluminum (3 ppm). Off-site sampling results have identified chromium (32 ppb) and aluminum (1 ppm) in ground water from a residential well. The site is considered to be of potential public health concern because area residents may increase their risk of exposure through ingestion of contaminated water and possibly through direct contact of contaminated soil.

  10. High sensitivity in-situ analysis of light lithophile (Li, Be, B) and alkali (Rb, Cs) elements by laser ablation magnetic sector ICP-MS: application to back arc basin magmatism

    NASA Astrophysics Data System (ADS)

    Kent, A. J.; Ungerer, C. A.

    2003-12-01

    Light lithophile (B, Be, Li) and alkali elements (Rb, Cs) provide many constraints on the origin and evolution of primitive magmatic rocks. However these elements are often present at low abundances, requiring large sample volumes, and may be strongly effected by alteration or sample contamination. We have developed a technique for rapid, in-situ, analysis of B, Be, Li, Rb and Cs abundances in glasses, glass inclusions and minerals using laser ablation microsampling and analysis by magnetic sector ICP-MS. By coupling the high sensitivity, dynamic range and low backgrounds of the ICP-MS with the speed and minimal sample preparation requirements of laser ablation, we can analyze these elements with detection limits that rival many solution-based techniques in ~60 s and using << 200 ng of material. Analyses are conducted using a NewWave DUV 193 nm ArF Excimer laser system, with He carrier gas. Samples were ablated at energies of 10-12 mJ/cm2 with pulse rates between 2-5 hz, and by either translating a 50 μ m laser spot over the surface at a rate of 5 μ m/s or by maintaining a stationary 50-70 μ m spot. Ablated material was analyzed with a VG Axiom single collector ICP-MS using a high-sensitivity sampler cone. All peaks were checked at high mass resolving power for molecular interferences, and analyses were conducted at low resolving power to maximize transmission. Careful monitoring of backgrounds was required for low-abundance measurements. Calculated detection limits are 1-2 ppb (Cs, Be), 5-10 ppb (Li) and 15-20 ppb (B, Rb). Surface contamination was removed with a pre-analysis ablation pass, and the small size of the laser spot allowed us to avoid altered and devitrified areas. Analysis of standard glasses showed excellent agreement with accepted values and repeat analyses suggest external errors are typically < 5-10%. Glasses from the Lau Basin show strong enrichments in B, Rb and Cs that correlate with a slab-fluid signature. B, Be Rb and Cs contents are very low in MORB-like samples from the north of the basin but are enriched in evolved lavas from propagating ridge tips.

  11. The Origin of Titan’s External Oxygen: Further Constraints from ALMA Upper Limits on CS and CH2NH

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; Cordiner, M. A.; Nixon, C. A.; Irwin, P. G. J.; Hörst, S. M.; Sylvestre, M.; Serigano, J.; Thelen, A. E.; Richards, A. M. S.; Charnley, S. B.

    2018-06-01

    Titan’s atmospheric inventory of oxygen compounds (H2O, CO2, CO) are thought to result from photochemistry acting on externally supplied oxygen species (O+, OH, H2O). These species potentially originate from two main sources: (1) cryogenic plumes from the active moon Enceladus and (2) micrometeoroid ablation. Enceladus is already suspected to be the major O+ source, which is required for CO creation. However, photochemical models also require H2O and OH influx to reproduce observed quantities of CO2 and H2O. Here, we exploit sulphur as a tracer to investigate the oxygen source because it has very different relative abundances in micrometeorites (S/O ∼ 10‑2) and Enceladus’ plumes (S/O ∼ 10‑5). Photochemical models predict most sulphur is converted to CS in the upper atmosphere, so we use Atacama Large Millimeter/submillimeter Array (ALMA) observations at ∼340 GHz to search for CS emission. We determined stringent CS 3σ stratospheric upper limits of 0.0074 ppb (uniform above 100 km) and 0.0256 ppb (uniform above 200 km). These upper limits are not quite stringent enough to distinguish between Enceladus and micrometeorite sources at the 3σ level and a contribution from micrometeorites cannot be ruled out, especially if external flux is toward the lower end of current estimates. Only the high-flux micrometeorite source model of Hickson et al. can be rejected at 3σ. We determined a 3σ stratospheric upper limit for CH2NH of 0.35 ppb, which suggests cosmic rays may have a smaller influence in the lower stratosphere than predicted by some photochemical models. Disk-averaged C3H4 and C2H5CN profiles were determined and are consistent with previous ALMA and Cassini/CIRS measurements.

  12. Environmental monitoring of carbaryl applied in urban areas to control the glassy-winged sharpshooter in California.

    PubMed

    Walters, Johanna; Goh, Kean S; Li, Linying; Feng, Hsiao; Hernandez, Jorge; White, Jane

    2003-03-01

    Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced in California. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables. Results from the five urban areas - Porterville, Fresno, Rancho Cordova, Brentwood and Chico - showed there were no significant human exposures or impacts on the environment. Spray tank concentrations ranged from 0.1-0.32%. Carbaryl concentrations in air ranged from none detected to 1.12 microg m(-3), well below the interim health screening level in air of 51.7 microg m(-3). There were three detections of carbaryl in surface water near application sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppb in a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54-7.12 microg cm(-2), comparable to levels reported for safe reentry of 2.4 to 5.6 microg cm(-2) for citrus. Carbaryl concentrations in fruits and vegetables ranged from no detectable amounts to 7.56 ppm, which were below the U.S. EPA tolerance, allowable residue of 10 ppm.

  13. DPASV analytical technique for ppb level uranium analysis

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Determining uranium in ppb level is considered to be most crucial for reuse of water originated in nuclear industries at the time of decontamination of plant effluents generated during uranium (fuel) production, fuel rod fabrication, application in nuclear reactors and comparatively small amount of effluents obtained during laboratory research and developmental work. Higher level of uranium in percentage level can be analyzed through gravimetry, titration etc, whereas inductively coupled plasma-atomic energy spectroscopy (ICP-AES), fluorimeter are well suited for ppm level. For ppb level of uranium, inductively coupled plasma - mass spectroscopy (ICP-MS) or Differential Pulse Anodic Stripping Voltammetry (DPASV) serve the purpose. High precision, accuracy and sensitivity are the crucial for uranium analysis in trace (ppb) level, which are satisfied by ICP-MS and stripping voltammeter. Voltammeter has been found to be less expensive, requires low maintenance and is convenient for measuring uranium in presence of large number of other ions in the waste effluent. In this paper, necessity of uranium concentration quantification for recovery as well as safe disposal of plant effluent, working mechanism of voltammeter w.r.t. uranium analysis in ppb level with its standard deviation and a data comparison with ICP-MS has been represented.

  14. New Reactive Diluents for an Environmentally Efficient Approach to Composite Repair

    DTIC Science & Technology

    2010-02-16

    7.25 ppm, δ 77.0 ppm; MeOH-δ4, d 3.31 ppm, δ 49.15 ppm. The n-BuLi (2.5 M in hexanes), 4,4’-dibromophenyl ether, vinyl tributyltin , THF (anhydrous...4’-tributylsilyldiphenyl ether (34.48 g, 79 mmol), CsF, (25.28 g, 166 mmol), vinyl tributyltin (27.65 g, 87 mmol), Pd2(dba)3 (3.63 g, 4.0 mmol), and

  15. Effects of triclosan in breast milk on the infant fecal microbiome

    USDA-ARS?s Scientific Manuscript database

    Triclosan is frequently used for its antimicrobial properties and has been detected in human serum, urine, and breast milk. Animal and molecular studies have shown that triclosan exerts a wide range of adverse health effects at both high (ppm) and low (ppb) concentrations. Since triclosan is of grow...

  16. Effects of Mercury Contamination on Visible and Near Infrared Reflectance Spectra of Vegetation in Connecticut

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Gilmore, M. S.; Varekamp, J. C.

    2004-05-01

    Current techniques commonly used to survey metal-contaminated soils are expensive, time consuming and only applicable on a small scale. Remote sensing offers the possibility of a cost-effective method for detecting and mapping the extent of contamination. Although metals cannot be directly detected in vegetation, it may be possible to detect secondary effects of metal stress in plant leaves. The goal of this project is to discern the spectral signature of metals in vegetation in Connecticut. This study encompasses sites that are contaminated from both point and non-point sources of mercury and other trace metals. Elevated Hg levels (with respect to common contamination from atmospheric deposition) in soils in western Connecticut are attributed to former hatting factories in the cities of Danbury and Norwalk that were active in the 19th and 20th centuries. Vegetation was sampled that is widespread and sensitive to heavy metal uptake and includes Acer, Spartina, Phragmites and various grass species. Study sites are surveyed using GPS, photography and soil and vegetative cover descriptions. Soil and plant leaves are analyzed for total Hg (THg) concentration with a Milestone Direct Mercury Analyzer and for other metals (Cu, Pb, Cr and Zn) by ICP-MS. Leaf reflectance is measured in situ with an ASD FieldspecFR spectroradiometer with a wavelength range of 350-2500 nm. The THg concentrations range from low ppb values to >75ppm in soil samples and from 3ppb to 2.7ppm in vegetation samples. The highest concentrations of Hg (40ppb to 2.7ppm) in plant tissue at all sites were from Acer species (when present). Initial results reveal that leaf and soil THg concentrations do not directly correlate, suggesting variations in metal uptake by different species and plant parts. However, there is a positive correlation (R2= 0.67) between soil and leaf THg concentration for a given species such as Acer. The relationship between metal concentration and vegetation spectra is evaluated by correlating spectral vegetative indices (VIs) such as Simple Ratio (SR) and Red Edge Position (REP) with leaf and soil metal concentrations. In Acer species, a shift in the red edge position to shorter wavelengths occurs with increasing leaf THg content (R2= 0 .44). The SR values are negatively correlated with leaf mercury concentration (R2= 0.31). The REP and SR relations for marsh plant species are not significant, most likely the result of the low THg concentration of marsh species leaves (3ppb-14ppb).

  17. Carbon disulfide exposure estimate and prevalence of chronic diseases after carbon disulfide poisoning-related occupational diseases.

    PubMed

    Chung, Hweemin; Youn, Kanwoo; Kim, Kyuyeon; Park, Kyunggeun

    2017-01-01

    In Korea, Carbon disulfide (CS 2 ) toxicity was an important social problem from the late 1980s to the early 1990s but there have been few large-scale studies examining the prevalence of diseases after CS 2 exposure discontinuance. So we investigated past working exposure to CS 2 characteristics from surviving ex-workers of a rayon manufacturing plant including cumulative CS 2 exposure index. Furthermore, we studied the prevalence of their chronic diseases recently after many years. We interviewed 633 ex-workers identified as CS 2 poisoning-related occupational diseases to determine demographic and occupational characteristics and reviewed their medical records. The work environment measurement data from 1992 was used as a reference. Based on the interviews and foreign measurement documents, weights were assigned to the reference concentrations followed by calculation of individual exposure index, the sum of the portion of each time period multiplied by the concentrations of CS 2 during that period. The cumulative exposure index was 128.2 ppm on average. Workers from the spinning, electrical equipment repair, and motor repair departments were exposed to high concentrations of ≥10 ppm. Workers from the maintenance of the ejector, manufacturing of CS 2, post-process, refining, maintenance and manufacturing of viscose departments were exposed to low concentrations below 10 ppm. The prevalence for hypertension, coronary artery disease, cerebrovascular disease, diabetes, arrhythmia, psychoneurotic disorder, disorders of the nervous system and sensory organ were 69.2%, 13.9%, 24.8%, 24.5%, 1.3%, 65.7%, 72.4% respectively. We estimated the individual cumulative CS 2 exposure based on interviews and foreign measurement documents, and work environment measurement data. Comparing the work environment measurement data from 1992, these values were similar to them. After identified as CS 2 poisoning, there are subjects over 70 years of average age with disorders of the nervous system and sensory organs, hypertension, psychoneurotic disorder, cerebrovascular disease, diabetes, coronary artery disease, and arrhythmia. Because among ex-workers of the rayon manufacturing plant, only 633 survivors recognized as CS 2 poisoning were studied, the others not identified as CS 2 poisoning should also be investigated in the future.

  18. Laser-induced fluorescence spectrometer based on tunable color center laser for low-impurity-solution diagnostic and analysis

    NASA Astrophysics Data System (ADS)

    Basiev, Tasoltan T.; Fedorov, Vladimir V.; Karasik, Alexander Y.; Lin'kov, S. I.; Orlovskii, Yurii V.; Osiko, Vyacheslav V.; Panov, Vitaly A.; Prokhorov, Alexander M.; Vorob'ev, Ivan N.; Zverev, Peter G.

    1996-11-01

    Solid state (SS) tunable LiF:F2 color center laser with second and fourth harmonic generation for visible and ultra violet spectral ranges was developed for the laser induced fluorescence spectroscopy (LIFS). The construction and properties of excitation, registration and flame atomization systems for water solution diagnostic are discussed. The testing experiment with low iron concentrated water sample exhibits ultrahigh sensitivity which was estimated to be 0.05 ppb in our set-up. The SS LIFS spectrometer developed is usable to measure more than 42 metal elements in solution on the ppm, ppb level for various medical and biological applications.

  19. Concentrations of platinum group elements in 122 U.S. coal samples

    USGS Publications Warehouse

    Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.

    1997-01-01

    Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.

  20. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    PubMed

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  1. A national-scale review of air pollutant concentrations measured in the U.S. near-road monitoring network during 2014 and 2015

    NASA Astrophysics Data System (ADS)

    DeWinter, Jennifer L.; Brown, Steven G.; Seagram, Annie F.; Landsberg, Karin; Eisinger, Douglas S.

    2018-06-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for NO2 to include a primary health-based standard for hourly NO2, and required air quality monitoring next to major roadways in urban areas in the U.S. Requirements for near-road measurements also include carbon monoxide (CO) and particulate matter smaller than 2.5 μm in diameter (PM2.5). We performed a national-scale assessment of air pollutants measured at 81 sites in the near-road environment during the first two years (2014 and 2015) of the new measurement program. We evaluated how concentrations at these locations compared to the NAAQS, to concentrations measured at other sites within the same urban areas, and when considering their site characteristics (distance of monitor to road, traffic volume, and meteorology). We also estimated the contribution of emissions from adjacent roadways at each near-road site to the PM2.5 concentrations above the local urban background concentrations, i.e., the near-road "increment." Hourly values of CO reached a maximum of 4.8 ppm across 31 sites in 2014 and 9.6 ppm across 47 sites in 2015, and were well below the NAAQS levels for both the 1-hr (35 ppm) and 8-hr (9 ppm) standards. Hourly concentrations of near-road NO2 reached 258 ppb across 40 sites in 2014; however, there were only two occurrences of a daily 1-hr maximum NO2 concentration above 100 ppb (the level of the hourly NO2 standard). In 2015, hourly concentrations of near-road NO2, monitored at 61 sites in 55 urban areas, reached 154 ppb. Only 0.0015% (n = 5) of hourly NO2 observations in 2015 exceeded 100 ppb. The highest annual NO2 average recorded in 2015 (29.9 ppb) occurred at the Ontario site located along I-10 in the Los Angeles, California, area and was below the level of the NO2 annual standard (53 ppb); in 2014, the highest annual mean NO2 was also observed in Los Angeles at the Anaheim site (27.1 ppb). In 2014, sites in Cincinnati, Indianapolis, and Louisville recorded annual average PM2.5 concentrations at or above 12 μg/m3 (the level of the annual standard). There were 15 occurrences in 2014 of 24-hr PM2.5 concentrations above the NAAQS level of 35 μg/m3. Annual average PM2.5 exceeded 12 μg/m3 at near-road sites in five urban areas in 2015, and there were 33 days across 12 near-road locations with 24-hr PM2.5 concentrations above 35 μg/m3. Across the near-road monitoring network, annual average PM2.5 concentrations did not have a significant relationship with traffic volume or distance between the monitor and the adjacent roadway; rather, variations in PM2.5 were mostly driven by urban-scale PM2.5, with a typically small "increment" above urban-scale concentrations due to a site's proximity to the roadway. We estimated this increment, i.e., the difference between near-road PM2.5 concentrations and the concentrations at sites in the urban area of each near-road monitor, to be on average 1.2 μg/m3 (σ = 0.3 μg/m3), with a range of -1.2 μg/m3 to 3.1 μg/m3 across the 26 sites (four of which had a negative increment). The near-road increment is on average 13% of the near-road PM2.5, and 15% of the near-road PM2.5 for sites within 20 m of the roadway.

  2. Fluoride contamination sensor based on optical fiber grating technology

    NASA Astrophysics Data System (ADS)

    Jadhav, Mangesh S.; Laxmeshwar, Lata S.; Akki, Jyoti F.; Raikar, P. U.; Kumar, Jitendra; Prakash, Om; Raikar, U. S.

    2017-11-01

    A number of distinct advantages of the optical fiber technology in the field of sensors and communications which leads to enormous applications. Fiber Bragg grating (FBG) developed from the fabrication of photosensitive fiber through phase mask technique is used in the present report. The designed fiber sensor used for the detection and determination of contaminants in drinking water at ppm & ppb level and it is considered as a special type of concentration sensor. The test samples of drinking water have been collected from different regions. In this paper we have calibrated the FBG sensor to detect Flouride concentration in drinking water in the range of 0.05-8 ppm. According to WHO, the normal range of fluoride content in drinking water is about 0.7 ppm to 1.5 ppm. The results for resultant spectral shifts for test samples are closely agree with standard values.

  3. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  4. Health Assessment Document for 1,1,2-Trichloro-1,2,2-Trifluoroethane (Chlorofluorocarbon CFC-113)

    EPA Science Inventory

    Chlorofluorocarbon 113 (1,1,2-trichloro-1,2,2,-trifluoroethane) has little potential to cause direct adverse health effects at levels found or expected in the general environment (<4.2 ppb). Experimental data do not indicate adverse health effects in humans at a TLV of 1,000 ppm....

  5. Detection heart failures (HF) biomarkers by proton transfer reaction - mass spectrometry and ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Shaltaeva, Y. R.; Vasilev, V. K.; Yakovlev, D. Y.; Kopylov, F. Iu; Syrkin, A. L.; Chomakhidze, P. Sh; Bykova, A. A.; Malinovskaya, L. K.; Skorokhod, A. I.

    2016-10-01

    Exhaled breath contains 1% of volatile organic compounds. The concentration of individual biomarkers in hundreds of volatile organic compounds lies within the range ppm- ppb. In compare with control group the concentrations of acetone, acetic acid, ethanol, propylene biomarkers is significantly higher in HF-PEF group.

  6. CARS technique for geological exploration of hydrocarbons deposits

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. P.; Bespalov, Victor; Elizarov, V. V.; Grishkanich, A. S.; Kascheev, S. V.; Makarov, E. A.; Bogoslovsky, S. A.; Il'inskiy, A. A.

    2014-10-01

    We developed a Raman lidar with ultraspectral resolution for automatic airborne monitoring of pipeline leaks and for oil and gas exploration. Experiments were carried out under the CARS circuit. Minimal concentrations of 200 ppb of heavy hydrocarbon gas have been remotely measured in laboratory tests. Test flights indicate that a sensitivity of 6 ppm for methane and 2 ppm for hydrogen sulfide has been reached for leakage detection. As estimations have shown the reliability of heavy hydrocarbon gas detection by the integration method of seismic prospecting and remote laser sensing in CARS circuit can exceed 80%.

  7. Atrazine removal from water by polycation-clay composites: effect of dissolved organic matter and comparison to activated carbon.

    PubMed

    Zadaka, Dikla; Nir, Shlomo; Radian, Adi; Mishael, Yael G

    2009-02-01

    Atrazine removal from water by two polycations pre-adsorbed on montmorillonite was studied. Batch experiments demonstrated that the most suitable composite poly (4-vinylpyridine-co-styrene)-montmorillonite (PVP-co-S90%-mont.) removed 90-99% of atrazine (0.5-28 ppm) within 20-40 min at 0.367% w/w. Calculations employing Langmuir's equation could simulate and predict the kinetics and final extents of atrazine adsorption. Column filter experiments (columns 20x1.6 cm) which included 2g of the PVP-co-S90%-mont. composite mixed with excess sand removed 93-96% of atrazine (800 ppb) for the first 800 pore volumes, whereas the same amount of granular activated carbon (GAC) removed 83-75%. In the presence of dissolved organic matter (DOM; 3.7 ppm) the efficiency of the GAC filter to remove atrazine decreased significantly (68-52% removal), whereas the corresponding efficiency of the PVP-co-S90%-mont. filter was only slightly influenced by DOM. At lower atrazine concentration (7 ppb) the PVP-co-S90%-mont. filter reduced even after 3000 pore volumes the emerging atrazine concentration below 3 ppb (USEPA standard). In the case of the GAC filter the emerging atrazine concentration was between 2.4 and 5.3 microg/L even for the first 100 pore volumes. Thus, the PVP-co-S90%-mont. composite is a new efficient material for the removal of atrazine from water.

  8. Wintertime Methane and Non-Methane Hydrocarbon Measurements Utah's Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.

    2012-12-01

    As a part of the winter 2011/2012 Uintah Basin Winter Ozone Study, ambient methane (CH4) and total non-methane hydrocarbons (TNMHC) were measured at a population center (Roosevelt) and within the oil/gas field (Horse Pool). At Horse Pool, near real-time CH4/TNMHC were monitored using a GC-FID analyzer. Samples were collected for 30 seconds once every five minutes. The TNMHC concentrations were reported in ppb-C3, or parts per billion in C3 (propane) equivalents. At Roosevelt, discrete volatile organic carbon (VOC) samples were collected for two weeks beginning on Feb. 14, 2012 using evacuated stainless steel Summa canisters. The samples were collected over four 1-hr time periods spaced throughout the day. After collection, the canisters were shipped to a commercial laboratory for GC-MS quantification. Methane samples were obtained at Roosevelt by whole vial collection and subsequently analyzed via GC-FID. Nominally, the CH4 vials were collected at the start and end of each canister collection period, as well as intermittently throughout the daily periods. Furthermore, CH4 grab samples were collected at several other locations throughout the Basin when possible. For the full wintertime study period (Jan. 19 - Mar. 15, 2012), the CH4 and TNMHC at Horse Pool averaged 3.47±1.8 ppm and 243±253 ppb-C3 (± 1σ), respectively. A very strong diurnal behavior was seen for both classes of compounds, with CH4 maximums approaching 30 ppm in the early morning hours. During the comparative February time period, CH4 concentrations at Horse Pool averaged 3.25±0.07 ppm (± 95% CI), while CH4 at Roosevelt averaged 2.52±0.08 ppm. No strong diurnal behavior was observed at Roosevelt and the maximum CH4 levels only reached 4.08 ppm. Grab samples from the other locations found similar or slightly lower CH4 concentrations, with the exception of Ouray (3.91±1.27 ppm) which was also located in the production/exploration area, but was among the lowest elevation of the sampling sites. It was also observed at Horse Pool that the relationship between CH4 and TNMHC showed a strong function of wind direction. When the winds were out of the northwest the ratio of TNMHC to CH4 was about 185, whereas when the wind was from any other sector the ratio decreased to around 80. Tedlar bag grab samples collected from arrayed locations surrounding Horse Pool verified the wind sector-dependent ratio function, indicating two separate regional source signatures. Examination of well-type locations suggested that these differing regimes may be due to the spatial delineation between predominantly oil or gas wells. Direct comparison of TNMHC between Roosevelt and Horse Pool was not possible because the commercial analysis was unable to identify VOCS with fewer than three carbons and parallel investigators (J. Gillman; NOAA-CSD) observed that these were significant at Horse Pool. Recalling that the averaged TNMHC at Horse Pool was 243 ppb-C3, it should be noted that of the compounds identified at Roosevelt only four (propane, isobutene, n-butane, and n-pentane) were observed at concentrations greater than 1.0 ppb. These species are often associated with urban or traffic areas, as opposed to oil and gas fields. Additionally, examination of the relationships between other typical urban VOCs (BTEX), their ratios also suggest sources associated with urban, traffic dominated plumes.

  9. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Verhulst, Kristal R.; Karion, Anna; Kim, Jooil; Salameh, Peter K.; Keeling, Ralph F.; Newman, Sally; Miller, John; Sloop, Christopher; Pongetti, Thomas; Rao, Preeti; Wong, Clare; Hopkins, Francesca M.; Yadav, Vineet; Weiss, Ray F.; Duren, Riley M.; Miller, Charles E.

    2017-07-01

    We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one continental site located in Victorville (VIC), in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ˜ 1 ppm CO2 and ˜ 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ˜ 20 ppm CO2 and ˜ 150 ppb CH4 during 2015 as well as ˜ 15 ppm CO2 and ˜ 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is ˜ 10 and ˜ 15 % of the median mid-afternoon enhancement near downtown LA for CO2 and CH4, respectively. Overall, analytical and background uncertainties are small relative to the local CO2 and CH4 enhancements; however, our results suggest that reducing the uncertainty to less than 5 % of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions.

  10. A multi-model approach to monitor emissions of CO2 and CO from an urban-industrial complex

    NASA Astrophysics Data System (ADS)

    Super, Ingrid; Denier van der Gon, Hugo A. C.; van der Molen, Michiel K.; Sterk, Hendrika A. M.; Hensen, Arjan; Peters, Wouter

    2017-11-01

    Monitoring urban-industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry) and a Gaussian plume model (Operational Priority Substances - OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban-industrial complex (Rotterdam, the Netherlands) towards rural conditions for October-December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO : ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm, observed, against 8.8 ppm, modelled), but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO :  ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm-1, which agrees better with the observed standard deviation of 0.4 ppb ppm-1. This is partly due to improved wind fields (increase in R2 of 0.10) but also due to improved point source representation (increase in R2 of 0.05) and dilution (increase in R2 of 0.07). Based on our analysis we conclude that a plume model with detailed and accurate dispersion parameters adds substantially to top-down monitoring of greenhouse gas emissions in urban environments with large point source contributions within a ˜ 10 km radius from the observation sites.

  11. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the consumption in photosynthesis at ground level and was well correlated with CO2. These results demonstrate that the OA-ICOS instrument is capable of high altitude airborne operation that will advance our understanding of OCS's role in Earth's atmosphere by providing precise and accurate measurements throughout the troposphere and into the stratosphere.

  12. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    PubMed

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    NASA Astrophysics Data System (ADS)

    Radmard, Kaikhosrov; Zamanian, Hassan; Hosseinzadeh, Mohamad Reza; Khalaji, Ahmad Ahmadi

    2017-12-01

    Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra'eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra'eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra'eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  14. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  15. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).

    PubMed

    Singh, Satyavan; Bhatia, Arti; Tomer, Ritu; Kumar, Vinod; Singh, B; Singh, S D

    2013-08-01

    Field experiments were conducted in open top chamber during rabi seasons of 2009-10 and 2010-11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80-85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5-10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25-35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25-35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18-20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.

  16. Health Assessment Document for 1,1,2-Trichloro-1,2,2-Trifluoroethane (Chlorofluorocarbon CFC-113)(Revised External Review Draft)

    EPA Science Inventory

    Chlorofluorocarbon 113 (1,1,2-trichloro-1,2,2-trifluoroethane) has little potential to cause direct adverse health effects at levels found or expected in the general environment (<4.2 ppb). Experimental data do not indicate adverse health effects in humans at a TLV of 1,000 ppm. ...

  17. Demonstration of Diesel Engine Air Emissions Reduction Technologies

    DTIC Science & Technology

    2008-12-01

    16 Figure 5. Plots of Cheyenne Mountain Operating Cycle and Reference CBD Driving...Air Act CARB California Air Resources Board CBD Central Business District CCR California Code of Regulations CES Cummins Emissions Solutions CFR...matter ppb parts per billion ppm parts per million PuriNOx Proprietary Water / Diesel Emulsified Fuel RPF robust particulate filter THC total

  18. EFFECTS OF PRENATAL PERFLUOROOCTANESULFONATE (PFOS) EXPOSURE ON LUNG MATURATION IN THE PERINATAL RAT

    EPA Science Inventory

    PFOS is an environmentally stable compound that has been detected at 3 ppb -10 ppm in serum samples from the general public and occupationally exposed individuals. We have shown that exposing pregnant rats to PFOS (25, or 50 mg/kg/d on GD 19-20) induces neonatal death in the rat...

  19. Effect of Bioaccumulation of Cs and Sr Natural Isotopes on Foliar Structure and Plant Spectral Reflectance of Indian Mustard (Brassica juncea)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruthi Sridhar, Y.S.B.B.; Han, F.X.; Monts, D.L.

    2008-07-01

    The objectives of this study are: 1.) evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes; 2.) identify foliar structural and other physiological changes (biomass, relative water content, etc.) resulting from the accumulation of these two elements; and 3.) monitor Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr was found in the order of leavesmore » > stems > roots for both Cs- and Sr-treated plants. The highest leaf Sr accumulation is observed to be 2708 mg kg{sup -1}, and the highest leaf Cs accumulation is 12251 mg kg{sup -1}. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Relative water content (RWC) of the plants showed a significant (p < 0.05) decrease in Cs-treated plants. Cs accumulation also affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in RWC, structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content RWC (r = -0.88) and Normalized Difference Vegetation Index (NDVI) (r = -0.68) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation. (authors)« less

  20. Multidimensional gas chromatography for the characterization of permanent gases and light hydrocarbons in catalytic cracking process.

    PubMed

    Luong, J; Gras, R; Cortes, H J; Shellie, R A

    2013-01-04

    An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n=20). Reproducibility of area counts at two levels, namely 100 ppm(v) and 1000 ppm(v) over a period of two days were found to be less than 5.5% (n=20). Oxygen and nitrogen were found to be linear over a range from 20 ppm(v) to 10,000 ppm(v) with correlation coefficients of at least 0.998 and detection limits of less than 10 ppm(v). Hydrocarbons of interest were found to be linear over a range from 200 ppb(v) to 1000 ppm(v) with correlation coefficients of greater than 0.999 and detection limits of less than 100 ppb(v). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Gonzalez, Jose M., III; Liu, Chung-Chiun

    2012-01-01

    A sensitive resistor-based NO microsensor, with a wide detection range and a low detection limit, has been developed. Semiconductor microfabrication techniques were used to create a sensor that has a simple, robust structure with a sensing area of 1.10 0.99 mm. A Pt interdigitated structure was used for the electrodes to maximize the sensor signal output. N-type semiconductor indium tin oxide (ITO) thin film was sputter-deposited as a sensing material on the electrode surface, and between the electrode fingers. Alumina substrate (250 m in thickness) was sequentially used for sensor fabrication. The resulting sensor was tested by applying a voltage across the two electrodes and measuring the resulting current. The sensor was tested at different concentrations of NO-containing gas at a range of temperatures. Preliminary results showed that the sensor had a relatively high sensitivity to NO at 450 C and 1 V. NO concentrations from ppm to ppb ranges were detected with the low limit of near 159 ppb. Lower NO concentrations are being tested. Two sensing mechanisms were involved in the NO gas detection at ppm level: adsorption and oxidation reactions, whereas at ppb level of NO, only one sensing mechanism of adsorption was involved. The NO microsensor has the advantages of high sensitivity, small size, simple batch fabrication, high sensor yield, low cost, and low power consumption due to its microsize. The resistor-based thin-film sensor is meant for detection of low concentrations of NO gas, mainly in the ppb or lower range, and is being developed concurrently with other sensor technology for multispecies detection. This development demonstrates that ITO is a sensitive sensing material for NO detection. It also provides crucial information for future selection of nanostructured and nanosized NO sensing materials, which are expected to be more sensitive and to consume less power.

  2. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.

    PubMed

    Xiao, Mengmeng; Liang, Shibo; Han, Jie; Zhong, Donglai; Liu, Jingxia; Zhang, Zhiyong; Peng, Lianmao

    2018-04-27

    Carbon nanotube (CNT) has been considered as an ideal channel material for building highly sensitive gas sensors. However, the reported H 2 sensors based on CNT always suffered from the low sensitivity or low production. We developed the technology to massively fabricate ultra-highly sensitive H 2 sensors based on solution derived CNT network through comprehensive optimization of the CNT material, device structure, and fabrication process. In the H 2 sensors, high semiconducting purity solution-derived CNT film sorted by poly[9-(1-octylonoyl)-9 H-carbazole-2,7-diyl](PCz) is used as the main channel, which is decorated with Pd nanoparticles as functionalization for capturing H 2 . Meanwhile, Ti contacts are used to form a Schottky barrier for enhancing transferred charge-induced resistance change, and then a response of resistance change by 3 orders of magnitude is achieved at room temperature under the concentration of ∼311 ppm with a very fast response time of approximately 7 s and a detection limit of 890 ppb, which is the highest response to date for CNT H 2 sensors and the very first time to show the sub-ppm detection for H 2 at room temperature. Furthermore, the detection limit concentration can be improved to 89 ppb at 100 °C. The batch fabrication of CNT film H 2 sensors with ultra-high sensitivity and high uniformity is ready to promote CNT devices to application for the first time in some specialized field.

  3. Sensitive and selective detection of trivalent chromium using Hyper Rayleigh Scattering with 5,5'-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles.

    PubMed

    Hughes, Shantelle I; Dasary, Samuel S R; Singh, Anant K; Glenn, Zachery; Jamison, Hakim; Ray, Paresh C; Yu, Hongtao

    2013-03-01

    Hyper Rayleigh Scattering (HRS) and absorption spectral assays using surface-modified gold nanoparticles (AuNP) have been developed for sensitive and selective detection of trivalent chromium (Cr 3+ ) from other metal ions including hexavalent chromium (as Cr 2 O 7 2- ). Gold nanoparticles of 13 nm, covalently attached with 5,5'-dithio- bis -(2-nitrobenzoic acid) (AuNP-DTNBA), is used as a probe for both the absorption and HRS assays. AuNP-DTNBA is able to detect Cr 3+ at 20 ppb level at pH 6.0 using absorption spectral change of the AuNP-DTNBA. Visible color change can be observed when mixed with 250 ppb of Cr 3+ , while there is no color change when mixed with 2 ppm level of some of the most common metal ions such as Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ . However, a color change is observed when mixed with Ni 2+ , Zn 2+ , and Cd 2+ at a concentration higher than 2 ppm. The detection limit for the HRS assay is on a remarkable 25 ppt level, and there is no detectable HRS signal at 2 ppm level for Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ .

  4. Multi Spectral Fluorescence Imager (MSFI)

    NASA Technical Reports Server (NTRS)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  5. Endemic arsenosis caused by indoor combustion of high-As coal in Guizhou Province, P.R. China

    USGS Publications Warehouse

    Baoshan, Z.; Binbin, W.; Zhenhua, D.; Daixing, Z.; Yunshu, Z.; Chen, Z.; Chaochang, C.; Finkelman, R.B.

    2005-01-01

    The arsenic (As) content of coal relating with mineralization of gold in Southwest Guizhou Province, China is up to 35,000 ppm. The coal is burned indoors in open pits for daily cooking and crop drying. As a result, arsenic is precipitated and concentrated in corn (5-20 ppm), chili (100-800 ppm) and other foods. Arsenic concentrations in the drinking water of high-As coal areas are lower than 50 ppb. The estimated main sources of As exposure in this area are from polluted food. Approximately, 3000 arsenosis patients were found by 1998, and more than 100,000 people from six counties were under the threat in China. This paper presents the major ingestion pathway of this type arsenosis and relative geochemistry of high-As coal. ?? Springer 2005.

  6. VRA Modeling, phase 1

    NASA Technical Reports Server (NTRS)

    Kindt, Louis M.; Mullins, Michael E.; Hand, David W.; Kline, Andrew A.

    1995-01-01

    The destruction of organic contaminants in waste water for closed systems, such as that of Space Station, is crucial due to the need for recycling the waste water. A co-current upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. The objective of this study is to develop a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate. To validate this model, a bench scale reactor has been tested at Michigan Technological University at elevated pressures (50-83 psig,) and a temperature range of 200 to 290 F. Feeds consisting of five dilute solutions of ethanol (approx. 10 ppm), chlorobenzene (approx. 20 ppb), formaldehyde (approx. 100 ppb), dimethyl sulfoxide (DMSO approx. 300 ppb), and urea (approx. 20 ppm) in water were tested individually with an oxygen mass flow rate of 0.009 lb/h. The results from these individual tests were used to develop the kinetic parameter inputs necessary for the computer model. The computer simulated results are compared to the experimental data obtained for all 5 components run in a mixture on the differential test column for a range of reactor contact times.

  7. 76 FR 47443 - Approval and Promulgation of State Implementation Plans; State of Colorado; Attainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... ozone concentrations is less than or equal to 0.08 ppm. Forty CFR part 50, Appendix I, section 2.3... at both locations. This is 0.2 ppb lower than Colorado's 2008 modeling projected using incorrect..., section 2.1, page 15; section 3.0, pages 20-28; section 4.2, page 40.) Colorado followed this procedure in...

  8. Chemical Analysis of Suspected Unrecorded Alcoholic Beverages from the States of São Paulo and Minas Gerais, Brazil

    PubMed Central

    Soares Neto, Julino Assunção Rodrigues

    2015-01-01

    Our study analyzed 152 samples of alcoholic beverages collected from the states of São Paulo and Minas Gerais, Brazil, using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). The methanol content varied from 20 to 180 ppm in 28 samples, and the limit of the accepted level of 200 ppm was exceeded in only one sample. High content of cyanide derivatives and ethyl carbamate, above the accepted level of 150 ppb, was observed in 109 samples. Carbonyl compounds were also observed in 111 samples, showing hydroxy 2-propanone, 4-methyl-4-hepten-3-one, furfural, and 2-hydroxyethylcarbamate as main constituents. Copper was found at concentrations above 5 ppm in 26 samples; the maximum value observed was 28 ppm. This work evaluated the human health risk associated with the poor quality of suspected unrecorded alcohols beverages. PMID:26495155

  9. The spatial and temporal distribution of chemical species in Padaviya Reservoir, Sri Lanka.

    NASA Astrophysics Data System (ADS)

    Koliyabandara, S. M. P. A.; Siriwardhana, C.; Cooray, P. L. A. T.; Liyanage, S. S.

    2017-12-01

    Water is one of the most important assets for human life. Eutrophication and pollution are some of the major threats to many freshwater bodies. There are thousands of reservoirs exist in Sri Lanka; however, only a handful of them has been thoroughly monitored and studied. The main objective of this study is to investigate the temporal and spatial distribution of chemical species in Padaviya reservoir which is shallow man-made irrigation reservoir (8°49'30.6" N and 80°46'2.05"E) located in Sri Lanka constructed around 300 BC. The average depth is 8 m and 4 m in wet and dry seasons respectively. It has a catchment area of 270 km2. Water sampling was done at bi-monthly intervals for a period of one year staring from January 2016. Chemical analyses were conducted according to standard protocols. The maximum temperature difference between the surface and bottom waters of the reservoir was 2 °C throughout the year. The surface and bottom water conductivity varied between 175 ± 2.3 to 250 ± 3.0 μS cm-1 and 475 ± 3.7 to 600 ± 4.5 μScm-1 respectively. The average pH of surface and bottom waters varied between 8.5 ± 0.1 to 7.8 ± 0.2 and 7.2 ± 0.02 to 6.8 ± 0.2 respectively. The dissolved oxygen concentration showed a clinograde type distribution throughout the year where the surface waters were well oxygenated (DO ≈ 7.5 ppm) and the bottom waters were anoxic (DO ≈ 0.15 ppm). Ammonia concentration increased with the depth from surface concentration of 150 ± 50 to 300 ± 25 ppb at the bottom. Nitrite distribution was similar to ammonia and the surface concentration was 100 ± 25ppb throughtout the year and at the bottom it varied between 300 ± 30 to 4500 ± 30 ppb. Water soluble phosphate distribution was also similar to ammonia. The surface concentration was 200 ± 20 ppb throughtout the year and varied from 100 ± 20 to 2000 ±20 ppb at the bottom. Nitrate distribution was inverse of the ammonia. The surface concentration was 500 ± 30 to 900 ± 30 ppb while the it was 100 ± 30ppb at the bottom throughout the year. The fluctionations of the concentrations of chemical species was attributed to the wet and dry seasons of the reservoir. Key words - Chemical species, Water quality, Padaviya,Acknowledgement - Financial support by University of Sri Jayewardenepura, ASP/01/RE/SCI/2015/29.

  10. EFFECTS OF COLD STRATIFICATION AND GA3 ON GERMINATION OF ARBUTUS UNEDO SEEDS OF THREE PROVENANCES.

    PubMed

    Pipinis, Elias; Stampoulidis, Athanasios; Milios, Elias; Kitikidou, Kyriaki; Radoglou, Kalliopi

    2017-01-01

    Arbutus unedo is a valuable Mediterranean shrub as an ornamental plant as well as fruit tree. Fresh fruits of A. unedo are a good source of antioxidants, of vitamins C, E and carotenoids and also are characterized by the high content of mineral elements. The effects of gibberellic acid (GA 3 ) and cold stratification (CS) on seed germination performance were investigated in A. unedo seeds collected from three provenances in the Northern part of Greece. Seeds of each provenance were soaked in solutions of GA 3 (500, 1000 or 2000 ppm) for 24 h and subsequently were subjected to CS at 3 - 5°C for 0, 1, 2, and 3 months. Non-stratified seeds of the three A. unedo provenances which were not treated with GA 3 solutions exhibited very low germination. However, seed germination was significantly improved after a one-month period of CS. Similarly, the non-stratified seeds of all three provenances became non-dormant after the treatment with 2000 ppm GA 3 and they germinated at high percentages. However, in untreated seeds with GA3, after a one-month CS period the seeds of the Pieria provenance exhibited higher germination percentage than that of Rodopi provenance seeds. Furthermore, in non-stratified seeds, the Pieria provenance seeds treated with GA3 germinated at higher percentages and more rapidly than those of the other two provenances. The results indicated that untreated seeds exhibited very low germination at 20/25°C. However, in all three provenances seed germinability was significantly improved by a one-month period of CS or treatment of seeds with 2000 ppm GA3. Furthermore, there was a considerable variability among seed provenances in response to the treatments which were applied.

  11. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A comparison of the determination and speciation of inorganic arsenic using general HPLC methodology with UV, MS and MS/MS detection.

    PubMed

    Gilmartin, Gregory; Gingrich, Diane

    2018-04-15

    The determination and speciation of arsenic in natural resources such as drinking water and agricultural soils has been a growing concern in recent years due to its many toxicological effects [1-3]. To speciate and quantitate concentrations of <1 ppm of arsenic, typically an ion chromatograph (IC) interfaced to an inductively coupled plasma mass spectrometer (ICP-MS) is employed [4-9]. This methodology may be very robust and sensitive, but it is expensive and not as ubiquitous as high performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance detection or electrospray ionization mass spectrometry (ESI-MS). Anion exchange chromatography is a well-documented means of speciating arsenite (As(III), As 2 O 3 ) and arsenate (As(V), AsO 4 ) using UV [10], conductivity [11], or ESI-MS detection [12,13]. This paper demonstrates the utilization of common liquid chromatographic instrumentation to speciate and determines inorganic Arsenic compounds using UV or MS via selected ion recording (SIR) or multiple reaction monitoring (MRM) detection. This paper describes the analysis of arsenite and arsenate samples prepared using both deionized and ground water. The limit of quantitation for the techniques described in this paper for samples spiked in ground water were 454 ppb (As(III)) and 562 ppb (As(V)) for UV detection, 45.4 ppb (As(III)) and 56.2 ppb (As(V)) for SIR detection, and 4.54 ppb (As(III)) and 5.62 ppb (As(V)) for MRM detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Application of Ion Exchange Technique to Decontamination of Polluted Water Generated by Fukushima Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Takeshita, Kenji; Ogata, Takeshi

    By the Fukushima nuclear disaster, large amounts of water and sea water polluted mainly with radioactive Cs were generated and the environment around the nuclear site was contaminated by the fallout from the nuclear site. The coagulation settling process using ferric ferrocyanide and an inorganic coagulant and the adsorption process using ferric ferrocyanide granulated by silica binder were applied to the treatment of polluted water. In the coagulation settling process, Cs was removed completely from polluted water and sea water (DF∼104). In the adsorption process, the recovery of trace Cs (10 ppb) in sea water, which was not suitable for the use of zeolite, was attained successfully. Finally, the recovery of Cs from sewage sludge was tested by a combined process with the hydrothermal process using subcritical water and the coagulation settling process using ferric ferrocyanide. 96% of radioactive Cs was recovered successfully from sewage sludge with the radioactivity of 10,000 Bq/kg.

  14. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    PubMed

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.

  15. The Calibration System of the E989 Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasi, Antonio

    The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm,more » improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10 -4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10 -4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level of stability a particular environment, due to the presence of a 14 m diameter storage ring, a highly uniform magnetic field and the detector distribution around the storage ring, set specific guidelines and constraints. This thesis will focus on the final design of the Laser Calibration System developed for the E989 experiment. Chapter 1 introduces the subject of the anomalous magnetic moment of the muon; chapter 2 presents previous measurement of g -2, while chapter 3 discusses the Standard Model prediction and possible new physics scenario. Chapter 4 describes the E989 experiment. In this chapter will be described the experimental technique and also will be presented the experimental apparatus focusing on the improvements necessary to reduce the statistical and systematic errors. The main item of the thesis is discussed in the last two chapters: chapter 5 is focused on the Laser Calibration system while chapter 6 describes the Test Beam performed at the Beam Test Facility of Laboratori Nazionali di Frascati from the 29th February to the 7th March as a final test for the full calibrations system. An introduction explain the physics motivation of the system and the diff t devices implemented. In the final chapter the setup used will be described and some of the results obtained will be presented.« less

  16. A NEW LC-MS/MS METHOD FOR THE DETECTION AND QUANTIFICATION OF ENDOGENOUS AND VINYL CHLORIDE INDUCED 7-(2-0XOETHYL)GUANINE IN SPRAGUE DAWLEY MALE RATS

    EPA Science Inventory

    Vinyl chloride (VC) is an industrial chemical that is known to be carcinogenic to animals and humans. VC primarily induces hepatic angiosarcomas following high exposures (≥50 ppm). VC is also found in Superfund sites at ppb concentrations as a result of microbial metabolism of tr...

  17. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    PubMed Central

    Yu, Chen-Hsing; Huang, Tzou-Chi; Chung, Chao-Chin; Huang, Hao-Hsun

    2014-01-01

    This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs) residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb). The results conform to Taiwan's environmental protection regulations and act governing food sanitation. PMID:24696651

  18. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates.

    PubMed

    Mosier-Boss, P A; Lieberman, S H

    2003-09-01

    The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.

  19. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  20. Gold and other metals in big sagebrush (Artemisia tridentata Nutt.) as an exploration tool, Gold Run District, Humboldt County, Nevada

    USGS Publications Warehouse

    Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.

    1988-01-01

    Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.

  1. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components. Copyright © 2011 John Wiley & Sons, Ltd.

  2. A conjugated mess: measurements of benzene (C6H6), CH4, CO2, and H2O using a cavity ring-down spectrometer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; He, Yonggang

    2017-04-01

    Benzene is widely used carcinogenic chemical that ranks among the top 15 chemicals produced in the world by volume. It is part of many industrial processes from solvents to rubber and drug production and is also produced in petroleum refinement and use. OSHA and European regulators have set a strict long-term exposure limit and short-term exposure limit of 1ppm and 15ppm, respectively, to minimize hazards to a person's health. With the recent passing by the EPA of mandatory fence line monitoring of benzene at petroleum factories, it is evident that a robust, continuous measurement of benzene is necessary. Conventional measurements of benzene suffer from a high granularity (nearly 1 ppm), cumbersome sample preparation/processing, or cross-sensitivities from other gas species. The aim of this study is to show development of an analyzer using cavity ring-down spectrometry (CRDS) to measure benzene, as well as all the main constituents of air that can influence a measurement: H2O, CO2, and CH4. A measurement of benzene to an uncertainty of 100 ppb in <5 minutes is currently attainable, with a future goal of making this measurement in only ten seconds to 1 minute. Initial results show precisions of CH4 at 0.5ppb, CO2 at 0.5ppm and H2O of 10ppm. Because of the relatively IR-inactive C6H6 molecule, only broad features lying underneath the relatively sharp signals of CH4, CO2, and H2O can be used to quantify benzene concentrations. The stability of the CRDS analyzer allows us to look at structured changes in the baseline due to benzene to get out a precise measurement, while rarely having to do a zero-reference calibration. The analysis of these four species yields an instrument that is not only viable for fence line monitoring of petroleum refineries, but one that could also be used for local atmospheric monitoring of cities or even gas-stations.

  3. Chronic perchlorate exposure impairs stickleback reproductive behaviour and swimming performance

    PubMed Central

    Bernhardt, Richard R.; von Hippel, Frank A.

    2011-01-01

    Summary We describe behavioural changes in two generations of threespine stickleback (Gasterosteus aculeatus) exposed to environmentally relevant concentrations of perchlorate. The first generation (G0,2002) was exposed as two-year-old adults to perchlorate in experimental groups ranging in concentration from less than the method detection limit (<1.1 ppb) to 18.6 ppm for up to 22 days during their courtship, spawning, egg guarding, and first five days of fry guarding. No differences were noted in the behaviour or reproductive output of these fish that were exposed as adults. However, perchlorate exposure throughout development caused widespread effects in the second generation (G1,2003), which was spawned and raised through sexual maturity in one of four nominal experimental groups (0, 30 and 100 ppm, and a ‘variable’ treatment that progressively increased from <1.1 ppb to approximately 60 ppm perchlorate). Dose-dependent effects were found during the G1,2003’s swimming and behavioural evaluations, including higher mortality rates among treated fish following stressful events. Perchlorate-exposed fish had higher failure rates during swimming trials and failed at lower flow rates than control fish. A number of treated fish exhibited seizures. Progressively fewer males completed benchmark metrics, such as nest building, spawning, nursery formation, or fry production, in a dose-dependent manner. Fewer males from higher treatments courted females, and those that did initiated courtship later and had a reduced behavioural repertoire compared to fish from lower treatments. The lowest observed adverse effect level (LOAEL) for swimming performance, reproductive behaviour, survivorship and recruitment was 30 ppm perchlorate (our lowest G1,2003 treatment), and near complete inhibition of reproductive activity was noted among males raised in 100 ppm perchlorate. A small number of treated G1,2003 females were isolated in aquaria, and some performed reproductive behaviour typical of males, such as biting, leading and zig-zagging in the presence of gravid females. These findings have profound implications for recruitment in wild fish populations exposed to perchlorate, and suggest that perchlorate may disrupt behaviour in other vertebrates as well. PMID:22228909

  4. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2012-09-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near infrared region (∼1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs new spectroscopic analysis (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  5. Flask sample measurements for CO2, CH4 and CO using cavity ring-down spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, J.-L.; Jacobson, G.; Rella, C. W.; Chang, C.-Y.; Liu, I.; Liu, W.-T.; Chew, C.; Ou-Yang, C.-F.; Liao, W.-C.; Chang, C.-C.

    2013-08-01

    In recent years, cavity ring-down spectrometry (CRDS) has been demonstrated to be a highly sensitive, stable and fast analytical technique for real-time in situ measurements of greenhouse gases. In this study, we propose the technique (which we call flask-CRDS) of analyzing whole air flask samples for CO2, CH4 and CO using a custom gas manifold designed to connect to a CRDS analyzer. Extremely stable measurements of these gases can be achieved over a large pressure range in the flask, from 175 to 760 Torr. The wide pressure range is conducive to flask sample measurement in three ways: (1) flask samples can be collected in low-pressure environments (e.g. high-altitude locations); (2) flask samples can be first analyzed for other trace gases with the remaining low-pressure sample for CRDS analysis of CO2, CH4 and CO; and (3) flask samples can be archived and re-analyzed for validation. The repeatability of this method (1σ of 0.07 ppm for CO2, 0.4 ppb for CH4, and 0.5 ppb for CO) was assessed by analyzing five canisters filled with the same air sample to a pressure of 200 Torr. An inter-comparison of the flask-CRDS data with in-situ CRDS measurements at a high-altitude mountain baseline station revealed excellent agreement, with differences of 0.10 ± 0.09 ppm (1σ) for CO2 and 0.9 ± 1.0 ppb for CH4. This study demonstrated that the flask-CRDS method was not only simple to build and operate but could also perform highly accurate and precise measurements of atmospheric CO2, CH4 and CO in flask samples.

  6. Detection of silver nanoparticles in seawater at ppb levels using UV-visible spectrophotometry with long path cells.

    PubMed

    Lodeiro, Pablo; Achterberg, Eric P; El-Shahawi, Mohammad S

    2017-03-01

    Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV-visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10cm path length cuvettes with UV-visible spectrophotometry is in the 0.1-10ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characteristic of flotation deinking using bio and synthetic surfactant at different air flow rate

    NASA Astrophysics Data System (ADS)

    Trismawati, Wardana, I. N. G.; Hamidi, Nurkholis; Sasongko, Mega Nur

    2016-03-01

    Flotation deinking has industrially applied but several problems keep unsolved because limitations have to compete with several variables present. Flotation deinking is multi variables process, so studying flotation deinking is still interesting. In this research, the amount of variables was reduced and focused to the performance comparison between flotation deinking of old newspaper (ONP) using biodegradable fatty acid of morinda citrifolia as the raw bio surfactant (RBS) and biodegradable fatty acid of palm oil that had been converted to be commercial surfactant (CS). The flotation was done at laboratory flotation cell equipped with orifice at different diameter (orifice number 20, 40 and 60) with adjustable airflow rate. Brightness and Effective Residual Ink Concentration (ERIC) of the deinked pulp were measured. The best results were achieved on orifice number 40 with the highest brightness of 41.96 °ISO and 40.96 °ISO when using CS and RBS respectively, and lowest ERIC of 896.82 ppm and 1001.72 ppm when using CS and RBS respectively. The percentage delta of deinking power characteristic between CS and RBS was 2.36% and 11.70% for brightness and ERIC, respectively.

  8. Inexpensive Chemiresistor Sensors for Real Time Ground Water Contamination Measurement

    DTIC Science & Technology

    2002-04-01

    for Liquid Phase PEVA -40-C Chemiresistor Under Vapor Phase Exposure...29 6 -40-C (’ DIP • LDRD LOD MTBE ppb ppm PCP PDPP PECH PEVA PIB RH SAW SEED SERDP SLM trans-DCE TCE VERI voc L1R!Ro...Nomenclature Suffix for polymer inks, indicating percentage of total solids weight made up of graphitized carbon particles (e.g., PEVA -40-C) dual inline

  9. Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers.

    PubMed

    Yucel, Muge; Akin, Osman; Cayoren, Mehmet; Akduman, Ibrahim; Palaniappan, Alagappan; Liedberg, Bo; Hizal, Gurkan; Inci, Fatih; Yildiz, Umit Hakan

    2018-04-17

    This study reports on a hand-held volatilome analyzer for selective determination of clinically relevant biomarkers in exhaled breath. The sensing platform is based on electrospun polymer nanofiber-multiwalled carbon nanotube (MWCNT) sensing microchannels. Polymer nanofibers of poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(methyl methacrylate) (PMMA) incorporated with MWCNT exhibits a stable response to interferences of humidity and CO 2 and provides selective deformations upon exposure of exhaled breath target volatilomes acetone and toluene, exhibiting correlation to diabetes and lung cancer, respectively. The sensing microchannels "P1" (PVDF-MWCNT), "P2" (PS-MWCNT), and "P3" (PMMA-MWCNT) are integrated with a microfluidic cartridge (μ-card) that facilitates collection and concentration of exhaled breath. The volatilome analyzer consists of a conductivity monitoring unit, signal conditioning circuitries and a low energy display module. A combinatorial operation algorithm was developed for analyzing normalized resistivity changes of the sensing microchannels upon exposure to breath in the concentration ranges between 35 ppb and 3.0 ppm for acetone and 1 ppb and 10 ppm for toluene. Subsequently, responses of volatilomes from individuals in the different risk groups of diabetes were evaluated for validation of the proposed methodology. We foresee that proposed methodology provides an avenue for rapid detection of volatilomes thereby enabling point of care diagnosis in high-risk group individuals.

  10. A new sensor for the assessment of personal exposure to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Driggs Campbell, Katherine; Negi, Indira; Iglesias, Rodrigo A.; Owens, Patrick; Tao, Nongjian; Tsow, Francis; Forzani, Erica S.

    2012-07-01

    To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real-time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts-per-billion (ppb), with a detection range of 4 ppb-1000 ppm (parts-per-million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r2 > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology.

  11. A New Sensor for the Assessment of Personal Exposure to Volatile Organic Compounds

    PubMed Central

    Chen, Cheng; Campbell, Katherine Driggs; Negi, Indira; Iglesias, Rodrigo A.; Owens, Patrick; Tao, Nongjian; Tsow, Francis; Forzani, Erica

    2012-01-01

    To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts per billion (ppb), with a detection range of 4 ppb to 1000 ppm (parts per million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r2 > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology. PMID:22736952

  12. Evaluation testing of a portable vapor detector for Part-Per-Billion (PPB) level UDMH and N2H4

    NASA Technical Reports Server (NTRS)

    Curran, Dan; Lueck, Dale E.

    1995-01-01

    Trace level detection of hydrazine (N2H4), monomethyl hydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH) has been receiving increased attention over the past several years. In May 1995 the American Conference of Government Industrial Hygienists (ACGIH) lowered their acceptable threshold limit value (TLV) from 100 parts-per-billion (ppb) to 10 ppb. Several types of ppb-level detectors are being developed by the United States Air Force (USAF) Space and Missile Systems Center (SMSC). A breadboard version of a portable, lightweight hydrazine detection sensor was developed and produced by Giner Corp. for the USAF. This sensor was designed for ppb level UDMH and N2H4 vapor detection in near real-time. This instrument employs electrochemical sensing, utilizing a three electrode cell with an anion-exchange polymer electrolyte membrane as the only electrolyte in the system. The sensing, counter and reference electrodes are bonded to the membrane forming a single component. The only liquid required to maintain the sensor is deionized water which hydrates the membrane. At the request of the USAF SMSC, independent testing and evaluation of the breadboard instrument was performed at NASA's Toxic Vapor Detection Laboratory (TVDL) for response to ppb-level N2H4 and UDMH and MMH. The TVDL, located at Kennedy Space Center (KSC) has the unique ability to generate calibrated sample vapor streams of N2H4, UDMH, and MMH over a range from less than 10 ppb to thousands of parts per million (ppm) with full environmental control of relative humidity (0-90%) and temperature (0-50 C). The TVDL routinely performs these types of tests. Referenced sensors were subjected to extensive testing, including precision, linearity, response/recovery times, zero and span drift, humidity and temperature effects as well as ammonia interference. Results of these tests and general operation characteristics are reported.

  13. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-10-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study was also conducted to assess uncertainty estimates and sensor variability. In this study, 9 M-Pods were calibrated via collocation multiple times over 4 weeks, and sensor drift was analyzed, with the result being a calibration function that included baseline drift. Three pairs of M-Pods were deployed, while users individually carried the other three. The user study suggested that inter-M-Pod variability between paired units was on the same order as calibration uncertainty; however, it is difficult to make conclusions about the actual personal exposure levels due to the level of user engagement. The user study provided real-world sensor drift data, showing limited CO drift (under -0.05 ppm day-1), and higher for O3 (-2.6 to 2.0 ppb day-1), NO2 (-1.56 to 0.51 ppb day-1), and CO2 (-4.2 to 3.1 ppm day-1). Overall, the user study confirmed the utility of the M-Pod as a low-cost tool to assess personal exposure.

  14. Highly sensitive detection of naphthalene in solvent vapor using a functionalized PBG refractive index sensor.

    PubMed

    Girschikofsky, Maiko; Rosenberger, Manuel; Belle, Stefan; Brutschy, Malte; Waldvogel, Siegfried R; Hellmann, Ralf

    2012-01-01

    We report an optical refractive index sensor system based on a planar Bragg grating which is functionalized by substituted γ-cyclodextrin to determine low concentrations of naphthalene in solvent vapor. The sensor system exhibits a quasi-instantaneous shift of the Bragg wavelength and is therefore capable for online detection. The overall shift of the Bragg wavelength reveals a linear relationship to the analyte concentration with a gradient of 12.5 ± 1.5 pm/ppm. Due to the spectral resolution and repeatability of the interrogation system, this corresponds to acquisition steps of 80 ppb. Taking into account the experimentally detected signal noise a minimum detection limit of 0.48 ± 0.05 ppm is deduced.

  15. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    NASA Astrophysics Data System (ADS)

    Parker, Robert J.; Boesch, Hartmut; Wooster, Martin J.; Moore, David P.; Webb, Alex J.; Gaveau, David; Murdiyarso, Daniel

    2016-08-01

    The 2015-2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire events. It is expected that the 2015-2016 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs) to the atmosphere, as did previous El Niño-driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel-dominated environments such as grasslands, consequently producing significantly more CH4 (and CO) per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño), so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon.Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT) made in large-scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions.Using CO and fire radiative power (FRP) data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by subsequent large increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above those of background "clean air" soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4 to CO2 (CH4 / CO2) fire emission ratio for the entire 2-month period of the most extreme burning (September-October 2015), and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER) for fires occurring in Indonesia over this time is 6.2 ppb ppm-1. This is higher than that found over both the Amazon (5.1 ppb ppm-1) and southern Africa (4.4 ppb ppm-1), consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat) burning involved. We find the range of our satellite-derived Indonesian ERs (6.18-13.6 ppb ppm-1) to be relatively closely matched to that of a series of close-to-source, ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53-19.67 ppb ppm-1), although typically the satellite-derived quantities are slightly lower on average. This seems likely because our field sampling mostly intersected smaller-scale peat-burning plumes, whereas the large-scale plumes intersected by the GOSAT Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already-cleared areas of forest characterised by more fire-prone vegetation types than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation).The ability to determine large-scale ERs from satellite data allows the combustion behaviour of very large regions of burning to be characterised and understood in a way not possible with ground-based studies, and which can be logistically difficult and very costly to consider using aircraft observations. We therefore believe the method demonstrated here provides a further important tool for characterising biomass burning emissions, and that the GHG ERs derived for the first time for these large-scale Indonesian fire plumes during an El Niño event point to more routinely assessing spatiotemporal variations in biomass burning ERs using future satellite missions. These will have more complete spatial sampling than GOSAT and will enable the contributions of these fires to the regional atmospheric chemistry and climate to be better understood.

  16. Development of a High Precision and Stability Ambient N2O and CO Analyzer

    NASA Astrophysics Data System (ADS)

    Zhou, Jingang; Hoffnagle, John; Tan, Sze; Dong, Feng; Fleck, Derek; Yiu, John; Huang, Kuan; Leggett, Graham; He, Yonggang

    2016-04-01

    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5 % of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 75 % of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, while measuring H2O as well. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The ambient N2O and CO measurement precisions are 0.1ppb (10sec), 0.014ppb (600sec), and 0.006ppb (3000sec); and the measurements could even be averaged down over 3 hours, giving measurement precisions of 0.003ppb. The measurable N2O and CO ranges have been tested up to 2.5ppm. With the high precision and unparalleled stability, G5310 is believed a promising tool for long-term monitoring in atmospheric sciences. The new optical analyzer was set up to monitor N2O and CO (G5310), along with CO2 and CH4(G4301), in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

  17. Simple and robust referencing system enables identification of dissolved-phase xenon spectral frequencies.

    PubMed

    Antonacci, Michael A; Zhang, Le; Burant, Alex; McCallister, Drew; Branca, Rosa T

    2018-08-01

    To assess the effect of macroscopic susceptibility gradients on the gas-phase referenced dissolved-phase 129 Xe (DPXe) chemical shift (CS) and to establish the robustness of a water-based referencing system for in vivo DPXe spectra. Frequency shifts induced by spatially varying magnetic susceptibility are calculated by finite-element analysis for the human head and chest. Their effect on traditional gas-phase referenced DPXe CS is then assessed theoretically and experimentally. A water-based referencing system for the DPXe resonances that uses the local water protons as reference is proposed and demonstrated in vivo in rats. Across the human brain, macroscopic susceptibility gradients can induce an apparent variation in the DPXe CS of up to 2.5 ppm. An additional frequency shift as large as 6.5 ppm can exist between DPXe and gas-phase resonances. By using nearby water protons as reference for the DPXe CS, the effect of macroscopic susceptibility gradients is eliminated and consistent CS values are obtained in vivo, regardless of shimming conditions, region of interest analyzed, animal orientation, or lung inflation. Combining in vitro and in vivo spectroscopic measurements finally enables confident assignment of some of the DPXe peaks observed in vivo. To use hyperpolarized xenon as a biological probe in tissues, the DPXe CS in specific organs/tissues must be reliably measured. When the gas-phase is used as reference, variable CS values are obtained for DPXe resonances. Reliable peak assignments in DPXe spectra can be obtained by using local water protons as reference. Magn Reson Med 80:431-441, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).

  19. Soudan Low Background Counting Facility (SOLO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attisha, Michael; Viveiros, Luiz de; Gaitksell, Richard

    2005-09-08

    The Soudan Low Background Counting Facility (SOLO) has been in operation at the Soudan Mine, MN since March 2003. In the past two years, we have gamma-screened samples for the Majorana, CDMS and XENON experiments. With individual sample exposure times of up to two weeks we have measured sample contamination down to the 0.1 ppb level for 238U / 232Th, and down to the 0.25 ppm level for 40K.

  20. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    PubMed

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  1. Spatial Distribution of Ozone Precursors in the Uinta Basin

    NASA Astrophysics Data System (ADS)

    Mangum, C. D.; Lyman, S. N.

    2012-12-01

    Wintertime ozone mixing ratios in the Uinta Basin of Utah exceeding the EPA National Ambient Air Quality Standards measured during 2010 and 2011 led to a large campaign carried out in 2012 that included a study of the spatial distribution of ozone precursors in the Basin. In this study, speciated hydrocarbon mixing ratios (compounds with 6-11 carbon atoms) were measure at 10 sites around the Uinta Basin with Radiello passive samplers, and NO2, NO, and NOx (NO2 + NO) mixing ratios were measured at 16 sites with Ogawa passive sampler and active sampling instruments. Analysis of the Radiello passive samplers was carried out by CS2 desorption and analyzed on a Shimadzu QP-2010 GCMS. Analysis of the Ogawa passive samplers was done via 18.2 megohm water extraction and analyzed with a Dionex ICS-3000 ion chromatography system. February average hydrocarbon mixing ratios were highest in the area of maximum gas production (64.5 ppb as C3), lower in areas of oil production (24.3-30.0 ppb as C3), and lowest in urban areas and on the Basin rim (1.7-17.0 ppb as C3). February average for NOx was highest in the most densely populated urban area, Vernal (11.2 ppb), lower in in the area of maximum gas production (6.1 ppb), and lower still in areas of oil production and on the Basin Rim (0.6-2.7 ppb). Hydrocarbon speciation showed significant differences in spatial distribution around the Basin. Higher mixing ratios of toluene and other aromatics were much more prevalent in gas producing areas than oil producing areas. Similar mixing ratios of straight-chain alkane were observed in both areas. Higher mixing ratios of cycloalkanes were slightly more prevalent in gas producing than oil producing areas.

  2. O3, VOC, NOx, PM2.5 and Meteorological Measurements during an Inversion Episode in Utah's Uinta Basin

    NASA Astrophysics Data System (ADS)

    Moore, K. D.; Martin, R. S.; Hill, S.; Shorthill, H.

    2011-12-01

    Recent measurements found high winter ozone (O3) at several locations in northeastern Utah's Uinta Basin. Similar to Wyoming's Upper Green River Basin, the area has seen recent growth in the gas/oil sector. As a part of a more comprehensive project, a study was conducted examining the relationships between O3, volatile organic compounds (VOCs), nitrogen oxides (NOx), fine particulate matter (PM2.5), and meteorology during an inversion episode. The study took place February 21-25, 2011 at the area's population center (Vernal) and at an area within the gas/oil fields (Red Wash). At both sites, O3 and NOx, displayed expected diurnal behaviors. The 1-hr O3 concentrations ranged from 10-90 ppb at Vernal and 34-107 ppb at Red Wash. Average diurnal O3 maximums (±95% CI) were 70.4±12.1 ppb and 76.8±12.6 ppb at Vernal and Red Wash, respectively. The Red Wash average O3 diurnal curve was broader than that at Vernal and did not titrate out as rapidly in the evening and morning hours. In contrast, higher NOx was observed at Vernal, with hourly averaged values ranging from 4.5-80.2 ppb, compared to 1.5-29.7 ppb at Red Wash. The NOx tended to follow traffic patterns at both sites, with morning maximum 1-hr averages of 40.8±12.1 ppb and 20.2±8.7 ppb, respectively. A portable O3 monitor attached to a tethered balloon found high ground level O3 (70-80 ppb) and a decrease to relatively constant levels (50-60 ppb) by 150 m agl. Methane and non-methane hydrocarbons (NHMC) were collected at least twice per day using whole vial and sorbent cartridges, followed by GC-FID and GC-MS analysis. The gas/oil field samples (Red Wash) found significantly higher CH4 levels (2.71±0.32 ppm) compared to the Vernal samples (1.82±0.14 ppm). The NMHC were likewise higher at the Red Wash location. Calculation of the maximum incremental reactivity (MIR) estimated that methane, ethane, propane, acetylene, remaining alkanes, alkenes, and aromatics accounted for 7.9%, 18.5%, 4.7%, 1.0%, 20.6%, 46.7%, and 0.6%, respectively, of the Vernal ozone formation potential. For the Red Wash site, the equivalent MIRs were 7.0%, 10.9%, 4.7%, 0.5%, 32.4%, 39.6%, and 4.8%. Five collocated AirMetrics MiniVol samplers measured 23-hr average PM2.5 concentrations at each site. Collocation allowed various analyses for compositional determination. The PM2.5 levels averaged 16.4±3.9 at Vernal and 8.9±0.3 μg/m3 Red Wash. At both sites, carbonaceous material made up around 80% of the PM2.5. Elemental carbon accounted for 13.4% and 12.8% of the PM2.5 and organic carbon contributed 64.1% and 69.6%, at Vernal and Red Wash, respectively. Vertical meteorology was examined through the use of tethersondes. The period was characterized by a stagnant high pressure system until the final day of the study when an active storm system moved through the area. Vertical temperature profiles showed strong temperature inversions from the ground to >350 m agl and a very stable atmosphere throughout the study. Winds were almost always light (≤2 m/s) and changed direction through the vertical profile. Diurnal variation in the height of the surface layer was observed varied from 20-80 m agl.

  3. High-resolution spectroscopy of Venus: Detection of OCS, upper limit to H 2S, and latitudinal variations of CO and HF in the upper cloud layer

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2008-10-01

    Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×10 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1-a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1-a agrees with the refractive index of H 2SO 4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO 2 was measured using its R32 and R34 lines. The retrieved product of the CO 2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ˜10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ˜2 ppb at 70 km and ˜14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H 2S using its line at 2688.93 cm -1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.

  4. Variability of As and other fluid-mobile trace elements (FME) in Mariana forearc serpentinites and entrained crustal rocks

    NASA Astrophysics Data System (ADS)

    Johnston, R.; Ryan, J. G.

    2017-12-01

    In the Mariana subduction system, active serpentinite mud volcanoes are associated with the subduction of the Pacific plate beneath the Philippine Sea plate in a non-accretionary convergent plate margin. We are examining the systematics of As and other fluid-mobile trace elements (FME: Cs, Rb, Pb, B, Li) in serpentinized ultramafic clasts and serpentinite muds recovered during IODP Expedition 366 and previous ODP Legs (125, 195) to constrain the role of slab-derived fluids and the P-T° conditions at which fluids are mobilized. Arsenic concentrations in Exp. 366 serpentinites range from 0.08-2 ppm, while Cs varies from 0.001-0.9 ppm, Rb from 0.05-20 ppm and Pb varies from 0.02-10 ppm. The two different seamount summit sites examined (Yinazao: 55 km distance to trench; Asut Tesoru: 72 km to trench) (Hulme, 2010) show marked mobile element abundance differences, with Yinazao serpentinites showing lower As, Cs and Rb, and higher Pb contents than those from Asut Tesoru. Serpentinite mud samples from each seamount are on average higher in FME abundances than are associated serpentinized clasts, though their ranges overlap. Entrained mafic clasts are as high or higher in FME than the serpentinites, perhaps pointing to greater affinities for many of these elements during fluid-rock exchange. Asut Tesoru serpentinites are similar in As, Cs, and Rb abundances to those from S. Chamorro and Conical Seamounts (Savov et al 2005;2007), which also reflect greater distances to trench (78 and 86 km, respectively)(Hulme, 2010). The patterns of serpentinite FME abundances from seamount to seamount mimic to a great degree the dichotomy in cation abundances observed in their associated porefluids, where B and K are markedly lower, and Sr and Ca are markedly higher in Yinazao summit fluids than at the summits of Asut Tesoru, S. Chamorro, or Conical. These abrupt changes in serpentinite and fluid compositions likely reflect the initiation of carbonate and clay breakdown reactions on the downgoing plate in the earliest stages of subduction metamorphism.

  5. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.

    PubMed

    Olszyk, D M; Johnson, M G; Phillips, D L; Seidler, R J; Tingey, D T; Watrud, L S

    2001-01-01

    To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.

  6. Grey Tienshan Urumqi Glacier No.1 and light-absorbing impurities.

    PubMed

    Ming, Jing; Xiao, Cunde; Wang, Feiteng; Li, Zhongqin; Li, Yamin

    2016-05-01

    The Tienshan Urumqi Glacier No.1 (TUG1) usually shows "grey" surfaces in summers. Besides known regional warming, what should be responsible for largely reducing its surface albedo and making it look "grey"? A field campaign was conducted on the TUG1 on a selected cloud-free day of 2013 after a snow fall at night. Fresh and aged snow samples were collected in the field, and snow densities, grain sizes, and spectral reflectances were measured. Light-absorbing impurities (LAIs) including black carbon (BC) and dust, and number concentrations and sizes of the insoluble particles (IPs) in the samples were measured in the laboratory. High temperatures in summer probably enhanced the snow ageing. During the snow ageing process, the snow density varied from 243 to 458 kg m(-3), associated with the snow grain size varying from 290 to 2500 μm. The concentrations of LAIs in aged snow were significantly higher than those in fresh snow. Dust and BC varied from 16 ppm and 25 ppb in fresh snow to 1507 ppm and 1738 ppb in aged snow, respectively. Large albedo difference between the fresh and aged snow suggests a consequent forcing of 180 W m(-2). Simulations under scenarios show that snow ageing, BC, and dust were responsible for 44, 25, and 7 % of the albedo reduction in the accumulation zone, respectively.

  7. Impact of Temperature and UV Irradiation on Dynamics of NO2 Sensors Based on ZnO Nanostructures

    PubMed Central

    Pustelny, Tadeusz

    2017-01-01

    The main object of this study is the improvement of the dynamics of NO2 sensors based on ZnO nanostructures. Investigations presented in this paper showed that the combination of temperature and ultraviolet (UV) activation of the sensors can significantly decrease the sensor response and regeneration times. In comparison with the single activation method (elevated temperature or UV), these times for 1 ppm of NO2 decreased from about 10 min (or more) to less than 40 s. In addition, at the optimal conditions (200 °C and UV), sensors were very stable, were fully scalable (in the range on NO2 concentration of 1–20 ppm) and baseline drift was significantly reduced. Furthermore, in this paper, extensive studies of the influence of temperature and carrier gas (nitrogen and air) on NO2 sensing properties of the ZnO nanostructures were conducted. The NO2 sensing mechanisms of the sensors operating at elevated temperatures and under UV irradiation were also discussed. Our study showed that sensor responses to NO2 and response/regeneration times are comparable from sensor to sensor in air and nitrogen conditions, which suggests that the proposed simple technology connected with well-chosen operation conditions is repeatable. The estimated limit of detection of the sensors is within the level of ≈800 ppb in nitrogen and ≈700 ppb in air. PMID:29019924

  8. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.

    2016-12-01

    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect in current models and needs refinement. Finally, we use OCO-2 column CO2 and Solar Induced Fluorescence observations over the Amazon to elucidate the tropical carbon cycle mechanisms at larger scales.

  9. A study for health hazard evaluation of methylene chloride evaporated from the tear gas mixture.

    PubMed

    Park, Seung-Hyun; Chung, Eun-Kyo; Yi, Gwang-Yong; Chung, Kwang-Jae; Shin, Jung-Ah; Lee, In-Seop

    2010-09-01

    This study explored the health hazard of those exposed to methylene chloride by assessing its atmospheric concentration when a tear gas mixture was aerially dispersed. The concentration of methylene chloride ranged from 311.1-980.3 ppm (geometric mean, 555.8 ppm), 30 seconds after the dispersion started. However, the concentration fell rapidly to below 10 ppm after dispersion was completed. The concentration during the dispersion did not surpass the National Institute for Occupational Safety and Health 'immediately dangerous to life or health' value of 2,300 ppm, but did exceed the American Conference of Governmental Industrial Hygienists excursion limit of 250 ppm. Since methylene chloride is highly volatile (vapor pressure, 349 mmHg at 20℃), the postdispersion atmospheric concentration can rise instantaneously. Moreover, the o-chlorobenzylidenemalononitrile formulation of tear gas (CS gas) is an acute upper respiratory tract irritant. Therefore, tear gas mixtures should be handled with delicate care.

  10. Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.

    PubMed

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-22

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.

  11. Colloidal lithography nanostructured Pd/PdO x core–shell sensor for ppb level H2S detection

    NASA Astrophysics Data System (ADS)

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-01

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core–shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV–vis spectroscopy and x-ray photoemission spectroscopy.

  12. Quantitative Analysis of Mixed Halogen Dioxins and Furans in Fire Debris Utilizing Atmospheric Pressure Ionization Gas Chromatography-Triple Quadrupole Mass Spectrometry.

    PubMed

    Organtini, Kari L; Myers, Anne L; Jobst, Karl J; Reiner, Eric J; Ross, Brian; Ladak, Adam; Mullin, Lauren; Stevens, Douglas; Dorman, Frank L

    2015-10-20

    Residential and commercial fires generate a complex mixture of volatile, semivolatile, and nonvolatile compounds. This study focused on the semi/nonvolatile components of fire debris to better understand firefighter exposure risks. Using the enhanced sensitivity of gas chromatography coupled to atmospheric pressure ionization-tandem mass spectrometry (APGC-MS/MS), complex fire debris samples collected from simulation fires were analyzed for the presence of potentially toxic polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs and PBDD/Fs). Extensive method development was performed to create multiple reaction monitoring (MRM) methods for a wide range of PXDD/Fs from dihalogenated through hexa-halogenated homologue groups. Higher halogenated compounds were not observed due to difficulty eluting them off the long column used for analysis. This methodology was able to identify both polyhalogenated (mixed bromo-/chloro- and polybromo-) dibenzo-p-dioxins and dibenzofurans in the simulated burn study samples collected, with the dibenzofuran species being the dominant compounds in the samples. Levels of these compounds were quantified as total homologue groups due to the limitations of commercial congener availability. Concentration ranges in household simulation debris were observed at 0.01-5.32 ppb (PXDFs) and 0.18-82.11 ppb (PBDFs). Concentration ranges in electronics simulation debris were observed at 0.10-175.26 ppb (PXDFs) and 0.33-9254.41 ppb (PBDFs). Samples taken from the particulate matter coating the firefighters' helmets contained some of the highest levels of dibenzofurans, ranging from 4.10 ppb to 2.35 ppm. The data suggest that firefighters and first responders at fire scenes are exposed to a complex mixture of potentially hundreds to thousands of different polyhalogenated dibenzo-p-dioxins and dibenzofurans that could negatively impact their health.

  13. First results from TN273 studies of the SE Mariana Forearc rift

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. M.; Stern, R. J.; Kelley, K. A.; Shaw, A. M.; Shimizu, N.; Martinez, F.; Ishii, T.; Ishizuka, O.; Manton, W. I.

    2012-12-01

    TN 273 aboard R/V Thomas Thompson (Dec. 22 2011- Jan. 22 2012) studied an unusual region of rifting affecting the southern Mariana forearc S.W. of Guam. The S.E. Mariana Forearc Rift (SEMFR) formed by diffuse tectonic and volcanic deformation (Martinez and Sleeper, this meeting) ~2.7-3.7 Ma ago to accommodate opening of the southernmost Mariana Trough backarc basin. A total of 730 km linear-track of SEMFR seafloor was surveyed with deep-towed side-scan sonar IMI-30. 14 dredges provided samples of SEMFR igneous rocks, analyzed for whole rock (WR) and glass compositions. These new results coupled with results of earlier investigations confirm that SEMFR is dominated by Miocene lavas along with minor gabbro and diabase. SEMFR lavas range in major element composition from primitive basalt to fractionated andesite (Mg# = 0.36-0.73; SiO2 = 50-57 wt%), mainly controlled by crystal fractionation. Rare Earth Element (REE) patterns range from LREE-depleted, N-MORB-like to flat patterns, reflecting different mantle processes (i.e. different sources, degree of melting …). Glassy rinds and olivine-hosted melt inclusions in these lavas contain variable volatile compositions (F = 75-358 ppm, S = 35-1126 ppm, Cl= 74-1400 ppm, CO2 = 15-520 ppm, 0.36-2.36 wt% H2O). SEMFR lavas show spider diagrams with positive anomalies in LILE and negative anomalies in HSFE. SEMFR lavas have backarc basin-like (BAB-like) chemical composition (H2O < 2.5wt%, Ba/Yb~20, Nb/Yb~1 and ɛNd~9) along with stronger enrichment in Rb and Cs than arc and BAB lavas, as demonstrated by their higher Rb/Th and Cs/Ba ratios in WR and glasses, which may reflect the role of the ultra-shallow fluids. Ultra-shallow fluids are derived from the top of the subducting slab, beneath the forearc, where most of the water and the fluid-mobile elements (Rb, Cs, Ba,) are thought to be released (Schmidt and Poli, 1998, EPSL, Savov et al., 2005, G-3). Our results suggest that i) SEMFR lavas formed by metasomatism of a BAB mantle source by ultra-shallow fluids, likely released from subducted sediments and the altered oceanic crust; and ii) the ultra-shallow fluid is aqueous and is characterized by enrichment in Cs and Rb, suggesting that Cs and Rb are decoupled from Ba in ultra-shallow subduction processes.

  14. Analysis of the apiclutural industry in relation to geothermal development and agriculture in the Imperial Valley, Imperial County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkins, E.L.

    PART I: Continuous exposure to 30 ppB H/sub 2/S increased lifespan of caged worker honey bees, Apis mellifera L., 33%; whereas, bees exposed > 13 days to 100 ppB and 300 ppB H/sub 2/S the lifespan was shortened 32% and 51%, respectively, over unexposed bees; bees exposed > 15 days to a combination of 300 ppB H/sub 2/S + 50 ppM CO/sub 2/ the lifespan was shortened 4.4% more that 300 ppB H/sub 2/S alone. The mean temperature and/or relative humidity did not exert a direct effect on the hazard to bees. A continuous exposure to 300 ppB SO/sub 2/more » was detrimental to caged worker honey bees; and, a mean temperature of 27.2/sup 0/C was 75.7% more toxic than the same dosage at 16.7/sup 0/C. Worker bee lifespans exposed to 300 ppB SO/sub 2/ at 16.7/sup 0/C were shortened 13.5% and 79%, respectively, compared to unexposed bees. Therefore, both dosage and temperature exert direct effects on the hazards to bees. PART II: The status of the apicultural industry in Imperial County, California, was outlined giving a short characterization of the area in relation to the apicultural industry. Agriculture utilizes 500,000 intensely farmed acres which generated a 11-year average income of $370 million. Over 40 agricultural commodities are produced. The apicultural industry is intimately involved in 25% of the total gross agricultural income. In addition, most of the flora growing in the desert community which comprises the remainder of the county are very important to honey bees by providing sustaining nectar and/or pollen for brood rearing. The bee foraged flora provides substantial bee forage when colonies are located outside of the agriculutral area. It is concluded that geothermal resource development in the Imperial Valley is contemplated to have minimal effects on the apicultural industry.« less

  15. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Chai, Lilong; Chen, Lide; Bogan, Bill W.; Wang, Kaiying; Cortus, Erin L.; Heber, Albert J.; Lim, Teng-Teeh; Diehl, Claude A.

    2012-09-01

    Indoor air pollutants at high concentrations in poultry houses can potentially affect workers' health, and animal welfare and productivity. This paper presents research results of a 2-year continuous monitoring of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and particulate matter (PM) concentrations from to date the most comprehensive study on a single farm in two 180,000-bird high-rise (HR) and two 200,000-bird manure-belt (MB) layer hen houses located in Indiana, USA. Air was sampled at ventilation fans of the mechanically-ventilated houses. Concentrations of NH3 and CO2 were measured with photoacoustic multi-gas monitors. Concentrations of H2S and PM10 were monitored with pulsed fluorescence analyzers and Tapered Element Oscillating Microbalances (TEOM), respectively. The 2-year mean ± standard deviation concentrations at ventilation fans of the four layer hen houses were 48.9 ± 39 and 51.9 ± 40.7 ppm in HR, and 13.3 ± 9.1 and 12.9 ± 10.5 ppm in MB for NH3; 26.4 ± 17.6 and 24.9 ± 19 ppb in HR, 40.0 ± 21.1 and 41.2 ± 31.5 ppb in MB for H2S; 1755 ± 848 and 1804 ± 887 ppm in HR, and 2295 ± 871 and 2285 ± 946 ppm in MB for CO2; and 540 ± 303 and 552 ± 338 μg m-3 in HR, and 415 ± 428 and 761 ± 661 μg m-3 in MB for PM10. Compared with the MB houses, concentrations of the HR houses were higher for NH3, and lower for CO2, H2S, and PM10 (P < 0.05). High concentrations of NH3 detected in winter represent potential challenges to workers' health and animal welfare. Variations in pollutant concentrations at the exhaust fans were affected by outdoor temperature, ventilation, bird condition, and farm operation. A new weekly variation, characterized by significantly lower PM10 concentrations on Sundays, was identified and was related to the weekly schedule of house operational activities.

  16. Evaluation of air quality indicators in Alberta, Canada - An international perspective.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2016-01-01

    There has been an increase in oil sands development in northern Alberta, Canada and an overall increase in economic activity in the province in recent years. An evaluation of the state of air quality was conducted in four Alberta locations - urban centers of Calgary and Edmonton, and smaller communities of Fort McKay and Fort McMurray in the Athabasca Oil Sands Region (AOSR). Concentration trends, diurnal hourly and monthly average concentration profiles, and exceedances of provincial, national and international air quality guidelines were assessed for several criteria air pollutants over the period 1998 to 2014. Two methods were used to evaluate trends. Parametric analysis of annual median 1h concentrations and non-parametric analysis of annual geometric mean 1h concentrations showed consistent decreasing trends for NO2 and SO2 (<1ppb per year), CO (<0.1ppm per year) at all stations, decreasing for THC (<0.1ppm per year) and increasing for O3 (≤0.52ppb per year) at most stations and unchanged for PM2.5 at all stations in Edmonton and Calgary over a 17-year period. Little consistency in trends was observed among the methods for the same air pollutants other than for THC (increasing in Fort McKay <0.1ppm per year and no trend in Fort McMurray), PM2.5 in Fort McKay and Fort McMurray (no trend) and CO (decreasing <0.1ppm per year in Fort McMurray) over the same period. Levels of air quality indicators at the four locations were compared with other Canadian and international urban areas to judge the current state of air quality. Median and annual average concentrations for Alberta locations tended to be the smallest in Fort McKay and Fort McMurray. Other than for PM2.5, Calgary and Edmonton tended to have median and annual average concentrations comparable to and/or below that of larger populated Canadian and U.S. cities, depending upon the air pollutant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  18. Development of Lateral Flow Immunochromatographic Strips for Micropollutant Screening Using Colorants of Aptamer-Functionalized Nanogold Particles, Part II: Experimental Verification with Aflatoxin B1 and Chloramphenicol.

    PubMed

    Zhang, Shan; Zhao, Shuai; Wang, Sai; Liu, Jiahui; Dong, Yiyang

    2018-05-09

    Lateral flow immunochromatographic strips based on colorants of aptamer-functionalized nanogold particles weredeveloped for the detection of micropollutants aflatoxin B1 (AFB1) and chloramphenicol (CAP). The lateral flow immunochromatographic strip was based on a competitive reaction of thiolated-aptamer between micropollutants and bio-DNA probe-streptavidin as capture material immobilized at the test line. General crucial parameters that might influence the sensitivity have been systematically investigated. To test the effectiveness and applicability of the optimized conditions, two structurally unrelated micropollutants, that is, AFB1 and CAP, were chosen for detection. In the present study, lateral flow immunochromatographic strips for AFB1 and CAP analysis by combining the high selectivity and affinity of aptamers with the unique optical properties of nanogold in municipal water samples were reported for the first time. With the optimized conditions, the immunochromatographic strip showed a visual LOD of 10 ppb and a quantitative LOD of 1.05 ppb using an immunochromatographic reader for AFB1 detection and a quantitative LOD of 63.4 ppb using an immunochromatographic reader for CAP detection. Furthermore, the sensitive strip provided a good linear detection range of approximately 0-50 ppm for AFB1 detection and a wider liner detection range of approximately 0-160 ppm for CAP detection. Moreover, the immunochromatographic strip provided recovery rates for water samples of 90-110% in the AFB1 analysis and 84-108% in the CAP analysis. The results demonstrated that the immunochromatographic strip has excellent potential for wide applicability and verified that the strip methods for the optimized conditions are applicable to a variety of micropollutants. The lateral flow immunochromatographic strip could be used as a simple, rapid, and efficient screening tool for rapid on-site detection of a variety of micropollutants.

  19. Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard

    2016-05-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  20. Comparison of a bioassay and a liquid chromatography-fluorescence-mass spectrometry(n) method for the detection of incurred enrofloxacin residues in chicken tissues.

    PubMed

    Schneider, M J; Donoghue, D J

    2004-05-01

    Regulatory monitoring for most antibiotic residues in edible poultry tissues is often accomplished with accurate, although expensive and technically demanding, chemical analytical techniques. The purpose of this study is to determine if a simple, inexpensive bioassay could detect fluoroquinolone (FQ) residues in chicken muscle above the FDA established tolerance (300 ppb) comparable to a liquid chromatography-fluorescencemass spectrometry(n) method. To produce incurred enrofloxacin (ENRO) tissues (where ENRO is incorporated into complex tissue matrices) for the method comparison, 40-d-old broilers (mixed sex) were orally dosed through drinking water for 3 d at the FDA-approved dose of ENRO (50 ppm). At the end of each day of the 3-d dosing period and for 3 d postdosing, birds were sacrificed and breast and thigh muscle collected and analyzed. Both methods were able to detect ENRO at and below the tolerance level in the muscle, with limits of detection of 26 ppb (bioassay), 0.1 ppb for ENRO, and 0.5 ppb for the ENRO metabolite, ciprofloxacin (liquid chromatography-fluorescence-mass spectrometry(n)). All samples that had violative levels of antibiotic were detected by the bioassay. These results support the use of this bioassay as a screening method for examining large numbers of samples for regulatory monitoring. Positive samples should then be examined by a more extensive method, such as liquid chromatography-fluorescence-mass spectrometry(n), to provide confirmation of the analyte.

  1. Surface ozone scenario and air quality in the north-central part of India.

    PubMed

    Saini, Renuka; Taneja, Ajay; Singh, Pradyumn

    2017-09-01

    Tropospheric pollutants including surface ozone (O 3 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO) and meteorological parameters were measured at a traffic junction (78°2' E and 27°11' N) in Agra, India from January 2012 to December 2012. Temporal analysis of pollutants suggests that annual average mixing ratios of tropospheric pollutants were: O 3 - 22.97±23.36ppbV, NO 2 - 19.84±16.71ppbV and CO - 0.91±0.86ppmV, with seasonal variations of O 3 having maximum mixing ratio during summer season (32.41±19.31ppbV), whereas lowest was found in post-monsoon season (8.74±3.8ppbV). O 3 precursors: NO 2 and CO, showed inverse relationship with O 3 . Seasonal variation and high O 3 episodes during summer are associated with meteorological parameters such as high solar radiation, atmospheric temperature and transboundary transport. The interdependence of these variables showed a link between the daytime mixing ratios of O 3 with the nighttime level of NO 2 . The mixing ratios of CO and NO 2 showed tight correlations, which confirms the influence of vehicular emissions combined with other anthropogenic activities due to office/working hours, shallowing, and widening of boundary layer. FLEXTRA backward trajectories for the O 3 episode days clearly indicate the transport from the NW and W to S/SE and SW direction at Agra in different seasons. Copyright © 2017. Published by Elsevier B.V.

  2. Development of an inhalation unit risk factor for isoprene.

    PubMed

    Haney, Joseph T; Phillips, Tracie; Sielken, Robert L; Valdez-Flores, Ciriaco

    2015-12-01

    A unit risk factor (URF) was developed for isoprene based on evaluation of three animal studies with adequate data to perform dose-response modeling (NTP, 1994, 1999; Placke et al., 1996). Ultimately, the URF of 6.2E-08 per ppb (2.2E-08 per μg/m(3)) was based on the 95% lower confidence limit on the effective concentration corresponding to 10% extra risk for liver carcinoma in male B6C3F1 mice after incorporating appropriate adjustment factors for species differences in target tissue metabolite concentrations and inhalation dosimetry. The corresponding lifetime air concentration at the 1 in 100,000 no significant excess risk level is 160 ppb (450 μg/m(3)). This concentration is almost 4400 times lower than the lowest exposure level associated with statistically increased liver carcinoma in B6C3F1 mice in the key study (700 ppm in Placke et al., 1996) and is above typical isoprene breath concentrations reported in the scientific literature. Continuous lifetime environmental exposure to the 1 in 100,000 excess risk level of 160 ppb would be expected to raise the human blood isoprene area under the curve (AUC) less than one-third of the standard deviation of the endogenous mean blood AUC. The mean for ambient air monitoring sites in Texas (2005-2014) is approximately 0.13 ppb. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in-flight calibrations, provided ground calibrations and testing were performed regularly. Comparisons between in situ CRDS measurements and flask measurements are consistent with expected measurement uncertainties for CH4 and CO, but differences are larger than expected for CO2. Biases and standard deviations of comparisons with flask samples suggest that atmospheric variability, flask-to-flask variability, and possible flask sampling biases may be driving the observed flask versus in situ CO2 differences rather than the CRDS measurements.

  4. Quantification of the luminescence intensity of natural materials

    NASA Technical Reports Server (NTRS)

    Watson, R. D.; Hessin, T. D.; Hemphill, W. R.

    1973-01-01

    Review of some of the results of an evaluation of the use of an airborne Fraunhofer line discriminator (FLD) for the detection of sun-stimulated luminescence emitted by rhodamine WT dye and some other materials. Rhodamine dye is reported to have been detected by airborne FDL in sea water in concentrations of less than 2 ppb. Experiments with a fluorescence spectrometer in the laboratory indicate that luminescence of some samples of crude and refined petroleum exceeds the luminescence intensity of rhodamine dye in concentrations of 10 ppm.

  5. Metal cycling along the northwestern Seward Peninsula, Alaska: A possible natural cause of metal contamination in the arctic: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Parnow, C.C.; Goldfarb, Richard J.; Kelley, Karen D.; York, Geoffrey S.

    1999-01-01

    The northwestern Seward Peninsula was targeted for detailed geochemical study after evaluation of data collected during the NURE reconnaissance-level program indicated anomalously high arsenic (60-635 ppm) concentrations in stream sediments. The arsenic is associated with tin skarn, greisen, and replacement deposits in the western Seward Peninsula. Surficial sampling of waters and sediments indicate that arsenic is being transported detritally but that solution transport is insignificant. Our new data indicate that sediments downstream from these tin occurrences are characterized by anomalous values of As (85- 530 ppm) and Sn (14-36 ppm), as well as consistent anomalies of Ag, Be, Cu, Sb, and W. Stream sediments collected from drainages underlain by slate, but distal to the exposed tin occurrences, are characterized by background levels of As ( 10-60 ppm), Li (16-80 ppm), Sn (5-14 ppm), and W (5-10 ppm). These background levels for As and Sn are much higher than concentrations in typical slates and suggest a broad, weak hydrothermal alteration during mineral-deposit formation in much of the study area. A consistent pattern of Ca>>Mg>Na>K and generally alkaline pH (7 .2-8.2) characterize waters throughout the study area. Dissolved sulfate concentrations range from 10 to 40 ppm for waters draining slates and from 3 to 20 ppm for water draining carbonates. The waters collected in areas of known tin occurrences in the Potato Mountain area are characterized by increased dissolved sulfate (43-75 ppm) and are generally acidic (pH 4.7-6.5), but most trace metals are at or below detection limits. Dissolved arsenic concentrations in the areas of known tin occurrences are at or below 2 ppb. Our data suggest that detrital arsenic and tin from mineral occurrences may be naturally entering the nearshore marine environment.

  6. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    PubMed

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  7. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  8. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California.

    PubMed

    Cisneros, Ricardo; Bytnerowicz, Andrzej; Schweizer, Donald; Zhong, Sharon; Traina, Samuel; Bennett, Deborah H

    2010-10-01

    Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 microg m(-3) for HNO3, and 2.6-5.2 microg m(-3) for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha(-1) for maximum values, and 0.4-8 kg N ha(-1) for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3.

  9. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    PubMed

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Northeast Kingdom batholith, Vermont: magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks

    USGS Publications Warehouse

    Ayuso, R.A.; Arth, Joseph G.

    1992-01-01

    Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80-164), Th/Ta (<9), Rb/Cs (7-40), K/Cs (0.1-0.5), Ce/Pb (0.5-4), high values of Rb/Sr (1-18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals. ?? 1992 Springer-Verlag.

  11. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-02

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.

  12. Temporal patterns of Deepwater Horizon impacts on the benthic infauna of the northern Gulf of Mexico continental slope

    PubMed Central

    Baguley, Jeffrey G.; Conrad-Forrest, Nathan; Cooksey, Cynthia; Hyland, Jeffrey L.; Lewis, Christopher; Montagna, Paul A.; Ricker, Robert W.; Rohal, Melissa; Washburn, Travis

    2017-01-01

    The Deepwater Horizon oil spill occurred in spring and summer 2010 in the northern Gulf of Mexico. Research cruises in 2010 (approximately 2–3 months after the well had been capped), 2011, and 2014 were conducted to determine the initial and subsequent effects of the oil spill on deep-sea soft-bottom infauna. A total of 34 stations were sampled from two zones: 20 stations in the “impact” zone versus 14 stations in the “non-impact” zone. Chemical contaminants were significantly different between the two zones. Polycyclic aromatic hydrocarbons averaged 218 ppb in the impact zone compared to 14 ppb in the non-impact zone. Total petroleum hydrocarbons averaged 1166 ppm in the impact zone compared to 102 ppm in the non-impact zone. While there was no difference between zones for meiofauna and macrofauna abundance, community diversity was significantly lower in the impact zone. Meiofauna taxa richness over the three sampling periods averaged 8 taxa/sample in the impact zone, compared to 10 taxa/sample in the non-impact zone; and macrofauna richness averaged 25 taxa/sample in the impact zone compared to 30 taxa/sample in the non-impact zone. Oil originating from the Deepwater Horizon oil spill reached the seafloor and had a persistent negative impact on diversity of soft-bottom, deep-sea benthic communities. While there are signs of recovery for some benthic community variables, full recovery has not yet occurred four years after the spill. PMID:28640913

  13. Tissue distribution, metabolism, and residue depletion study in Atlantic salmon following oral administration of [3H]emamectin benzoate.

    PubMed

    Kim-Kang, Heasook; Bova, Alice; Crouch, Louis S; Wislocki, Peter G; Robinson, Robert A; Wu, Jinn

    2004-04-07

    Atlantic salmon (approximately 1.3 kg) maintained in tanks of seawater at 5 +/- 1 degrees C were dosed with [3H]emamectin B1 benzoate in feed at a nominal rate of 50 microg of emamectin benzoate/kg/day for 7 consecutive days. Tissues, blood, and bile were collected from 10 fish each at 3 and 12 h and at 1, 3, 7, 15, 30, 45, 60, and 90 days post final dose. Feces were collected daily from the tanks beginning just prior to dosing to 90 days post final dose. The total radioactive residues (TRR) of the daily feces samples during dosing were 0.25 ppm maximal, and >97% of the TRR in pooled feces covering the dosing period was emamectin B1a. Feces TRR then rapidly declined to approximately 0.05 ppm by 1 day post final dose. The ranges of mean TRR for tissues over the 90 days post dose period were as follows: kidney, 1.4-3 ppm; liver, 1.0-2.3 ppm; skin, 0.04-0.09 ppm; muscle, 0.02-0.06 ppm; and bone, <0.01 ppm. The residue components of liver, kidney, muscle, and skin samples pooled by post dose interval were emamectin B1a (81-100% TRR) and desmethylemamectin B1a (0-17% TRR) with N-formylemamectin B1a seen in trace amounts (<2%) in some muscle samples. The marker residue selected for regulatory surveillance of emamectin residues was emamectin B1a. The emamectin B1a level was quantified in individual samples of skin and muscle using HPLC-fluorometry and was below 85 ppb in all samples analyzed (3 h to 30 days post dose).

  14. Volatile organic compounds in fourteen U.S. retail stores.

    PubMed

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Tissue lead concentration during chronic exposure of Pimephales promelas (fathead minnow) to lead nitrate in aquarium water.

    PubMed

    Spokas, Eric G; Spur, Bernd W; Smith, Holly; Kemp, Francis W; Bogden, John D

    2006-11-01

    The fathead minnow is a useful species for evaluating the toxicity of wastewater effluents. While this fish is widely used for "survival" studies of metal toxicity, little or no work has been done on the tissue distribution of metals in fathead minnows. To determine the distribution of tissue lead, aquarium studies were conducted for several weeks with fish maintained in soft synthetic freshwater. Lead- (II) nitrate was added to three aquaria attaining concentrations of 20-30 ppb (aquarium B), 100-140 ppb (aquarium C), and roughly 200 ppb (aquarium D). Results were compared to controls (aquarium A). During the initial week, the majority of aquarium D fish died, whereas few deaths occurred in the other groups. Lead accumulation was dose- and tissue-dependent, with highest uptake by the gills. Gill concentrations of aquarium D fish averaged about 4-fold higherthan in skeleton or skin and muscle. In vitro, lead (2.5-25 ppm) caused dose-dependent reductions in the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) in gills incubated in physiological buffer. These findings demonstrate that fathead minnow gills bind and accumulate waterborne lead rapidly and preferentially and raise the possibility that gill lipid peroxidation contributes to lead toxicity at low water hardness.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  17. Recovering Rare Earth Elements from Aqueous Solution with Porous Amine–Epoxy Networks

    DOE PAGES

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.; ...

    2017-05-12

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  18. Efficient uranium capture by polysulfide/layered double hydroxide composites.

    PubMed

    Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G

    2015-03-18

    There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

  19. High-sensitivity remote detection of atmospheric pollutants and greenhouse gases at low ppm levels using near-infrared tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Roy, Anirban; Upadhyay, Abhishek; Chakraborty, Arup Lal

    2016-05-01

    The concentration of atmospheric pollutants and greenhouse gases needs to be precisely monitored for sustainable industrial development and to predict the climate shifts caused by global warming. Such measurements are made on a continuous basis in ecologically sensitive and urban areas in the advanced countries. Tunable diode laser spectroscopy (TDLS) is the most versatile non-destructive technology currently available for remote measurements of multiple gases with very high selectivity (low cross-sensitivity), very high sensitivity (on the order of ppm and ppb) and under hazardous conditions. We demonstrate absolute measurements of acetylene, methane and carbon dioxide using a fielddeployable fully automated TDLS system that uses calibration-free 2f wavelength modulation spectroscopy (2f WMS) techniques with sensitivities of low ppm levels. A 40 mW, 1531.52 nm distributed feedback (DFB) diode laser, a 10 mW, 1650 nm DFB laser and a 1 mW, 2004 nm vertical cavity surface emitting laser (VCSEL) are used in the experiments to probe the P9 transition of acetylene, R4 transition of methane and R16 transition of carbon dioxide respectively. Data acquisition and on-board analysis comprises a Raspberry Pi-based embedded system that is controllable over a wireless connection. Gas concentration and pressure are simultaneously extracted by fitting the experimental signals to 2f WMS signals simulated using spectroscopic parameters obtained from the HITRAN database. The lowest detected concentration is 11 ppm for acetylene, 275 ppm for methane and 285 ppm for carbon dioxide using a 28 cm long single-pass gas cell.

  20. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    PubMed Central

    Sethi, Jigme M; Choi, Augustine MK; Calhoun, William J; Ameredes, Bill T

    2008-01-01

    Background Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway. PMID:18505586

  1. Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, R.; Vargas, E.; de La Rosa, J.; Raga, A. C.; McKay, C.

    2010-12-01

    The most comprehensive search for organics in the Martian soil was performed by the Viking Landers. Martian soil was subjected to a thermal volatilization process in order to vaporize and break organic molecules, and the resultant gases and volatiles were analyzed by gas chromatography-mass spectrometry. Only water at 0.1-1.0 wt% was detected with traces of chloromethane at 15 ppb in the Viking Landing site 1, and water at 0.05-1.0 wt% and carbon dioxide at 50-700 ppm with traces of dichloromethane at 0.04-40 ppb in the Viking Landing site 2. The abundance ratio of the 35Cl and 37Cl isotopes in these chlorohydrocarbons was 3:1, corresponding to the terrestrial isotopic abundance. Therefore, these chlorohydrocarbons were considered to be terrestrial contaminants although they had not been detected at those levels in the blank runs. Recently, perchlorate was discovered in the Martian Arctic soil by the Phoenix Lander. Here we show that when Mars-like soils from the Atacama Desert with 32±6 ppm of organic carbon are mixed with 1 wt% magnesium perchlorate and heated nearly all the organics present are decomposed to water and carbon dioxide, but a small amount are chlorinated forming 1.6 ppm of chloromethane and 0.02 ppm of dichloromethane at 500○C. A chemical kinetics model was developed to predict the degree of oxidation and chlorination of organics in the Viking oven. The isotopic distribution of 35Cl and 37Cl for Mars is not known. Studies on Earth indicate that there is no isotopic fractionation of chlorine in the mantle or crust, despite the fact that it is significantly depleted on the planet as compare to solar abundances. The 37Cl/35Cl isotopic ratio in carbonaceous chondrites is similar to the Earth’s value, which suggests that the terrestrial planets, including Mars, were all formed from a similar reservoir of chlorine species in the presolar nebulae and that there was no further isotopic fractionation during the Earth’s differentiation or late accretion of volatiles. Consequently, 37Cl/35Cl ratio should be the same on Mars as well as on the Earth. Re-interpretation of the Viking results therefore suggests ≤0.1% perchlorate and 1.5-6.5 ppm organic carbon at the landing site 1, and ≤0.1% perchlorate and 0.7-2.6 ppm organic carbon at the landing site 2. The detection of organics on Mars is important to assess locations for future experiments to detect life itself. We suggest that future missions to Mars should include life detection experiments.

  2. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H2O, ≤600 ppm CO2, ∼0·3–1·0 wt % F, ∼2300–3500 ppm Cl) and metal-rich (∼7–24 ppm Mo, ∼4–14 ppm W, ∼21–52 ppm Pb, ∼28–2700 ppm Zn, <0·1–29 ppm Cu, ∼0·3–1·8 ppm Bi, ∼40–760 ppb Ag, ∼690–1400 ppm Mn). Melt inclusion and pumice matrix glass chemistry reveal that the Hideaway Park magma evolved by large degrees of fractional crystallization (≤60–70%) during quartz crystallization and melt inclusion entrapment at pressures of ≤300 MPa (≤8 km depth), with little to no crystallization upon shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (∼105–1010 Pa s) of these H2O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly partitioned. Given that the Henderson deposit contains anomalous abundances of not only Mo, but also W, Pb, Zn, Cu, Bi, Ag, and Mn, we suggest that these metals were sourced from similar fluids exsolved from unerupted portions of the same magmatic system. Trace element ratios imply that Mo was sourced deep, from either the lower crust or metasomatized mantle. The origin of sulfur remains unresolved; however, given the extremely low S solubility of rhyolite melts in the shallow crust we favor the possibility that another source of S might supplement or account for that present in the ore deposit, probably the comagmatic, mantle-derived lamprophyres that occur in minor quantities with the voluminous topaz rhyolites in the area. To account for the 437 Mt of MoS2 (∼1·0 × 106 t Mo) present in the Henderson ore deposit, a volume of ∼45 km3 of Hideaway Park rhyolite magma would have been necessary to supply the Mo (a cylindrical pluton measuring 3·1 km × 6·0 km) along with sparging of ∼6·8 × 105 t of S from ∼0·05 km3 of lamprophyre magma. Based on a weighted mean 40Ar/39Ar age of 27·58 ± 0·24 Ma, similar melt geochemistry, and characteristically F-rich biotite phenocrysts, we conclude that the Hideaway Park tuff was cogenetic with the intrusions at Red Mountain that formed the Henderson deposit.

  3. Development of a Differential Optical Absorption Spectroscopy System Using HighLuminance LED for Measurement of NO2

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi

    A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.

  4. Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application

    PubMed Central

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm−1 and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect. PMID:24886913

  5. Assessment of matrix effects on methyl benzoate, a potential biomarker for detection of outgassed semi-volatiles from mold in indoor building materials.

    PubMed

    Parkinson, Don-Roger; Churchill, Tonia J; Rolls, Wyn

    2008-11-01

    Methyl benzoate - as a biomarker for mold growth - was used as a specific target compound to indicate outgassed MVOC products from mold. Both real and surrogate samples were analyzed from a variety of matrices including: carpet, ceiling tiles, dried paint surfaces, wallboard and wallboard paper. Sampling parameters, including: desorption, extraction time, incubation temperature, pH, salt effects and spinning rate, were optimized. Results suggest that extraction and detection of methyl benzoate amongst other MVOCs can be accomplished cleanly by SPME-GC/MS methods. With detection limits (LOD = 1.5 ppb) and linearity (0.999) over a range of 100 ppm to 2 ppb, this work demonstrates that such a green technique can be contemplated for use in quick assessment or as part of an ongoing assessment strategy to detect mold growth in common indoor buildings and materials for both qualitative and quantitative determinations. Of importance, no matrix effects are observed under optimized extraction conditions.

  6. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.

    PubMed

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm(-1) and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect.

  7. Effect of processing on the fumonisins content of corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, P.A.; Hendrich, S.; Hopmans, E.C.

    1995-12-01

    Fumonisins (FBs) are a family of mycotoxins produced by Fusarium moniliforme and F. proliferatum, predominant corn pathogens, and are found in most corn-containing foods. The FBs are heat stable, resistant to ammoniation and, unlike most mycotoxins, are water-soluble. The levels in corn and corn-containing foods will be presented ranging from <20 ppb to >2 ppm. The effects of water washing contaminated FB-corn does not reduce the levels significantly. Fermentation of corn to ethanol does not alter FB but distillation yielded FB-free ethanol.

  8. A study for hypergolic vapor sensor development

    NASA Technical Reports Server (NTRS)

    Stetter, J. R.

    1977-01-01

    The use of an electrochemical technique for MMH and N02 measurement was investigated. Specific MMH and N02 electrochemical sensors were developed. Experimental techniques for preparation, handling, and analysis of hydrazine's vapor mixtures at ppb and ppm levels were developed. Two approaches to N02 instrument design were evaluated including specific adsorption and specific electrochemical reduction. Two approaches to hydrazines monitoring were evaluated including catalytic conversion to N0 with subsequent N0 detection and direct specific electrochemical oxidation. Two engineering prototype MMH/N02 monitors were designed and constructed.

  9. Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments

    NASA Astrophysics Data System (ADS)

    Hagan, David H.; Isaacman-VanWertz, Gabriel; Franklin, Jonathan P.; Wallace, Lisa M. M.; Kocar, Benjamin D.; Heald, Colette L.; Kroll, Jesse H.

    2018-01-01

    The use of low-cost air quality sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions, and there is thus a critical need for understanding and optimizing the performance of such sensors in the field. Here we describe the deployment, calibration, and evaluation of electrochemical sensors on the island of Hawai`i, which is an ideal test bed for characterizing such sensors due to its large and variable sulfur dioxide (SO2) levels and lack of other co-pollutants. Nine custom-built SO2 sensors were co-located with two Hawaii Department of Health Air Quality stations over the course of 5 months, enabling comparison of sensor output with regulatory-grade instruments under a range of realistic environmental conditions. Calibration using a nonparametric algorithm (k nearest neighbors) was found to have excellent performance (RMSE < 7 ppb, MAE < 4 ppb, r2 > 0.997) across a wide dynamic range in SO2 (< 1 ppb, > 2 ppm). However, since nonparametric algorithms generally cannot extrapolate to conditions beyond those outside the training set, we introduce a new hybrid linear-nonparametric algorithm, enabling accurate measurements even when pollutant levels are higher than encountered during calibration. We find no significant change in instrument sensitivity toward SO2 after 18 weeks and demonstrate that calibration accuracy remains high when a sensor is calibrated at one location and then moved to another. The performance of electrochemical SO2 sensors is also strong at lower SO2 mixing ratios (< 25 ppb), for which they exhibit an error of less than 2.5 ppb. While some specific results of this study (calibration accuracy, performance of the various algorithms, etc.) may differ for measurements of other pollutant species in other areas (e.g., polluted urban regions), the calibration and validation approaches described here should be widely applicable to a range of pollutants, sensors, and environments.

  10. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary sediments.

  11. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels.

    PubMed

    Accorsi, Antonio; Valenti, Simona; Barbieri, Anna; Raffi, Giovanni Battista; Violante, Francesco Saverio

    2003-03-01

    Assessment of individual exposures to sevoflurane plus nitrous oxide (N(2)O) by biological monitoring of unmodified analytes in post-shift urine of exposed personnel. Anaesthetics in urine and breathing area were monitored in 124 subjects in 11 operating theatres. Passive samplers were collected after 2.5-7 h of exposure, at the same time as post-shift urinary samples, to evaluate the individual time-weighted average (TWA) exposures to sevoflurane and N(2)O. A static headspace sampler coupled with a gas chromatograph mass spectrometer was used for analytical determinations (sensitivity sufficient to reveal biological/environmental exposures of 0.1 microg/l(urine) and 50 ppb for sevoflurane, and 1 microg/l(urine) and 80 ppb for N(2)O). Median (range) post-shift urinary and environmental values were 1.2 microg/l(urine) (0.1-5.0) and 0.4 ppm (0.05-3.0) for sevoflurane ( n=107) and 10.9 microg/l(urine) (0.5-74.9) and 8.6 ppm (0.2-123.4) for N(2)O ( n=121) (all low-exposure range). At log-log regression, urinary levels closely correlated with environmental data (sevoflurane, r(2)=0.7538; N(2)O, r(2)=0.8749). Biological equivalent limits (BELs) based on National Institute for Occupational Safety and Health (NIOSH) TWA exposure limits, calculated as means of regression slope and y-intercept, were 3.6 microg/l(urine) for sevoflurane (corresponding to 2 ppm) and 22.3 microg/l(urine) for N(2)O (corresponding to 25 ppm). Individual "mixture BELs", which we calculated by applying the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) mix formula to biomarker values and using the obtained NIOSH-based BELs as a reference, closely correlated with mixture TLVs (rho=0.816, Lin's concordance test). CONCLUSIONS. We propose urinary sevoflurane as a new, specific, internal dose biomarker for routine biological monitoring of personal exposures among operating-theatre personnel, and use of reliable "mixture BELs" to provide safer levels of internal exposure for workers exposed to mixtures of sevoflurane and N(2)O, and conceivably also to other mixtures of toxicants with possible additive effects.

  12. Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO3 anolyte and HCl or NaCl catholyte.

    PubMed

    Maitlo, Hubdar Ali; Kim, Jung Hwan; Park, Joo Yang

    2017-04-01

    Dual-chambered fuel cells with an iron anode and an air-carbon cathode separated by an ion exchange membranes have been used to treat arsenate during power production. To select an effective catholyte, the dual-chambered fuel cell consisted 90 mL of 0.1 M HCl or 0.5 M NaCl as the catholyte and 1 L of 0.1 M NaHCO 3 as the anolyte at an initial pH 5. The 0.1 M HCl was an effective catholyte, with which 1 ppm arsenate in 1 L of anolyte was reduced to 5 ppb in 1 h, and the maximum power density was about 6.3 w/m 2 with an anion exchange membrane fuel cell (AEM_FC) and 4.4 w/m 2 with a cation exchange membrane fuel cell (CEM_FC). Therefore, 90 mL of 0.1 M HCl was used as a catholyte to treat 20 L of 0.1 M NaHCO 3 anolyte containing 1 ppm arsenate at an initial pH of 5 or 7. The arsenate level at pH 5 decreased to less than 5 ppb in 4 h, and the maximum power density was 5.9 W/m 2 and 4.7 W/m 2 with AEM_FC and CEM_FC, respectively. When using 0.01 M NaHCO 3 as the anolyte at pH 5, arsenate was reduced to less than 5 ppb in 8 and 24 h for AEC_FC and CEM_FC, respectively. However, when using an anolyte at pH 7, arsenate could not be effectively removed in 24 h. Therefore, when using carbonate as an anolyte, the solution should be adjusted to a weakly acidic pH in order to remove arsenate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    NASA Astrophysics Data System (ADS)

    Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A.

    2013-08-01

    We have developed two configurations of an echo interferometer that rely on standing-wave excitation of a laser-cooled sample of rubidium atoms. Both configurations can be used to measure acceleration a along the axis of excitation. For a two-pulse configuration, the signal from the interferometer is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. In comparison, for a three-pulse stimulated-echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency as a function of pulse spacing. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature, leading to a longer experimental time scale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms time scale. In comparison, using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a time scale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope so that the statistical error is reduced to 75 parts per billion (ppb). The inhomogeneous field of a magnetized vacuum chamber limited the experimental time scale and resulted in prominent systematic effects. Extended time scales and improved signal-to-noise ratio observed in recent echo experiments using a nonmagnetic vacuum chamber suggest that echo techniques are suitable for a high-precision measurement of gravitational acceleration g. We discuss methods for reducing systematic effects and improving the signal-to-noise ratio. Simulations of both AI configurations with a time scale of 300 ms suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF=0 state can result in measurements of g statistically precise to 0.3 ppb for the two-pulse AI and 0.6 ppb for the three-pulse AI.

  14. Mercury in Sediments From the Long Island Sound Region

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Lauriat, K.; Zierzow, T.; Buchholtz ten Brink, M.; Mecray, E.

    2001-05-01

    About 400 surface and core sediment samples from a sampling grid in Long Island Sound (LIS) were analyzed for mercury, Clostridium perfringens with many other chemical and physical parameters. About 16 cores from coastal salt marshes in Connecticut were analyzed as well. The Hg concentrations in LIS surface sediments vary between 30 and 650 ppb, with the highest values in the western end of LIS. The trend of increasing Hg to the west correlates with increasing abundances of fine-grained sediment and C-org. Normalization of the Hg data on mean grainsize or C-org contents still show an east-west trend. Data from the "12 mile sewage dump site" in the New York Bight area provide a linear relationship between C. perfringens and Hg. Using that relationship, we obtain that many LIS samples have 10-50 percent sewage-derived Hg, with values up to 70 percent in the extreme west. The remaining Hg is largely imported with fine-grained sediment from the surrounding watersheds, which is a focussed flux of the integrated regional atmospheric Hg deposition and point source mercury. The Housatonic River is an important source of mercury, with up to 5 ppm Hg in the river bed sediment. The Still River, a tributary of the Housatonic River, has sediments that carry up to 15 ppm Hg, and we surmise that the hatting industry of Danbury (CT) was an important Hg source. The in situ atmospheric deposition of Hg on LIS is only a small part of the overall LIS Hg sediment budget. Core data from LIS and surrounding marshes show contamination profiles with background values at 50-100 ppb Hg and peak values in the 200-500 range, with values up to 1200 ppb Hg at the mouth of the Housatonic River. Many cores show a decline in Hg concentrations in the upper 10-15 cm (last 40 years), whereas the C. perfringens concentrations increase exponentially towards the surface. The onset of Hg contamination coincides with the first elevated C. perfringens levels, indicating an anthropogenic origin for the Hg contamination.

  15. Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea.

    PubMed

    Lee, Kenneth; Nedwed, Tim; Prince, Roger C; Palandro, David

    2013-08-15

    Most crude oils spread on open water to an average thickness as low as 0.1 mm. The application of dispersants enhances the transport of oil as small droplets into the water column, and when combined with the turbulence of 1 m waves will quickly entrain oil into the top 1 m of the water column, where it rapidly dilutes to concentrations less than 100 ppm. In less than 24 h, the dispersed oil is expected to mix into the top 10 m of the water column and be diluted to concentrations well below 10 ppm, with dilution continuing as time proceeds. Over the multiple weeks that biodegradation takes place, dispersed oil concentrations are expected to be below 1 ppm. Measurements from spills and wave basin studies support these calculations. Published laboratory studies focused on the quantification of contaminant biodegradation rates have used concentrations orders of magnitude greater than this, as it was necessary to ensure the concentrations of hydrocarbons and other chemicals were higher than the detection limits of chemical analysis. However, current analytical methods can quantify individual alkanes and PAHs (and their alkyl homologues) at ppb and ppm levels. To simulate marine biodegradation of dispersed oil at dilute concentrations commonly encountered in the field, laboratory studies should be conducted at similarly low hydrocarbon concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ultrafiltration membrane for effective removal of chromium ions from potable water

    NASA Astrophysics Data System (ADS)

    Muthumareeswaran, M. R.; Alhoshan, Mansour; Agarwal, Gopal Prasad

    2017-01-01

    The objective of the present work was to investigate the efficacy of indigenously developed polyacrylonitrile (PAN) based ultrafiltration (UF) membrane for chromium ions removal from potable water. The hydrolyzed PAN membranes effectively rejected chromium anions in the feed ranging from 250 ppb to 400 ppm and a rejection of ≥90% was achieved for pH ≥ 7 at low chromate concentration (≤25 ppm) in feed. The rejection mechanism of chromium ions was strongly dependent on Donnan exclusion principle, while size exclusion principle for UF did not play a major role on ions rejection. Feed pH played a vital role in changing porosity of membrane, which influenced the retention behavior of chromate ions. Cross-flow velocity, pressure did not play significant role for ions rejection at low feed concentration. However, at higher feed concentration (≥400 ppm), concentration polarization became important and it reduced the chromate rejection to 32% at low cross flow and high pressure. Donnan steric-partitioning pore and dielectric exclusion model (DSPM-DE) was applied to evaluate the chromate ions transport through PAN UF membrane as a function of flux by using optimized model parameters and the simulated data matched well with experimental results.

  17. The YAK-AEROSIB transcontinental aircraft campaigns: new insights on the transport of CO2, CO and O3 across Siberia

    NASA Astrophysics Data System (ADS)

    Paris, J.-D.; Ciais, P.; Nédélec, P.; Ramonet, M.; Belan, B. D.; Arshinov, M. Yu.; Golitsyn, G. S.; Granberg, I.; Stohl, A.; Cayez, G.; Athier, G.; Boumard, F.; Cousin, J.-M.

    2008-09-01

    Two airborne campaigns were carried out to measure the tropospheric concentrations and variability of CO2, CO and O3 over Siberia. In order to quantify the influence of remote and regional natural and anthropogenic sources, we analysed a total of 52 vertical profiles of these species collected in April and September 2006, every ~200 km and up to 7 km altitude. CO2 and CO concentrations were high in April 2006 (respectively 385-390 ppm CO2 and 160-200 ppb CO) compared to background values. CO concentrations up to 220 ppb were recorded above 3.5 km over eastern Siberia, with enhancements in 500-1000 m thick layers. The presence of CO enriched air masses resulted from a quick frontal uplift of a polluted air mass exposed to northern China anthropogenic emissions and to fire emissions in northern Mongolia. A dominant Asian origin for CO above 4 km (71.0%) contrasted with a dominant European origin below this altitude (70.9%) was deduced both from a transport model analysis, and from the contrasted ΔCO/ΔCO2 ratio vertical distribution. In September 2006, a significant O3 depletion (~ -30 ppb) was repeatedly observed in the boundary layer, as diagnosed from virtual potential temperature profiles and CO2 gradients, compared to the free troposphere aloft, suggestive of a strong O3 deposition over Siberian forests.

  18. Granulite sulphides as tracers of lower crustal origin and evolution: An example from the Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Krauss, Cristen; Creaser, Robert A.; Stachel, Thomas; Heaman, Larry M.; Matveev, Sergei; Chacko, Thomas

    2010-09-01

    We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ˜600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks. The significant within-sample variability of 187Os/ 188Os and correlation with 187Re/ 188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.

  19. Tracking quicksilver: estimation of mercury waste from consumer products and subsequent verification by analysis of soil, water, sediment, and plant samples from the Cebu City, Philippines, landfill.

    PubMed

    Buagas, Dale Jo B; Megraso, Cristi Cesar F; Namata, John Darwin O; Lim, Patrick John Y; Gatus, Karen P; Cañete, Aloysius M L

    2015-03-01

    Source attribution of mercury (Hg) is critical for policy development to minimize the impact of Hg in wastes. Mercury content of consumer products and its subsequent release into the waste stream of Cebu City, Philippines, is estimated through surveys that employed validated, enumerator-administered questionnaires. Initially, a citywide survey (n = 1636) indicates that each household annually generates 1.07 ppm Hg (i.e., mg Hg/kg waste) and that linear and compact fluorescent lamps (17.2 %) and thermometers (52.1 %) are the major sources of Hg. A subsequent survey (n = 372) in the vicinity of the city's municipal solid waste landfill shows that residents in the area annually generate 0.38 ppm Hg per household, which is less than the citywide mean; surprisingly though, less affluent respondents living closer to the landfill site reported more Hg from thermometers and sphygmomanometers. Analysis of collected soil (0.238 ppm), leachate water (6.5 ppb), sediment (0.109 ppm), and three plants (0.393 to 0.695 ppm) shows no significant variation throughout five stations in and around the landfill site, although the period of collection is significant for soil (P = 0.001) and Cenchrus echinatus (P = 0.016). Detected Hg in the landfill is considerably less than the annual estimated release, indicating that there is minimal accumulation of Hg in the soil or in plants. As a result of this project, a policy brief has been provided to the Cebu City council in aid of hazardous waste legislation.

  20. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected into the dilute acid stream. The HVAM system provides two measurement ranges (threshold limit value (TLV): 10 to 1000 parts per billion (ppb)/LEAK: 100 ppb to 10 parts per million (ppm)). The LEAK range is created by dilution of the sulfuric acid/hydrazine liquid sample with pure water. This dual range capability permits the analyzer to quantify ambient air samples whose hydrazine concentrations range from 10 ppb to as high as 10 ppm. The laboratory and field prototypes have demonstrated total system response times on the order of 10 to 12 minutes for samples ranging from 10 to 900 ppb in the lLV mode and is greater than 2 minutes for samples ranging from 100 to 1300 ppb in the LEAK mode. Service intervals of over 3 months have been demonstrated for continuous 24 hour/day, 7 day/week usage. The HVAM is made up of a purged cabinet that contains power supplies, RS422 signal transmission capabilities, a UPS, an on-site warning system, and a Line Replaceable Unit (LRU). The LRU includes all of the liquid flow system, the analyzer, the control/data system microprocessor and assorted flow and liquid-level sensors. The LRU is mounted on a track slide system so it can be serviced inplace or totally removed and quickly exchanged with another calibrated unit, thus minimizing analyzer downtime. Once an LRU is removed from an analyzer enclosure, it can be brought to a laboratory facility for complete calibration and periodic maintenance.

  1. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl- L-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle ( θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.

  2. Fluid inclusion volatile analysis by gas chromatography with photoionization micro-thermal conductivity detectors: Applications to magmatic MoS 2 and other H 2O-CO 2 and H 2O-CH 4 fluids

    NASA Astrophysics Data System (ADS)

    Bray, C. J.; Spooner, E. T. C.

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated (~105°C) on-line crushing, helium carrier gas, a single porous polymer column (HayeSep R; 10' × 1/8″: 100/120#; Ni alloy tubing), two temperature programme conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID; 11.7 eV lamp), and off-line digital peak processing. In order of retention time these volatile peaks are: N 2, Ar, CO, CH 4, CO 2, C 2H 4, C 2H 6, C 2H 2, COS, C 3H 6, C 3H 8, C 3H 4 (propyne), H 2O (22.7 min at 80°C), SO 2, ± iso- C4H10 ± C4H8 (1-butene) ± CH3SH, C 4H 8 (iso-butylene), (?) C 4H 6 (1,3 butadiene) and ± n- C4H10 ± C4H8 (trans-2-butene) (80 and -70°C temperature programme conditions combined). H 2O is analysed directly. O 2 can be analysed cryogenically between N 2 and Ar, but has not been detected in natural samples to date in this study. H 2S, SO 2, NH 3, HCl, HCN, and H 2 ca nnot be analysed at present. Blanks determined by crushing heat-treated Brazilian quartz (800-900°C/4 h) are zero for 80°C temperature programme conditions, except for a large, unidentified peak at ~64 min, but contain H 2O, CO 2, and some low molecular weight hydrocarbons at -70°C temperature conditions due to cryogenic accumulation from the carrier gas and subsequent elution. TCD detection limits are ~30 ppm molar in inclusions; PID detection limits are ~ 1 ppm molar in inclusions and lower for unsaturated hydrocarbons (e.g., ~0.2 ppm for C 2H 4; ~ 1 ppb for C 2H 2; ~0.3 ppb for C 3H 6). Precisions (1σ) are ~ ±1-2% and ~ ± 13% for H 2O in terms of total moles detected; the latter value is equivalent to ±0.6 mol% at the 95 mol% H 2O level. Major fluid inclusion volatile species have been successfully analysed on a ~50 mg fluid inclusion section chip (~7 mm × ~10 mm × ~100 μm). Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS 2 deposit, central British Columbia of ~97 mol% H 2O, ~3% CO 2, ~ 140-150 ppm N 2, and ~16-39 ppm CH 4 (~300-350°C) are reasonable in comparison with high temperature (~400-900°C) volcanic gas analyses from four, active calc-alkaline volcanoes; e.g., the H 2O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, >90% (often >95%), 88-95% and ~93%, respectively; CO 2 contents are ~3-10%, 1-10%, 3-8%, and ~3.5%. CO 2/N 2 ratios for the Boss Mtn. MoS 2 fluids of ~ 190-220 are in the range for known volcanic gas ratios (e.g., ~ 150- 240; White Island). The ∑S content of the Boss Mtn. MoS 2 fluid prior to S loss by sulphide precipitation may have been ~2 mol% since CO 2/∑S molar ratios of analysed high-temperature volcanic gases are ~ 1.5. This estimate is supported by ∑S contents for White Island, Merapi and Momotombo volcanic gases of ~2%, ~0.5-2.5%, and ~2%. COS has been determined in H 2O-CO 2 fluid inclusions of interpreted magmatic origin from the Boss Mtn. MoS 2 deposit and the Tanco zoned granitic pegmatite, S.E. Manitoba at ~50-100 ppm molar levels, which are consistent with levels in volcanic gases. It appears that low, but significant, concentrations of C 2-C 4 alkanes (~ 1-20 ppm), C 2-C 4 alkenes (~ 1-480 ppb) and alkynes (e.g., C 3H 4) have been detected in magmatically derived fluids (Boss Mtn. MoS 2 deposit; Tanco granitic pegmatite). Significantly higher, low molecular weight hydrocarbon concentrations have been determined in a CH 4-rich (~ 2%), externally derived fluid of possible metamorphic or deep crustal origin trapped as inclusions in metasomatic wall-rock tourmaline adjacent to the Tanco pegmatite (e.g., 300/470 ppm C 2H 6; 50/90 ppm C 3H 8; 3-60 ppm C 2H 4/C 3H 6 n-C 4H 10).

  3. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    PubMed

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ , 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies. The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based annealing improves the accuracy of the protein structures. Having established that QM-based chemical shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting protein structural dynamics from QM-derived chemical shift.

  4. Evaluation of organic-vapor respirator cartridge efficiency for toluene diisocyanate vapor in the presence of methylenechloride or acetone solvent.

    PubMed

    Dharmarajan, Venkatram; Cummings, Barbara; Lingg, Robert D

    2003-08-01

    Toluene diisocyanate (TDI) is a widely used raw material in the manufacture of flexible polyurethane foams. Acetone (ACE) and/or methylenechloride (MECL) solvents are the most commonly used solvent-based blowing agents for TDI foams. ACGIH has recommended a TWA exposure limit of 5 ppb for TDI and 500 ppm for ACE. For MECL, OSHA mandates a TWA-exposure limit of 25 ppm. This study evaluated the ability of the organic-vapor respirator cartridges (OVC) to block TDI, as well as the effect of airborne MECL or ACE on the OVCs' efficiency to capture TDI. An aluminum/stainless steel exposure chamber was constructed for simultaneously challenging OVCs in triplicate with a dynamic atmosphere of TDI and ACE or MECL vapor. The challenge atmosphere was generated by combining a TDI-laden nitrogen stream from the headspace of a heated impinger with a humidified stream of the indicated solvent in air. The average challenge concentration for TDI was 275 ppb. The average MECL or ACE concentrations were 547 and 581 ppm, respectively. The challenge atmosphere at room temperature (approximately 24 degrees C) and at 25 or 80 percent relative humidity was drawn through each cartridge at 32 L/min for 40+ hours. During the last 8 hours of the challenge, the atmosphere had only TDI vapor. The pre- and post-cartridge atmospheres were periodically sampled for TDI and solvent. Five tests were conducted--two with MSA and three with North OVCs. Under these extreme test conditions no TDI breakthrough was detected from any OVC. The average-calculated efficiency of the OVCs for TDI was >99.9+ percent. Within the first 6 hours of the challenge the cartridges were saturated with ACE or MECL; nevertheless, continued challenging with TDI and solvents did not cause any TDI breakthrough. The study demonstrates that with an OSHA-compliant respiratory protection program, an OVC can safely be used for 40 hours in most polyurethane foam operations. In typical occupational environments using TDI and solvents, the solvent breakthrough, rather than TDI breakthrough, would be the determining factor for the calculation of respirator cartridge change-out schedules.

  5. Influence of Melting and Hydrothermal Alteration on Lead in Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Warren, J. M.; D'Errico, M. E.; Godard, M.; Coble, M. A.; Horan, M.

    2017-12-01

    The lead isotopic system is a key tracer of mantle convection, yet the abundance and mineralogical hosts of Pb in the upper mantle are poorly constrained. To address this, we analyzed the concentration of Pb in minerals and bulk rock powders of abyssal peridotites. These samples represent the oceanic upper mantle following melt extraction. They can be used to explore the mantle Pb budget, assuming that the amount of Pb lost during mantle melting and gained during seafloor alteration can be determined. We performed in situ analysis of the three main silicate phases (olivine, orthopyroxene, and clinopyroxene), which yield Pb concentrations of 2-30 ppb. Olivine is the main mineralogical host of Pb, unlike other trace elements, which are predominantly hosted in clinopyroxene. Sulfide contains an average of 3 ppm Pb, but these high concentrations are offset by low modal abundances (<0.01%), making this mineral a minor source of peridotite Pb. Whole rock Pb concentrations of abyssal peridotites measured by thermal ionization mass spectrometry range from 3 to 38 ppb. These values are close to the reconstructed whole rock values of 2 to 14 ppb, calculated from the mineral concentrations of Pb multiplied by their modes. In contrast, the average value among literature data for whole rock abyssal peridotites is >100 ppb [1, 2], measured by inductively-coupled plasma mass spectrometry. The higher values among literature data may reflect a combination of lower analytical sensitivity and effects of alteration. Samples in this study include an unaltered peridotite from the Gakkel Ridge, which shows the closest agreement between reconstructed and measured whole rock values. We estimate that our peridotites have undergone 5 to 9% melting [3], based on non-modal fractional melt modeling of rare earth element abundances. Assuming 18 to 23 ppb Pb in the depleted source mantle [4, 5], expected concentrations in abyssal peridotites after melting are <1 ppb. However, as suggested by [5], mantle Pb abundance is poorly constrained by the Ce/Pb ratio of mid-ocean ridge basalt and the amount of Pb in the depleted mantle may be higher than current estimates. [1] Niu, 2004, J. Pet.; [2] Paulick et al., 2006, Chem. Geol.; [3] D'Errico et al., 2016, GCA; [4] Salters and Stracke, 2004, G-Cubed; [5] Workman and Hart, 2005 EPSL.

  6. A ppb level sensitive sensor for atmospheric methane detection

    NASA Astrophysics Data System (ADS)

    Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans

    2017-11-01

    A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.

  7. Quantitation of acrylamide in foods by high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo

    2014-01-08

    Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.

  8. Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane.

    PubMed

    Wang, Meiling; Meng, Guowen; Huang, Qing; Li, Mingtao; Li, Zhongbo; Tang, Chaolong

    2011-01-21

    A sensitive and selective fluorescent membrane for rapid detection of trace 2,2',4,5,5'-pentachlorinated biphenyl (PCB101) has been achieved by immobilizing the fluorophore phenyl isothiocyanate (PITC) onto porous anodic aluminium oxide (AAO) membrane (denoted as PITC@AAO). The fluorescence of the PITC@AAO membrane is obviously enhanced after titrating the analyte PCB101 into the membrane, being ascribed to the halogen-bonding interaction between the fluorophore PITC and the analyte PCB101. The fluorescence intensity increases with the PCB101 concentration in the low range below 1 ppm, and there exists an approximate linear relationship between the relative fluorescence intensity and the PCB101 concentration in the low range of 1-6 ppb. Moreover, the PITC@AAO membrane shows good selectivity; for example, it is insensitive to common structural analogs (polychlorinated aromatics). The mechanisms of the fluorescence enhancement and the better sensitivity and selectivity of the PITC@AAO membrane to PCB101 than that of PITC/n-hexane solution are also discussed. This work demonstrates that trace (in ppb range) PCBs can be detected by simple fluorescence measurement.

  9. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan.

    PubMed

    Bennett, J P; Jepsen, E A; Roth, J A

    2006-07-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.

  10. Hydrazine monitoring in spacecraft

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Beck, S. W.; Limero, T. F.; James, J. T.

    1992-01-01

    Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented.

  11. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    PubMed Central

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  12. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit.

    PubMed

    Liu, Chang; Zhao, Liupeng; Wang, Boqun; Sun, Peng; Wang, Qingji; Gao, Yuan; Liang, Xishuang; Zhang, Tong; Lu, Geyu

    2017-06-01

    NiO/ZnO composites were synthesized by decorating numerous NiO nanoparticles on the surfaces of well dispersed ZnO hollow spheres using a facile solvothermal method. Various kinds of characterization methods were utilized to investigate the structures and morphologies of the hybrid materials. The results revealed that the NiO nanoparticles with a size of ∼10nm were successfully distributed on the surfaces of ZnO hollow spheres in a discrete manner. As expected, the NiO/ZnO composites demonstrated dramatic improvements in sensing performances compared with pure ZnO hollow spheres. For example, the response of NiO/ZnO composites to 100ppm acetone was ∼29.8, which was nearly 4.6 times higher than that of primary ZnO at 275°C, and the response/recovery time were 1/20s, respectively. Meanwhile, the detection limit could extend down to ppb level. The likely reason for the improved gas sensing properties was also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser.

    PubMed

    Cao, Yingchun; Sanchez, Nancy P; Jiang, Wenzhe; Griffin, Robert J; Xie, Feng; Hughes, Lawrence C; Zah, Chung-en; Tittel, Frank K

    2015-02-09

    A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N(2)O), methane (CH(4)), and water vapor (H(2)O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm(-1) was used to simultaneously target three neighboring strong absorption lines, N(2)O at 1297.05 cm(-1), CH(4) at 1297.486 cm(-1), and H(2)O at 1297.184 cm(-1). An astigmatic multipass Herriott cell with a 76-m path length was utilized for laser based gas absorption spectroscopy at an optimum pressure of 100 Torr. Wavelength modulation and second harmonic detection was employed for data processing. Minimum detection limits (MDLs) of 1.7 ppb for N(2)O, 8.5 ppb for CH(4), and 11 ppm for H(2)O were achieved with a 2-s integration time for individual gas detection. This single QCL based multi-gas detection system possesses applications in environmental monitoring and breath analysis.

  14. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    PubMed

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  15. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).

  16. Chitosan produced from Mucorales fungi using agroindustrial by-products and its efficacy to inhibit Colletotrichum species.

    PubMed

    Ramos Berger, Lúcia Raquel; Montenegro Stamford, Thayza Christina; de Oliveira, Kataryne Árabe Rimá; de Miranda Pereira Pessoa, Adjane; de Lima, Marcos Antonio Barbosa; Estevez Pintado, Maria Manuela; Saraiva Câmara, Marcos Paz; de Oliveira Franco, Luciana; Magnani, Marciane; de Souza, Evandro Leite

    2018-03-01

    This study evaluated corn steep liquor (CSL) and papaya peel juice (PPJ) in mixture as substrates for the cultivation (96h, 28°C, pH 5.6, 150rpm) of Mucorales fungi for chitosan production, and determined the growth-inhibitory effect of the fungal chitosan (FuCS) obtained under optimized conditions against phytopathogenic Colletotrichum species. All Mucorales fungi tested were capable of growing in CSL-PPJ medium, showing FuCS production in the range of 5.02 (Fennelomyces heterothalicus SIS 28) - 15.63mg/g (Cunninghamella elegans SIS 41). Highest FuCS production (37.25mg/g) was achieved when C. elegans was cultivated in medium containing 9.43% CSL and 42.5% PPJ. FuCS obtained under these conditions showed a deacetylation degree of 86%, viscosity of 120cP and molecular weight of 4.08×10 4 g/mol. FuCS at 5000, 7500 and 10,000ppm inhibited the growth of all Colletotrichum species tested. FuCS also induced alterations in the morphology of C. fructicola hyphae. CSL-PPJ mixtures are suitable substrates for the cultivation of Mucorales fungi for FuCS production. Chitosan from C. elegans cultivated in CSL-PPJ medium is effective in inhibiting phytopathogenic Colletotrichum species. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Organic solvent exposure and contrast sensitivity: comparing men and women

    PubMed Central

    Oliveira, A.R.; Campos, A.A.; de Andrade, M.J.O.; de Medeiros, P.C.B.; dos Santos, N.A.

    2018-01-01

    The goal of this study was to compare the visual contrast sensitivity (CS) of men and women exposed and not exposed to organic solvents. Forty-six volunteers of both genders aged between 18 and 41 years (mean±SD=27.72±6.28) participated. Gas station attendants were exposed to gas containing 46.30 ppm of solvents at a temperature of 304±274.39 K, humidity of 62.25±7.59% and ventilation of 0.69±0.46 m/s (a passive gas chromatography-based sampling method was used considering the microclimate variables). Visual CS was measured via the psychophysical method of two-alternative forced choice using vertical sinusoidal gratings with spatial frequencies of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 16.0 cpd (cycles per degree) and an average luminance of 34.4 cd/m2. The results showed that visual CS was significantly lower (P<0.05) in the following groups: i) exposed men compared to unexposed men at frequencies of 0.2, 0.5, 1.0, and 2.0 cpd; ii) exposed women compared to unexposed women at a frequency of 5.0 cpd; and iii) exposed women compared to exposed men at a frequency of 0.5 cpd, even at exposures below the tolerance limit (300 ppm). These results suggest that the visual CS of exposed men was impaired over a wider range of spatial frequencies than that of exposed women. This difference may have been due to the higher body fat content of women compared to that of men, suggesting that body fat in women can serve as a protective factor against neurotoxic effects. PMID:29340521

  18. Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei

    2017-05-01

    The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant solutions.

  19. Contaminant levels in fish tissue from San Francisco Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Taberski, K.

    1995-12-31

    Edible fish species were collected from thirteen locations throughout San Francisco Bay, during the spring of 1994, for determination of contaminants levels in muscle tissue. Species collected included white croaker, surfperch, leopard and brown smoothhound sharks, striped bass, white sturgeon and halibut Sixty six composite tissue samples were analyzed for the presence of PAHs, PCBs, pesticides, trace elements and dioxin/furans. The US EPA approach to assessing chemical contaminant data for fish tissue consumption was used for identifying the primary chemicals of concern. Six chemicals or chemical groups were found to exceed screening levels established using the US EPA approach. PCBsmore » (as total Aroclors) exceeded the screening level of 3 ppb in all sixty six tissue samples, with the highest concentrations (638 ppb) found near San Francisco`s industrial areas. Mercury was elevated (> 0.14 ppm) in forty of the sixty-six samples with the highest levels (1.26 ppm) occurring in shark muscle tissues. Concentrations of the organochlorine pesticides dieldrin, total chlordanes and total DDTs exceeded screening levels in a number of samples. Dioxin/furans (as TEQs) were elevated (above 0.15 ppt) in 16 of the 19 samples analyzed. Fish with high lipid content (croaker and surfperch) in their muscle tissue generally exhibited higher contaminant levels while fish with low lipid levels (halibut and shark) exhibited lower organic contaminant levels. Tissue samples taken from North Bay stations most often exhibited high levels of chemical contamination. The California Office of Health Hazard Assessment is currently evaluating the results of this study and has issued an interim Health Advisory concerning the human consumption of fish tissue from San Francisco Bay.« less

  20. Co-occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment.

    PubMed

    Rasool, Atta; Xiao, Tangfu; Baig, Zenab Tariq; Masood, Sajid; Mostofa, Khan M G; Iqbal, Muhammad

    2015-12-01

    The present study discusses elevated groundwater arsenic (As) and fluoride (F(-)) concentrations in Mailsi, Punjab, Pakistan, and links these elevated concentrations to health risks for the local residents. The results indicate that groundwater samples of two areas of Mailsi, Punjab were severely contaminated with As (5.9-507 ppb) and F(-) (5.5-29.6 ppm), as these values exceeded the permissible limits of World Health Organization (10 ppb for As and 1.5 ppm for F(-)). The groundwater samples were categorized by redox state. The major process controlling the As levels in groundwater was the adsorption of As onto PO4 (3-) at high pH. High alkalinity and low Ca(2+) and Mg(2+) concentrations promoted the higher F(-) and As concentrations in the groundwater. A positive correlation was observed between F(-) and As concentrations (r = 0.37; n = 52) and other major ions found in the groundwater of the studied area. The mineral saturation indices calculated by PHREEQC 2.1 suggested that a majority of samples were oversaturated with calcite and fluorite, leading to the dissolution of fluoride minerals at alkaline pH. Local inhabitants exhibited arsenicosis and fluorosis after exposure to environmental concentration doses of As and F(-). Estimated daily intake (EDI) and target hazard quotient (THQ) highlighted the risk factors borne by local residents. Multivariate statistical analysis further revealed that both geologic origins and anthropogenic activities contributed to As and F(-) contamination in the groundwater. We propose that pollutants originate, in part, from coal combusted at brick factories, and agricultural activities. Once generated, these pollutants were mobilized by the alkaline nature of the groundwater.

  1. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    PubMed

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.

    A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less

  3. Engineering-scale experiments of solar photocatalytic oxidation of trichloroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, J.; Prairie, M.; Evans, L.

    1990-01-01

    A photocatalytic process is being developed to destroy organic contaminants in water. Tests with a common water pollutant, trichlorethylene (TCE), were conducted at the Solar Thermal Test Facility at Sandia with trough systems. Tests at this scale provide verification of laboratory studies and allow examination of design and operation issues that only arise in experiments on a realistic scale. The catalyst, titanium dioxide (TiO{sub 2}), is a harmless material found in paint, cosmetics and even toothpaste. We examined the effect of initial contaminant concentration and the effect of hydrogen peroxide on the photocatalytic decomposition of trichlorethylene (TCE). An aqueous solutionmore » of 5000 parts per billion (ppB) TCE with 0.1 weight {percent} suspended titanium dioxide catalyst required approximately 4.2 minutes of exposure to destroy the TCE to a detection limit of 5 ppB. For a 300 ppB TCE solution, the time required was only 2.5 minutes to reach the same level of destruction. Adding 250 parts per million (ppM) of hydrogen peroxide reduced the time required by about 1 minute. A two parameter Langmuir Hinshelwood model was able to describe the data. A simple flow apparatus was built to test four fixed catalyst supports and to measure their pressure drop and assess their ability to withstand flow conditions typical of a full-sized system. In this paper, we summarize the engineering-scale testing and results. 16 refs., 5 figs.« less

  4. Meta-analysis of time-series studies of air pollution and mortality: effects of gases and particles and the influence of cause of death, age, and season.

    PubMed

    Stieb, David M; Judek, Stan; Burnett, Richard T

    2002-04-01

    A comprehensive, systematic synthesis was conducted of daily time-series studies of air pollution and mortality from around the world. Estimates of effect sizes were extracted from 109 studies, from single- and multipollutant models, and by cause of death, age, and season. Random effects pooled estimates of excess all-cause mortality (single-pollutant models) associated with a change in pollutant concentration equal to the mean value among a representative group of cities were 2.0% (95% CI 1.5-2.4%) per 31.3 microg/m3 particulate matter (PM) of median diameter < or = 10 microm (PM10); 1.7% (1.2-2.2%) per 1.1 ppm CO; 2.8% (2.1-3.5%) per 24.0 ppb NO2; 1.6% (1.1-2.0%) per 31.2 ppb O3; and 0.9% (0.7-1.2%) per 9.4 ppb SO2 (daily maximum concentration for O3, daily average for others). Effect sizes were generally reduced in multipollutant models, but remained significantly different from zero for PM10 and SO2. Larger effect sizes were observed for respiratory mortality for all pollutants except O3. Heterogeneity among studies was partially accounted for by differences in variability of pollutant concentrations, and results were robust to alternative approaches to selecting estimates from the pool of available candidates. This synthesis leaves little doubt that acute air pollution exposure is a significant contributor to mortality.

  5. Variation of Ambient Ammonia Pollution in Relation With PM2.5 Characteristics in Winter of Delhi, India

    NASA Astrophysics Data System (ADS)

    S., Sr.; Saxena, M., , Dr; Mandal, T. K., , Dr; Kotnala, R. K.; Sharma, S. K., , Dr

    2017-12-01

    Ambient ammonia, SO2 and NOx are primary precursor gases for the formation of particulate matter (PM2.5) which result in photochemical smog and haze formation specifically in winter season. The ambient ammonia, other trace gases and fine particles were monitored in winter season from Jan 2013 to Dec 2015 at CSIR-NPL, Delhi. The average mixing ratios of ambient NH3, NO, NO2 and SO2 over the entire period of winter season were recorded as 25.3±4.6 (ppb), 21.4±7.2 (ppb), 20.8±5.9 (ppb) and 1.9±0.5 (ppm), respectively. The NH4+ and other ionic species in PM2.5 were also simultaneously observed at the the study site to see the transformation of NH3 and NH4+. The results indicated that the concentration level of NH3 and NH4+/NH3 ratios grew simultaneously with the increase of PM2.5 levels. NH3 enhanced the formation of ammonium sulphate and ammonium nitrate and exert a significant impact on ion chemistry of PM2.5. In the wintertime atmosphere of urban Delhi, NH3 was sufficient in fully neutralizing the fine particulates. The important role of ammonia is recognized in increasing PM2.5 mass concentration as it help in formation of ammonium aerosol due to reaction with acid gases. Keywords: Air quality, Ammonia, Trace Gases, Particulates

  6. The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Jeon, Eui-Chan; Choi, Ye-Jin; Koo, Youn-Seo

    In this study, the concentrations of major reduced sulfur compounds (RSC: H 2S, CH 3SH, DMS, CS 2 and DMDS) were determined from various emission sources located within the Ban-Wall (BW)/ Si-Hwa (SH) industrial complex in Ansan city, Korea. The measurement data were obtained from a total of 202 individual points at 77 individual companies during 2004-2005. The highest RSC concentration levels came most dominantly from H 2S (300 (mean) and 0.86 ppb (median)) followed by CS 2, while the results of CH 3, DMS, and DMDS are notably lower at the mean concentration levels of a few ppb. These data were evaluated further after being grouped into two different classification schemes: 9 industry sectors and 9 processing unit types. The strongest emissions of RSC, when evaluated among different industry sectors, are generally found from such industry types as leather, food, paper/pulp, as well as waste/sewage related ones. In contrast, when these RSC data are compared across different processing units, the highest values were seen most frequently from such units as junction boxes, aeration tanks, and settling tanks. The assessment of data in terms of relative contribution to malodor intensity showed that H 2S and CH 3SH are more important than others. The overall results of the present study suggest that information combining RSC speciation and types of anthropogenic activities may be used to distinguish the patterns of odorous pollution in areas affected by strong source processes.

  7. Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.

    PubMed

    Nicolaidou, A E

    1998-01-01

    Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism.

  8. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops

    NASA Astrophysics Data System (ADS)

    Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H.

    Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.

  9. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species.

    PubMed

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2012-07-27

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).

  10. An Investigative Study on the Effect of Silver Nanoparticles on E.Coli K12 in Various Sodium Chloride Concentrations

    NASA Astrophysics Data System (ADS)

    Levard, C.; Mitra, S.; Badireddy, A.; Jew, A. D.; Brown, G. E.

    2011-12-01

    Engineered nanomaterials have had an increasing presence in consumer products. Consequently, their release in wastewater systems is believed to pose a viable threat to the environment. NPs are used for drug delivery devices, imaging agents, and consumer products like sunscreens, paints, and cosmetics. Among the major types of manufactured nanoparticles, silver nanoparticles (Ag-NPs) are currently the most widely used in the nanotechnology industry. These particles have unique antibacterial, antiviral, and antifungal properties and as a result, there is a growing concern about the environmental impact of released Ag nanoparticles, particularly their unintended impact on organisms and ecosystems. Even though the toxicity of Ag-NPs has been extensively studied, the environmental transformations that the Ag-NPs may experience once released in the environment have not been considered. These transformations can readily impact their properties and therefore their behavior in terms of reactivity and toxicity. For example, it is known that silver strongly react with Chloride (Cl), which is ubiquitous in natural waters. At a low Cl/Ag ratio, Cl may precipitate on the surface and partly inhibit dissolution. On the contrary, for a high Cl/Ag ratio, chloride may enhance dissolution and therefore toxicity since soluble Ag species are a main source of toxicity. In this context, the focus of this study is on understanding the toxicity of coated Ag-NPs at various concentrations (1ppb-100ppm) on E.Coli (K12) in deionized water and various sodium chloride concentrations that mimic natural conditions (.5, .1 and .01 M NaCl). Ag+ ions (100 ppm-1ppb) were also tested in these salt concentrations as a control. Samples were inoculated in bacteria and incubated for 24 hours. Based on this test, we inferred that increasing concentrations of Ag+ ions/ AgNps played a role in the inhibition of growth of E.Coli K12. A live-dead staining test has shown the correlation between inhibition of growth and toxicity. No significant toxicity was noted until concentrations of 1-10 ppm for Ag+ and 10-100 ppm for AgNPs. In all NaCl concentrations, Ag+ is more toxic than for AgNPs. In addition, we noted that AgNPs in the .5 M of NaCl had the largest toxicity compared to the other salt concentrations and can be explained by the high Cl/Ag ratio. The concentrations for which toxicity has been observed are fewer orders of magnitude higher than the predicted Ag-NPs concentration released in natural waters in the next years.

  11. Trace and Major Element Chemistry Across the Cretaceous/Tertiary Boundary at Stevns Klint

    NASA Astrophysics Data System (ADS)

    Graup, G.; Spettel, B.

    1992-07-01

    INAA measurements of samples obtained by high-resolution stratigraphy on a mm scale reveal considerable variations in element concentrations across the boundary with their respective maxima stratified in distinct sublayers (Graup et al., 1992). These results suggest that measurements of bulk boundary samples a few cm thick may be inappropriate as concentration variations and element ratios would be leveled out pretending a single geochemical signal. Having investigated a sample comprising sublayers B, C, and D (Fig. 1), Alvarez et al.(1980) acknowledge that "no information is available on the chemical variations within the boundary." This kind of information is given below and shown in Fig. 1 (sublayers A and B are drafted in double scale). From the main lithologic characteristics of Maastrichtian to Paleocene sediments (Schmitz, 1988; Graup et al., 1992) it is readily deduced that Eh and pH conditions in the marine environment changed from oxic-mildly alkaline with normal carbonate sedimentation (Q-M) to anoxic-(mildly) acid with deposition of pyrite spherules (A3), organic material, and clay minerals in the Fish Clay (A-D), followed by a restoration of oxic-alkaline conditions depositing the Cerithium limestone (E- I). The element distribution across the boundary obviously mirrors these alternating environmental conditions: compounds soluble under acid and reducing conditions like Ca-carbonate and Mn are strongly depleted in the Fish Clay (Fig. 1A), whereas compounds stable and insoluble under these conditions are highly enriched (Fig. 1B). The opposite holds true for the calcareous sediments. Across the boundary, enhanced element concentrations are not evenly distributed but appear to be stratified with maximum concentrations in three distinct sublayers for the following elements: (1) A1 (hard clay): peak concentrations for REE (La 72 ppm) and U (45.5 ppm) as compared to 13 ppm La and 2 ppm U in sublayer A2 immediately above. (2) A3 (pyrite spherules): peak concentrations for Fe, Co, Ni, Au, and all chalcophiles. The trace elements correlate well with Fe across the boundary. (3) B (organic-rich marl): peak concentrations for Ir (87.6 ppb), Re (96 ppb, but 113 ppb in C), and organic carbon (2.3%). Ir correlates well with organic carbon (data from Schmitz, 1988), to a lesser extent with Re, and, possibly, Os, but is not correlated with Ni, Co or Au (Graup et al., 1992). Despite large variations in absolute concentrations and, therefore, also of ratios for elements with differing chemical behaviour, there are some pairs of chemically closely related elements (siderophiles as well as chalco- and lithophiles), the ratios of which remain fairly constant over the whole boundary range. Examples shown in Fig. 1A: Ni/Co (average 7.6/std.dev. 1.2) and La/Yb (12.9/2.4). Although Eh,pH conditions vary widely, these elements are not fractionated from each other because of their closely similar geochemical behaviour. The high concentrations of Ir, Ni, and chalcophile elements making up the K/T geochemical anomaly should be indicative of an external component added to the marine environment. The elements introduced were subsequently precipitated according to their chemical properties and changing Eh,pH conditions resulting in stratification of peak concentrations. The constancy of certain element ratios indicates an extended period of availability for this external component. REFERENCES: Alvarez L.W., Alvarez W., Asaro F., and Michel H.V. (1980) Science 208, 1095-1108. Graup G., Palme H., and Spettel B. (1992) Lunar Planet. Sci.(abstract) 23, 445. Schmitz B. (1988) Geology 16, 1068-1072.

  12. Respiratory Symptoms in Hospital Cleaning Staff Exposed to a Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid

    PubMed Central

    Hawley, Brie; Casey, Megan; Virji, Mohammed Abbas; Cummings, Kristin J.; Johnson, Alyson; Cox-Ganser, Jean

    2017-01-01

    Cleaning and disinfecting products consisting of a mixture of hydrogen peroxide (HP), peracetic acid (PAA), and acetic acid (AA) are widely used as sporicidal agents in health care, childcare, agricultural, food service, and food production industries. HP and PAA are strong oxidants and their mixture is a recognized asthmagen. However, few exposure assessment studies to date have measured HP, PAA, and AA in a health care setting. In 2015, we performed a health and exposure assessment at a hospital where a new sporicidal product, consisting of HP, PAA, and AA was introduced 16 months prior. We collected 49 full-shift time-weighted average (TWA) air samples and analyzed samples for HP, AA, and PAA content. Study participants were observed while they performed cleaning duties, and duration and frequency of cleaning product use was recorded. Acute upper airway, eye, and lower airway symptoms were recorded in a post-shift survey (n = 50). A subset of 35 cleaning staff also completed an extended questionnaire that assessed symptoms reported by workers as regularly occurring or as having occurred in the previous 12 months. Air samples for HP (range: 5.5 to 511.4 ppb) and AA (range: 6.7 to 530.3 ppb) were all below established US occupational exposure limits (OEL). To date, no full-shift TWA OEL for PAA has been established in the United States, however an OEL of 0.2 ppm has been suggested by several research groups. Air samples for PAA ranged from 1.1 to 48.0 ppb and were well below the suggested OEL of 0.2 ppm. Hospital cleaning staff using a sporicidal product containing HP, PAA, and AA reported work-shift eye (44%), upper airway (58%), and lower airway (34%) symptoms. Acute nasal and eye irritation were significantly positively associated with increased exposure to the mixture of the two oxidants: HP and PAA, as well as the total mixture (TM) of HP, PAA, and AA. Shortness of breath when hurrying on level ground or walking up a slight hill was significantly associated with increased exposure to the oxidant mixture (P = 0.017), as well as the TM (P = 0.026). Our results suggest that exposure to a product containing HP, PAA, and AA contributed to eye and respiratory symptoms reported by hospital cleaning staff at low levels of measured exposure. PMID:29077798

  13. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    NASA Astrophysics Data System (ADS)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix interference. It was determined through finite element modeling that 250 years after the 1951 release, the soil concentration of the three contaminant of U-238, Sr-90 and Cs-137 will be less than their respective soil clearance level values and therefore will not pose a long term environmental hazard. The fastest nuclide to reach the water table, at a depth of 45 m below the surface, at Suffield Site 27 was calculated to be Sr-90 after a period of 15,000 years. Therefore, it is not necessary to remove the subsurface soil at Site 27 for site decontamination but it is recommended that a "no-digging" policy, except for scientific research, be enforced at this site.

  14. Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications

    USGS Publications Warehouse

    Kelley, K.D.; Kelley, D.L.

    2003-01-01

    The Lik deposit in northern Alaska is a largely unexposed shale-hosted Zn-Pb-Ag massive sulphide deposit that is underlain by continuous permafrost. Residual soils overlying the mineralized zone have element enrichments that are two to six times greater than baseline values. The most prominent elements are Ag, Mo, P, Se, Sr, V by total 4-acid digestion and Tl by a weak partial digestion (Enzyme Leach or EL) because they show multi-point anomalies that extend across the entire mineralized zone, concentration ranges are 0.5-2.6 ppm Ag, 4-26 ppm Mo, 0.1-0.3% P, 3-22 ppm Se, 90-230 ppm Sr, 170-406 ppm V, and 1.6-30 ppb Tl. Lead, Sb, and Hg are also anomalous (up to 178 ppm, 30 ppm, and 1.9 ppm, respectively), but all are characterized by single point anomalies directly over the mineralized zone, with only slightly elevated concentrations over the lower mineralized section. Zinc (total) has a consistent baseline response of 200 ppm, but it is not elevated in soils overlying the mineralized zone. However, Zn by EL shows a distinct single-point anomaly over the ore zone that suggests it was highly mobile and partly adsorbed on oxides or other secondary phases during weathering. In situ analyses (by laser ablation ICP-MS) of pyrite and sphalerite from drill core suggest that sphalerite is the primary residence for Ag, Cd, and Hg in addition to Zn, and pyrite contains As, Fe, Sb, and Tl. The level and degree of oxidation, and the proportion of reacting pyrite and carbonate minerals are two factors that affected the mobility and transport of metals. In oxidizing conditions, Zn is highly mobile relative to Hg and Ag, perhaps explaining the decoupling of Zn from the other sphalerite-hosted elements in the soils. Soils are acidic (to 3.9 pH) directly over the deposit due to the presence of acid-producing pyrite, but acid-neutralizing carbonate away from the mineralized zone yield soils that are near neutral. The soils therefore formed in a complex system involving oxidation and weathering (mechanical and chemical) of sulphide minerals, dissolution of carbonate minerals, and precipitation of iron and manganese oxide minerals.

  15. "Invisible" gold and PGE elements in synthetic crystals of sphalerite and covellite: A EPMA, LA-ICP-MS and XAFS study

    NASA Astrophysics Data System (ADS)

    Tonkacheev, Dmitry; Chareev, Dmitry; Abramova, Vera; Tagirov, Boris

    2016-04-01

    Sphalerite and covellite are widespread minerals in the different genetic types of deposits and forms under the various conditions. The purpose of this work is to determine the possible range of concentration and chemical state of Au and PGE (Pt, Pd, Rh) in sphalerite (Zn,Fe) S and covellite (CuS). These minerals were synthesized using gas transport and salt flux techniques. The crystals of ZnS were grown using the gas transport method at 850°C and the salt flux one using NaCl/KCl, CsCl/NaCl/KCl, and LiCl/RbCl eutectic mixtures at 850, 645 and 470°C, respectively. CuS crystals were synthesized using the salt flux method in RbCl/LiCl melt at 470 and 340°C. The trace metal activity was always controlled by the presence of pure metal or its sulfide, and, therefore, the concentration of these elements in synthesized phases represent the maximum possible value for given T/f(S2) synthesis parameters. The LA-ICP-MS and/or EPMA techniques were used to determine the Au concentration in synthesized phases. The concentration of Au in sphalerite, synthesized at 850°C with admixture of Cd, Se, In, Fe, and Mn, reached 0.3wt%, whereas the sphalerite cell parameter extremely increased up to 5.4161Å relatively to 5.4060 Å for pure ZnS. It was found that the observed high Au concentration is caused by the presence of In (2091±46 ppm Au in sample with Fe and In in comparison with 14±7 for Se-bearing ZnS, 94±12 ppm for Fe-Mn-bearing sphalerite, and 96±46 for Fe-bearing sphalerite. The concentration of Au in Fe-bearing sphalerite synthesized at 645°C does not exceed 5 ppm. Therefore, increase of temperature results in the increase of Au concentration in sphalerite. The concentration of Au in another Fe-bearing-sphalerite series synthesized using gas transport method at 850°C various from 200 to 500 ppm and depends on the iron content. This fact could be related to the oxidation state or Fe in ZnS-FeS solid solution series. The concentration of Pt and Pd, Rh in sphalerite is below the detection limit of LA-ICP-MS (~30 ppb). However, these trace elements change the cathodoluminescence properties of ZnS. The concentration or gold in covellite was determined by both LA-ICP-MS and EPMA techniques and the final values clearly fit together. The maximum concentration can be observed at 450° and equal to 0.3wt%. This value changes minor due to the increasing of the temperature. In principle, adding admixtures of In, Zn, Se, Cu, Sb, Bi did not affect on the concentration of Au. However, in experiment where sulfur is excessive and a mixture of In, Zn, Se, Cu, Sb, Bi, were added the concentration of Au is equal 0.128+0.028 ppm. The gold distribution in covellite and sphalerite is always homogeneous. According to XANES data, atoms of Au in the crystal structure covellite is in triangles, formed by the atoms of Cu. In sphalerite gold is in "invisible" state too.

  16. Protein structure refinement using a quantum mechanics-based chemical shielding predictor† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04344e Click here for additional data file.

    PubMed Central

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1–0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies. The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based annealing improves the accuracy of the protein structures. Having established that QM-based chemical shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting protein structural dynamics from QM-derived chemical shift. PMID:28451325

  17. Hot-spring sinter deposits in the Alvord-Pueblo Valley, Harney County, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, M.L.; St. John, A.M.

    1993-04-01

    Silica sinter deposits occur at Borax Lake, Alvord Hot Springs, and Mickey Springs in the Alvord-Pueblo Valley. Although the sinter deposits occur in areas of active hot springs, sinter is not being deposited. Hot springs are localized along faults that have been active since the Pleistocene. The sinter deposits formed after the drying of glacial Lake Alvord, but before and during extensive wind deflation of glacial-lacustrine sediments. At Mickey Springs, sinter rests directly on unaltered, unconsolidated lithic-rich sand. At Borax Lake, sinter overlies unaltered diatomite, but some armoring, presumably by silica, of the 30 m vent has developed. Field relationsmore » suggest rapid dumping of silica from solution without alteration of the country rock at the vent. Discharge of thermal fluids and cold groundwater along the same structure may have produced colloidal silica carried in a solution stripped of dissolved silica. Sinter is composed of opal-a, traces of detrital feldspar and quartz, and evaporation-related boracite. The concentration of Sb is similar among the three sinter deposits (20 to 70 ppm); however, As, Cs, and Br are highest at Borax Lake (5 to 560 ppm; 26 to 118 ppm; 5 to 1,040 ppm) while Hg is highest at Mickey Springs (1.0 to 5.2 ppm).« less

  18. Ultra-sensitive in-situ detection of near-infrared persistent luminescent tracer nanoagents in crude oil-water mixtures.

    PubMed

    Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei

    2016-06-15

    Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.

  19. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  20. Absence of plant uptake and translocation of polybrominated biphenyls (PBBs).

    PubMed

    Chou, S F; Jacobs, L W; Penner, D; Tiedje, J M

    1978-04-01

    Studies of polybrominated biphenyl (PBB) uptake by plants have been conducted in hydroponic solutions and in greenhouse experiments with soil. Autoradiograms of corn and soybean seedlings grown in hydroponic solutions showed no translocation of 14C-PBB from 14C-PBB-treated solutions to plant tops or within the leaf from 14C-PBB-treated spots on the upper leaf surface. A significant portion of the 14C-PBB associated with the roots was removed when the roots were dipped in acetone. Three root crops (radishes, carrots, and onions) were grown in two soils, each treated with a mixture of FireMaster BP-6 (PBB) and 14C-PBB to achieve final concentrations of 100 ppm and 100 ppb. All roots showed more PBB when grown in the soil with the lower clay and organic matter content than they did when grown in the soil with more clay and organic matter. In the latter soil (clay loam) no PBB was detected in any roots from the 100 ppb treatment. More PBB was associated with roots of carrot than of radish or onion. Corn leaf whorls containing dust from a PBB contamination soil and washed radishes from a heavily contaminated garden showed no PBB.

  1. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm

    DOE PAGES

    Ren, Wei; Luo, Longqiang; Tittel, Frank K.

    2015-12-31

    Here, we report the development of a formaldehyde (H 2CO) trace gas sensor using a continuous wave (CW), thermoelectrically-cooled (TEC), distributed-feedback interband cascade laser (DFB-ICL) at 3.6 μm. Wavelength modulation spectroscopy was used to detect the second harmonic spectra of a strong H 2CO absorption feature centered at 2778.5 cm -1 (3599 nm) in its ν 1 fundamental vibrational band. A compact and novel multipass cell (7.6-cm physical length and 32-ml sampling volume) was implemented to achieve an effective optical path length of 3.75 m. A minimum detection limit of 6 parts per billion (ppb) at an optimum gas pressuremore » of 200 Torr was achieved with a 1-s data acquisition time. An Allan-Werle deviation analysis was performed to investigate the long-term stability of the sensor system and a 1.5 ppb minimum detectable concentration could be achieved by averaging up to 140 s. Absorption interference eeffects from atmospheric H 2O (2%) and CH 4(5 ppm) were also analyzed in this work and proved to be insignificant for the current sensor configuration.« less

  2. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Wei; Luo, Longqiang; Tittel, Frank K.

    Here, we report the development of a formaldehyde (H 2CO) trace gas sensor using a continuous wave (CW), thermoelectrically-cooled (TEC), distributed-feedback interband cascade laser (DFB-ICL) at 3.6 μm. Wavelength modulation spectroscopy was used to detect the second harmonic spectra of a strong H 2CO absorption feature centered at 2778.5 cm -1 (3599 nm) in its ν 1 fundamental vibrational band. A compact and novel multipass cell (7.6-cm physical length and 32-ml sampling volume) was implemented to achieve an effective optical path length of 3.75 m. A minimum detection limit of 6 parts per billion (ppb) at an optimum gas pressuremore » of 200 Torr was achieved with a 1-s data acquisition time. An Allan-Werle deviation analysis was performed to investigate the long-term stability of the sensor system and a 1.5 ppb minimum detectable concentration could be achieved by averaging up to 140 s. Absorption interference eeffects from atmospheric H 2O (2%) and CH 4(5 ppm) were also analyzed in this work and proved to be insignificant for the current sensor configuration.« less

  3. Five-year measurements of ambient ammonia and its relationships with other trace gases at an urban site of Delhi, India

    NASA Astrophysics Data System (ADS)

    Saraswati; Sharma, S. K.; Mandal, T. K.

    2018-04-01

    In this study, we present the 5-year measurements of ambient ammonia (NH3), oxides of nitrogen (NO and NO2) and carbon monoxide (CO) along with the meteorological parameters at an urban site of Delhi, India from January 2011 to December 2015. The average mixing ratios of ambient NH3, NO, NO2 and CO over the entire period of observations were recorded as 19.3 ± 4.4 (ppb), 20.1 ± 5.9 (ppb), 18.6 ± 4.6 (ppb) and 1.8 ± 0.5 (ppm), respectively. The mixing ratios of NH3, NO, NO2 and CO were recorded highest during winter season, followed by summer and monsoon season. In the present case, a substantial seasonal variation of NH3 was observed during all the seasons except NO, NO2 and CO. The results emphasized that the traffic could be one of the significant sources of ambient NH3 at the urban site of Delhi as illustrated by positive correlations of NH3 with traffic related pollutants (NO x and CO). Surface wind as well as back trajectory analysis also supports the road side traffic and agricultural activities at the nearby area indicating possible major sources of ambient NH3 at observational site. Trajectory analysis, potential source contribution function and concentration weighted trajectory analysis indicated the surrounding nearby areas (NCR, Haryana, Punjab, Rajasthan and Uttar Pradesh) as a significant source region of ambient NH3 at the observational site of Delhi.

  4. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China.

    PubMed

    Yang, Xiaoyang; Wang, Xinhua; Yang, Wen; Xu, Jun; Ren, Lihong; He, Youjiang; Liu, Bing; Bai, Zhipeng; Meng, Fan; Hu, Min

    2016-09-01

    In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.

  5. Ambient air pollution and hypertensive disorders of pregnancy: A systematic review and meta-analysis

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Ha, Sandie; Roth, Jeffrey; Kearney, Greg; Talbott, Evelyn O.; Xu, Xiaohui

    2014-11-01

    Hypertensive disorders of pregnancy (HDP, including gestational hypertension, preeclampsia, and eclampsia) have a substantial public health impact. Maternal exposure to high levels of air pollution may trigger HDP, but this association remains unclear. The objective of our report is to assess and quantify the association between maternal exposures to criteria air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤10, 2.5 μm) on HDP risk. PubMed, EMBASE, MEDLINE, Current Contents, Global Health, and Cochrane were searched (last search: September, 2013). After a detailed screening of 270 studies, 10 studies were extracted. We conducted meta-analyses if a pollutant in a specific exposure window was reported by at least four studies. Using fixed- and random-effects models, odds ratios (ORs) and 95% CIs were calculated for each pollutant with specific increment of concentration. Increases in risks of HDP (OR per 10 ppb = 1.16; 95% CI, 1.03-1.30) and preeclampsia (OR per 10 ppb = 1.10; 95% CI, 1.03-1.17) were observed to be associated with exposure to NO2 during the entire pregnancy, and significant associations between HDP and exposure to CO (OR per 1 ppm = 1.79; 95% CI, 1.31-2.45) and O3 (OR per 10 ppb = 1.09; 95% CI, 1.05-1.13) during the first trimester were also observed. Our review suggests an association between ambient air pollution and HDP risk. Although the ORs were relatively low, the population-attributable fractions were not negligible given the ubiquitous nature of air pollution.

  6. "Reactive" optical sensor for Hg2+ and its application in environmental aqueous media and biological systems.

    PubMed

    Chen, Zhi; Chen, Jiayun; Pan, Dong; Li, Hongwei; Yao, Yunhui; Lyu, Zu; Yang, Liting; Ma, Li-Jun

    2017-03-01

    A new rhodamine B-based "reactive" optical sensor (1) for Hg 2+ was synthesized. Sensor 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg 2+ over 14 other metal ions with a hypersensitivity (detection limits are 27.6 nM (5.5 ppb) and 6.9 nM (1.4 ppb), respectively) in neutral buffer solution. To test its applicability in the environment, sensor 1 was applied to quantify and visualize low levels of Hg 2+ in tap water and river water samples. The results indicate sensor 1 is a highly sensitive fluorescent sensor for Hg 2+ with a detection limit of 1.7 ppb in tap water and river water. Moreover, sensor 1 is a convenient visualizing sensor for low levels of Hg 2+ (0.1 ppm) in water environment (from colorless to light pink). In addition, sensor 1 shows good potential as a fluorescent visualizing sensor for Hg 2+ in fetal bovine serum and living 293T cells. The results indicate that sensor 1 shows good potential as a highly sensitive sensor for the detection of Hg 2+ in environmental and biological samples. Graphical Abstract A new rhodamine B-based "reactive" optical sensor (1) for Hg 2+ was synthesized. 1 shows a unique colorimetric and fluorescent "turn-on" selectivity to Hg 2+ over 14 other metal ions with a hypersensitivity in water environment. And it is a convenient visualizing probe for low levels of Hg 2+ in environment aqueous media, fetal bovine serum and living 293T cells.

  7. Fugitive methane emission pinpointing and source attribution using ethane measurements in a portable cavity ring-down analyzer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze

    2017-04-01

    Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.

  8. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.

  9. Ambient Air Pollution and Hypertensive Disorders of Pregnancy: A Systematic Review and Meta-analysis

    PubMed Central

    Hu, Hui; Ha, Sandie; Roth, Jeffrey; Kearney, Greg; Talbott, Evelyn O.; Xu, Xiaohui

    2014-01-01

    Hypertensive disorders of pregnancy (HDP, including gestational hypertension, preeclampsia, and eclampsia) have a substantial public health impact. Maternal exposure to high levels of air pollution may trigger HDP, but this association remains unclear. The objective of our report is to assess and quantify the association between maternal exposures to criteria air pollutants (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter ≤ 10, 2.5 μm) on HDP risk. PubMed, EMBASE, MEDLINE, Current Contents, Global Health, and Cochrane were searched (last search: September, 2013). After a detailed screening of 270 studies, 10 studies were extracted. We conducted meta-analyses if a pollutant in a specific exposure window was reported by at least four studies. Using fixed- and random-effects models, odds ratios (ORs) and 95% CIs were calculated for each pollutant with specific increment of concentration. Increases in risks of HDP (OR per 10 ppb = 1.16; 95% CI, 1.03-1.30) and preeclampsia (OR per 10 ppb = 1.10; 95% CI, 1.03-1.17) were observed to be associated with exposure to NO2 during the entire pregnancy, and significant associations between HDP and exposure to CO (OR per 1 ppm = 1.79; 95% CI, 1.31-2.45) and O3 (OR per 10 ppb = 1.09; 95% CI, 1.05-1.13) during the first trimester were also observed. Our review suggests an association between ambient air pollution and HDP risk. Although the ORs were relatively low, the population-attributable fractions were not negligible given the ubiquitous nature of air pollution. PMID:25242883

  10. A metallogenic survey of alkalic rocks of Mt. Somma-Vesuvius volcano

    USGS Publications Warehouse

    Paone, A.; Ayuso, R.A.; de Vivo, B.

    2001-01-01

    Somma-Vesuvius is an alkaline volcano whose products (pumice, scoria and lava) have alkaline (Na2O+K2O) contents between 6 and 16 wt%, Mg number <50, SiO2 59-47 wt% and MgO 0-7.8 wt% (more than 50% of the samples have a content <2 wt%). Immobile-element ratios (Th/Yb, Ta/Yb, Ce/Yb) indicate a shoshonitic character, while the K2O content (4-10 wt%) is characteristic of ultrapotassic rocks. The behavior of selected metals is discussed by grouping them on the basis of the stratigraphic sequence and differentiating the volcanic activity between plinian and interplinian (Rolandi et al., 1998; Ayuso et al., 1998). This allows observation of the variation within each formation from 25.000y. BP to the last historic eruptive cycle (1631-1944 AD). The main processes to explain the wide distribution of the data presented are fractional crystallization of a mantle-derived magma, magma mixing, and contamination with heterogeneous lower and/or upper crust. Variation diagrams distinguish different behavior for groups of metals: Ag (0.01-0.2 ppm), Mo (1-8.8 ppm), W (1.3-13 ppm), Pb (16-250 ppm), Sb (0.2-2.6 ppm), Sc (0.2-61 ppm), Li (15-140 ppm) and Be (1-31 ppm) increase with increasing differentiation and tend to correlate with the incompatible trace elements (Th, Hf, etc). Cu (10-380 ppm), Au (2-143 ppb), Co (0.7-35.1 ppm) and Fe (1.3-6.2 wt%) decrease towards advanced stage of differentiation. Iron also identifies three magmatic groups. The ratio Fe3+/Fe2+ ranges between 0.2 and 1.8, and Fe2O3/ (Fe2O3+FeO) ranges between 0.2 and 0.8, giving rise to an oxidized environment; exceptions are in the samples belonging to the interplinian formations: I, II, medieval and 1631-1994 AD. Fluorine ranges between 0.1 and 0.4 wt% for the complete Mt. Somma-Vesuvius activity, except for the Ottaviano and Avellino plinian (0.8 wt%) events. Chlorine has a wider range, from 0.1 wt% to 1.6 wt%. Mt Somma-Vesuvius has some features similar to those of mineralized alkaline magmatic systems which coincide with the transition between subduction-related compression and extension-related to continental rifting. We infer that a prospective time for the formation of mineralization at Mt Somma-Vesuvius was during the 1631-1944 eruptive period.

  11. Results from an investigation of the physical origins of nonproportionality in CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Asztalos, S.; Hennig, W.; Warburton, W. K.

    2011-10-01

    The relative scintillation response per energy deposited by Compton electrons, or nonproportionality, has traditionally been considered an intrinsic scintillator property. However, such an interpretation is inconsistent with recent results that show nonproportionality to depend on external factors such as shaping time, temperature and supplier. Apparently, at least some of the overall nonproportionality has an extrinsic origin. In this work we describe the results from a suite of measurements designed to test the hypothesis that nonproportionality in CsI(Tl) material has an extrinsic component that correlates with impurity levels. Our choice of material was motivated by the excellent energy resolution observed in one bulk crystal (6.4%)—a marked departure from that measured with conventional CsI(Tl) stock (8-8.5%). Six bulk CsI(Tl) crystals were procured and diced into 44 wafers. Using X-ray fluorescence techniques no conclusive evidence for impurities was found in any of the wafers at the 1-50 ppm level. One crystal exhibited a distinct correlation among energy resolution, decay lifetimes, nonproportionality and a very low level of Tl doping.

  12. Continuous exposure to low-frequency noise and carbon disulfide: Combined effects on hearing.

    PubMed

    Venet, Thomas; Carreres-Pons, Maria; Chalansonnet, Monique; Thomas, Aurélie; Merlen, Lise; Nunge, Hervé; Bonfanti, Elodie; Cosnier, Frédéric; Llorens, Jordi; Campo, Pierre

    2017-09-01

    Carbon disulfide (CS 2 ) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS 2 have been published to date. This article focuses on the effects on rat hearing of combined exposure to noise with increasing concentrations of CS 2 (0, 63,250, and 500ppm, 6h per day, 5 days per week, for 4 weeks). The noise used was a low-frequency noise ranging from 0.5 to 2kHz at an intensity of 106dB SPL. Auditory function was tested using distortion product oto-acoustic emissions, which mainly reflects the cochlear performances. Exposure to noise alone caused an auditory deficit in a frequency area ranging from 3.6 to 6 kHz. The damaged area was approximately one octave (6kHz) above the highest frequency of the exposure noise (2.8kHz); it was a little wider than expected based on the noise spectrum.Consequently, since maximum hearing sensitivity is located around 8kHz in rats, low-frequency noise exposure can affect the cochlear regions detecting mid-range frequencies. Co-exposure to CS 2 (250-ppm and over) and noise increased the extent of the damaged frequency window since a significant auditory deficit was measured at 9.6kHz in these conditions.Moreover, the significance at 9.6kHz increased with the solvent concentrations. Histological data showed that neither hair cells nor ganglion cells were damaged by CS 2 . This discrepancy between functional and histological data is discussed. Like most aromatic solvents, carbon disulfide should be considered as a key parameter in hearing conservation régulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chemical Space: Big Data Challenge for Molecular Diversity.

    PubMed

    Awale, Mahendra; Visini, Ricardo; Probst, Daniel; Arús-Pous, Josep; Reymond, Jean-Louis

    2017-10-25

    Chemical space describes all possible molecules as well as multi-dimensional conceptual spaces representing the structural diversity of these molecules. Part of this chemical space is available in public databases ranging from thousands to billions of compounds. Exploiting these databases for drug discovery represents a typical big data problem limited by computational power, data storage and data access capacity. Here we review recent developments of our laboratory, including progress in the chemical universe databases (GDB) and the fragment subset FDB-17, tools for ligand-based virtual screening by nearest neighbor searches, such as our multi-fingerprint browser for the ZINC database to select purchasable screening compounds, and their application to discover potent and selective inhibitors for calcium channel TRPV6 and Aurora A kinase, the polypharmacology browser (PPB) for predicting off-target effects, and finally interactive 3D-chemical space visualization using our online tools WebDrugCS and WebMolCS. All resources described in this paper are available for public use at www.gdb.unibe.ch.

  14. Anodic Stripping Voltammetry with Pencil Graphite Electrode for Determination of Chromium (III)

    NASA Astrophysics Data System (ADS)

    Wyantuti, S.; Hafidza, R. A.; Ishmayana, S.; Hartati, Y. W.

    2017-02-01

    Chromium is required as micronutrient that has roles in insulin metabolism and blood glucose level regulation. Chromium (III) deficiency can cause hyperglycemia and glycosuria. However, a high amount of chromium in body can cause allergic reaction, organ damage, and even death because of its toxicity. Chromium is commonly used in steel industries. Simultaneously with the development of industry, the waste disposal that can endanger environment also increased. Therefore, a sensitive and specific analysis method for chromium detection is required. Stripping voltammetry is one of the voltammetric methods that is commonly used for heavy metal analysis due to the very low limit of detection (sub ppb). The present study was conducted to develop an analysis method for chromium (III) determination using pencil graphite electrode. Quantitative determination was performed for chromium (III) which measured at -0.8 to +1.0 V with deposition time for 60 s and 50 mV/s scan rate. Stripping voltammetric analysis of chromium (III) using pencil graphite electrode gave linear range at 12.5 to 75 ppm with limit of detection of 0.31 ppm.

  15. Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers

    NASA Astrophysics Data System (ADS)

    Rigoni, F.; Freddi, S.; Pagliara, S.; Drera, G.; Sangaletti, L.; Suisse, J.-M.; Bouvet, M.; Malovichko, A. M.; Emelianov, A. V.; Bobrinetskiy, I. I.

    2017-06-01

    A low-cost method for carbon nanotubes (CNTs) network production from solutions on flexible polyethylene naphthalate substrates has been adopted to prepare high quality and well characterized SWCNT bundle layers to be used as the active layer in chemiresistor gas sensors. Two types of SWCNTs have been tested: pristine SWCNTs, deposited from a surfactant solution, and covalently functionalized SWCNTs, deposited from a dimethyl-acetamide solution. The humidity effects on the sensitivity of the SWCNTs network to NH3 have been investigated. The results show that relative humidity favors the response to NH3, confirming recent theoretical predictions. The COOH-functionalized sample displays the largest response owing to both its hydrophilic nature, favoring the interaction with H2O molecules, and its largest surface area. Compared to data available in the literature, the present sensors display a remarkable sensitivity well below the ppm range, which makes them quite promising for environmental and medical applications, where NH3 concentrations (mostly of the order of tens of ppb) have to be detected.

  16. Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection.

    PubMed

    Yang, Li; Li, Minglin; Qu, Yanli; Dong, Zaili; Li, Wen J

    2009-09-01

    This paper presents the development of a chemical sensor employing electronic-grade carbon nanotubes (EG-CNTs) as the active sensing element for sodium hypochlorite detection. The sensor, integrated in a PDMS-glass microfluidic chamber, was fabricated by bulk aligning of EG-CNTs between gold microelectrode pairs using dielectrophoretic technique. Upon exposure to sodium hypochlorite solution, the characteristics of the carbon nanotube chemical sensor were investigated at room temperature under constant current mode. The sensor exhibited responsivity, which fits a linear logarithmic dependence on concentration in the range of 1/32 to 8 ppm, a detection limit lower than 5 ppb, while saturating at 16 ppm. The typical response time of the sensor at room temperature is on the order of minutes and the recovery time is a few hours. In particular, the sensor showed an obvious sensitivity to the volume of detected solution. It was found that the activation power of the sensor was extremely low, i.e. in the range of nanowatts. These results indicate great potential of EG-CNT for advanced nanosensors with superior sensitivity, ultra-low power consumption, and less fabrication complexity.

  17. Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno Schist, northeastern Mexico: Remnants of Pangaea ocean floor

    NASA Astrophysics Data System (ADS)

    Torres-Sánchez, Sonia Alejandra; Augustsson, Carita; Jenchen, Uwe; Rafael Barboza-Gudiño, J.; Alemán Gallardo, Eduardo; Ramírez Fernández, Juan Alonso; Torres-Sánchez, Darío; Abratis, Michael

    2017-08-01

    The Granjeno Schist is a meta-volcanosedimentary upper Paleozoic complex in northeastern Mexico. We suggest different tectonic settings for metamorphism of its serpentinite and talc-bearing rocks based on petrographic and geochemical compositions. According to the REE ratios (LaN/YbN = 0.51 -20.0 and LaN/SmN = 0.72-9.1) and the enrichment in the highly incompatible elements Cs (0.1 ppm), U (2.8 ppm), and Zr (60 ppm) as well as depletion in Ba (1 - 15 ppm), Sr (1 -184 ppm), Pb (0.1 -14 ppm), and Ce (0.1 -1.9 ppm) the rocks have mid-ocean ridge and subduction zones characteristics. The serpentinite contains Al-chromite, ferrian chromite and magnetite. The Al-chromite is characterized by Cr# of 0.48 to 0.55 suggesting a MORB origin, and Cr# of 0.93 to 1.00 for the ferrian chromite indicates a prograde metamorphism. We propose at least two serpentinization stages of lithospheric mantle for the ultramafic rock of the Granjeno Schist, (1) a first in an ocean-floor environment at sub-greenschist to greenschist facies conditions and (2) later a serpentinization phase related to the progressive replacement of spinel by ferrian chromite and magnetite at greenschist to low amphibolite facies conditions during regional metamorphism. The second serpentinization phase took place in an active continental margin during the Pennsylvanian. We propose that the origin of the ultramafic rocks is related to an obduction and accretional event at the western margin of Pangea.

  18. The isotopic composition of CO in vehicle exhaust

    NASA Astrophysics Data System (ADS)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were similar the high emitters in the individual vehicle measurements, with no significant differences between parking garage and highway samples. This suggests that in both environments, which are dominated by different driving conditions, the CO emissions from high emitters (either a few high emission vehicles, or many vehicles with brief bursts of high emissions) dominate the total traffic emissions.

  19. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  20. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  1. Silicon chip integrated photonic sensors for biological and chemical sensing

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.

    2016-03-01

    We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.

  2. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  3. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  4. Highly Specific and Wide Range NO2 Sensor with Color Readout.

    PubMed

    Fàbrega, Cristian; Fernández, Luis; Monereo, Oriol; Pons-Balagué, Alba; Xuriguera, Elena; Casals, Olga; Waag, Andreas; Prades, Joan Daniel

    2017-11-22

    We present a simple and inexpensive method to implement a Griess-Saltzman-type reaction that combines the advantages of the liquid phase method (high specificity and fast response time) with the benefits of a solid implementation (easy to handle). We demonstrate that the measurements can be carried out using conventional RGB sensors; circumventing all the limitations around the measurement of the samples with spectrometers. We also present a method to optimize the measurement protocol and target a specific range of NO 2 concentrations. We demonstrate that it is possible to measure the concentration of NO 2 from 50 ppb to 300 ppm with high specificity and without modifying the Griess-Saltzman reagent.

  5. Effect of ventilation rate and board loading on formaldehyde concentration : a critical review of the literature

    Treesearch

    George E. Myers

    1984-01-01

    A critical literature review has been carried out on the influence of ventilation rate (N, hr.-1) and board loading (L, m2/m3) on steady state formaldehyde concentrations (Cs, ppm) resulting from particleboard and plywood emissions. Large differences exist among boards in the extent to which their formaldehyde concentrations change with N or L in laboratory chambers....

  6. Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids.

    PubMed

    Li, Xin; Ahammed, Golam J; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2016-01-01

    Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential implication in improving quality of summer tea.

  7. Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids

    PubMed Central

    Li, Xin; Ahammed, Golam J.; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2016-01-01

    Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential implication in improving quality of summer tea. PMID:27625668

  8. The state of greenhouse gases in the atmosphere using global observations through 2014

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed

    2016-04-01

    We present results from the eleventh annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG). Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of CO2, CH4 and N2O derived from this network reached new highs in 2014, at 397.7±0.1 ppm, 1833±1 ppb and 327.1±0.1 ppb respectively. These values constitute 143%, 254% and 121% of pre-industrial (before 1750) levels. The atmospheric increase of CO2 from 2013 to 2014 was 1.9 ppm, which is smaller than the increase from 2012 to 2013 and the average growth rate for the past decade (˜2.06 ppm per year), but larger than the average growth rate for the 1990s (˜1.5 ppm per year). Smaller growth in 2014 compared with other recent years is most likely related to a relatively small net change in large fluxes between the atmosphere and terrestrial biosphere. The rise of atmospheric CO2 has been only about a half of what is expected if all excess CO2 from burning fossil-fuels stayed in the air. The other half has been absorbed by the land biosphere and the oceans, leading to ocean acidification. For both CH4 and N2O the increases from 2013 to 2014 were larger than those observed from 2012 to 2013 and the mean rates over the past 10 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2014 radiative forcing by long-lived greenhouse gases increased by 36%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 481 ppm (http://www.esrl.noaa.gov/gmd/aggi). The Bulletin cover story explains the role of the water vapor in the greenhouse effect. In spite of water vapor being a strong greenhouse gas, it is the non-condensable greenhouse gases affected by human activities that serve as climate forcing agents; water vapor and clouds act as fast feedbacks. The strong water vapor feedback means that for a doubling of CO2 abundance from preindustrial conditions (from about 280 to 560 ppm), water vapor and clouds lead to a global increase in surface thermal energy that is about three times that of long-lived (non-condensable) greenhouse gases.

  9. Design of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function

    NASA Astrophysics Data System (ADS)

    Li, Feng; Gao, Xing; Wang, Rui; Zhang, Tong

    2018-06-01

    In this work, core-shell WO3-SnO2 (CS-WS) nanofibers (NFs) have been successfully synthesized via a coaxial electrospinning approach. The structure and morphology characteristics of the resultant products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS). To investigate the sensing mechanism of the CS-WS NFs, sensors based on SnO2 NFs, WO3 NFs, and SnO2-WO3 composite NFs were fabricated respectively, and their gas sensing properties were investigated by using CO, ethanol, toluene, acetone, and ammonia as the test gas. The results indicated that the CS-WS NFs exhibited a good response to ethanol (5.09 at 10 ppm) and short response/recovery time (18.5 s and 282 s) compared with the other test gases. The enhanced ethanol sensing properties of CS-WS NFs compared with those of SnO2 NFs were closely associated with the CS structure and its derivative effect due to the different work function of SnO2 and WO3. The approach proposed in this study may contribute to the realization of more sensitive metal oxide semiconductor (MOS) core-shell heterostructure sensors.

  10. Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks

    2016-06-01

    Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.

  11. Argon purification studies and a novel liquid argon re-circulation system

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.

    2011-08-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.

  12. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  13. Evaluation of Aerosol Optical Thickness algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS) Using the OMI Instrument over East Asia

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.; Torres, O.; Chang, L.; Hong, J.

    2016-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.

  14. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera)

    PubMed Central

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3–13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide. PMID:28591204

  15. Airborne testing and demonstration of a new flight system based on an Aerodyne N2O-CO2-CO-H2O mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Gvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S.

    2017-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.

  16. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera).

    PubMed

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3-13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide.

  17. Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues.

    PubMed

    Johns, Cameron; Shellie, Robert A; Potter, Oscar G; O'Reilly, John W; Hutchinson, Joseph P; Guijt, Rosanne M; Breadmore, Michael C; Hilder, Emily F; Dicinoski, Greg W; Haddad, Paul R

    2008-02-29

    Anions and cations of interest for the post-blast identification of homemade inorganic explosives were separated and detected by ion chromatographic (IC) methods. The ionic analytes used for identification of explosives in this study comprised 18 anions (acetate, benzoate, bromate, carbonate, chlorate, chloride, chlorite, chromate, cyanate, fluoride, formate, nitrate, nitrite, perchlorate, phosphate, sulfate, thiocyanate and thiosulfate) and 12 cations (ammonium, barium(II), calcium(II), chromium(III), ethylammonium, magnesium(II), manganese(II), methylammonium, potassium(I), sodium(I), strontium(II), and zinc(II)). Two IC separations are presented, using suppressed IC on a Dionex AS20 column with potassium hydroxide as eluent for anions, and non-suppressed IC for cations using a Dionex SCS 1 column with oxalic acid/acetonitrile as eluent. Conductivity detection was used in both cases. Detection limits for anions were in the range 2-27.4ppb, and for cations were in the range 13-115ppb. These methods allowed the explosive residue ions to be identified and separated from background ions likely to be present in the environment. Linearity (over a calibration range of 0.05-50ppm) was evaluated for both methods, with r(2) values ranging from 0.9889 to 1.000. Reproducibility over 10 consecutive injections of a 5ppm standard ranged from 0.01 to 0.22% relative standard deviation (RSD) for retention time and 0.29 to 2.16%RSD for peak area. The anion and cation separations were performed simultaneously by using two Dionex ICS-2000 chromatographs served by a single autoinjector. The efficacy of the developed methods was demonstrated by analysis of residue samples taken from witness plates and soils collected following the controlled detonation of a series of different inorganic homemade explosives. The results obtained were also confirmed by parallel analysis of the same samples by capillary electrophoresis (CE) with excellent agreement being obtained.

  18. Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.

    2011-05-15

    The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence ofmore » the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.« less

  19. Respiratory Symptoms in Hospital Cleaning Staff Exposed to a Product Containing Hydrogen Peroxide, Peracetic Acid, and Acetic Acid.

    PubMed

    Hawley, Brie; Casey, Megan; Virji, Mohammed Abbas; Cummings, Kristin J; Johnson, Alyson; Cox-Ganser, Jean

    2017-12-15

    Cleaning and disinfecting products consisting of a mixture of hydrogen peroxide (HP), peracetic acid (PAA), and acetic acid (AA) are widely used as sporicidal agents in health care, childcare, agricultural, food service, and food production industries. HP and PAA are strong oxidants and their mixture is a recognized asthmagen. However, few exposure assessment studies to date have measured HP, PAA, and AA in a health care setting. In 2015, we performed a health and exposure assessment at a hospital where a new sporicidal product, consisting of HP, PAA, and AA was introduced 16 months prior. We collected 49 full-shift time-weighted average (TWA) air samples and analyzed samples for HP, AA, and PAA content. Study participants were observed while they performed cleaning duties, and duration and frequency of cleaning product use was recorded. Acute upper airway, eye, and lower airway symptoms were recorded in a post-shift survey (n = 50). A subset of 35 cleaning staff also completed an extended questionnaire that assessed symptoms reported by workers as regularly occurring or as having occurred in the previous 12 months. Air samples for HP (range: 5.5 to 511.4 ppb) and AA (range: 6.7 to 530.3 ppb) were all below established US occupational exposure limits (OEL). To date, no full-shift TWA OEL for PAA has been established in the United States, however an OEL of 0.2 ppm has been suggested by several research groups. Air samples for PAA ranged from 1.1 to 48.0 ppb and were well below the suggested OEL of 0.2 ppm. Hospital cleaning staff using a sporicidal product containing HP, PAA, and AA reported work-shift eye (44%), upper airway (58%), and lower airway (34%) symptoms. Acute nasal and eye irritation were significantly positively associated with increased exposure to the mixture of the two oxidants: HP and PAA, as well as the total mixture (TM)of HP, PAA, and AA. Shortness of breath when hurrying on level ground or walking up a slight hill was significantly associated with increased exposure to the oxidant mixture (P = 0.017), as well as the TM (P = 0.026). Our results suggest that exposure to a product containing HP, PAA, and AA contributed to eye and respiratory symptoms reported by hospital cleaning staff at low levels of measured exposure. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  20. Evidences for Cu and Zn Isotope Fractionation in Sediments and Particulate Suspended Matter of the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Petit, J.; Mattielli, N.; de Jong, J.; Chou, L.

    2004-05-01

    Recent developments in MC-ICP-MS technology allow high precision measurements of heavy stable isotopes, such as Cu and Zn isotopes, which have been shown to undergo biotic or abiotic fractionation (1). Application of Zn isotopes to the study of aquatic ecosystems has already shown some interesting perspectives in their potential use as biogeochemical tracers in deep ocean carbonates (2) or Fe-Mn nodules (3). However, until now no investigation of possible Cu and Zn isotopic fractionation has been carried out within estuaries that are important pathways for hydrological and geochemical cycling of metals. Cu and Zn isotope geochemistry has been studied in sandy to loamy surface sediments (top 20 cm) and in suspended particulate matter (SPM) along a transect in a strong tidal estuary, the Scheldt estuary situated in Belgium and the Netherlands (November 2002). Further to separation of Cu, Fe and Zn by one step ion-exchange chromatography, Cu and Zn isotopic ratios are measured with a "Nu-Plasma" MC-ICP-MS. Instrumental mass bias is corrected using reference materials (Zn JMC, Cu NIST SRM 976 and Ga JMC standard) by simultaneous standard-sample bracketing and external normalization (500 ppb Zn doping for Cu isotopic analyses in static mode and 250 ppb Ga doping for Zn isotopic analyses in dynamic mode), together with a Ni correction. These methods lead to long-term reproducibility (2σ at 95 % confidence level) of ± 0.07 per mil for δ 66Zn (n=100 over 7 analysis sessions) and ± 0.06 per mil for δ 65Cu (n=120 over 8 analysis sessions) for 500 ppb of reference material. Average beam intensities are 6 V/ppm. Precise and reproducible results are obtained for concentration as low as 100 ppb for Cu and Zn. Expected Cu and Zn enrichment in SPM (120 ppm and 1200 ppm respectively) and sediments (being 6 to 10 times lower than SPM) in the upper estuary and progressive decrease in metal content by mixing downstream of the maximum turbidity zone (MTZ, around 5 psu) are observed. Results show that variations in Cu and Zn isotopic composition are smaller in SPM (δ 66Zn varying from 0.35 to 0.17 and δ 65Cu from -0.13 to 0.18) than in sediments. Cu and Zn isotopic signatures of sediments show a clear trend of lighter isotopes removal from the MTZ seaward with δ 66Zn varying from 0.21 at 2 psu to 1.11 per mil at 33 psu (and δ 65Cu = -0.37 to 0.24). In contrast, Zn isotopic compositions in SPM are more homogeneous with average δ 66Zn of 0.24 ± 0.18 over all the transect. Cu isotopic composition in SPM are very constant downstream of the MTZ with average δ 65Cu =-0.06 ± 0.08 but become more scattered within MTZ (varying from -0.04 to 0.18). These preliminary results pinpoint important variations in Cu and Zn isotopic compositions within estuarine systems and contrasted isotopic signatures in Cu and Zn between SPM and sediments. Results suggest the important role of early diagenesis in the isotope geochemistry of heavy metals in estuarine environment. This study provides a stepping stone for further investigation of interacting processes involved in controlling the cycling of metals in the Scheldt estuary. (1) Zhu et al., Earth Planet. Sci. Lett. 200 (2002), 47-62 (2) Pichat et al., Earth Planet. Sci. Lett. 6598 (2003), 1-12 (3) Maréchal et al., Geochem. Geophys. Geosyt., 1 (2000), GC000029

  1. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  2. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations.

    PubMed

    Roy, Gilles; Mielczarski, Jerzy A

    2002-04-01

    Infrared sensor, based on attenuated total reflection phenomenon, for the detection of chlorinated hydrocarbons (CHCs) represents a big advantage compared to chromatographic and mass spectroscopic techniques since it is a one step detector. Pre-concentration and separation take place in the polymer film with simultaneous identification of pollutants by the infrared beam. The analysis is rapid, sample does not require any initial preparation, and can be easily performed in the field. The main default of the latest version of the sensor was a low sensibility (above 1 ppm) compared to the threshold levels of the contaminants. In the present work, it is documented that the response dynamics of the optical sensor and its sensitivity depend strongly on the diffusion of pollutants through a boundary layer formed between polymer film and the monitored solution and in the polymer film. The reduction of thickness of the boundary layer through a controlled high flow rate, and the optimization of thickness (volume) of polymer films result in a tremendous improvement of the response dynamics. It is demonstrated that the sensor can detect simultaneously six CHCs: monochlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, trichloroethylene, and perchloroethylene in their mixture with a sensitivity as low as a few ppb. This level of detection opens up numerous applications for the optical sensor.

  3. Distribution of Trace Gases and Aerosols in the Troposphere Over Siberia During Wildfires of Summer 2012

    NASA Astrophysics Data System (ADS)

    Antokhin, P. N.; Arshinova, V. G.; Arshinov, M. Y.; Belan, B. D.; Belan, S. B.; Davydov, D. K.; Ivlev, G. A.; Fofonov, A. V.; Kozlov, A. V.; Paris, J.-D.; Nedelec, P.; Rasskazchikova, T. M.; Savkin, D. E.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.

    2018-02-01

    The results of sensing of the gas and aerosol composition of the atmosphere with the Optik Tu-134 aircraft laboratory in the period from 31 July to 1 August 2012 are presented. The measurements were conducted along the flight route Novosibirsk-Tomsk-Mirny-Yakutsk-Bratsk-Novosibirsk. A significant part of the Siberian territory during this period was covered by numerous forest fires. The synoptic situation during the measurements was characterized by the presence of low-gradient field. This fact determined the low rate of transport and diffusion of pollutants and their accumulation in the region under study. The maximal concentrations of CO2, CH4, and CO over fire zones achieved 432 ppm, 2367 ppb, and 4036 ppb, respectively. The aerosol particle number density in emission plumes achieved 4400 cm-3. Outside emission plumes, the concentration ranged within 400-1000 cm-3 depending on the region. The mass concentration of aerosol in plumes increased approximately 7 times (6.9). The enrichment of the concentration of some elements and ions in the plume with respect to the background varied from 1.3 to 9.1 times. The generation of ozone from biomass burning products was observed at plume boundaries. Two versions of this process are possible: ozone generation under and above the plume.

  4. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  5. Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Anshul Kumar; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Debnath, A. K.; Aswal, D. K.

    2018-01-01

    A cost effective solution assembly method has been explored for preparing zinc(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexa-decafluoro-29H,31H-phthalocyanine/multi-walled carbon nanotubes (F16ZnPc/MWCNTs-COOH) hybrid. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) investigations confirm the non-covalent anchoring of F16ZnPc onto MWCNTs-COOH through п-п stacking interactions. Further, a highly sensitive and selective chemiresistive Cl2 sensor has been fabricated using F16ZnPc/MWCNTs-COOH hybrid. The response of sensor is found to be 21.28% for 2 ppm of Cl2 with a response time of 14 s and theoretical detection limit of the sensor is found down to 0.06 ppb. The improved Cl2 sensing characteristics of hybrid are found to be originated from the synergetic interaction between F16ZnPc and MWCNTs-COOH. The underlying mechanism for improved gas sensing performance of F16ZnPc/MWCNTs-COOH sensor towards Cl2 has been explained using Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) studies.

  6. Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Guoying

    2007-09-01

    A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.

  7. Flame and flameless atomic-absorption determination of tellurium in geological materials

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.; Hubert, A.E.

    1978-01-01

    The sample is digested with a solution of hydrobromic acid and bromine and the excess of bromine is expelled. After dilution of the solution to approximately 3 M in hydrobromic acid, ascorbic acid is added to reduce iron(III) before extraction of tellurium into methyl isobutyl ketone (MIBK). An oxidizing air-acetylene flame is used to determine tellurium in the 0.1-20 ppm range. For samples containing 4-200 ppb of tellurium, a carbon-rod atomizer is used after the MIBK extract has been washed with 0.5 M hydrobromic acid to remove the residual iron. The flame procedure is useful for rapid preliminary monitoring, and the flameless procedure can determine tellurium at very low concentrations. ?? 1978.

  8. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Scherer, James R; Mathies, Richard A

    2009-01-15

    The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.

  9. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  10. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  11. Experimental determination of the carboxylate oxygen electric-field-gradient and chemical shielding tensors in L-alanine and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi

    2007-10-01

    We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.

  12. Analysis of barium and strontium in sediments by dc plasma emission spectrometry

    USGS Publications Warehouse

    Bowker, P.C.; Manheim, F. T.

    1982-01-01

    The dc plasma are is suited to analysis of barium and strontium in a wide range of sedimentary rock matrices, from sands, shales, and carbonates, to ferromanganese nodules. Samples containing 10 ppm to more than 3000 ppm barium and strontium were studied. Both alkali (3500 ppm lithium borate, from a preliminary fusion) and lanthanum salts (1%) in the final solution are needed to achieve freedom from systematic effects due to extreme variation in matrix. In the absence of La, neither Li, Na, K, nor Cs totally eliminated effects of Al and other constituents on emission. Silica addition to the fusion helps achieve proper flux viscosity to aid removal of fused beads from graphite crucibles. The effect of refractory-substance formers such as aluminum with calcium can be reduced or removed by selection of a portion of the are for emission measurement. However, it was decided not to pursue this approach because of loss in analytical sensitivity and need for greater precision in optical adjustment. Analysis of standard rock samples showed generally satisfactory agreement with precision methods of analysis, and some new standard rock data are reported.

  13. Synthesis and Applications of Large Area Graphene-Based Electrode Systems

    NASA Astrophysics Data System (ADS)

    Paul, Rajat Kanti

    Graphene is a single sheet of carbon atoms with outstanding electrical and physical properties and being exploited for applications in electronics, sensors, fuel cells, photovoltaics and energy storage. However, practical designs of graphene-based electrode systems and related experimental implementations are required to realize their widespread applications in nano- to bioelectronics. In this dissertation, different graphene-based electrode systems having metallic and semiconducting properties are synthesized optimizing process conditions. Also realized is the potential of the fabricated electrode systems by applying them in practical applications such as sensor devices and fuel cells. The zero bandgap of semimetal graphene still limits its application as an effective field-effect transistor device or a chemiresistor sensor operating at room temperature. It has been shown theoretically and experimentally that graphene nanoribbons (GNRs) or nanomeshes (GNMs) can attain a bandgap that is large enough for a transistor device, and hence would show high sensitivity to various gaseous species or biomolecules. Large-area mono- and bilayer graphene films are synthesized by a simple chemical vapor deposition (CVD) technique depending on the carbon precursors such as methane, acetylene and ethanol, and the results are compared using optical microscopy (OM), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS). A simple reactive ion etching (RIE) combined with well-established nanosphere lithography is performed on the synthesized CVD-grown monolayer graphene platform to fabricate large area GNMs with specific dimension and periodicity. The fabricated GNMs chemiresistor sensor devices show excellent sensitivity towards NO2 and NH 3, significantly higher than their film counterparts. The GNM sensor devices exhibit sensitivities of about 4.32%/ppm (parts-per-million) in NO 2 and 0.71%/ppm in NH3 with estimated limit of detections of 15 ppb (parts-per billion) and 160 ppb, significantly lower than Occupational Safety and Health Administration (OSHA) permissible exposure limits of 5 ppm (NO2) and 50 ppm (NH3), respectively. The demonstrated studies on the sensing properties of graphene nanomesh would essentially lead further improvement of it's sensitivity and selectivity as a potential sensor material. Furthermore, a three-dimensional (3D) carbon electrode in the form of vertically aligned carbon nanotubes (CNTs) on a graphene floor is applied as a supporting electrode for platinum (Pt) nanoflowers electrocatalysts in methanol oxidation as well as in nonenzymatic sensing of blood glucose. Experimental results demonstrate an enhanced efficiency of the 3D graphene-carbon nanotubes hybrid film, as catalyst support, for methanol oxidation with regard to electroactive surface area, forward anodic peak current density, onset oxidation potential, diffusion efficiency and the ratio of forward to backward anodic peak current density (If/Ib). Also, the developed nonenzymatic 3D carbon hybrid sensor responded linearly to the physiological glucose concentration ranging from 1 to 7 mM (R2 = 0.978) with a sensitivity of 11.06 muA mM-1cm-2.

  14. Laser excited atomic fluorescence spectrometry as a powerful tool for analytical applications and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gornushkin, Igor B.

    1997-12-01

    Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.

  15. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat.

    PubMed

    Kheiri, A; Moosawi Jorf, S A; Malihipour, A; Saremi, H; Nikkhah, M

    2017-09-01

    The main aim of present study was to prepare chitosan (CS) and chitosan nanoparticles (CS/NPs) to evaluate their antifungal and oxidative activity. CS/NPs were prepared based on the ionic gelation of CS with tripolyphosphate (TPP) anions by using centrifugation and pH change. The obtained nanoparticles (NPs) were characterized by size and zeta potential analysis. The antifungal activity of the CS and CS/NPs were evaluated on the Fusarium graminearum, which causes Fusarium head blight (FHB) on wheat by the method of spraying on the Potato dextrose agar (PDA) medium. The Dynamic light scattering (DLS) indicated that particle diameter (z-average) was approximately 180.9±35.5-339.4±50.9 and 225.7±42.81-595.7±81.7nm for NPs prepared from CS with different molecular weights by using centrifugation and pH change methods, respectively. Different concentrations of CS and NPs were tested to know the inhibitory effect of F. graminearum. Low molecular weight (LMW) CS and its NPs had high potential of antifungal activity on suppress of fungus growth. The maximum percentage of growth reduction was 68.18%, and 77.5% by CS and its NPs at concentrations of 1000 and 5000ppm, respectively. In greenhouse trials, at 28days after inoculation (dpi), the area under the disease progress curve (AUDPC) from 7 dpi to 28 dpi of control plants treated with acetic acid aqueous solution and distilled water was almost up to 7.36 and 7.7, respectively, while plants treated with CS and NPs only had approximately 3.61 and 3.34, respectively. Results revealed that H 2 O 2 accumulations displayed a different pattern during the activation of plant defense systems, it had brownish sites on the infected palea. Since 24h post inoculation (hpi), the H 2 O 2 accumulations were shown in both CS and NPs, and the elevated H 2 O 2 accumulation appeared in 72 hpi in both treatments. CS and NPs at high concentration increased the degree of tissue and cell injury. The obtained results clearly suggest that CS and its NPs have remarkable potential for further field screening towards crop protection. Copyright © 2017. Published by Elsevier B.V.

  16. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  17. Medium-chain triglyceride as an alternative of in-feed colistin sulfate to improve growth performance and intestinal microbial environment in newly weaned pigs.

    PubMed

    Yen, Hung-Che; Lai, Wei-Kang; Lin, Chuan-Shun; Chiang, Shu-Hsing

    2015-01-01

    Five hundred and twenty-eight newly weaned pigs were given four treatments, with eight replicates per treatment. Sixteen to 18 pigs were assigned per replicate and were fed diets supplemented with 0 or 3% medium-chain triglyceride (MCT) and 0 or 40 ppm colistin sulfate (CS) in a 2 × 2 factorial arrangement for 2 weeks. The results showed that dietary supplementation with MCT improved the gain-to-feed ratio during days 3-7 and in the overall period (P < 0.05). Dietary supplementation with MCT decreased coliforms counts (C) in colon and rectum content (P < 0.05). Dietary supplementation with CS decreased C and lactic acid bacteria plus C counts (L + C) in cecum (P < 0.05), and C, L + C (P < 0.01) and ratio of L and C (P < 0.05) in colon and rectum contents. The lack of interactions between MCT and CS indicates different modes of action and additive effects between the two supplementations. In conclusion, supplementation with MCT in diet with or without CS could improve the intestinal microbial environment and the feed utilization efficiency of newly weaned pigs. © 2014 Japanese Society of Animal Science.

  18. The CRDS method application for study of the gas-phase processes in the hot CVD diamond thin film.

    NASA Astrophysics Data System (ADS)

    Buzaianumakarov, Vladimir; Hidalgo, Arturo; Morell, Gerardo; Weiner, Brad; Buzaianu, Madalina

    2006-03-01

    For detailed analysis of problem related to the hot CVD carbon-containing nano-material growing, we have to detect different intermediate species forming during the growing process as well as investigate dependences of concentrations of these species on different experimental parameters (concentrations of the CJH4, H2S stable chemical compounds and distance from the filament system to the substrate surface). In the present study, the HS and CS radicals were detected using the Cavity Ring Down Spectroscopic (CRDS) method in the hot CVD diamond thin film for the CH4(0.4 %) + H2 mixture doped by H2S (400 ppm). The absolute absorption density spectra of the HS and CS radicals were obtained as a function of different experimental parameters. This study proofs that the HS and CS radicals are an intermediate, which forms during the hot filament CVD process. The kinetics approach was developed for detailed analysis of the experimental data obtained. The kinetics scheme includes homogenous and heterogenous processes as well as processes of the chemical species transport in the CVD chamber.

  19. Development of a proton-exchange membrane electrochemical reclaimed water post-treatment system

    NASA Technical Reports Server (NTRS)

    Kaba, Lamine; Verostko, Charles E.; Hitchens, G. D.; Murphy, Oliver J.

    1991-01-01

    A single-cell electrochemical reactor that utilizes a proton exchange membrane (PEM) as a solid electrolyte is being investigated for posttreatment of reclaimed waste waters with low or negligible electrolyte content. Posttreatment is a final 'polishing' of reclaimed waste waters prior to reuse, and involves removing organic impurities at levels as high as 100 ppm to below 500 ppb total organic carbon (TOC) content to provide disinfection. The system does not utilize or produce either expendable hardware components or chemicals and has no moving parts. Test data and kinetic analysis are presented. The feasibility and application for water reclamation processes in controlled ecological environments (e.g., lunar/Mars habitats) are also presented. Test results show that the electrochemical single cell reactor provides effective posttreatment.

  20. Multimedia Exposures to Arsenic and Lead for Children Near an Inactive Mine Tailings and Smelter Site

    PubMed Central

    Loh, Miranda M.; Sugeng, Anastasia; Lothrop, Nathan; Klimecki, Walter; Cox, Melissa; Wilkinson, Sarah T.; Lu, Zhenqiang; Beamer, Paloma I.

    2016-01-01

    Children living near contaminated mining waste areas may have high exposures to metals from the environment. This study investigates whether exposure to arsenic and lead is higher in children in a community near a legacy mine and smelter site in Arizona compared to children in other parts of the United States and the relationship of that exposure to the site. Arsenic and lead were measured in residential soil, house dust, tap water, urine, and toenail samples from 70 children in 34 households up to 7 miles from the site. Soil and house dust were sieved, digested, and analyzed via ICP-MS. Tap water and urine were analyzed without digestion, while toenails were washed, digested and analyzed. Blood lead was analyzed by an independent, certified laboratory. Spearman correlation coefficients were calculated between each environmental media and urine and toenails for arsenic and lead. Geometric mean arsenic (standard deviation) concentrations for each matrix were: 22.1 (2.59) ppm and 12.4 (2.27) ppm for soil and house dust (<63 μm), 5.71 (6.55) ppb for tap water, 14.0 (2.01) μg/L for specific gravity-corrected total urinary arsenic, 0.543 (3.22) ppm for toenails. Soil and vacuumed dust lead concentrations were 16.9 (2.03) ppm and 21.6 (1.90) ppm. The majority of blood lead levels were below the limit of quantification. Arsenic and lead concentrations in soil and house dust decreased with distance from the site. Concentrations in soil, house dust, tap water, along with floor dust loading were significantly associated with toenail and urinary arsenic but not lead. Mixed models showed that soil and tap water best predicted urinary arsenic. In our study, despite being present in mine tailings at similar levels, internal lead exposure was not high, but arsenic exposure was of concern, particularly from soil and tap water. Naturally occurring sources may be an additional important contributor to exposures in certain legacy mining areas. PMID:26803211

  1. The influence of citrate and oxalate on 99TcVII, Cs, NpV and UVI sorption to a Savannah River Site soil.

    PubMed

    Montgomery, D; Barber, K; Edayilam, N; Oqujiuba, K; Young, S; Biotidara, T; Gathers, A; Danjaji, M; Tharayil, N; Martinez, N; Powell, B

    2017-06-01

    Batch sorption experiments were conducted with 0.5-50 ppb 99 Tc, 133 Cs, 237 Np and U in the presence and absence of citrate and/or oxalate in a 25 g/L Savannah River Site (SRS) soil suspension. Citrate and oxalate were the ligands of choice due to their relevancy to plant exudates, the nuclides were selected for their wide range of biogeochemical behavior, and the soil from SRS was selected as a model Department of Energy (DOE) site soil. Batch samples were continually mixed on a rotary shaker and maintained at a pH of approximately 5. Analysis via ICP-MS indicated that sorption of 237 Np increased with ligand concentration compared to baseline studies, as did sorption of 99 Tc although to a lesser extent. The increased sorption of 237 Np is proposed to be due to a combination of factors that are dependent on the ligand(s) present in the specific system including, ligand dissolution of the soil by citrate and formation of tertiary soil-oxalate-Np complexes. The increased 99 Tc sorption is attributed to the dissolution of the soil by the ligands, leading to an increase in the number of available sorption sites for 99 Tc. Uranium sorption decreased and dissolution of native uranium was also observed with increasing ligand concentration, thought to be a result of the formation of strong U-ligand complexes remaining in the aqueous phase. The majority of these effects were observed at the highest ligand concentrations of 50 mg C /L. No notable changes were observed for the 133 Cs system which is ascribed to the minimal interaction of Cs + with these organic ligands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High-precision thermal expansion measurements using small Fabry-Perot etalons

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.; Farber, Daniel L.

    2007-09-01

    Coefficient of thermal expansion (CTE) measurements using small Fabry-Perot etalons were conducted on high and low thermal expansion materials differing in CTE by a factor of nearly 400. The smallest detectable change in length was ~10 -12 m. The sample consisted of a mm-sized Fabry-Perot etalon equipped with spherical mirrors; the material-under-test served as the 2.5 mm-thick spacer between the mirrors. A heterodyne optical setup was used with one laser locked to an ~780 nm hyperfine line of Rb gas and the other locked to a resonance of the sample etalon; changes in the beat frequency between the two lasers as a function of temperature directly provided a CTE value. The measurement system was tested using the high-CTE SCHOTT optical glass N-KF9 (CTE = 9.5 ppm/K at 23 °C). Measurements conducted under reproducibility conditions using five identically-prepared N-KF9 etalons demonstrate a precision of 0.1 ppm/K; absolute values (accuracy) are within 2-sigma errors with those made using mechanical dilatometers with 100-mm long sample rods. Etalon-based CTE measurements were also made on a high-CTE (~10.5 ppm/K), proprietary glass-ceramic used for high peak-pressure electrical feedthroughs and revealed statistically significant differences among parts made under what were assumed to be identical conditions. Finally, CTE measurements were made on etalons constructed from SCHOTT's ultra-low CTE Zerodur (R) glass-ceramic (CTE about -20 ppb/K at 50 °C for the material tested herein).

  3. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.

    PubMed

    Bryce, David L; Bultz, Elijah B; Aebi, Dominic

    2008-07-23

    Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.

  4. Complete Measurement of Stable Isotopes in N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O) Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Gupta, M.

    2014-12-01

    Nitrate contamination in water is a worldwide environmental problem and source apportionment is critical to managing nitrate pollution. Fractionation caused by physical, chemical and biological processes alters the isotope ratios of nitrates (15N/14N, 18O/16O and 17O/16O) and biochemical nitrification and denitrification impart different intramolecular site preference (15N14NO vs. 14N15NO). Additionally, atmospheric nitrate is anomalously enriched in 17O compared to other nitrate sources. The anomaly (Δ17O) is conserved during fractionation processes, providing a tracer of atmospheric nitrate. All of these effects can be used to apportion nitrate in soil. Current technology for measuring nitrate isotopes is complicated and costly - it involves conversion of nitrate to nitrous oxide (N2O), purification, preconcentration and measurement by isotope ratio mass spectrometer (IRMS). Site specific measurements require a custom IRMS. There is a pressing need to make this measurement simpler and more accessible. Los Gatos Research has developed a next generation mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to quantify all stable isotope ratios of N2O (δ15N, δ15Nα, δ15Nβ, δ18O, δ17O). We present the latest performance data demonstrating the precision and accuracy of the OA-ICOS based measurement. At an N2O concentration of 322 ppb, the analyzer quantifies [N2O], δ15N, δ15Na, δ15Nb, and δ18O with a precision of ±0.05 ppb, ±0.4 ‰, ±0.45 ‰, and ±0.6 ‰, and ±0.8 ‰ respectively (1σ, 100s; 1σ, 1000s for δ18O). Measurements of gas standards demonstrate accuracy better than ±1 ‰ for isotope ratios over a wide dynamic range (200 - 100,000 ppb). The measurement of δ17O requires a higher concentration (1 - 50 ppm), easily obtainable through conversion of nitrates in water. For 10 ppm of N2O, the instrument achieves a δ17O precision of ±0.05 ‰ (1σ, 1000s). This performance is sufficient to quantify atmospheric nitrate in soil and groundwater and may be used to differentiate other sources of nitrate for which the range of Δ17O values is much smaller. By measuring δ15N, δ15Nα, δ15Nβ, δ18O and δ17O, our instrument will help researchers unravel the complicated nitrate mixing problem to determine the sources and sinks of nitrate pollution.

  5. Impact of Built-up-Litter and Commercial Antimicrobials on Salmonella and Campylobacter Contamination of Broiler Carcasses Processed at a Pilot Mobile Poultry-Processing Unit

    PubMed Central

    Li, KaWang; Lemonakis, Lacey; Glover, Brian; Moritz, Joseph; Shen, Cangliang

    2017-01-01

    The small-scale mobile poultry-processing unit (MPPU) produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147) were reared for 38 days on clean-shavings (CS, 75) or built-up-litter (BUL, 72) and processed at an MPPU. Aerobic plate counts (APCs), coliforms, Escherichia coli, and yeast/molds (Y/M) of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test (Salmonella), latex agglutination immunoassay (Campylobacter), and Gram staining (Campylobacter). Quantitative polymerase chain reaction (CadF gene) identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log10 CFU/mL) and then undipped, or dipped into peroxyacetic acid (PAA) (1,000 ppm), lactic acid (5%), lactic and citric acid blend (2.5%), sodium hypochlorite (69 ppm), or a H2O2–PAA mix (SaniDate® 5.0, 0.25%) for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar (P > 0.05) on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater (P < 0.05) Y/M population (2.2 log10 CFU/mL) than those reared on CS (1.8 log10 CFU/mL). Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella. Prevalence of Campylobacter spp., C. jejuni was lower (P < 0.05), and C. coli was similar (P > 0.05) in CS-treated ceca than BUL samples. Prevalence of Campylobacter spp., C. jejuni, and C. coli was not different (P > 0.05) on CS- and BUL-treated carcasses. All antimicrobials reduced C. jejuni by 1.2–2.0 log CFU/mL on carcasses compared with controls. Hence, raising broilers on CS and applying post-chilling antimicrobial treatment can reduce Salmonella and Campylobacter on MPPU-processed broiler carcasses. PMID:28649571

  6. Impact of Built-up-Litter and Commercial Antimicrobials on Salmonella and Campylobacter Contamination of Broiler Carcasses Processed at a Pilot Mobile Poultry-Processing Unit.

    PubMed

    Li, KaWang; Lemonakis, Lacey; Glover, Brian; Moritz, Joseph; Shen, Cangliang

    2017-01-01

    The small-scale mobile poultry-processing unit (MPPU) produced raw poultry products are of particular food safety concern due to exemption of USDA poultry products inspection act. Limited studies reported the microbial quality and safety of MPPU-processed poultry carcasses. This study evaluated the Salmonella and Campylobacter prevalence in broiler ceca and on MPPU-processed carcasses and efficacy of commercial antimicrobials against Campylobacter jejuni on broilers. In study I, straight-run Hubbard × Cobb broilers (147) were reared for 38 days on clean-shavings (CS, 75) or built-up-litter (BUL, 72) and processed at an MPPU. Aerobic plate counts (APCs), coliforms, Escherichia coli , and yeast/molds (Y/M) of carcasses were analyzed on petrifilms. Ceca and carcass samples underwent microbial analyses for Salmonella and Campylobacter spp. using the modified USDA method and confirmed by API-20e test ( Salmonella ), latex agglutination immunoassay ( Campylobacter ), and Gram staining ( Campylobacter ). Quantitative polymerase chain reaction (CadF gene) identified the prevalence of C. jejuni and Campylobacter coli in ceca and on carcasses. In study II, fresh chilled broiler carcasses were spot inoculated with C. jejuni (4.5 log 10  CFU/mL) and then undipped, or dipped into peroxyacetic acid (PAA) (1,000 ppm), lactic acid (5%), lactic and citric acid blend (2.5%), sodium hypochlorite (69 ppm), or a H 2 O 2 -PAA mix (SaniDate ® 5.0, 0.25%) for 30 s. Surviving C. jejuni was recovered onto Brucella agar. APCs, coliforms, and E. coli populations were similar ( P  > 0.05) on CS and BUL carcasses. Carcasses of broilers raised on BUL contained a greater ( P  < 0.05) Y/M population (2.2 log 10  CFU/mL) than those reared on CS (1.8 log 10  CFU/mL). Salmonella was not detected in any ceca samples, whereas 2.8% of the carcasses from BUL were present with Salmonella . Prevalence of Campylobacter spp., C. jejuni was lower ( P  < 0.05), and C. coli was similar ( P  > 0.05) in CS-treated ceca than BUL samples. Prevalence of Campylobacter spp., C. jejuni , and C. coli was not different ( P  > 0.05) on CS- and BUL-treated carcasses. All antimicrobials reduced C. jejuni by 1.2-2.0 log CFU/mL on carcasses compared with controls. Hence, raising broilers on CS and applying post-chilling antimicrobial treatment can reduce Salmonella and Campylobacter on MPPU-processed broiler carcasses.

  7. Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qi; Aguila, Briana; Earl, Lyndsey D.

    The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid-phase sorbents to provide enhanced protection. In this paper, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groupsmore » in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime-functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF-TpAb-AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g -1. Finally, these results delineate important synthetic advances toward the implementation of COFs in environmental remediation.« less

  8. Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration

    DOE PAGES

    Sun, Qi; Aguila, Briana; Earl, Lyndsey D.; ...

    2018-03-27

    The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid-phase sorbents to provide enhanced protection. In this paper, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groupsmore » in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime-functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF-TpAb-AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g -1. Finally, these results delineate important synthetic advances toward the implementation of COFs in environmental remediation.« less

  9. Determination of phenolic priority pollutants utilizing permeation sampling method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guozheng.

    1990-01-01

    A passive permeation sampling method for the determination of phenolic priority pollutants in water was developed. Phenols in an aqueous solution permeate a polymeric membrane and are collected on a solid adsorbent in a sampling device. Both solvent and thermal desorption techniques were employed to recovery phenolic pollutants collected. In the solvent desorption, phenolic compounds collected on the XAD-7 resin, and then desorbed by acetonitrile. In the thermal desorption, phenolic compounds collected on Tenax-TA were recovered thermally, Separation and quantification is achieved by a SPB-5 capillary column gas chromatography using a flame ionization detector. There are linear relationships between themore » amount of phenolic compounds collected and the products of the exposure times and concentrations over the range from 5 ppb to 20 ppm with precisions no worse than 13%. The permeation rates of the phenolic pollutants depend upon the exposure temperature, solution pH and membrane area. Samples collected can be stored for up to two weeks without loss. This method provides a simple, convenient and inexpensive way for monitoring the time-weighted-average concentration without the use of a pumping system. An automated sampler which combines the permeation and the thermal desorption techniques together was also developed for water sample obtained from grab sampling. The on-line setup provides a high degree of automation. Detection limits at 10 ppb can be achieved using this sampler.« less

  10. Toward stand-off open-path measurements of NO and NO(2) in the sub-parts per million meter range using quantum cascade lasers (QCLs) in the intra-pulse absorption mode.

    PubMed

    Reidl-Leuthner, Christoph; Lendl, Bernhard

    2013-12-01

    Two thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers operated in pulsed mode have been used for the quasi-simultaneous determination of NO and NO2 in the sub-parts per million meter (sub-ppm-m) range. Using a beam splitter, the beams of the two lasers were combined and sent to a retro-reflector. The returned light was recorded with a thermoelectrically cooled mercury cadmium telluride detector with a rise time of 4 ns. Alternate operation of the lasers with pulse lengths of 300 ns and a repetition rate of 66 kHz allowed quasi-simultaneous measurements. During each pulse the laser temperature increased, causing a thermal chirp of the laser line of up to 1.3 cm(-1). These laser chirps were sufficient to scan rotational bands of NO centered at 1902 cm(-1) and NO2 located at 1632 cm(-1). In that way an absorption spectrum could be recorded from a single laser pulse. Currently achieved limits of detection are 600 parts per billion meter (ppb-m) for NO and 260 ppb-m for NO2 using signal averaging over 1 min. This work presents the first steps toward a portable stand-off, open-path instrument that uses thermoelectrically cooled detector and lasers.

  11. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    PubMed

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  13. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  14. REVIEW ARTICLE: Industrial applications of temperature and species concentration monitoring using laser diagnostics

    NASA Astrophysics Data System (ADS)

    Deguchi, Y.; Noda, M.; Fukuda, Y.; Ichinose, Y.; Endo, Y.; Inada, M.; Abe, Y.; Iwasaki, S.

    2002-10-01

    Industrial applications of laser diagnostics have been demonstrated for the purpose of clarifying combustor chemical reaction mechanisms, as well as temperature and harmful substance monitoring in large-scale burners and commercial plant exhaust ducts, and the combustion control of commercial plants. Laser induced fluorescence (LIF), laser induced breakdown spectroscopy (LIBS), and tunable diode laser absorption spectroscopy (TDLAS) have accordingly been applied in various industrial fields. In this study, temperature and species concentration were measured inside gas turbine combustors, a diesel engine, and a large-scale industrial burner using LIF. This technique introduces a new tool with respect to practical combustors for the analysis of NO formation characteristics, turbulent flame front structure, and differences between standard and improved combustors. On-line monitoring of trace elements to the ppb level was also successfully demonstrated using LIBS. The automated LIBS unit was found to be capable of monitoring trace element concentration fluctuations at ppb levels with a 1 min detection time under actual plant conditions. In addition, real-time measurement of O2 and CO concentrations in a commercial incinerator furnace was performed using TDLAS to improve the combustion control. By using the multiple-point laser measurement results to control secondary air allocation, higher secondary combustion efficiency was achieved, and CO concentration (considered to be a substitute indicator for dioxins) was reduced from 11.9 to 8.0 ppm.

  15. VERA Core Simulator methodology for pressurized water reactor cycle depletion

    DOE PAGES

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...

    2017-01-12

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  17. Ozone exposure thresholds and foliar injury on forest plants in Switzerland.

    PubMed

    VanderHeyden, D; Skelly, J; Innes, J; Hug, C; Zhang, J; Landolt, W; Bleuler, P

    2001-01-01

    Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.

  18. Differential responses of nitrifying archaea and bacteria to methylene blue toxicity.

    PubMed

    Sipos, A J; Urakawa, H

    2016-02-01

    Methylene blue, a heterocyclic aromatic chemical compound used to treat fish diseases in the ornamental fish aquaculture industry, is believed to impair nitrification as a side effect. However, very little is known about the toxicity of methylene blue to nitrifying micro-organisms. Here, we report the susceptibility of six bacterial and one archaeal ammonia-oxidizing micro-organisms to methylene blue within the range of 10 ppb to 10 ppm. Remarkably high susceptibility was observed in the archaeal species Nitrosopumilus maritimus compared to the bacterial species. Ammonia oxidation by Nitrosopumilus maritimus was inhibited 65% by 10 ppb of methylene blue. Of the bacterial species examined, Nitrosococcus oceani was the most resistant to methylene blue toxicity. For similar inhibition of Nitrosococcus oceani (75% inhibition), one thousand times more methylene blue (10 ppm) was needed. The examination of single cell viability on Nitrosomonas marina demonstrated that methylene blue is lethal to the cells rather than reducing their single cell ammonia oxidation activity. The level of susceptibility to methylene blue was related to the cell volume, intracytoplasmic membrane arrangement and the evolutionary lineage of nitrifying micro-organisms. Our findings are relevant for effectively using methylene blue in various aquaculture settings by helping minimize its impact on nitrifiers during the treatment of fish diseases. In the future, resistant nitrifiers such as Nitrosococcus oceani may be purposely added to aquaculture systems to maintain nitrification activity during treatments with methylene blue. The susceptibility of six bacterial and one archaeal nitrifying micro-organisms to methylene blue was tested. Remarkably high susceptibility was observed in the archaeal species compared to the bacterial species. The level of resistance to methylene blue was related to the cell volume, cytomembrane system and the taxonomic position of the nitrifying micro-organisms. This may be significant in the design and management of engineered nitrification systems and the stability of the nitrification process in various ecosystems if these systems are exposed to harmful chemicals or toxins. © 2015 The Society for Applied Microbiology.

  19. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  20. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Shishmaref, Kotzebue, Selawik and Shungnak Quadrangles, northern Seward Peninsula and vicinity, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During the summer of 1976, 1336 water and 1251 sediment samples were collected for Los Alamos Scientific Laboratory (LASL) from 1356 streams and small lakes or ponds within Shishmaref, Kotzebue, Selawik, and western portion of Shungnak NTMS quadrangles in western Alaska. Both a water and sediment sample were generally obtained from each location at a nominal location density of 1/23 km/sup 2/. Total uranium was measured in waters by fluorometry and in sediments and a few waters by delayed neutron counting at LASL. Uranium concentrations in waters have a mean of 0.31 ppB and a maximum of 9.23 ppB, andmore » sediments exhibit a mean of 3.44 ppM and a maximum of 37.7 ppM. A large number of high-uranium concentrations occur in both water and sediment samples collected in the Selawik Hills. At least two locations within the Selawik Hills appear favorable for further investigation of possible uranium mineralization. A cluster of high-uranium sediments, seen in the Waring Mountains, are probably derived from a lower Cretaceous conglomerate unit which is assocated with known airborne radiometric anomalies. Apparently less favorable areas for further investigation of possible uranium mineralization are also located in the Waring Mountains and Kiana Hills. Additional samples were collected within the Shungnak quadrange to increase the sampling density used elsewhere in the area to about one location per 11 km/sup 2/ (double-density). Contoured plots of uranium concentrations for both waters and sediments were prepared for all double-density sample locations, and then for the even-numbered and odd-numbered locations separately. These plots indicate that the HSSR sampling density of 1/23 km/sup 2/ used in lowland areas of Alaska provide essentially the same definition of relative areal uranium distributions in waters and sediments as seen when the density is doubled. These plots indicate that regional distribution patterns for uranium are well defined without selective sampling of geologic units.« less

  1. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies weremore » found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 {+-} 1.57 ppb, 30.62 {+-} 14.13 ppb, 0.98 {+-} 0.49 ppm and 1.04 {+-} 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: > MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. > MT2A GG individuals should be more careful for their health against metal toxicity. > This SNP might be considered as a biomarker for risk of disease related to metals.« less

  2. Water Quality Assessment of the Los Angeles River Watershed, California, USA in Wet and Dry Weather Periods

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M. H.; Von L Coo, C.

    2015-12-01

    The purpose of this study is to identify sources of potential pollutants and characterize urban water quality along the Los Angeles River from its head to the mouth during dry and wet weather periods. Los Angeles (LA) River flows through heavily populated urbanized area in the Los Angeles downtown. The LA River is an effluent-dominated water body during the dry season. The three waste water treatment plants (WWTP) including the Tillman, Burbank, and Glendale discharge the majority of the volume flowing in the LA River during the dry and wet period. The concentration values (ppm) for anions in the dry season ranging 5.5-16,027 (Cl), 0-1.0 (F), 0-21(NO3), 0-1.6 (PO4), and 13.3-2,312 (SO4); whereas the values (ppm) for anions in the wet season ranging 3.4-5,860 (Cl), 0-0.66 (F), 0-17 (NO3), 0-0.67 (PO4), 7.9- 745 (SO4). Dry season concentrations values for trace metals were obtained with values (ppb) ranging 0.9-10 (Ni), 0.8-62 (Zn), 1-4 (As), 0-1 (Pb) and 0-3 (Se). As for wet season trace metals (ppb) ranging 0.001-0.008 (Ni), 0.000001-0.038 (Zn), 0.0016-0.016 (As), 0.00099-0.0058 (Pb), 0.000001-0.0093 (Se). Higher concentrations values during the dry period in the LA River watershed may be attributed to the three WWTPs discharge (75% of the volume of water flowing in the LA River). In water-limited areas such as the Los Angeles basin, urban runoff is a water resource that could enhance restricted water supplies and to enhance localized renewable groundwater resources, thus an assessment of this precious water resource is important for local city and regulatory organizations. In water-limited areas such as the LA basin, urban runoff is a water resource that could enhance restricted water supplies and groundwater resources, thus an assessment of this precious water resource is important for local regulatory organizations.

  3. Lab-on-a-Chip Instrumentation and Method for Detecting Trace Organic and Bioorganic Molecules in Planetary Exploration: The Enceladus Organic Analyzer (EOA)

    NASA Astrophysics Data System (ADS)

    Butterworth, A.; Stockton, A. M.; Turin, P.; Ludlam, M.; Diaz-Aguado, M.; Kim, J.; Mathies, R. A.

    2015-12-01

    Lab-on-a-chip instrumentation is providing an ever more powerful in situ approach for detecting organic molecules relevant for chemical/biochemical evolution in our solar system obviating the cost, risk and long mission duration associated with sample return. Microfabricated analysis systems are particularly feasible when directly sampling from comet comae, or ejecta from icy moons, such as targeting organic molecules in plumes from Enceladus. Furthermore, the superb ppm to ppb sensitivity of chip analyzers, like the Enceladus Organic Analyzer (EOA), coupled with the ability to examine organics with a wide variety of functional groups enhance the probability of detecting organic molecules and determining whether they have a biological origin. The EOA is based on 20 years of research and development of microfabricated capillary electrophoresis (CE) analyzers at Berkeley that provide ppb sensitivity for a wide variety of organic molecules including amino acids, carboxylic acids, amines, aldehydes, ketones and polycyclic aromatic hydrocarbons [1]. Organic molecules are labeled with a fluorescent reagent according to their functional group in a programmable microfluidic processor [2,3] and then separated in a CE system followed by laser-induced fluorescence detection to determine molecular size and concentration. The EOA will be flown through Enceladus plumes and uses a specially designed impact plate/door to capture ice-particles. After closing the door, the material in the capture chamber is dissolved, labeled and analyzed by the microfabricated CE system. Only a few thousand 2 μm diameter particles containing ppm organic concentrations will provide an EOA detectable signal. If amino acids are detected, their chirality is determined because chirality is the best indicator of a biologically produced molecule. We have developed a flight design of this instrument for planetary exploration that is compact (16x16x12 cm), has low mass (3 kg), and requires very low power. [1] Skelley et al. (2005) PNAS USA, 102, 1041-1046. [2] Kim et al. (2013) Anal. Chem., 85, 7682-7688. [3] Mora et al. (2012) Electrophoresis, 33, 2624-2638. [4] Stockton et al. (2014) Second International Workshop on Instrumentation for Planetary Missions, NASA Greenbelt MD, Nov. 4-7, 2014.

  4. New data on selected Ivory Coast tektites

    USGS Publications Warehouse

    Cuttitta, F.; Carron, M.K.; Annell, C.S.

    1972-01-01

    Fourteen Ivory Coast tektites exhibit a range of bulk indices of refraction of 1.5156 to 1.5217 ?? 0.0004 and of bulk specific gravities of 2.428 to 2.502 ??0.005. Seven of these Ivory Coast (IVC) tektites were analyzed for major and minor element content. Compared to tektites from other strewn fields, their SiO2 content is low (67.2-69.1 %), A12O3 relatively high (15.8-16.8 %), and total iron relatively high but with a more restricted range (6.3-6.8 % as FeO). Their lime content is low (0.71-1.35%) compared to Australasian tektites but their MgO CaO ratio (about 3.1) is unusually high. All other tektite groups have Na2O K2O ratios less than unity, but the Na2O K2O ratio of the IVC tektites is slightly greater than unity. Their K Rb ratios range from 200 to 256 and average 227, which is higher than those determined for Australasian tektites, but similar to some obtained for moldavites. The Li content (41-48 ppm) is about the same as that of the Australasian tektites, but the Cs and Rb are lower, being 1.9 to 2.9 and 57 to 86 ppm, respectively. The IVC tektites are high in Cr (260-375 ppm), Co (19-25 ppm) and Ni (101-167 ppm), and particularly in Pb (<10-18 ppm), Cu (13-21 ppm) and Ga (14-23 ppm). The high Cr Ni ratios of the IVC tektites (range 2-3.6) are similar to those found for australites, philippinites and thailandites, but not the javanites and indochinites. Evaluation of these and other reported data show that compositional similarities between the IVC tektites and green or black Bosumtwi Crater glasses strongly support the hypothesis of a common impact origin-i.e. the Bosumtwi Crater site. Comparison of the IVC tektite composition with those of returned lunar materials (gabbros, basalts, breccia and soils) do not support a lunar origin for the Ivory Coast tektites. ?? 1972.

  5. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainer, Melissa G.; Sebree, Joshua A.; Heidi Yoon, Y.

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated bymore » a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.« less

  7. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  8. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E-MORB from Macquarie Island [Kendrick et al., 2012]. The concentrations are not related to superficial processes. The on-axis samples display a relatively restricted range (6.9-8.6wt%) of MgO contents, suggesting no control of the crystallisation processes. The basalts were erupted between 3900-2000 m bsl, so no appreciable degassing of halogens would be expected. The strong correlation, which exists between the halogens and other incompatible elements (e.g., Rb, La), also rules out seawater assimilation. Therefore, concentrations and elemental ratios can be directly linked to melting and source features. Estimates of halogens abundances in the depleted-mantle source are 4 ppm Cl, 14 ppb Br and 0.3 ppb I. These low abundances, which are in agreement with values derived for sub-continental mantle from coated diamonds [Burgess et al., 2002], suggest that, like noble gases, the upper mantle is degassed of its halogens. Critically, the halogen elemental ratios show no significant variations along the axial ridge and off-axis ridge or between N-MORB and E-MORB: Br/Cl=0.00147±0.00014, I/Cl=0.000021±0.000005; I/Br=0.0142±0.0036. These ratios are similar to E-MORB from Macquarie Island [Kendrick et al., 2012]. This observation is thus not consistent with subduction as a source of halogen enrichment in E-MORB.

  9. Sulfide saturation history of the Stillwater Complex, Montana: chemostratigraphic variation in platinum group elements

    NASA Astrophysics Data System (ADS)

    Keays, Reid R.; Lightfoot, Peter C.; Hamlyn, Paul R.

    2012-01-01

    A platinum group element (PGE) investigation of a 5.3 km-thick stratigraphic section of the Stillwater Complex, Montana was undertaken to refine and test a geochemical technique to explore for platiniferous horizons in layered mafic/ultramafic complexes. PGE, Au, major, and trace elements were determined in 92 samples from outcrops along traverses in the Chrome Mountain and Contact Mountain areas in the western part of the Stillwater Complex where the J-M reef occurs ˜1,460 m above the floor of the intrusion. A further 29 samples from a drill hole cored in the immediate vicinity of the J-M reef were analyzed to detail compositional variations directly above and below the J-M reef. Below the J-M reef, background concentrations of Pt (10 ppb) and Pd (7 ppb) are features of peridotites with intermediate S concentrations (mostly 100-200 ppm) and rocks from the Bronzitite, Norite I, and Gabbronorite I zones (mostly <100 ppm S). A sustained increase in S abundance commences at the J-M reef and continues to increase and peaks in the center of the 600 m-thick middle banded series. Over this same interval, Pt, Pd, and Au are initially elevated and then decrease in the order Pd > Pt > Au. Within the middle and upper banded series, S abundances fluctuate considerably, but exhibit an overall upward increase. The behavior of these elements records periodic sulfide saturation during deposition of the Peridotite zone, followed by crystallization under sulfide-undersaturated conditions until saturation is achieved at the base of the J-M reef. Following formation of the reef, sulfide-saturated conditions persisted throughout the deposition of most of the remaining Lower Layered Series. This resulted in a pronounced impoverishment in PGE abundance in the remaining magma, a condition that continued throughout deposition of the remainder of a succession, which is characterized by very low Pt (1.5 ppb) and Pd (0.7 ppb) abundances. Because only unmineralized rock was selected for study in the 5.3 km-thick section, the results provide an unbiased picture of the variation in background PGE levels during crystallization of the Stillwater Complex. In contrast, the variations in the drill core samples through the reef provide a detailed record of ore formation. Plots of Pt, Pd, Pd/S, and Pt + Pd as a function of stratigraphic height in the intrusion show that the location of the J-M reef is defined by an abrupt change in these concentrations and ratios. Although this is the most abrupt change, three other anomalies in PGE abundance and ratios are apparent in the profiles and coincide with known laterally extensive sub-economic sulfide concentrations above the J-M reef. The uppermost of these is the PGE-bearing Picket Pin sulfide horizon. The relative ease with which mineralized horizons can be pinpointed in these diagrams indicates that a similar approach could be used in exploration programs in other ultramafic/mafic intrusions. Our observations exclude the possibilities of either magma mixing within the Stillwater chamber or the fluxing of a volatile-rich fluid as the mechanisms responsible for the genesis of the J-M reef. Rather, our data indicate that the J-M reef formed from a parental magma that was strongly enriched in PGE; this magma likely formed at depth below the Stillwater magma chamber by the interaction of the parental magma with S-rich meta-sedimentary rocks, followed by the re-dissolution of these sulfides in the Stillwater magma.

  10. Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia

    NASA Astrophysics Data System (ADS)

    Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.

    2015-04-01

    Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of <0.5 ppb for CH4. These surveys were undertaken during dry daytime hours and all measurements were moisture corrected. We compare the concentration of methane in the near surface atmosphere adjacent to open-cut coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval that extended for 6 km where the concentration was greater than 1.80 ppm. The median concentration in this interval was 1.90 ppm, with a peak reading of 1.97 ppm. This high reading in an urban setting is most likely due to leaks from the domestic gas distribution system. Methane leaks were detected in all country towns. Our measurements show that at the point of resource extraction the methane emission footprint of CSG is smaller than that of open-cut coal mining. However, leaking gas from urban centers must be added to the fugitive emissions of CSG to calculate the total fugitive emission footprint of CSG, which may therefore not be as low as claimed in the national greenhouse gas accounts. Our results highlight the need for additional continuous monitoring of methane emissions from all sectors, and for the full life-cycle of energy resources to be considered.

  11. Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitro.

    PubMed

    Li, Qiang; Tanaka, Yoshiharu; Miwa, Nobuhiko

    2017-01-01

    In the last decade, many studies have shown that hydrogen gas or hydrogen water can reduce the levels of reactive oxygen species in the living body. Molecular hydrogen has antioxidant and antiapoptotic effects and a preventive effect on oxidative stress-induced cell death. In the present study, we investigated solidified hydrogen-occluding-silica (H 2 -silica) that can release molecular hydrogen into cell culture medium because the use of hydrogen gas has strict handling limitations in hospital and medical facilities and laboratories, owing to its physicochemical characteristics. Human esophageal squamous cell carcinoma (KYSE-70) cells and normal human esophageal epithelial cells (HEEpiCs) were used to investigate the effects of H 2 -silica on cell viability and proliferation. Cell migration was examined with wound healing and culture-insert migration assays. The intracellular levels of reactive oxygen species were evaluated with a nitroblue tetrazolium assay. To assess the apoptotic status of the cells, the Bax/Bcl-2 ratio and cleaved caspase-3 were analyzed by western blot. The results showed that KYSE-70 cells and HEEpiCs were generally inhibited by H 2 -silica administration, and there was a significant proliferation-inhibitory effect in an H 2 -silica concentration-dependent manner compared with the control group ( P < 0.05) in KYSE-70. Apoptosis-inducing effect on KYSE-70 cells was observed in 10, 300, 600, and 1,200 ppm H 2 -silica, and only 1,200 ppm H 2 -silica caused a 2.4-fold increase in apoptosis in HEEpiCs compared with the control group as the index of Bax/Bcl-2. H 2 silica inhibited cell migration in KYSE-70 cells, and high concentrations had a cytotoxic effect on normal cells. These findings should provide insights into the mechanism of inhibition of H 2 -silica on human cancer cells in vitro .

  12. Perchlorate Clinical Pharmacology and Human Health: A Review

    PubMed Central

    Soldin, Offie Porat; Braverman, Lewis E.; Lamm, Steven H.

    2013-01-01

    Summary Potassium perchlorate has been used at various times during the last 50 years to treat hyperthyroidism. Since World War II ammonium perchlorate has been used as a propellant for rockets. In 1997, the assay sensitivity for perchlorate in water was improved from 0.4 mg/L (ppm) to 4 µg/L (ppb). As a result, public water supplies in Southern California were found to contain perchlorate ions in the range of 5 to 8 ppb, and those in Southern Nevada were found to contain 5 to 24 ppb. Research programs have been developed to assess the safety or risk from these exposures and to assist state and regulatory agencies in setting a reasonable safe level for perchlorate in drinking water. This report reviews the evidence on the human health effects of perchlorate exposure. Perchlorate is a competitive inhibitor of iodine uptake. All of its pharmacologic effects at current therapeutic levels or lower are associated with inhibition of the sodium-iodide symporter (NIS) on the thyroid follicular cell membrane. A review of the medical and occupational studies has been undertaken to identify perchlorate exposure levels at which thyroid hormone levels may be reduced or thyrotropin levels increased. This exposure level may begin in the 35 to 100 mg/d range. Volunteer studies have been designed to determine the exposure levels at which perchlorate begins to affect iodine uptake in humans. Such effects may begin at levels of approximately 1 mg/d. Environmental studies have assessed the thyroidal health of newborns and adults at current environmental exposures to perchlorate and have concluded that the present levels appear to be safe. Whereas additional studies are underway both in laboratory animals and in the field, it appears that a safe level can be established for perchlorate in water and that regulatory agencies and others are now trying to determine that level. PMID:11477312

  13. Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.

    PubMed

    Net, Sopheak; Gligorovski, Sasho; Pietri, Sylvia; Wortham, Henri

    2010-07-21

    Light-induced heterogeneous reactions between gas-phase ozone and veratraldehyde adsorbed on silica particles were performed. At an ozone mixing ratio of 250 ppb, the loss of veratraldehyde largely increased from 1.81 x 10(-6) s(-1) in the dark to 2.54 x 10(-5) s(-1) upon exposure to simulated sunlight (lambda > 300 nm). The observed rates of degradation exhibited linear dependence with the ozone in the dark ozonolysis experiments which change in the non-linear Langmuir-Hinshelwood dependence in the experiments with simultaneous ozone and light exposure of the coated particles. When the coated silica particles were exposed only to simulated sunlight in absence of ozone the loss of veratraldehyde was about three times higher i.e. 5.97 x 10(-6) s(-1) in comparison to the ozonolysis experiment under dark conditions at 250 ppb ozone mixing ratio, 1.81 x 10(-6) s(-1).These results clearly show that the most important loss of veratraldehyde occurs under simultaneous ozone and light exposure of the coated silica particles. The main identified product in the heterogeneous reactions between gaseous ozone and adsorbed veratraldehyde under dark conditions and in presence of light was veratric acid.Carbon yields of veratric acid were calculated and the obtained results indicated that at low ozone mixing ratio (250 ppb) the carbon yield obtained under dark conditions is 70% whereas the carbon yield obtained in the experiments with simultaneous ozone and light exposure of the coated particles is 40%. In both cases the carbon yield of veratric acid exponentially decayed leading to the plateau ( approximately 35% of carbon yield) at an ozone mixing ratio of 6 ppm. Two reaction products i.e. 3-hydroxy-4-methoxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid were identified (confirmed with the standards) only in the experiments performed under simultaneous ozonolysis and light irradiation of the particles.

  14. Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater

    USGS Publications Warehouse

    Walker, M.; Seiler, R.L.; Meinert, M.

    2008-01-01

    It is well known to the public in Lahontan Valley in rural Nevada, USA, that local aquifers produce water with varied, but sometimes very high concentrations of arsenic (> 4??ppm). As a result, many residents of the area have installed household reverse-osmosis (RO) systems to produce drinking water. We examined performance of RO systems and factors associated with arsenic removal efficiency in 59 households in Lahontan Valley. The sampling results indicated that RO systems removed an average of 80.2% of arsenic from well water. In 18 of the 59 households, arsenic concentrations exceeded 10??ppb in treated water, with a maximum in treated water of 180??ppb. In 3 of the 59 households, RO treatment had little effect on specific conductance, indicating that the RO system was not working properly. Two main factors lead to arsenic levels in treated water exceeding drinking-water standards in the study area. First, arsenic concentrations were high enough in some Lahontan Valley wells that arsenic levels exceeded 10??ppb even though RO treatment removed more than 95% of the arsenic. Second, trivalent As+ 3 was the dominant arsenic species in approximately 15% of the wells, which significantly reduced treatment efficiency. Measurements of specific conductance indicated that efficiency in reducing arsenic levels did not always correlate with reductions in total dissolved solids. As a consequence, improvements in taste of the water or simple measurements of specific conductance made by technicians to test RO systems can mislead the public into assuming the water meets safety standards. Actual measurements of treated water are necessary to assure that household RO systems are reducing arsenic concentrations to safe levels, particularly in areas where groundwater has high arsenic concentrations or where As+ 3 is the dominant species. ?? 2007 Elsevier B.V. All rights reserved.

  15. Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode.

    PubMed

    Song, Yang; Swain, Greg M

    2007-03-15

    We demonstrate that a Au-coated, boron-doped, diamond thin-film electrode provides a sensitive, reproducible, and stable response for total inorganic arsenic (As(III) and As(V)) using differential pulse anodic stripping voltammetry (DPASV). As is preconcentrated with Au on the diamond surface during the deposition step and detected oxidatively during the stripping step. Au deposition was uniform over the electrode surface with a nominal particle size of 23 +/- 5 nm and a particle density of 109 cm-2. The electrode and method were used to measure the As(III) concentration in standard and river water samples. The detection figures of merit were compared with those obtained using conventional Au-coated glassy carbon and Au foil electrodes. The method was also used to determine the As(V) concentration in standard solutions after first being chemically reduced to As(III) with Na2SO3, followed by the normal DPASV determination of As(III). Sharp and symmetric stripping peaks were generally observed for the Au-coated diamond electrode. LODs were 0.005 ppb (S/N = 3) for As(III) and 0.08 ppb (S/N = 3) for As(V) in standard solutions. An As(III) concentration of 0.6 ppb was found in local river water. The relative standard deviation of the As stripping peak current for river water was 1.5% for 10 consecutive measurements and was less than 9.1% over a 10-h period. Excellent electrode response stability was observed even in the presence of up to 5 ppm of added humic acid. In summary, the Au-coated diamond electrode exhibited better performance for total inorganic As analysis than did Au-coated glassy carbon or Au foil electrodes. Clearly, the substrate on which the Au is supported influences the detection figures of merit.

  16. Preliminary Public Health, Environmental Risk, and Data Requirements Assessment for the Herbicide Orange Storage Site at Johnston Island

    DTIC Science & Technology

    1991-10-01

    an average concentration of 0.8 ppb. 2,4-D in surface soil ranges from 2.5 ppb to 281,330 ppb with an average of 49,986 ppb. 2,4,5-T in surface soil...ranges from 53 ppb to 237,155 ppb, with an average of 48,914 ppb. Approximately 25% of the site was sampled for subsurface TCDD in the 3-7 inch layer of...subsurface soil. Values ranged from 0.02 ppb to 207 ppb, with an average reading of 15 ppb. Approximately 2% of the site was sampled for subsurface

  17. PPB | What is PPB?

    Cancer.gov

    Pleuropulmonary blastoma (PPB) is a rare tumor of the lung that affects young children. PPB is caused by mutations in a gene known as DICER1. Not everyone with PPB has a change in DICER1. The PPB DICER1 Syndrome Study ‹an observational clinical research study is enrolling children with PPB and their families.

  18. Projections of atmospheric nitrous oxide under scenarios of improved agriculture and industrial efficiencies, diet modification, and representative concentration pathways (RCPs)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2011-12-01

    Atmospheric concentrations of nitrous oxide (N2O), now at about 325ppb, have been increasing since the Industrial Revolution, as livestock herds increased globally and as use of synthetic-N fertilizers increased after WWII. The agricultural sector produces 70-80% of anthropogenic N2O. Significantly reducing those emissions while also improving the diets of the growing global human population will be very challenging. Increases in atmospheric N2O since 1860 are consistent with emissions factors of 2.5% of annual fertilizer-N usage and 2.0% of annual manure-N production being converted to N2O. These factors include both direct and indirect emissions attributable to these sources. Here I present projections of N2O emissions for a variety of scenarios including: (1) FAO population/diet scenarios with no changes in emission factors; (2) per-capita protein consumption in the developed world declines to 1980 levels by 2030 and only half of that is obtained from animal products, thus cutting global manure production by about 20%; (3) improvements in N-use efficiency and manure management reduce the emission factors by 50% by 2050; (4) same as 3 but industrial and transportation emissions are similarly reduced by 50% by 2050; and (5) all mitigations together. These projections are then compared to the four representative concentration pathways (RCPs) developed for the IPCC-AR5. With no further mitigation, the projections are consistent with RCP8.5, with atmospheric N2O at 368 ppb in 2050. RCP8.5 is a reasonable representation of N2O concentrations with growing agricultural production to feed a growing and better-nourished population, without improvements in agricultural efficiencies or changes in developed world diets. Major reductions in per-capita meat consumption in the developed world reduce projected 2050 N2O to 256 ppb, which is in line with RCP6.0. Cutting emission factors in half but without diet change would also lower projected 2050 N2O to 252ppb. Adding 50% improvements in other sectors reduces the 2050 N2O to 350ppm, which is in line with RCP4.5. Combining these improved efficiencies with reduced meat consumption results in leveling off of atmospheric N2O at 341 ppb in 2050, which achieves the most optimistic scenario of RCP3PD. All of these scenarios involve rather optimistic assumptions. Only the combination of technological and management improvements that increase N-use efficiencies by crops and decrease losses from manure management and significant reduction in meat consumption in the developed world can achieve stabilization of atmospheric N2O by 2050.

  19. Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Çalık, Ayten

    2016-04-01

    Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in some water sources is believed to be closely associated with the alteration of feldspar minerals in the andesite and basalts of the Middle Eocene Sahinli Formation. Various studies related to topic show that consumption of these water containing high aluminum, iron, manganese, nickel and lead for drinking purposes cause serious health problems (Alzheimer's, Parkinson's, physical and mental development disorders in children, various cancers, stomach - intestinal disorders and skin diseases). This situation limits the usable groundwater potential and causes potable water scarcity in the region. Consequently, while using of these groundwater resources in the region, taking several precautions are necessary and doing new water resource explorations are recommended. This study is supported by The Turkish Scientific and Technical Research Institute (Project number: 113Y577). Keywords: Geogenic groundwater contamination, Water-Rock Interaction, Canakkale

  20. Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Rosenblum, James; Linden, Karl; Ryan, Joseph N

    2017-02-05

    The purpose of the study was to separate and identify the unknown surfactants present in flowback and produced water from oil and gas wells in the Denver-Julesburg Basin (Niobrara Formation) in Weld County, Colorado, USA. Weld County has been drilled extensively during the last five years for oil and gas between 7000-8000 feet below land-surface. Polypropylene glycols (PPGs) and polyethylene glycols carboxylates (PEG-Cs) were found for the first time in these flowback and produced water samples. These ethoxylated surfactants may be used as friction reducers, clay stabilizers, and surfactants. Ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF-MS) was used to separate and identify the different classes of PPGs, PEG-Cs, and their isomers. The Kendrick mass scale was applied along with mass spectrometry/mass spectrometry (MS-MS) with accurate mass for rapid and unequivocal identification. The PPGs and their isomers occur at the ppm concentration range and may be useful as "fingerprints" of hydraulic-fracturing. Comparing these detections to the compounds used in the fracturing process from FracFocus 3.0 (https://fracfocus.org), it appears that both PPGs and polyethylene glycols (PEGs) are commonly named as additives, but the PEG-Cs have not been reported. The PEG-Cs may be trace impurities or degradation products of PEGs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansbrough, J.R.

    The source and nature of air pollutants are reviewed in relation to tree growth with emphasis on SO/sub 2/ and fluorides. Damage from SO/sub 2/ can result to conifer foliage from continued fumigation at concentrations exceeding 0.2 ppm. Hydrogen fluoride is toxic to some plants in concentrations as low as 0.1 ppb. The kind of damage depends mainly on the nature of the pollutant, the concentration, the atmospheric conditions, and the duration of fumigations. The contribution of trees in combating air polution involves the recognition and application of genetic variation between tree species in resistance to certain pollutants, as wellmore » as genetic variations of clonal lines of trees within a species. More information is needed on the entire air quality problem in order that research and control measures can meet the need of future generations.« less

  2. A Review of Hydrazine Sensors: The State of the Art

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.

    2004-01-01

    Several types of sensors have been developed over the past few years that quantify the vapor concentrations of the hydrazines. These sensor s are able to detect concentrations as low as 10 parts per billion (ppb) up to several parts per million (ppm). The scope of this review wi ll be focused on those sensors that are most current in the marketpla ce as either leak detectors or personnel monitors. Some technical information on the theory of operations of each hydrazine detector will a lso be included. The review will highlight current operations that utilize hydrazine sensors including the Kennedy Space Center (KSC), the United States Air Force (USAF) at Cape Canaveral Air Station (CCAS), USAF F-16 facilities. The orientation of the review will be towards giving users usable practical information on hydrazine sensors.

  3. On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.; hide

    2011-01-01

    We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.

  4. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Moreno, R.; Moullet, A.; Lellouch, E.; Fouchet, T.

    2015-08-01

    Millimeter and submillimeter heterodyne spectroscopy offers the possibility of probing the mesosphere of Venus and monitoring minor species and winds. ALMA presents a unique opportunity to map mesospheric species of Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11″ and the illumination factor was about 90%. Maps of CO, SO, SO2 and HDO have been built from transitions recorded in the 335-347 GHz frequency range. A mean mesospheric thermal profile has been inferred from the analysis of the CO transition at the disk center, to be used in support of minor species retrieval. Maps of SO and SO2 abundance show significant local variations over the disk and contrast variations by as much as a factor 4. In the case of SO2, the spatial distribution appears more "patchy", i.e. shows short-scale structures apparently disconnected from day-side and latitudinal variations. For both molecules, significant changes occur over a timescale of one day. From the disk averaged spectrum of SO recorded on November 14 at 346.528 GHz, we find that the best fit is obtained with a cutoff in the SO vertical distribution at 88±2 km and a uniform mixing ratio of 8.0±2.0 ppb above this level. The SO2 map of November 14, derived from the weaker transition at 346.652 GHz, shows a clear maximum in the morning side at low latitudes, which is less visible in the map of November 15. We find that the best fit for SO2 is obtained for a cutoff in the vertical distribution at 88±3 km and a uniform mixing ratio of 12.0±3.5 ppb above this level. The HDO maps retrieved from the 335.395 GHz show some enhancement in the northern hemisphere, but less contrasted variations than for the sulfur species maps, with little change between November 14 and 15. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is best fitted with a uniform H2O mixing ratio of 2.5±0.6 ppm (corresponding to a HDO mixing ratio of 0.165±0.040 ppm). We note that our spectrum is also compatible with a H2O mixing ratio of 1.5 ppm in the 80-90 km altitude range, and a mixing ratio of 3 ppm outside this range, as suggested by the photochemical model of Zhang et al. (2012, Icarus, vol. 217, pp. 714-739). Our results are in good general agreement with previous single dish submillimeter observations of Sandor and Clancy (2005, Icarus, vol. 177, pp. 129-143), Gurwell et al. (2007, Icarus, vol. 188, p. 288), and Sandor et al. (2010, Icarus, vol. 208, pp. 49-60; 2012, Icarus, vol. 217, pp. 839-844) and with SPICAV/Venus Express results of Fedorova et al. (2008, J. Geophys. Res., vol. 113, p. E00B25) and Belyaev et al. (2012).

  5. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    NASA Astrophysics Data System (ADS)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of cerium anomaly is more close to the removal efficiency of NH4 rather than dissolve oxygen. Accordingly, cerium anomaly could become a better indicator of removal efficiency of constructed wetland.

  6. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  7. Observation of regional air pollutant transport between the megacity Beijing and the North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Yingruo; Ye, Chunxiang; Liu, Jun; Zhu, Yi; Wang, Junxia; Tan, Ziqiang; Lin, Weili; Zeng, Limin; Zhu, Tong

    2016-11-01

    Megacities have strong interactions with the surrounding regions through transport of air pollutants. It has been frequently addressed that the air quality of Beijing is influenced by the influx of air pollutants from the North China Plain (NCP). Estimations of air pollutant cross-boundary transport between Beijing and the NCP are important for air quality management. However, evaluation of cross-boundary transport using long-term observations is very limited. Using the observational results of the gaseous pollutants SO2, NO, NO2, O3, and CO from August 2006 to October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing and the NCP, together with meteorological parameters, we explored a method for evaluating the transport flux intensities at Yufa, as part of the "Campaign of Air Quality Research in Beijing and Surrounding Region 2006-2008" (CAREBeijing 2006-2008). The hourly mean ± SD (median) concentration of SO2, NO, NO2, NOx, O3, Ox, and CO was 15 ± 16 (9) ppb, 12 ± 25 (3) ppb, 24 ± 19 (20) ppb, 36 ± 39 (23) ppb, 28 ± 27 (21) ppb, 52 ± 24 (45) ppb, and 1.6 ± 1.4 (1.2) ppm during the observation period, respectively. The bivariate polar plots showed the dependence of pollutant concentrations on both wind speed and wind direction, and thus inferred their dominant transport directions. Surface flux intensity calculations further demonstrated the regional transport influence of Beijing and the NCP on Yufa. The net surface transport flux intensity (mean ± SD) of SO2, NO, NO2, NOx, O3, Ox, and CO was 6.2 ± 89.5, -4.3 ± 29.5, -0.6 ± 72.3, -4.9 ± 93.0, 14.7 ± 187.8, 14.8 ± 234.9, and 70 ± 2830 µg s-1 m-2 during the observation period, respectively. For SO2, CO, O3, and Ox the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa in all seasons except winter, with the strongest net fluxes largely in summer, which were about 4-8 times those of other seasons. The surface transport flux intensity of NOx from Beijing to Yufa was stronger than that from the NCP to Yufa except in summer, with the strongest net flux in winter, which was about 1.3-8 times that of other seasons. The flux intensities were then assigned to the corresponding trajectories in the potential source contribution function analysis (PSCF), which confirmed the results of flux intensity calculations. Our study also suggested that various factors, such as the wind field, emission inventory, and photochemical reactions, could influence transport of air pollutants. The decrease of surface flux intensity during the Olympic Games implied the role of both local emission reduction and regional cooperation in successful air quality management. Three dimensional observations are needed for further comprehensive discussion of the regional transport between Beijing and the NCP.

  8. Application of 1-methylcyclopropene on mango fruit (Cv. Kesar): potential for shelf life enhancement and retention of quality.

    PubMed

    Sakhale, B K; Gaikwad, S S; Chavan, R F

    2018-02-01

    The present investigation was carried out to study the effect of gaseous application of 1-methylcyclopropene (1-MCP) on quality and shelf life of mango fruits of Cv. Kesar. The freshly harvested matured mango fruits were washed, cleaned and treated with fungicide at 500 ppm concentration for 10 min. The fruits were then subjected to 1-MCP treatment at different concentrations (500, 1000, 1500, 2000 ppb) and exposed for 18 and 24 h at 20 °C temperature in an air tight chamber along with control sample. The results indicated that the ripening in the early stages of mango was delayed by 1-MCP and shelf life of the fruits was increased with increase in the concentration of 1-MCP, also the physico-chemical changes such as percent physiological loss in weight of fruit, total soluble solids and colour was slowly increased and ascorbic acid content was effectively reduced. 1-MCP treatment of 2000 ppb for 24 h exposure time gave the best results for percent physiological loss in weight of fruit from 6.1 to 13% and ascorbic acid content from 80.28 to 22.34 mg/100 g, total soluble solids increased from 7.3 to 16.23 °Brix and the colour was improved from 50.9 to 68.6 h with shelf life of 20 days.

  9. Short-term air pollution exposure aggravates Parkinson’s disease in a population-based cohort

    PubMed Central

    Lee, Hyewon; Myung, Woojae; Kim, Doh Kwan; Kim, Satbyul Estella; Kim, Clara Tammy; Kim, Ho

    2017-01-01

    Increasing experimental evidence has suggested air pollution as new risk factor for neurological disease. Although long-term exposure is reportedly related to neurological disease, information on association with short-term exposure is scarce. We examined the association of short-term exposure to particles <2.5 μm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) with PD aggravation in Seoul from the National Health Insurance Service–National Sample Cohort, Korea during 2002–2013. PD aggravation cases were defined as emergency hospital admissions for primarily diagnosed PD and analyzed with a case-crossover analysis, designed for rare acute outcomes. Pollutants concentrations on case and control days were compared and effect modifications were explored. A unit increase in 8-day moving average of concentrations was significantly associated with PD aggravation. The association was consistent for PM2.5 (odds ratio [95% confidence interval]: 1.61 [1.14–2.29] per 10 μg/m3), NO2 (2.35 [1.39–3.97] per 10 ppb), SO2 (1.54 [1.11–2.14] per 1 ppb), and CO (1.46 [1.05–2.04] per 0.1 ppm). The associations were stronger in women, patients aged 65–74 years, and cold season, but not significant. In conclusion, short-term air pollution exposure increased risk of PD aggravation, and may cause neurological disease progression in humans. PMID:28300224

  10. K 2x Sn 4-x S 8-x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs + , Sr 2+ and UO 2 2+ ions

    DOE PAGES

    Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; ...

    2015-10-27

    The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. We report the synthesis and crystal structure of K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs +, Sr 2+ and UO 2 2+ ion exchange properties in varying conditions. Furthermore, the compound adoptsmore » a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P2 1/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs +, Sr 2+ and UO 2 2+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (K d) for KTS-3 are high for Cs + (5.5 × 10 4), Sr 2+ (3.9 × 10 5) and UO 2 2+ (2.7 × 10 4) at neutral pH (7.4, 6.9, 5.7 ppm Cs +, Sr 2+ and UO 2 2+, respectively; V/m ~ 1000 mL g -1). KTS-3 exhibits impressive Cs +, Sr 2+ and UO 2 2+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste.« less

  11. The Stypsi-Megala Therma porphyry-epithermal mineralization, Lesvos Island, Greece: new mineralogical and geochemical data

    NASA Astrophysics Data System (ADS)

    Periferakis, Argyrios; Voudouris, Panagiotis; Melfos, Vasilios; Mavrogonatos, Constantinos; Alfieris, Dimitrios

    2017-04-01

    Lesvos Island is located at the NE part of the Aegean Sea and mostly comprises post-collisional Miocene volcanic rocks of shoshonitic to calc-alkaline geochemical affinities. In the northern part of the Island, the Stypsi Cu-Mo±Au porphyry prospect, part of the Stypsi caldera, is hosted within hydrothermally altered intrusives and volcanics [1]. Porphyry-style mineralization is developed in a microgranite porphyry that has intruded basaltic trachyandesitic lavas. Propylitic alteration occurs distal to the mineralization, whereas sodic-calcic alteration related to quartz-actinolite veinlets, and a phyllic overprint associated with a dense stockwork of banded black quartz±carbonate veinlets, characterizes the core of the system. Alunite-kaolinite advanced argillic alteration occurs at higher topographic levels and represents a barren lithocap to the porphyry mineralization. Intermediate-sulfidation (IS) milky quartz-carbonate veins overprint the porphyry mineralization along a NNE-trending fault that extends further northwards to Megala Therma, where it hosts IS base metal-rich Ag-Au mineralization [2]. New mineralogical data from the Megala Therma deposit suggest Ag-famatinite, Te-polybasite and Ag-tetrahedrite as the main carriers of Ag in the mineralization. Porphyry-style ores at Stypsi consist of magnetite postdated by pyrite and then by chalcopyrite, molybdenite, sphalerite, galena and bismuthinite within the black quartz stockworks or disseminated in the wallrock [1]. The dark coloration of quartz in the veinlets is due to abundant vapor-rich fluid inclusions. Quartz is granular and fine-grained and locally elongated perpendicular to the vein walls. Botryoidal textures are continuous through quartz grains, suggesting quartz recrystallization from a silica gel, a feature already described by [3] from banded quartz veinlets in porphyry Au deposits at Maricunga, Chile. Bulk ore analyses from porphyry-style mineralization at Stypsi displayed similar geochemical anomalies to those previously reported by [1] but also provide additional information in a series of elements: Cu (up to 843 ppm), Mo (up to 76 ppm), Au (up to 120 ppb), Pb (up to 339ppm), Zn (up to 815ppm), Se (up to 10ppm), Te (up to 4 ppm), Bi (up to 4 ppm) and Sn (up to 23 ppm). The Lesvos Island may be interpreted as the westward extension of the Eocene-Miocene Biga peninsula Cu-Au porphyry belt, with potential for future discoveries of Cu-Mo±Au deposits in the Aegean area. [1] Voudouris P, Alfieris D (2005) New porphyry-Cu±Mo occurrences in northeastern Aegean/Greece: Ore mineralogy and transition to epithermal environment. In: Mao J, Bierlein FP (eds) Mineral deposit research: Meeting the global challenge. Springer Verlag, 473-476; [2] Kontis E, Kelepertsis AE, Skounakis S (1994) Geochemistry and alteration facies associated with epithermal precious metal mineralization in an active geothermal system, northern Lesvos, Greece. Min Deposita, 29:430-433; [3] Muntean JL, Einaudi MT (2000) Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile. Econ. Geology, 95, 1445-1472.

  12. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone

    2017-04-01

    The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is <0.001ppm (<1ppb); in volcanic plumes it reaches values between 0.1 and 0.5 ppm. WHO defines the concentration and relative effects on human health. We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from geothermal plants but also its potential for reliable prediction of H2S pollution in case of unexpected events, like the blowout of a geothermal well or the malfunctioning of a geothermal plant resulting in an anomalous and not-controlled emission of harmful gas in the atmosphere.

  13. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  14. Humidity compensation of bad-smell sensing system using a detector tube and a built-in camera

    NASA Astrophysics Data System (ADS)

    Hirano, Hiroyuki; Nakamoto, Takamichi

    2011-09-01

    We developed a low-cost sensing system robust against humidity change for detecting and estimating concentration of bad smell, such as hydrogen sulfide and ammonia. In the previous study, we developed automated measurement system for a gas detector tube using a built-in camera instead of the conventional manual inspection of the gas detector tube. Concentration detectable by the developed system ranges from a few tens of ppb to a few tens of ppm. However, we previously found that the estimated concentration depends not only on actual concentration, but on humidity. Here, we established the method to correct the influence of humidity by creating regression function with its inputs of discoloration rate and humidity. We studied 2 methods (Backpropagation, Radial basis function network) to get regression function and evaluated them. Consequently, the system successfully estimated the concentration on a practical level even when humidity changes.

  15. Application of enhanced electronegative multimodal chromatography as the primary capture step for immunoglobulin G purification.

    PubMed

    Wang, Yanli; Chen, Quan; Xian, Mo; Nian, Rui; Xu, Fei

    2018-06-01

    In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.

  16. A graphene oxide/amidoxime hydrogel for enhanced uranium capture

    PubMed Central

    Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun

    2016-01-01

    The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649

  17. Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. Exposure to elevated CO2 and/or elevated O3 in an urban area.

    PubMed

    Xu, Sheng; Chen, Wei; Huang, Yanqing; He, Xingyuan

    2012-03-01

    Responses of growth, photosynthesis and emission of volatile organic compounds of Pinus tabulaeformis exposed to elevated CO(2) (700 ppm) and O(3) (80 ppb) were studied in open top chambers. Elevated CO(2) increased growth, but it did not significantly (p > 0.05) affect net photosynthetic rate, stomatal conductance, chlorophyll content, the maximum quantum yield of photosystem II, or the effective quantum yield of photosystem II electron transport after 90 d of gas exposure. Elevated O(3) decreased growth (by 42.2% in needle weight and 25.8% in plant height), net photosynthetic rate and stomatal conductance after 90 d of exposure, but its negative effects were alleviated by elevated CO(2). Elevated O(3) significantly (p < 0.05) increased the emission rate of volatile organic compounds, which may be a helpful response to protect photosynthetic apparatus against O(3) damage.

  18. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  19. The solubility of gold in silicate melts: First results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Palme, H.; Spettel, B.

    1993-01-01

    The effects of oxygen fugacity and temperature on the solubility of Au in silicate melts were determined. Pd-Au alloys were equilibrated with silicate of anorthite-diopside eutectic composition at different T-fO2 conditions. The behavior of Au was found to be similar to that of Pd reported recently. Au solubilities for alloys with 30 to 40 at. percent Au decrease at 1400 C from 12 ppm in air to 160 ppb at a log fO2 = -8.7. The slope of the log(Me-solubility) vs. log(fO2) curve is close to 1/4 for Au and the simultaneously determined Pd suggesting a formal valence of Au and Pd of 1+. Near the IW buffer Pd and Au solubilities become even less dependent on fO2 perhaps reflecting the presence of some metallic Au and Pd.

  20. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    NASA Astrophysics Data System (ADS)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  1. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less

  2. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor.

    PubMed

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-27

    Few-layer MoS 2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS 2 /Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS 2 /SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS 2 -based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ∼50% RH), with good repeatability and selectivity of the MoS 2 /SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS 2 /SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  3. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  4. uleSIMS characterization of silver reference surfaces

    NASA Astrophysics Data System (ADS)

    Palitsin, V. V.; Dowsett, M. G.; Mata, B. Guzmán de la; Oloff, I. W.; Gibbons, R.

    2006-07-01

    Ultra low energy SIMS (uleSIMS) is a high sensitivity analytical technique that is normally used for ultra shallow profiling at a depth resolution of up to1 nm. This work describes the use of uleSIMS as both a spectroscopic and depth-profiling tool for the characterization of the early stages of corrosion formed on reference surfaces of silver. These samples are being developed to help with the characterization of tarnished surfaces in a cultural heritage context, and uleSIMS enables the tarnishing to be studied from its very earliest stages due to its high sensitivity (ppm-ppb) and surface specificity. We show that, uleSIMS can be used effectively to study the surface chemistry and aid the development of reference surfaces themselves. In particular, handling contaminants, surface dust, and residues from polishing are relatively easy to identify allowing them to be separated from the parts of the mass spectrum specific to the early stages of corrosion.

  5. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  6. In vitro study of DNA Adduct 8-OHdG Formation by using Bisphenol A in Calf Thymus DNA and 2’-Deoxyguanosine

    NASA Astrophysics Data System (ADS)

    Budiawan; Cahaya Dani, Intan; Bakri, Ridla; Handayani, Sri; Ratna Dewi, Evi

    2018-01-01

    The in vitro study of DNA Adduct 8-OHdG Formation due to BisphenolA (BPA) as xenobiotics has been conducted by using calf thymus DNA and 2’deoxyguanosine. The method of study was conducted by incubating calf thymus DNA and 2’dG with compounds trigger to radicals in the variation of pH (7.4 and 8.4), temperature (37°C and 60°C), and BPA concentrations (2 ppm and 10 ppm). To represent the work of CYP 450 enzyme in metabolic process of xenobiotics in the body and the effect of metal presence to the formation of radicals that can lead to 8-OHdG formation, we used iron(II) solution and also fenton reagent (Fe(II) and H2O2). The DNA used has 1.8 purity ratio (checked at λ260/λ280 by using Spectrophotometry UV-Vis). The results by using HPLC method showed that BPA could interact with DNA and DNA base (represent as calf thymus and 2’dG) and potentially induced 8-OHdG formation. The presence of iron(II) metal and Fenton reagent also induced the higher 8-OHdG formation. The higher of pH, temperature and concentrations also lead to 8-OHdG formation (ranger between 4 - 70 ppb).

  7. Preliminary results of an aircraft system based on near-IR diode lasers for continuous measurements of the concentration of methane, carbon dioxide, water and its isotopes

    NASA Astrophysics Data System (ADS)

    Nadezhdinsky, A. I.; Ponurovsky, Ya. Ya.; Shapovalov, Y. P.; Popov, I. P.; Stavrovsky, D. B.; Khattatov, V. U.; Galaktionov, V. V.; Kuzmichev, A. S.

    2012-11-01

    The Federal Agency for Hydrometeorology of the Russian Federation created the flying laboratory on board the passenger airplane Yak-42D for geophysical monitoring of the environment, including aircraft measurements of vertical concentrations of greenhouse gases in the troposphere. Within the limits of this project, General Physics Institute of the Russian Academy of Science developed airborne tunable diode laser spectrometer (TDLS) on the basis of diode lasers of a near-IR range for measurement of the altitude profiles of CO2, CH4, H2O and its isotopes. TDLS complex was integrated aboard in standard 19-in. rack. Air samples, taken over an aircraft on the pipeline, were injected into the optical cell. Using the system of inflow and heating, the air was set laminar with a flowrate of 0.2 l/s at a reduced pressure of 100 mbar for detecting narrow absorption lines of water vapor isotopes. For registration of the absorption spectra and for the measurement of greenhouse gas concentrations in online mode, modulation-correlation technique was used. Diode laser spectrometer output data were transferred to the airborne central computer. Sensitivity of TDLS measurements was 20-30 ppm for water, 3-4 ppm for CO2 and 20-25 ppb for CH4. Time of one-unit measurement is about 30 ms.

  8. Nominally hydrous magmatism on the Moon

    PubMed Central

    McCubbin, Francis M.; Steele, Andrew; Hauri, Erik H.; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J.

    2010-01-01

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca5(PO4)3(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H2O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher. PMID:20547878

  9. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions.

    PubMed

    Dai, Yunqian; Formo, Eric; Li, Haoxuan; Xue, Jiajia; Xia, Younan

    2016-10-20

    Precious metals are widely used as catalysts in industry. It is of critical importance to keep the precious metal ions leached from catalysts at a level below one part per million (ppm) in the final products and to recycle the expensive precious metals. Here we demonstrate a simple and effective method for scavenging precious metal ions from an aqueous solution and thereby reduce their concentrations down to the parts per billion (ppb) level. The key component is a filtration membrane comprised of titania (TiO 2 ) nanofibers whose surface has been functionalized with a silane bearing amino or thiol group. When operated under continuous flow at a rate of 1 mL min -1 and at room temperature, up to 99.95 % of the Pd 2+ ions could be removed from a stock solution with an initial concentration of 100 ppm. This work offers a viable strategy not only for the removal of precious metal ions but also for recovering and further recycling them for use as catalysts. For example, the captured Pd 2+ ions could be converted to nanoparticles and used as catalysts for organic reactions such as Suzuki coupling in a continuous flow reactor. This system can be potentially applied to pharmaceutical industry and waste stream treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Detection of ethylene gas in exhaled breath of people living in landfill using CO{sub 2} laser photoacoustic spectroscopy with multicomponent analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktafiani, Fitri, E-mail: fitri.oktafiani@mail.ugm.ac.id; Stiyabudi, Rizky; Amin, Mochamad Nurul

    The photoacoustic spectrometer (PAS) had been built and the performance had been determined. The research was based on the conversion of the absorbed middle infra red (IR) radiation by gas confined in a closed PAS cell into standing acoustic wave, which could be detected by a suitable electroacoustic transducer such as a microphone. The lowest detection limit for this setup was (57,1 ± 0,3) ppb and quality factor was (14,5 ± 0,6) for ethylene gas in 10P14 CO{sub 2} laser line. Then, this PAS was used to measure of ethylene gas concentration in breath sample of people living in nearmore » the Piyungan Bantul Yogyakarta landfill. The result from multicomponent analysis showed that PAS enable to measure the lowest concentration of volatile organic compound (VOC), such as ethylene, which occured on ambien air in Piyungan landfill. Variaty of distance area applied in this research. In the range of ±0,5 km from landfill, we obtained the concentration of ethylene gas concentration for human breath was (1,520 ± 0,002) ppm, while in the range of ±45 km, the ethylene gas concentration for human breath was (0,424 ± 0,002) ppm. Ethylene gas concentrations in exhaled gas decreased along with increasing distance variation of the landfill.« less

  11. A study on radiation technological degradation of organic chloride wastewater--exemplified by TCE and PCE.

    PubMed

    Huang, Sheng-Kai; Hsieh, Ling-Ling; Chen, Chia-Chieh; Lee, Po-Hsiu; Hsieh, Bor-Tsung

    2009-01-01

    This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the gamma-ray to irradiate the TCE and PCE solution, the dose-rate is 10Gy/minute, the irradiation dosage is 0-2.5kGy and (2) self-making the UV irradiation system, the tube specification is 254nm and 6W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for gamma-ray is better than UV in the range of 0.1-250ppm; for example, as for the concentration of 0.1ppm, when TCE is degraded to D(90) and T(90), the gamma-ray only needed 46.7Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R(2)=0.999; and PCE: y=81.33+12.81x, R(2)=0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using gamma-ray will be reached US-EPA and Taiwan Effluent Standard (5ppb).

  12. Assessing the application and downstream effects of pulsed mode ultrasound as a pre-treatment for alum coagulation.

    PubMed

    Al-Juboori, Raed A; Aravinthan, Vasantha; Yusaf, Talal; Bowtell, Leslie

    2016-07-01

    The application of pulsed mode ultrasound (PMU) as a pre-treatment for alum coagulation was investigated at various alum dosages and pH levels. The effects of the treatments on turbidity and dissolved organic carbon (DOC) removal and residual Al were evaluated. Response surface methodology (RSM) was utilized to optimize the operating conditions of the applied treatments. The results showed that PMU pre-treatment increased turbidity and DOC removal percentages from maximum of 96.6% and 43% to 98.8% and 52%, respectively. It also helped decrease the minimum residual Al from 0.100 to 0.094 ppm. The multiple response optimization was carried out using the desirability function. A desirability value of >0.97 estimated respective turbidity removal, DOC removal and Al residual of 89.24%, 45.66% and ∼ 0.1 ppm for coagulation (control) and 90.61%, >55% and ∼ 0 for coagulation preceded by PMU. These figures were validated via confirmatory experiments. PMU pre-treatment increased total coliform removal from 80% to >98% and decreased trihalomethane formation potential (THMFP) from 250 to 200 ppb CH3Cl. Additionally, PMU application prior to coagulation improved the settleability of sludge due to the degassing effects. The results of this study confirms that PMU pre-treatment can significantly improve coagulation performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Uranium delivery and uptake in a montane wetland, north-central Colorado, USA

    USGS Publications Warehouse

    Schumann, R. Randall; Zielinski, Robert A.; Otton, James K.; Pantea, Michael P.; Orem, William H.

    2017-01-01

    Comprehensive sampling of peat, underlying lakebed sediments, and coexisting waters of a naturally uraniferous montane wetland are combined with hydrologic measurements to define the important controls on uranium (U) supply and uptake. The major source of U to the wetland is groundwater flowing through locally fractured and faulted granite gneiss of Proterozoic age. Dissolved U concentrations in four springs and one seep ranged from 20 to 83 ppb (μg/l). Maximum U concentrations are ∼300 ppm (mg/kg) in lakebed sediments and >3000 ppm in peat. Uranium in lakebed sediments is primarily stratabound in the more organic-rich layers, but samples of similar organic content display variable U concentrations. Post-depositional modifications include variable additions of U delivered by groundwater. Uranium distribution in peat is heterogeneous and primarily controlled by proximity to groundwater-fed springs and seeps that act as local point sources of U, and by proximity to groundwater directed along the peat/lakebeds contact. Uranium is initially sorbed on various organic components of peat as oxidized U(VI) present in groundwater. Selective extractions indicate that the majority of sorbed U remains as the oxidized species despite reducing conditions that should favor formation of U(IV). Possible explanations are kinetic hindrances related to strong complex formation between uranyl and humic substances, inhibition of anaerobic bacterial activity by low supply of dissolved iron and sulfate, and by cold temperatures.

  14. Nominally hydrous magmatism on the Moon.

    PubMed

    McCubbin, Francis M; Steele, Andrew; Hauri, Erik H; Nekvasil, Hanna; Yamashita, Shigeru; Hemley, Russell J

    2010-06-22

    For the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon. Moreover, two of the studied samples likely had water preserved from magmatic processes, which would qualify the water as being indigenous to the Moon. The presence of hydroxyl in apatite from a number of different types of lunar rocks indicates that water may be ubiquitous within the lunar interior, potentially as early as the time of lunar formation. The water contents analyzed for the lunar apatite indicate minimum water contents of their lunar source region to range from 64 ppb to 5 ppm H(2)O. This lower limit range of water contents is at least two orders of magnitude greater than the previously reported value for the bulk Moon, and the actual source region water contents could be significantly higher.

  15. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity.

    PubMed

    Cai, Qinqing; Hu, Jiangyong

    2017-02-05

    In this study, continuous LED/UVA/TiO 2 photocatalytic decomposition of sulfamethoxazole (SMX) and trimethoprim (TMP) was investigated. More than 90% of SMX and TMP were removed within 20min by the continuous photoreactor (with the initial concentration of 400ppb for each). The removal rates of SMX and TMP decreased with higher initial antibiotics loadings. SMX was much easier decomposed in acidic condition, while pH affected little on TMP's decomposition. 0.003% was found to be the optimum H 2 O 2 dosage to enhance SMX photocatalytic decomposition. Decomposition pathways of SMX and TMP were proposed based on the intermediates identified by using LC-MS-MS and GC-MS. Aniline was identified as a new intermediate generated during SMX photocatalytic decomposition. Antibacterial activity study with a reference Escherichia coli strain was also conducted during the photocatalytic process. Results indicated that with every portion of TMP removed, the residual antibacterial activity decreased by one portion. However, the synergistic effect between SMX and TMP tended to slow down the antibacterial activity removal of SMX and TMP mixture. Chronic toxicity studies conducted with Vibrio fischeri exhibited 13-20% bioluminescence inhibition during the decomposition of 1ppm SMX and 1ppm TMP, no acute toxicity to V. fischeri was observed during the photocatalytic process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Carbon disulfide potentiates the effects of impulse noise on the organ of Corti.

    PubMed

    Carreres Pons, Maria; Chalansonnet, Monique; Venet, Thomas; Thomas, Aurélie; Nunge, Hervé; Merlen, Lise; Cosnier, Frédéric; Llorens, Jordi; Campo, Pierre

    2017-03-01

    Occupational noise can damage workers' hearing, and the phenomenon is even more dangerous when noise is associated with an ototoxic solvent. Aromatic solvents are known to provoke chemical-induced hearing loss, but little is known about the effects on hearing of carbon disulfide (CS 2 ) when combined with noise. Co-exposure to CS 2 and noise may have a harmful effect on hearing, but the mechanisms involved are not well understood. For instance, CS 2 is not thought to have a cochleotoxic effect, but rather it is thought to cause retrocochlear hearing impairment. In other words, CS 2 could have a distal neuropathic effect on the auditory pathway. However, a possible pharmacological effect of CS 2 on the central nervous system (CNS) has never been mentioned in the literature. The aim of this study was to assess, in rats, the effects of a noise (continuous vs. impulse), associated with a low concentration of CS 2 [(short-term threshold limit value) x 10 as a safety factor] on the peripheral auditory receptor. The noise, whatever its nature, was an octave band noise centered at 8kHz, and the 250-ppm CS 2 exposure lasted 15min per hour, 6h per day, for 5 consecutive days. The impact of the different experimental conditions on hearing loss was assessed using distortion product oto-acoustic emissions and histological analyses. Although the LEX,8h (8-h time-weighted average exposure) for the impulse noise was lower (84dB SPL) than that for the continuous noise (89dB SPL), it appeared more damaging to the organ of Corti, in particular to the outer hair cells. CS 2 exposure alone did not have any effect on the organ of Corti, but co-exposure to continuous noise with CS 2 was less damaging than exposure to continuous noise alone. In contrast, the cochleo-traumatic effects of impulse noise were significantly enhanced by co-exposure to CS 2 . Therefore, CS 2 can clearly modulate the middle-ear reflex function. In fact, CS 2 may have two distinct effects: firstly, it has a pharmacological effect on the CNS, modifying the trigger of the acoustic reflex; and secondly, it can make the organ of Corti more susceptible to impulse noise. The pharmacological effects on the CNS and the effects of CS 2 on the organ of Corti are discussed to try to explain the overall effect of the solvent on hearing. Once again, the results reported in this article show that the temporal structure (continuous vs. impulse) of noise should be taken into consideration as a key parameter when establishing hearing conservation regulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ¹H-MAS-NMR chemical shifts in hydrogen-bonded complexes of chlorophenols (pentachlorophenol, 2,4,6-trichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol, and p-chlorophenol) and amine, and H/D isotope effects on ¹H-MAS-NMR spectra.

    PubMed

    Honda, Hisashi

    2013-04-22

    Chemical shifts (CS) of the ¹H nucleus in N···H···O type hydrogen bonds (H-bond) were observed in some complexes between chlorophenols [pentachlorophenol (PCP), 2,4,6-tricholorophenol (TCP), 2,6-dichlorophenol (26DCP), 3,5-dichlorophenol (35DCP), and p-chlorophenol (pCP)] and nitrogen-base (N-Base) by solid-state high-resolution ¹H-NMR with the magic-angle-spinning (MAS) method. Employing N-Bases with a wide range of pKa values (0.65-10.75), ¹H-MAS-NMR CS values of bridging H atoms in H-bonds were obtained as a function of the N-Base's pKa. The result showed that the CS values were increased with increasing pKa values in a range of DpKa < 0 [DpKa = pKa(N-Base)-pKa(chlorophenols)] and decreased when DpKa > 2: The maximum CS values was recorded in the PCP (pKa = 5.26)-4-methylpyridine (6.03), TCP (6.59)-imidazole (6.99), 26DCP (7.02)-2-amino-4-methylpyridine (7.38), 35DCP (8.04)-4-dimethylaminopyridine (9.61), and pCP (9.47)-4-dimethylaminopyridine (9.61) complexes. The largest CS value of 18.6 ppm was recorded in TCP-imidazole crystals. In addition, H/D isotope effects on ¹H-MAS-NMR spectra were observed in PCP-2-amino-3-methylpyridine. Based on the results of CS simulation using a B3LYP/6-311+G** function, it can be explained that a little changes of the N-H length in H-bond contribute to the H/D isotope shift of the ¹H-MAS-NMR peaks.

  18. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    PubMed

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Submicron particles influenced by mixed biogenic and anthropogenic emissions: high-resolution aerosol mass spectrometry results from the Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Setyan, A.; Zhang, Q.; Merkel, M.; Knighton, W. B.; Sun, Y.; Song, C.; Shilling, J. E.; Onasch, T. B.; Herndon, S. C.; Worsnop, D. R.; Fast, J. D.; Zaveri, R. A.; Berg, L. K.; Wiedensohler, A.; Flowers, B. A.; Dubey, M. K.; Subramanian, R.

    2012-02-01

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project (~40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 μg m-3 on average) and dominated by organics (80 % of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at ˜400 nm in vacuum aerodynamic diameter (Dva), and a condensation mode at ~150 nm, while organics generally displayed a broad distribution in 60-600 nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a~nominal formula of C1H1.38N0.004O0.44, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90 % of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high-resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly due to local traffic. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was much higher in urban plumes (3.9 μg m-3) than in air masses dominated by biogenic SOA (1.8 μg m-3). The change in OA mass relative to CO (Δ OA/Δ CO) varied in the range of 5-196 μg m-3 ppm-1, reflecting large variability in SOA production. The highest Δ OA/Δ CO were reached when urban plumes arrived at Cool in the presence of a~high concentration of biogenic volatile organic compounds (BVOCs = isoprene + monoterpenes + 2-methyl-3-buten-2-ol [MBO] + methyl chavicol). This ratio, which was 77 μg m-3 ppm-1 on average when BVOCs > 2 ppb, is much higher than when urban plumes arrived in a low biogenic VOCs environment (28 μg m-3 ppm-1 when BVOCs < 0.7 ppb) or during other periods dominated by biogenic SOA (40 μg m-3 ppm-1). The results from this study demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.

  20. The state of greenhouse gases in the atmosphere using global observations through 2015

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Vermeulen, Alex; Ueno, Mikio

    2017-04-01

    We present results from the twelfth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG). Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2015, with CO2 at 400.0±0.1 ppm, CH4 at 1845±2 ppb and N2O at 328.0±0.1 ppb. These values constitute 144%, 256% and 121% of pre-industrial (before 1750) levels, respectively. It is predicted that 2016 will be the first year in which CO2 at the Mauna Loa Observatory remains above 400 ppm all year, and hence for many generations ( Betts et al., 2016). The atmospheric increase of CO2 from 2014 to 2015 was 2.3 ppm, which is larger than the increase from 2013 to 2014 and the average growth rate for the past decade (˜2.08 ppm per year), despite evidence that global anthropogenic emissions remained essentially static between 2014 and 2015. The higher growth rate in 2015 compared with the previous years is due to increased natural emissions of CO2 related to the most recent El Niño event. According to the most recent data, increased growth rates have persisted far into 2016, consistent with the expected lag between CO2 growth and the ENSO index. The average increase in atmospheric CO2 from 2005 to 2014 corresponds to ˜44% of the CO2 emitted by human activity with the remaining ˜56% removed by the oceans and the terrestrial biosphere (La Quéré et al., 2015). For CH4 the increase from 2014 to 2015 was larger than that observed from 2013 to 2014 and the mean growth rate over the past 10 years. The annual increase of N2O globally averaged mole fraction from 2014 to 2015 was similar to that observed from 2013 to 2014 and greater than the average growth rate over the past 10 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2015 radiative forcing by long-lived greenhouse gases increased by 37%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2015 corresponded to a CO2-equivalent mole fraction of 485 ppm (http://www.esrl.noaa.gov/gmd/aggi). Bulletin cover story explains the connection between CO2 growth rates and El Niño phenomena. Bulletin contains brief introduction of the Integrated Global Greenhouse Gas Information System, which will be presented separately at the other session. References Betts, R.A. et al, 2016: El Niño and a record CO2 rise. Nature Climate Change, 6(9):806-810, doi:10.1038/nclimate3063. Le Quéré, C. et al. 2015: Global carbon budget 2015. Earth System Science Data, 7(2):349-396, doi:10.5194/essd-7-349-2015.

  1. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

    PubMed

    Liu, Xiaopeng; Xiao, Huajun; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Chen, Jianzhang

    2015-01-01

    Positive pressure breathing (PPB) can cause circulatory dysfunction due to peripheral pooling of blood. This study explored a better way at ground level to simulate pure oxygen PPB at 59,055 ft (18,000 m) by comparing the physiological changes during PPB with pure oxygen and low oxygen at ground level. Six subjects were exposed to 3 min of 69-mmHg PPB and 3 min of 59-mmHg PPB with pure oxygen and low oxygen while wearing the thoracic counterpressure jerkin inflated to 1× breathing pressure and G-suit inflated to 3 and 4× breathing pressure. Stroke volume (SV), cardiac output (CO), heart rate (HR), and peripheral oxygen saturation (Spo2) were measured. Subjects completed a simulating flying task (SFT) during 3-min PPB and scores were recorded. HR and SV responses differed significantly between breathing pure oxygen and low oxygen. CO response was not significantly different for pure oxygen and low oxygen, the two levels of PPB, and the two levels of G-suit pressure. Spo2 declined as a linear function of time during low-oxygen PPB and there was a significant difference in Spo2 response for the two levels of PPB. The average score of SFT during pure oxygen PPB was 3970.5 ± 1050.4, which was significantly higher than 2708.0 ± 702.7 with low oxygen PPB. Hypoxia and PPB have a synergistic negative effect on both the cardiovascular system and SFT performance. PPB with low oxygen was more appropriate at ground level to investigate physiological responses during PPB and evaluate the protective performance of garments. Liu X, Xiao H, Shi W, Wen D, Yu L, Chen J. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

  2. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-03-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. The user study provided trends and location-specific information on pollutants, and affected change in user behavior. The study demonstrated the utility of the M-Pod as a tool to assess personal exposure.

  3. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    NASA Astrophysics Data System (ADS)

    Müller, M.; Anderson, B.; Beyersdorf, A.; Crawford, J. H.; Diskin, G.; Eichler, P.; Fried, A.; Keutsch, F. N.; Mikoviny, T.; Thornhill, K. L.; Walega, J. G.; Weinheimer, A. J.; Yang, M.; Yokelson, R.; Wisthaler, A.

    2015-11-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin for deriving emission factors and followed ~ 13.6 km downwind for observing chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatio-temporal resolution (10 m/0.1 s). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3 and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butandione and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 ppbV ppmV-1 CO emitted. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a near-explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into PAN and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the plume. Formaldehyde, acetone/propanal, acetic acid/glycolaldehyde and maleic acid/maleic anhydride (tentatively identified) were found to be the main NMOGs to increase during one hour of atmospheric plume processing, with the model being unable to capture the observed increase. A mass balance analysis suggests that about 50 % of the aerosol mass formed in the downwind plume is organic in nature.

  4. Mycotoxins – Limits and Regulations

    PubMed Central

    Mazumder, Papiya Mitra; Sasmal, D.

    2001-01-01

    Since early years, a need has always been felt for some control on the quality of foodstuffs. With the discovery of aflatoxins in the early sixties, health authorities in man countries have become active in establishing regulations to protect their citizens and livestock fro t potential harm caused by mycotoxins. FDA mycotox-ins-in-foods sampling program is continuing with an objective to remove those foods from interstate commerce that contain Aflatoxins “at levels judged to be of regulator significance” Aflatoxins, Fumonisin B1 and B2, Deoxynivalenol (DON) Ochratoxin A and Patulin occur in a number of food products. FDA workers were instructed to sample and analyze all products for different types of mycotoxins. All baby foods should always be analyzed for all type of mycotoxins. The limits of Aflatoxins B1,B2,! < G2, and M1 in foods and feed stuffs varies from (0-40) ppb for foods & 0-1000ppb for food); for Ochratoxin A(0-50 ppb in food and 0-1000ppb in feed); for Don (500-2000ppb in food & 5-10,000 ppb in feed); for Zearalenone (0-1000 ppb in food); for Patulin (0-50 ppb in foods), for Diacetoxyscirpenol (0-100 ppd in feed); for chetomin (0ppb I feed); for stachybotryotoxin (0ppb in feeds and for Fumonisins (0-1000 ppb in food 5000-50,000 ppb in feedstuffs). PMID:22557007

  5. Platinum, palladium, and rhodium analyses of ultramafic and mafic rocks from the Stillwater Complex, Montana

    USGS Publications Warehouse

    Page, Norman J; Riley, Leonard Benjamin; Haffty, Joseph

    1969-01-01

    Analyses by a combination fire- assay-solution-optical-emission spectrographic method of 137 rocks from the Stillwater Complex, Mont., indicate that platinum, palladium, and rhodium are preferentially concentrated in chromitite zones. The A chromitite zone (21 samples) has an average of 988.9 ppb (pans per billion, 10-9) Pt, 2290.2 ppb Pd, and 245.9 ppb Rh and reaches a maximum (to date) of 8,000 ppb Pt, 11,000 ppb Pd, and 1,700 ppb Rh.

  6. Methane Fingerprinting: Isotopic Methane and Ethane-to-Methane Ratio Analysis Using a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Fleck, Derek; Hoffnagle, John

    2016-04-01

    Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.

  7. The role of precursor gases and meteorology on temporal evolution of O₃ at a tropical location in northeast India.

    PubMed

    Bhuyan, Pradip Kumar; Bharali, Chandrakala; Pathak, Binita; Kalita, Gayatry

    2014-05-01

    South Asia, particularly the Indo-Gangetic Plains and foothills of the Himalayas, has been found to be a major source of pollutant gases and particles affecting the regional as well as the global climate. Inventories of greenhouse gases for the South Asian region, particularly the sub-Himalayan region, have been inadequate. Hence, measurements of the gases are important from effective characterization of the gases and their climate effects. The diurnal, seasonal, and annual variation of surface level O3 measured for the first time in northeast India at Dibrugarh (27.4° N, 94.9° E, 111 m amsl), a sub-Himalayan location in the Brahmaputra basin, from November 2009 to May 2013 is presented. The effect of the precursor gases NO x and CO measured simultaneously during January 2012-May 2013 and the prevailing meteorology on the growth and decay of O3 has been studied. The O3 concentration starts to increase gradually after sunrise attaining a peak level around 1500 hours LT and then decreases from evening till sunrise next day. The highest and lowest monthly maximum concentration of O3 is observed in March (42.9 ± 10.3 ppb) and July (17.3 ± 7.0 ppb), respectively. The peak in O3 concentration is preceded by the peaks in NO x and CO concentrations which maximize during the period November to March with peak values of 25.2 ± 21.0 ppb and 1.0 ± 0.4 ppm, respectively, in January. Significant nonlinear correlation is observed between O3 and NO, NO2, and CO. National Atmospheric and Oceanic Administration Hybrid Single-Particle Lagrangian Integrated Trajectory back-trajectory and concentration weighted trajectory analysis carried out to delineate the possible airmass trajectory and to identify the potential source region of NO x and O3 concentrations show that in post-monsoon and winter, majority of the trajectories are confined locally while in pre-monsoon and monsoon, these are originated at the Indo-Gangetic plains, Bangladesh, and Bay of Bengal.

  8. Real-time, high frequency (1 Hz), in situ measurement of HCl and HF gases in volcanic plumes with a novel cavity-enhanced, laser-based instrument

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.

    2017-12-01

    Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.

  9. Reducing ethylene levels along the food supply chain: a key to reducing food waste?

    PubMed

    Blanke, Michael M

    2014-09-01

    Excessive waste along the food supply chain of 71 (UK, Netherlands) to 82 (Germany) kg per head per year sparked widespread criticism of the agricultural food business and provides a great challenge and task for all its players and stakeholders. Origins of this food waste include private households, restaurants and canteens, as well as supermarkets, and indicate that 59-65% of this food waste can be avoided. Since ∼50% of the food waste is fruit and vegetables, monitoring and control of their natural ripening gas - ethylene - is suggested here as one possible key to reducing food waste. Ethylene accelerates ripening of climacteric fruits, and accumulation of ethylene in the supply chain can lead to fruit decay and waste. While ethylene was determined using a stationary gas chromatograph with gas cylinders, the new generation of portable sensor-based instruments now enables continuous in situ determination of ethylene along the food chain, a prerequisite to managing and maintaining the quality and ripeness of fruits and identifying hot spots of ethylene accumulation along the supply chain. Ethylene levels were measured in a first trial, along the supply chain of apple fruit from harvest to the consumer, and ranged from 10 ppb in the CA fruit store with an ethylene scrubber, 70 ppb in the fruit bin, to 500 ppb on the sorting belt in the grading facility, to ppm levels in perforated plastic bags of apples. This paper also takes into account exogenous ethylene originating from sources other than the fruit itself. Countermeasures are discussed, such as the potential of breeding for low-ethylene fruit, applications of ethylene inhibitors (e.g. 1-MCP) and absorber strips (e.g. 'It's Fresh', Ryan'), packages (e.g. 'Peakfresh'), both at the wholesale and retail level, vents and cooling for the supply chain, sale of class II produce ('Wunderlinge'), collection (rather than waste) of produce on the 'sell by' date ('Die Tafel') and whole crop purchase (WCP) to aid reducing food waste. © 2014 Society of Chemical Industry.

  10. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    PubMed

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

  11. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  12. Bioreduction of Selenium Oxyanions via the Feammox Process

    NASA Astrophysics Data System (ADS)

    Sherman, A.; Jaffe, P. R.

    2017-12-01

    Selenium (Se) is an important environmental contaminant found in both agricultural and industrial wastewater. A novel bacterium, Acidimicrobiaceae bacterium A6 (hereon referred to as A6), has been shown to oxidize ammonium through the reduction of iron oxides (termed the Feammox process) and has also been shown to reduce trace metals and radionuclides. This research aims to establish whether the Feammox process can be used to reduce Se oxyanions in wastewater, and to determine the pathway by which this reduction occurs. A novel method of Se analysis using ion chromatography (Dionex Aquion IC system, AS18 separator and guard columns, 18mM KOH eluent, 45mA) has been developed, showing clear resolution of SeO32- and SeO42- peaks and detection limits in the ppb range. Batch incubations were run using pure A6 culture to tie the reduction of Se to the activity of this bacterium. Nontronite was used as the iron source to sustain A6 activity. Unlike other iron sources, such as ferrihydrite, nontronite does not sorb Se oxyanions, and thus selenium remains bioavailable as an electron acceptor for use during the Feammox process. Concentrations of 1ppm of SeO32- and SeO42- were used, below the toxic threshold for A6, and incubations were sampled destructively over the course of 8 days. Samples were analyzed using ion chromatography and UV-Vis spectroscopy to determine bacterial activity and chemical speciation. Initial results indicate that A6 may be able to reduce 300ppb of SeO32-in 3 days, however more work is needed to further explain this result.

  13. Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Parlange, Marc

    2013-04-01

    A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.

  14. PPB | About

    Cancer.gov

    The Pleuropulmonary Blastoma (PPB) DICER1 Syndrome Study ‹an observational clinical research study is enrolling children with PPB and their families. The goal of the study is to improve the care of children with PPB and other tumors associated with DICER1.

  15. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    The chemical and microstructural behavior of steels (304, 310, 316, and 1018), nickel-based alloys (beta-NiAl, G30, and 625), gold, coatings (4YSZ, SilcoNert(TradeMark) 1040 (SilcoTek Co.), Dursan(TradeMark)? (SilcoTek Co.), and porcelain), and bulk ceramics (alpha-Al2O3, fused quartz, beta-SiC, and alpha-Si3N4) were probed after exposure to supercritical fluid with temperature, pressure, and composition mimicking the Venus lower atmosphere. Exposures were carried out in the Glenn Extreme Environments Rig (GEER) chamber with the Venusian gas mixture (96.5% CO2, 3.5% N2, 30 ppm H2O, 150 ppm SO2, 28 ppm CO, 15 ppm OCS, 3 ppm H2S, 0.5 ppm HCl, and 5 ppb HF) at 92 bar (1330 psi) and 467 C (873 F) for durations of 10 and 42 days. An additional 21-day exposure was done to stainless steel uncoated and coated with SilcoNert(TradeMark) and Dursan(TradeMark). Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction, X-ray photoelectron and Auger electron spectroscopies, and cross section electron microscopy analysis. All steels exposed for 10 and 42 days formed double-layered scales consisting mainly of metal (Cr, Fe, Ni) oxides and sulfides showing different chemistry, microstructure, and crystalline phases. The alloys G30 and 625 formed double-layered scales consisting mainly of nickel sulfides. After 10 days, the beta-NiAl exhibited no detectable scale, suggesting only a very thin film was formed. The 304 and 316 stainless steels coated with 4YSZ that were exposed for 10 and 42 days exhibited no significant oxidation. Steel 1018 coated with 4YSZ exhibited a corrosion scale of iron and/or chromium oxide formed at the base of the alloy. The 304 steel coated with porcelain did not exhibit corrosion, although the coating exhibited recession. SilcoNert(TradeMark) exposed for 10 and 42 days exhibited recession, although no oxidation was found to occur at the base of the alloy. Stainless steel 316 coated with Dursan(TradeMark) ? exhibited corrosion at the base of the alloy. All ceramics tested showed no clear evidence of reaction. The weight-gain-per-area performance of the materials exposed in the GEER for 10 and 42 days are reported from the lowest to the highest weight gain per area as follows: gold did not exhibit any weight change; nickel-based alloys: beta- NiAl < G30 < 625; steels: 304 < 310 < 316 < 1018; ceramics: considering the experimental uncertainties, no weight change was observed for all ceramics of this work (alpha-Al2O3, Si3N4, SiC, and amorphous SiO2).

  16. Genetic interrelationships among phosphorus, nitrogen, calcium, and energy bioavailability in a growing chicken population.

    PubMed

    Ankra-Badu, G A; Pesti, G M; Aggrey, S E

    2010-11-01

    A random-mating population was used to study the genetic interrelationship between phytate P (PPB), Ca (CaB), N (NB), and energy bioavailability (EB), BW at 4 wk of age, relative growth (RG), and feed conversion ratio (FCR). Heritability estimates for PPB, CaB, NB, and EB were 0.09, 0.13, 0.16, and 0.10, respectively, and those of BW, RG, and FCR were 0.66, 0.15, and 0.10, respectively. Genetic correlations between PPB and BW, and FCR were moderate and negative, suggesting that improvement in PPB will impair growth. The genetic correlations between PPB and CaB, and EB and RG were positive and moderate, indicating that improvement in PPB would also lead to improved CaB, EB, and RG. Energy bioavailability was positively correlated with CaB, NB, PPB, and BW. Even though the genetic correlation between EB and the other traits measured, except RG and FCR, ranged from low to moderate, improving the ability of birds to utilize caloric energy in the feed would consequently improve PPB as well as growth. Improving PPB would reduce the amount of P in excreta and provide an additional savings if exogenous phytase were not added to poultry feed. The genetic correlation between PPB and NB was low but positive, whereas NB had a positive genetic correlation with BW. Therefore, selecting on NB will result in positive correlated responses in BW and PPB. Improving PPB and NB will not only improve productivity, but also reduce the polluting effects of P and N on the environment.

  17. Major and minor oxide and trace element determination in silicate rocks by direct current plasma optical emission echelle spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Humphris, S.E.; Thompson, G.

    1979-07-01

    A technique for the determination of major concentrations of SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, MgO, CaO, Na/sub 2/O, and K/sub 2/O, minor levels of TiO/sub 2/, P/sub 2/O/sub 5/, and MnO, and trace concentrations of Ba, Cr, Cu, Ni, Sr, V, and Zn, in semi-microsamples 200 mg) of powdered whole rock, is described. Chemically diverse standard reference rocks are used both for calibration and assessment of accuracy. A lithium metaborate fusion melt of each standard or sample is dissolved in dilute HNO/sub 3/ containing Cs/sup +/ at a level of 0.2% (w/v). The resulting solution is usedmore » to perform all analyses except those for Na/sub 2/O and K/sub 2/O, which are determined in a portion of the original sample solution wherein the Cs/sup +/ concentration has been raised to 0.32% (w/v). Analyses of both portions of each sample solution are performed using an optical emission spectrometer/spectrograph equipped with an echelle monochromator and a dc argon plasma excitation source. Trace element detection limits ranged from 2 ppM for Cu to 15 ppM for Zn. A study of precision based on replicate determinations in three splits of the proposed USGS reference basalt BHVO-1 yielded the following results: (1) For analyses of the major and minor oxide constituents, values of the percent relative standard deviation (RSD) ranged from 1 for CaO, to 21 for P/sub 2/O/sub 5/. 2) For trace element determinations, values of the RSD ranged from 2 for Cu, to 19 for Zn. 2 figures, 11 tables.« less

  18. Hydrology and water quality of the Upper Three Runs Aquifer in the vicinity of the Gibson Road Landfill, Fort Gordon, Georgia, June-November 1999

    USGS Publications Warehouse

    Priest, Sherlyn; McSwain, Kristen Bukowski

    2002-01-01

    Fort Gordon military installation, a U.S. Department of the Army facility, is located in east-central Georgia southwest of Augusta. The military base operates a three-phase unlined landfill?Gibson Road Landfill? to store a variety of wastes. Phases I and II stored only household wastes, and these phases were discontinued during the mid?1990s. Fort Gordon currently (1999) operates Phase III of the landfill that stores only construction and demolition debris. Water-quality monitoring detected selected trace elements and organic compounds exceeding the maximum contaminant levels of the U.S. Environmental Protection Agency, National Primary Drinking Water Standards. The selected trace elements and organic compounds detected showed that contamination of ground water had occurred in the vicinity of the landfill. In 1999, the U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, began an assessment of the hydrogeology and water quality in shallow ground water in the vicinity of the Gibson Road Landfill to delineate the extent of a ground-water contamination plume in the vicinity of the landfill. Hydrogeologic units in the Augusta area include the Upper Three Runs aquifer, the Gordon aquifer, the Millers Pond aquifer, and the Dublin aquifer. Only the shallowest aquifer, Upper Three Runs, was penetrated during this study. The Upper Three Runs aquifer is composed of sediments of the Barnwell Group. Mostly, these sediments are highly permeable fine to medium, well-sorted sand with lenses of clay. Ground-water flow is from northwest to southeast and generally was unaffected by seasonal variation during the period of study (June?November 1999). Water-table altitudes in the landfill area for the study period ranged from 394 feet (ft) to 445 ft above sea level. Ground-water samples analyzed for organic compounds and selected trace elements by a U. S. Environmental Protection Agency (USEPA) approved statistical test revealed that increases in contaminant concentrations above the detection limits had occurred during March and September 1999 in five wells?one of which is located upgradient. These organic compounds, respective increases in concentration, and the wells in which they were detected are: methylene chloride?wells 28AA29 (24 parts per billion [ppb] and 46 ppb), 28AA30 (86 ppb and 130 ppb), and 28AA31 (240 ppb and 140 ppb); 1,1-dichloroethene?well 28AA31 (10 ppb and 5.7 ppb); 1,1-dichloroethane? wells 28AA30 (81 ppb and 140 ppb) and 28AA31 (200 ppb and 130 ppb); and 1,1,1-trichloroethane?well 28AA31 (61 ppb and 37 ppb). Although in some wells the concentration decreased from March to September, the median concentrations were still higher in certain groups. Trace element compounds, their respective increases in concentration, and the wells in which they were detected are: chromium?well 28AA30 (1,190 ppb), vanadium?well 28AA30 (104 ppb); barium?wells 28AA27 (42.2 ppb) and 28AA32 (140 ppb), and beryllium?well 28AA30 (6.3 ppb). These increases occurred in September, with the exception of chromium in well 28AA30, which occurred in March. Although a statistical test indicated increases in contaminant concentrations had occurred, water from wells 28AA27, 28AA30, 28AA31, and 28AA32 had a decrease in contaminant concentrations from February 1998 to September 1999. U.S. Environmental Protection Agency, National Primary Drinking Water Regulations Maximum Contaminant Levels (PMCLs), formerly (MCLs) were exceeded in water from four wells for organic compounds and in five wells by selected trace elements during the February 1998, March 1999, and September 1999 sampling periods. The concentrations for the following organic compounds and the associated wells are: methylene chloride (PMCL is 5 ppb)?wells 28AA27 (February, 37 ppb; March, 24 ppb; and September, 9.6 ppb), 28AA29 (February, 20 ppb; March, 24 ppb; and September, 46 ppb), 28AA

  19. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides

    NASA Astrophysics Data System (ADS)

    Kiseeva, Ekaterina S.; Wood, Bernard J.

    2015-08-01

    We develop a comprehensive model to describe trace and minor element partitioning between sulphide liquids and anhydrous silicate liquids of approximately basaltic composition. We are able thereby to account completely for the effects of temperature and sulphide composition on the partitioning of Ag, Cd, Co, Cr, Cu, Ga, Ge, In, Mn, Ni, Pb, Sb, Ti, Tl, V and Zn. The model was developed from partitioning experiments performed in a piston-cylinder apparatus at 1.5 GPa and 1300 to 1700 °C with sulphide compositions covering the quaternary FeSsbnd NiSsbnd CuS0.5sbnd FeO. Partitioning of most elements is a strong function of the oxygen (or FeO) content of the sulphide. This increases linearly with the FeO content of the silicate melt and decreases with Ni content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. We parameterised the effects by using the ε-model of non-ideal interactions in metallic liquids. The resulting equation for partition coefficient of an element M between sulphide and silicate liquids can be expressed as We used our model to calculate the amount of sulphide liquid precipitated along the liquid line of descent of MORB melts and find that 70% of silicate crystallisation is accompanied by ∼0.23% of sulphide precipitation. The latter is sufficient to control the melt concentrations of chalcophile elements such as Cu, Ag and Pb. Our partition coefficients and observed chalcophile element concentrations in MORB glasses were used to estimate sulphur solubility in MORB liquids. We obtained between ∼800 ppm (for primitive MORB) and ∼2000 ppm (for evolved MORB), values in reasonable agreement with experimentally-derived models. The experimental data also enable us to reconsider Ce/Pb and Nd/Pb ratios in MORB. We find that constant Ce/Pb and Nd/Pb ratios of 25 and 20, respectively, can be achieved during fractional crystallisation of magmas generated by 10% melting of depleted mantle provided the latter contains >100 ppm S and about 650 ppm Ce, 550 ppm Nd and 27.5 ppb Pb. Finally, we investigated the hypothesis that the pattern of chalcophile element abundances in the mantle was established by segregation of a late sulphide matte. Taking the elements Cu, Ag, Pb and Zn as examples we find that the Pb/Zn and Cu/Ag ratios of the mantle can, in principle, be explained by segregation of ∼0.4% sulphide matte to the core.

  20. Aptamer binding to celiac disease-triggering hydrophobic proteins: a sensitive gluten detection approach.

    PubMed

    Amaya-González, Sonia; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, M Jesús

    2014-03-04

    Celiac disease represents a significant public health problem in large parts of the world. A major hurdle in the effective management of the disease by celiac sufferers is the sensitivity of the current available methods for assessing gluten contents in food. In response, we report a highly sensitive approach for gluten analysis using aptamers as specific receptors. Gliadins, a fraction of gluten proteins, are the main constituent responsible for triggering the disease. However, they are highly hydrophobic and large molecules, regarded as difficult targets for in vitro evolution of aptamers without nucleobase modification. We describe the successful selection of aptamers for these water insoluble prolamins that was achieved choosing the immunodominant apolar peptide from α2-gliadin as a target for selection. All aptamers evolved are able to bind the target in its native environment within the natural protein. The best nonprotein receptor is the basis for an electrochemical competitive enzyme-linked assay on magnetic particles, which allows the measurement of as low as 0.5 ppb of gliadin standard (0.5 ppm of gluten). Reference immunoassay for detecting the same target has a limit of detection of 3 ppm, 6 times less sensitive than this method. Importantly, it also displays high specificity, detecting the other three prolamins toxic for celiac patients and not showing cross-reactivity to nontoxic proteins such as maize, soya, and rice. These features make the proposed method a valuable tool for gluten detection in foods.

  1. Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application.

    PubMed

    Xiong, Ya; Zhu, Zongye; Guo, Tianchao; Li, Hui; Xue, Qingzhong

    2018-04-14

    Heterojunctions are very promising structures due to their hybrid properties, which are usually obtained via a multistep growth process. However, in this paper, WO 3 -W 18 O 49 heterostructures are synthesized via a novel one-step approach by using isopropanol as reaction media and are applied in NH 3 gas detection for the first time. The obtained WO 3 -W 18 O 49 heterostructures with loose nanowire bundle-like morphology show a response value of 23.3 toward 500 ppm NH 3 at 250 °C, which is 5.63 times higher than that of pristine W 18 O 49 . In addition, the WO 3 -W 18 O 49 sensor also exhibits great dynamic response/recovery characteristics (13 s/49 s @ 500 ppm NH 3 ), superb selectivity and low detection limit of 460 ppb. The substantial improvement in the response of WO 3 -W 18 O 49 heterostructures toward NH 3 can be explained by the formation of n-WO 3 /n-W 18 O 49 heterojunctions that facilitate the generation of a more extended depletion layer as well as the enhancement of specific surface area and pore volume. Our research results open an easy pathway for facile one-step preparation of heterojunctions with high response and low cost, which can be used for the development of other high-performance gas sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    PubMed

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.

  4. Adolescents' Observations of Parent Pain Behaviors: Preliminary Measure Validation and Test of Social Learning Theory in Pediatric Chronic Pain.

    PubMed

    Stone, Amanda L; Walker, Lynn S

    2017-01-01

    Evaluate psychometric properties of a measure of adolescents’ observations of parental pain behaviors and use this measure to test hypotheses regarding pain-specific social learning. We created a proxy-report of the Patient Reported Outcomes Measurement Information System (PROMIS) Pain Behavior–Short Form (PPB) for adolescents to report on parental pain behaviors, which we labeled the PPB-Proxy. Adolescents (n = 138, mean age = 14.20) with functional abdominal pain completed the PPB-Proxy and a parent completed the PPB. Adolescents and their parents completed measures of pain and disability during the adolescent’s clinic visit for abdominal pain. Adolescents subsequently completed a 7-day pain diary period. The PPB-Proxy moderately correlated with the PPB, evidencing that adolescents observe and can report on parental pain behaviors. Both the PPB-Proxy and PPB significantly correlated with adolescents’ pain-related disability. Parental modeling of pain behaviors could represent an important target for assessment and treatment in pediatric chronic pain patients.

  5. Embryonic exposure to an aqueous coal dust extract results in gene expression alterations associated with the development and function of connective tissue and the hematological system, immunological and inflammatory disease, and cancer in zebrafish.

    PubMed

    Caballero-Gallardo, Karina; Wirbisky-Hershberger, Sara E; Olivero-Verbel, Jesus; de la Rosa, Jesus; Freeman, Jennifer L

    2018-03-01

    Coal mining is one of the economic activities with the greatest impact on environmental quality. At all stages contaminants are released as particulates such as coal dust. The first aim of this study was to obtain an aqueous coal dust extract and characterize its composition in terms of trace elements by ICP-MS. In addition, the developmental toxicity of the aqueous coal extract was evaluated using zebrafish (Danio rerio) after exposure to different concentrations (0-1000 ppm; μg mL -1 ) to establish acute toxicity, morphology and transcriptome changes. Trace elements within the aqueous coal dust extract present at the highest concentrations (>10 ppb) included Sr, Zn, Ba, As, Cu and Se. In addition, Cd and Pb were found in lower concentrations. No significant difference in mortality was observed (p > 0.05), but a delay in hatching was found at 0.1 and 1000 ppm (p < 0.05). No significant differences in morphological characteristics were observed in any of the treatment groups (p > 0.05). Transcriptomic results of zebrafish larvae revealed alterations in 77, 61 and 1376 genes in the 1, 10, and 100 ppm groups, respectively. Gene ontology analysis identified gene alterations associated with the development and function of connective tissue and the hematological system, as well as pathways associated with apoptosis, the cell cycle, transcription, and oxidative stress including the MAPK signaling pathway. In addition, altered genes were associated with cancer; connective tissue, muscular, and skeletal disorders; and immunological and inflammatory diseases. Overall, this is the first study to characterize gene expression alterations in response to developmental exposure to aqueous coal dust residue from coal mining with transcriptome results signifying functions and systems to target in future studies.

  6. PPB | What is the DICER1 gene?

    Cancer.gov

    DICER1 is a gene that manages the function of other genes. Inherited changes in DICER1 can result in a variety of tumors, including pleuropulmonary blastoma (PPB). The PPB DICER1 Syndrome Study ‹an observational clinical research study is enrolling children with PPB and their families.

  7. Clinical comparison of a new manual toothbrush on breath volatile sulfur compounds.

    PubMed

    Williams, Malcolm I; Vazquez, Joe; Cummins, Diane

    2004-10-01

    The objective of this randomized, crossover study was to compare the effectiveness of a newly designed manual toothbrush (Colgate 360 degrees) to two commercially available manual toothbrushes (Oral-B Indicator and Oral-B CrossAction) and a battery-powered toothbrush (Crest SpinBrush PRO) for their ability to reduce overnight volatile sulfur compounds (VSC) associated with oral malodor. The study followed a four-period crossover design. Following a washout period, prospective subjects arrived at the testing facility without eating, drinking, or performing oral hygiene for baseline evaluation of breath VSC levels. For each phase of the study, subjects were given one of the test tooth-brushes and a tube of regular toothpaste to take home, and they were instructed to brush their teeth in their customary manner for 1 minute. When using the Colgate 360 degrees toothbrush, subjects were instructed to clean their tongue with the implement on the back of the brush head for 10 seconds. The following morning, subjects reported to the testing facility, again without performing oral hygiene, eating, or drinking, for the overnight evaluation. After a minimum 2-day washout period, subjects repeated the same regimen using the other toothbrushes. The levels of breath VSC were evaluated instrumentally using a gas chromatograph equipped with a flame photometric detector. Measurements were taken in duplicate and then averaged. The levels of VSC were expressed as parts per billion (ppb) in mouth air. Sixteen men and women completed the study. At baseline, the mean levels of VSC in mouth air for the 4 toothbrushes were 719.8 ppb+/-318.4 ppb, 592.8 ppb+/-264.6 ppb, 673.8 ppb+/-405.9 ppb, and 656.2 ppb+/-310.2 ppb for the Colgate 360 degrees, Oral-B Indicator, Crest SpinBrush PRO, and Oral-B CrossAction, respectively. Overnight, the mean breath VSC levels after using the four toothbrushes were lower than those observed at baseline. The respective mean levels of breath VSC were 266.5 ppb+/-269.9 ppb, 545.2 ppb+/-346.1 ppb, 567 ppb+/-335.7 ppb, and 554.6 ppb+/-398.4 ppb. Only the Colgate 360 degrees toothbrush provided a statistically significant reduction (P < .05) in breath VSC vs baseline. Additionally, the Colgate 360 degrees toothbrush was statistically significantly better (P < .05) than the three commercial toothbrushes in reducing breath VSC. Therefore, the results of this randomized, crossover clinical study indicate that a newly designed manual toothbrush with a tongue-cleaning implement on the back of the brush head was significantly more effective than three commercially available toothbrushes in reducing morning breath VSC associated with oral malodor.

  8. Relationship between the concentration of volatile sulphur compound and periodontal disease severity in Nigerian young adults

    PubMed Central

    Ehizele, Adebola O.; Ojehanon, Patrick I.

    2013-01-01

    Background: The aim of this study was to determine the relationship between the concentration of volatile sulphur compounds (VSC) in mouth air and the severity of periodontal diseases in young adults. Materials and Methods: A total of 400 subjects were studied. Estimation of periodontal disease severity was done using the basic periodontal examination (BPE) and the baseline measurement of the concentration of VSC in the mouth air of the subjects was done objectively using the Halimeter®. Result: The mean concentration of VSC for the group with BPE code 0 was 91.0 ± 5.9 parts per billion (ppb), 156.4 ± 9.4 ppb for BPE code 1, 275.2 ± 38.5 ppb for BPE code 2, 353.5 ± 72.3 ppb for BPE code 3, and 587.0 ± 2.1 ppb for BPE code 4 (P = 0.001). Majority (79.0%) of the subjects with BPE code 0 had concentration of VSC <181 ppb. Sixty-two (54.9%) with BPE code 1 had concentration of VSC <181 ppb, 34% with BPE code 2 had concentration of VSC <181 ppb and 42.9% with BPE code 3 had concentration of VSC <181 ppb. Only 6.5% of the subjects with BPE code 0 had VSC concentration >250 ppb, whereas all (100%) of those with BPE code 4 had VSC concentration >250 ppb (P = 0.001). Conclusion: It was concluded that a relationship exists between the periodontal pocket depth and the concentration of VCS in mouth air of young adults. PMID:23901175

  9. Relationship between the concentration of volatile sulphur compound and periodontal disease severity in Nigerian young adults.

    PubMed

    Ehizele, Adebola O; Ojehanon, Patrick I

    2013-05-01

    The aim of this study was to determine the relationship between the concentration of volatile sulphur compounds (VSC) in mouth air and the severity of periodontal diseases in young adults. A total of 400 subjects were studied. Estimation of periodontal disease severity was done using the basic periodontal examination (BPE) and the baseline measurement of the concentration of VSC in the mouth air of the subjects was done objectively using the Halimeter(®). The mean concentration of VSC for the group with BPE code 0 was 91.0 ± 5.9 parts per billion (ppb), 156.4 ± 9.4 ppb for BPE code 1, 275.2 ± 38.5 ppb for BPE code 2, 353.5 ± 72.3 ppb for BPE code 3, and 587.0 ± 2.1 ppb for BPE code 4 (P = 0.001). Majority (79.0%) of the subjects with BPE code 0 had concentration of VSC <181 ppb. Sixty-two (54.9%) with BPE code 1 had concentration of VSC <181 ppb, 34% with BPE code 2 had concentration of VSC <181 ppb and 42.9% with BPE code 3 had concentration of VSC <181 ppb. Only 6.5% of the subjects with BPE code 0 had VSC concentration >250 ppb, whereas all (100%) of those with BPE code 4 had VSC concentration >250 ppb (P = 0.001). It was concluded that a relationship exists between the periodontal pocket depth and the concentration of VCS in mouth air of young adults.

  10. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed:more » benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.« less

  11. Evaluation of natural and anthropogenic radioactivity in environmental samples from Kuwait using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bajoga, Abubakar D.

    A study of natural radioactivity from ninety different soil samples across the state of Kuwait was carried out with a view to ascertain the level of natural and/or man-made radioactivity from that area. There has been some concern on the levels of NORM following the First Gulf War in which approximately 300 tons of depleted uranium shells were used and in particular, whether it has a significant impact in the surrounding environment. This study uses gamma-spectroscopy in a low background measuring system employing a high resolution Hyper-Pure Germanium detector. The calculated specific activity concentrations are determined for the radionuclides 226Ra, 214Pb, 214Bi and 228Ac, 212Pb, 208Tl following the decays of the primordial radionuclides 238U and 232Th, respectively. The analysis also includes evaluations for the 235U decay chain. In particular, the 186 keV doublet transition is used together with the activity concentration values established from the decays of 214Bi and 214Pb to establish the 226Ra and 235U specific activity concentrations, which can be used to estimate the 235U:238U isotopic ratios and compare to the accepted value for naturally occurring material of 1:138. Specific activity concentration values have also been determined for the 40K and the anthropogenic radionuclide 137Cs (from fallout) were detected within the same samples. Results of the activity concentration gives mean value of 16.99±0.21, 12.79±0.14, 333±37 and 2.18±0.11 Bq/kg for 238U, 232Th, 40K, and 137Cs, respectively. The associated radiological hazard indices from these samples were found to have mean values of 29.13±0.35 nG/hr, 60.20±0.68 Bq/kg, and 35.30±0.40 µSv/year for the dose rates, radium equivalent, and annual dose equivalent, respectively. Analysed results of elemental concentrations of Uranium, Thorium and Potassium were also determined, and were found to range from 0.96±0.02 ppm to 2.53±0.02 ppm, 2.26±0.04 ppm to 5.23±0.05 ppm and a mean value of 1.21±0.03 % for 40K for the northern region, respectively. Overall result indicates values within the world average range. The results obtained for the 235U:238U isotopic ratio gives a mean value of 0.0462, which is consistent with the presence of natural material from the measured location.

  12. A Mo-95 and C-13 Solid-state NMR and Relativistic DFT Investigation of Mesitylenetricarbonylmolybdenum(0) -a Typical Transition Metal Piano-stool Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, David L.; Wasylishen, Roderick E.

    2002-06-21

    The chemical shift (CS) and electric field gradient (EFG) tensors in the piano-stool compound mesitylenetricarbonylmolybdenum(0), 1, have been investigated via {sup 95}Mo and {sup 13}C solid-state magic-angle spinning (MAS) NMR as well as relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations. Molybdenum-95 (I = 5/2) MAS NMR spectra acquired at 18.8 T are dominated by the anisotropic chemical shift interaction ({Omega} = 775 {+-} 30 ppm) rather than the 2nd-order quadrupolar interaction (C{sub Q} = -0.96 {+-} 0.15 MHz), an unusual situation for a quadrupolar nucleus. ZORA-DFT calculations of the {sup 95}Mo EFG and CS tensors are in agreementmore » with the experimental data. Mixing of appropriate occupied and virtual d-orbital dominated MOs in the region of the HOMO-LUMO gap are shown to be responsible for the large chemical shift anisotropy. The small, but non-negligible, {sup 95}Mo quadrupolar interaction is discussed in terms of the geometry about Mo. Carbon-13 CPMAS spectra acquired at 4.7 T demonstrate the crystallographic and magnetic nonequivalence of the twelve {sup 13}C nuclei in 1, despite the chemical equivalence of some of these nuclei in isotropic solutions. The principal components of the carbon CS tensors are determined via a Herzfeld-Berger analysis, and indicate that motion of the mesitylene ring is slow compared to a rate which would influence the carbon CS tensors (i.e. tens of {micro}s). ZORA-DFT calculations reproduce the experimental carbon CS tensors accurately. Oxygen-17 EFG and CS tensors for 1 are also calculated and discussed in terms of existing experimental data for related molybdenum carbonyl compounds. This work provides an example of the information available from combined multi-field solid-state multinuclear magnetic resonance and computational investigations of transition metal compounds, in particular the direct study of quadrupolar transition metal nuclei with relatively small magnetic moments.« less

  13. Claviceps cyperi, a new cause of severe ergotism in dairy cattle consuming maize silage and teff hay contaminated with ergotised Cyperus esculentus (nut sedge) on the Highveld of South Africa.

    PubMed

    Naudè, T W; Botha, C J; Vorster, J H; Roux, C; Van der Linde, E J; Van der Walt, S I; Rottinghaus, G E; Van Jaarsveld, L; Lawrence, A N

    2005-03-01

    During December/January 1996/97 typical summer syndrome (hyperthermia and a 30% drop in milk yield) occurred in succession in two Holstein dairy herds (n=240 and n=150 milking cows, respectively) on the South African Highveld. These farms are situated in the midst of the prime maize and dairy farming areas of South Africa where this condition had never been diagnosed before. The individual components of the concentrate on both farms were negative for ergot alkaloids. Endophytic fungi and/or ergot infestation of teff and other grasses fed to the cows were then suspected of being involved, but neither endophytes nor ergot alkaloids could be implicated from these sources. By measuring the serum prolactin levels of groups of sheep (n=5) fed the first farm's total mixed ration (TMR) or its three individual fibre components for a period of 11 days, the source of the ergot alkaloids was identified. A statistically significant decrease in the level of this hormone occurred only in the group on maize silage (which constituted 28% on dry matter base of the TMR). The involvement of the maize silage was further chemically confirmed by the high levels of total ergot alkaloids, predominantly ergocryptine, found by LC-MS in the silage as well as in the TMR (115-975 ppb and 65-300 ppb, respectively). The ergot alkaloid content (mainly ergocryptine) of the maize silage on the second affected farm was 875 ppb. Withdrawal of contaminated silage resulted in gradual recovery of stock on both farms. Nut sedge (Cyperus esculentus and Cyperus rotundus of the family Cyperaceae) has a world-wide distribution and is a common weed in annual crops, and can be parasitized by Claviceps cyperi. Careful examination of the maize silage from both farms revealed that it was heavily contaminated with nut sedge and that it contained minute sclerotia, identified as those of Claviceps cyperi, originating from the latter. Nut sedge was abundant on both farms and it is believed that late seasonal rain had resulted in mature, heavily ergotised nut sedge being cut with the silage. Claviceps cyperi sclerotia, collected on the affected fields in the following autumn contained 3600-4000 ppm ergocryptine. That the dominant alkaloid produced by this particular fungus was indeed ergocryptine, was confirmed by negative ion chemical ionization MS/MS. In one further outbreak in another Holstein herd, teff hay contaminated with ergotised nut sedge and containing 1200 ppb alkaloids, was incriminated as the cause of the condition. This is the first report of bovine ergotism not associated with the Poaceae infected with Claviceps purpureum or endophytes but with the family Cyperaceae and this particular fungal phytopathogen.

  14. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells

    PubMed Central

    Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L. Andrew; Mineyuki, Yoshinobu

    2016-01-01

    The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs. PMID:27053663

  15. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  16. An effective method for thallium bromide purification and research on crystal properties

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiping; Meng, Fang; Gong, Shuping; Quan, Lin; Wang, Jing; Zhou, Dongxiang

    2012-06-01

    Thallium bromide (TlBr) is a promising candidate for room-temperature X- and gamma-ray detectors in view of its excellent intrinsic features. However, material purity and crystal quality concerns still limit the use of TlBr crystals as detectors. In this work, a combination of hydrothermal recrystallization (HR) and vacuum distillation (VD) methods were applied to purify TlBr salts prior to crystal growth. Trace impurities at the ppb/ppm level were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The results showed that the impurity concentrations of the TlBr salt decreased significantly after HR and VD purification, and high performance of the resultant TlBr crystal in areas such as electrical and optical properties was achieved. The combination of HR and VD methods could fabricate purer material, with an order of magnitude higher resistivity and better optical quality, than HR or VD method used separately. The possible technological considerations affecting the parameters of the crystals are investigated.

  17. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  18. SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array

    NASA Astrophysics Data System (ADS)

    Chan, Tzu-Yi; Liu, Ting-Yu; Wang, Kuan-Syun; Tsai, Kun-Tong; Chen, Zhi-Xin; Chang, Yu-Chi; Tseng, Yi-Qun; Wang, Chih-Hao; Wang, Juen-Kai; Wang, Yuh-Lin

    2017-05-01

    This paper describes the preparation of nanoarrays composed of silver nanoparticles (AgNPs: 20-50 nm) for use as surface-enhanced Raman scattering (SERS) substrates. The AgNPs were grown on porous anodic aluminum oxide (AAO) templates by electrochemical plating, and the inter-channel gap of AAO channels is between 10 and 20 nm. The size and interparticle gap of silver particles were adjusted in order to achieve optimal SERS signals and characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The fluctuation of SERS intensity is about 10-20% when measuring adenine solutions, showing a great reproducible SERS sensing. The nanoparticle arrays offer a large potential for practical applications as shown by the SERS-based quantitative detection and differentiation of adenine (A), thymine (T), cytosine (C), guanine (G), β-carotene, and malachite green. The respective detection limits are <1 ppb for adenine and <0.63 ppm for β-carotene and malachite green, respectively.

  19. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  20. Liquid chromatographic determination of acriflavine and proflavine residues in channel catfish muscle.

    PubMed

    Plakas, S M; el Said, K R; Jester, E L; Bencsath, F A; Hayton, W L

    1997-01-01

    A liquid chromatographic (LC) method was developed for determination of acriflavine (ACR) and proflavine (PRO) residues in channel catfish muscle. Residues were extracted with acidified methanol solution, and extracts were cleaned up with C18 solid-phase extraction columns. Residue concentrations were determined on an LC cyano column, with spectrophotometric detection at 454 nm. Catfish muscle was individually fortified with ACR (purified from commercial product) and PRO at concentrations of 5, 10, 20, 40, and 80 ppb (5 replicates per level). Mean recoveries from fortified muscle at each level ranged from 86 to 95%, with relative standard deviations (RSDs) of 2.5 to 5.7%. The method was applied to incurred residues of ACR and PRO in muscle after waterborne exposure of channel catfish to commercial acriflavine (10 ppm total dye for 4 h). RSDs for incurred residues of ACR and PRO were in the same range as those for fortified muscle. Low residue concentrations (< 1% of exposure water concentration) suggested poor absorption of ACR and PRO in catfish.

  1. Detection of capecitabine (Xeloda®) on the skin surface after oral administration

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Dong; Fuss, Harald; Lademann, Jürgen; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora

    2016-04-01

    Palmoplantar erythrodysesthesia (PPE), or hand-foot syndrome, is a cutaneous toxicity under various chemotherapeutics contributing to the most frequent side effects in patients treated with capecitabine (Xeloda®). The pathomechanism of PPE has been unclear. Here, the topical detection of capecitabine in the skin after oral application was shown in 10 patients receiving 2500 mg/m2/day capecitabine. Sweat samples were taken prior to and one week after oral administration of capecitabine. Using high-resolution continuum source absorption spectrometry, the changes in concentrations of fluorine, which is an ingredient of capecitabine, were quantified and statistically analyzed. Here, we show an increase in fluorine concentrations from 40±10 ppb (2±0.5 pM) before capecitabine administration to 27.7±11.8 ppm (14.6±6.5 nM) after application, p<0.001. The results show the secretion of capecitabine on the skin surface after oral administration, indicating a local toxic effect as a possible pathomechanism of PPE.

  2. Quiescent hydrogen sulfide and carbon dioxide degassing from Mount Baker, Washington

    USGS Publications Warehouse

    McGee, K.A.; Doukas, M.P.; Gerlach, T.M.

    2001-01-01

    Volcanic H2S emission rate data are scant despite their importance in understanding magma degassing. We present results from direct airborne plume measurements of H2S and CO2 on a 21-orbit survey at eleven different altitudes around Mount Baker volcano in September 2000 utilizing instrumentation mounted in a light aircraft. Measured emission rates of H2S and CO2 were 5.5 td-1 and 187 td-1 respectively. Maximum concentrations of H2S and CO2 encountered within the 4-km-wide plume were 75 ppb and 2 ppm respectively. Utilizing the H2S signal as a marker for the plume allows the corresponding CO2 signal to be more easily and accurately distinguished from ambient CO2 background. This technique is sensitive enough for monitoring weakly degassing volcanoes in a pre-eruptive condition when scrubbing by hydrothermal fluid or aquifers might mask the presence of more acid magmatic gases such as SO2.

  3. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    PubMed Central

    Achmann, Sabine; Hämmerle, Martin; Moos, Ralf

    2008-01-01

    In this work, cross-sensitivities and environmental influences on the sensitivity and the functionality of an enzyme-based amperometric sensor system for the direct detection of formaldehyde from the gas phase are studied. The sensor shows a linear response curve for formaldehyde in the tested range (0 - 15 vppm) with a sensitivity of 1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmental gases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol are evaluated as well as temperature and humidity influences on the sensor system. The sensor showed neither significant signal to CO, H2, methanol or ethanol nor to variations in the humidity of the test gas. As expected, temperature variations had the biggest influence on the sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5 vppm CH2O in the range of 25 - 30 °C. PMID:27879770

  4. Rapid analysis of 3,4-methylenedioxymethamphetamine: a comparison of nonaqueous capillary electrophoresis/fluorescence detection with GC/MS.

    PubMed

    Fang, Ching; Chung, Yu-Lin; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-02-18

    Because of the increasing use of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a rapid and sensitive analytical technique is required for its detection and determination. Using nonaqueous capillary electrophoresis/fluorescence spectroscopy (NACE/FS) detection, it is possible to determine this drug at the level 0.5 ppm without any pre-treatment in less than 5 min. After liquid-liquid extraction, the sample can be condensed and a detection limit of 3,4-MDMA in urine of 50 ppb (S/N = 3) can be achieved. The precision of the method was evaluated by measuring the repeatability and intermediate precision of migration time and the corrected peak height by comparison with a 3,4-MDMA-D5 internal standard. With the conventional GC/MS method, it is necessary to derivatize the 3,4-MDMA before injection and the GC migration time also is in excess of 20 min. Therefore, NACE/FS represents a good complementary method to GC/MS for use in forensic analysis.

  5. Assessment of heavy metal and petroleum hydrocarbon contamination in the Sultanate of Oman with emphasis on harbours, marinas, terminals and ports.

    PubMed

    Jupp, Barry P; Fowler, Scott W; Dobretsov, Sergey; van der Wiele, Henk; Al-Ghafri, Ahmed

    2017-08-15

    The assessment here includes data on levels of contaminants (petroleum hydrocarbons and heavy metals) in sediments and biomonitor organisms, including the eulittoral rock oyster Saccostrea cucullata and subtidal biomonitors, the barnacle Balanus trigonus and the antipatharian coral Antipathes sp., at harbours, marinas, terminals and large ports along the coastline of Oman. TBT levels in harbour and port sediments up to a maximum of 100ppb TBT dry weight are highlighted. Oysters contained concentrations up to 367ppm mg TPH/kg dry weight. The maximum levels of Cd, Cu, Pb and Zn were found in the subtidal sediments and barnacles at the oil tanker loading Single Buoy Mooring stations in Mina Al Fahal. In general, the levels of most of the contaminants analysed are at low to moderate concentrations compared to those in highly contaminated sites such as shipyards and dry docks, but continued monitoring is recommended especially during any dredging campaigns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. How paramagnetic and diamagnetic LMOCs detect picric acid from surface water and the intracellular environment: a combined experimental and DFT-D3 study.

    PubMed

    Ghosh, Pritam; Banerjee, Priyabrata

    2016-08-17

    Diamagnetic and Paramagnetic Luminescent Metal Organic Complexes (LMOCs) have been reported for Explosive and Pollutant Nitro Aromatic (epNAC) recognition. The diamagnetic complex shows a highly intense AIE induced by NEt3H(+), which disappears after picric acid recognition and subsequently RET will quench the emission intensity. Radical stabilized paramagnetic LMOCs seem to be active but show lower sensing efficiency in comparison with diamagnetic LMOCs. Solution and solid state spectroscopy studies along with DFT-D3 have been executed to enlighten the host guest interaction. Limit of PA detection is ∼250 ppb with a binding constant of 1.2 × 10(5) M(-1). Time-stepping, i.e. intervening in the problem of picric acid recognition from surface water collected from several places of West Bengal, India, has been performed. Mutagenic picric acid has been successfully detected in an aqueous medium inside both prokaryotic and eukaryotic cells at a ppm level using fluorescence microscopy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, I-Ting; Sessler, Jonathan L.; Gambhir, Sanjiv Sam

    Chemical tools that can report radioactive isotopes would be of interest to the defense community. Here in this paper we report –250 nm polymeric nanoparticles containing porphyrinoid macrocycles with and without pre-complexed depleted uranium and demonstrate that the latter species may be detected easily and with high sensitivity via photoacoustic imaging. The porphyrinoid macrocycles used in the present study are non-aromatic in the absence of the uranyl cation, but aromatic after cation complexation. We solubilized both the freebase and metalated forms of the macrocycles in poly(lactic-co-glycolic acid) and found a peak in the photoacoustic spectrum at 910 nm excitation inmore » the case of the uranyl complex. The signal was stable for at least 15 minutes and allowed detection of uranium concentrations down to 6.2 ppb (5.7 nM) in vitro and 0.57 ppm (19 fCi; 0.52 μM) in vivo. Furthermore, to the best of our knowledge, this is the first report of a nanoparticle that detects an actinide cation via photoacoustic imaging.« less

  8. A dual ammonia-responsive sponge sensor: preparation, transition mechanism and sensitivity.

    PubMed

    Guo, Jiahong; Bai, Zhiwei; Lyu, Yonglei; Wang, Jikui; Wang, Qiang

    2018-06-13

    PDMS-PU (polydimethylsiloxane-polyurethane) sponge decorated with In(OH)3 (indium hydroxide) and BCP (bromocresol purple) particles is shown to be a room-temperature ammonia sensor with high sensitivity and excellent reproducibility; it can accomplish real-time detection and monitoring of ammonia in the surrounding environment. The superhydrophobic and yellowish In(OH)3-BCP-TiO2-based ammonia-responsive (IBT-AR) sponge changes to a purple superhydrophilic one when exposed to ammonia. Notably, after reacting with ammonia, the sponge can recover its original wettability and color after heating in air. The wettability, color and absorption signal of IBT-AR sponge have been measured for sensing ammonia using the water contact angle, macroscopic observation and UV-vis absorption spectrometry, respectively. The minimum ammonia concentrations that can be detected by the sponge wettability, color and absorption signal are 0.5%, 1.4 ppm and 50 ppb, respectively. This kind of sponge with smart wettability and color is a promising new ammonia detector.

  9. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan.

    PubMed

    Cheng, Jen-Hsuan; Lee, Yi-Shiun; Chen, Kang-Shin

    2016-03-01

    Eighteen carbonyl species in C1-C10 were measured in the dining areas, kitchens and exhaust streams of six different restaurant types in Kaohsiung, southern Taiwan. Measured results in the dining areas show that Japanese barbecue (45.06ppb) had the highest total carbonyl concentrations (sum of 18 compounds), followed by Chinese hotpot (38.21ppb), Chinese stir-frying (8.99ppb), Western fast-food (8.22ppb), Chinese-Western mixed style (7.38ppb), and Chinese buffet (3.08ppb), due to their different arrangements for dining and cooking spaces and different cooking methods. On average, low carbon-containing species (C1-C4), e.g., formaldehyde, acetaldehyde, acetone and butyraldehyde were dominant and contributed 55.01%-94.52% of total carbonyls in the dining areas of all restaurants. Meanwhile, Chinese-Western mixed restaurants (45.48ppb) had high total carbonyl concentrations in kitchens mainly because of its small kitchen and poor ventilation. However, high carbon-containing species (C5-C10) such as hexaldehyde, heptaldehyde and nonanaldehyde (16.62%-77.00% of total carbonyls) contributed comparatively with low carbon-containing compounds (23.01%-83.39% of total carbonyls) in kitchens. Furthermore, Chinese stir-frying (132.10ppb), Japanese barbecue (125.62ppb), Western fast-food (122.67ppb), and Chinese buffet (119.96ppb) were the four restaurant types with the highest total carbonyl concentrations in exhaust streams, indicating that stir-frying and grilling are inclined to produce polluted gases. Health risk assessments indicate that Chinese hotpot and Japanese barbecue exceeded the limits of cancer risk (10(-6)) and hazard index (=1), mainly due to high concentrations of formaldehyde. The other four restaurants were below both limits. Copyright © 2015. Published by Elsevier B.V.

  10. Chronic Exposure of Imidacloprid and Clothianidin Reduce Queen Survival, Foraging, and Nectar Storing in Colonies of Bombus impatiens

    PubMed Central

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb–100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb. PMID:24643057

  11. Sub-ppb, Autonomous, Real-time Detection of VOCs with iCRDS

    NASA Astrophysics Data System (ADS)

    Leen, J.; Gupta, M.; Baer, D. S.

    2013-12-01

    The continuous, real-time detection of sub-parts-per-billion (ppb) concentrations of volatile organic compounds (VOCs) such as trichloroethylene (TCE) and tetrachloroethylene (PCE) remains difficult, time consuming and expensive. In particular, short term exposure spikes and diurnal variations are difficult or impossible to detect with traditional TO-15 measurements. We present laboratory and field performance data from an instrument based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) and is capable of detecting a broad range of VOCs, in situ, continuously and autonomously. We have demonstrated the measurement of TCE in zero air with a precision of 0.17 ppb (1σ in 4 minutes). PCE was measured with a precision of 0.15 ppb (1σ in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 μg/m3) and for PCE is 0.29 ppb (2 μg/m3). Additionally, the instrument is capable of precisely measuring and quantifying BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. We have demonstrated the accurate, interference free measurement of Mountain View, California air doped with TCE concentrations ranging from 4.22 ppb (22.8 μg/m3) to 17.74 ppb (96 μg/m3) with a precision of 1.42 ppb (1σ in 4 minutes). Mountain View, California air doped with 10.83 ppb of PCE (74.0 μg/m3) was measured with a precision of 0.54 ppb (1σ in 4 minutes). Finally, the instrument was deployed to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air. TCE concentrations in the breathing zone averaged 0.186 × 0.669 ppb while tunnel air averaged 17.38 × 4.96 ppb, in excellent agreement with previous TO-15 8 hr averages. PCE concentrations in the breathing zone averaged 0.063 × 0.270 ppb while tunnel air averaged 0.755 × 0.359 ppb, again, in excellent agreement with previous TO-15 8 hr averages. The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

  12. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide

    NASA Astrophysics Data System (ADS)

    Salehi, Hasan; Rastgar, Masoud; Shakeri, Alireza

    2017-08-01

    To date, forward osmosis (FO) has received considerable attention due to its potential application in seawater desalination. FO does not require external hydraulic pressure and consequently is believed to have a low fouling propensity. Despite the numerous privileges of FO process, a major challenge ahead for its development is the lack of high performance membranes. In this study, we fabricated a novel highly-efficient FO membrane using layer-by-layer (LbL) assembly of positive chitosan (CS) and negative graphene oxide (GO) nanosheets via electrostatic interaction on a porous support layer. The support layer was prepared by blending hydrophilic sulfonated polyethersulfone (SPES) into polyethersulfone (PES) matrix using wet phase inversion process. Various characterization techniques were used to confirm successful fabrication of LbL membrane. The number of layers formed on the SPES-PES support layer was easily adjusted by repeating the CS and GO deposition cycles. Thin film composite (TFC) membrane was also prepared by the same SPES-PES support layer and polyamide (PA) active layer to compare membranes performances. The water permeability and salt rejection of the fabricated membranes were obtained by two kinds of draw solutions (including Na2SO4 and sucrose) under two different membrane orientations. The results showed that membrane coated by a CS/GO bilayers had water flux of 2-4 orders of magnitude higher than the TFC one. By increasing the number of CS/GO bilayers, the selectivity of the LbL membrane was improved. The novel fabricated LbL membrane showed better fouling resistance than the TFC one in the feed solution containing 200 ppm of sodium alginate as a foulant model.

  13. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states.

    PubMed

    Stayner, Leslie Thomas; Almberg, Kirsten; Jones, Rachael; Graber, Judith; Pedersen, Marie; Turyk, Mary

    2017-01-01

    Atrazine and nitrate are common contaminants in water, and there is limited evidence that they are associated with adverse birth outcomes. The objective of this study was to examine whether atrazine and nitrate in water are associated with an increased risk of preterm delivery (PTD) and term low birth weight (LBW). The study included a total of 134,258 singletons births born between January 1, 2004 and December 31, 2008 from 46 counties in four Midwestern states with public water systems that were included in the U.S. Environmental Protection Agency (EPA)'s atrazine monitoring program (AMP). Counties with a population of >300,000 were eliminated from the analyses in order to avoid confounding by urbanicity. Monthly child's sex, race and Hispanic ethnicity specific data were obtained from the states for estimating rates of PTD (<37 weeks) and very preterm (VPTD, <32 weeks), term LBW (<2.5kg among infants born at term) and very low birth weight (VLBW, <1.5kg). The rates were linked with county specific monthly estimates of the concentration of atrazine and nitrate in finished water. Multivariable negative binomial models were fitted to examine the association between the exposures and the adverse birth outcomes. Models were fitted with varying restrictions on the percentage of private well usage in the counties in order to limit the degree of exposure misclassification. Estimated water concentrations of atrazine (mean=0.42 ppb) and nitrate (mean=0.95ppm) were generally low. Neither contaminant was associated with an increased risk of term LBW. Atrazine exposure was associated with a significant increased rate of PTD when well use was restricted to 10% and the exposure was averaged over 4-6 months prior to birth (Rate Ratio for 1ppm increase [RR 1ppm ]=1.08, 95%CI=1.05,1.11) or over 9 months prior to birth (RR 1ppm =1.10, 95%CI=1.01,1.20). Atrazine exposure was also associated with an increased rate of VPTD when when well use was restricted to 10% and the exposure was averaged over 7-9 months prior to birth (RR 1ppm =1.19, 95%CI=1.04,1.36). Exposure to nitrate was significantly associated with an increased rate of VPTD (RR 1ppm =1.08, 95%CI=1.02,1.15) and VLBW (RR 1ppm =1.17, 95%CI=1.08,1.25) when well use was restricted to 20% and the exposure was averaged over 9 months prior to birth. The positive and negative findings from our study need to be interpreted cautiously given its ecologic design, and limitations in the data for the exposures and other risk factors. Nonetheless, our findings do raise concerns about the potential adverse effects of these common water contaminants on human development and health, and the adequacy of current regulatory standards. Further studies of these issues are needed with individual level outcome data and more refined estimates of exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures.

    PubMed

    Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John

    2018-06-08

    The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.

  15. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; Moreno, Raphael; Moullet, Arielle; Lellouch, Emmanuel; Fouchet, Thierry

    2014-05-01

    ALMA offers a unique opportunity to map mesospheric species on Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11 arcsec and the illumination factor was about 90 percent. Maps of CO, SO, SO2, and HDO have been built from transitions recorded in the 335-347 GHz frequency range. The mesospheric thermal profile has been inferred using the CO transition at 345.795 GHz. From the integrated spectrum of SO recorded on Nov. 14 at 346.528 GHz, we find that the best fit is obtained with a cut-off in the SO vertical distribution at about 88 km and a mean mixing ratio of about 8.0 ppb above this level. In the case of SO2, as for SO, we find that the best fit is obtained with a cut-off at about 88 km; the SO2 mixing ratio above this level is about 12 ppb. The map of HDO is retrieved from the 335.395 GHz transition. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is consistent with a H2O mixing ratio of about 2.5 ppm, constant with altitude. Our results are in good agreement with previous single dish submillimeter observations (Sandor and Clancy, Icarus 177, 129, 2005; Gurwell et al. Icarus 188, 288, 2007; Sandor et al. Icarus 208, 49, 2010; Icarus 217, 836, 2012), as well as with the predictions of photochemical models (Zhang et al. Icarus 217, 714, 2012).

  16. Chemical composition of Mars

    USGS Publications Warehouse

    Morgan, J.W.; Anders, E.

    1979-01-01

    The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on K U = 2200 from orbital ??-spectrometry and on thermal history calculations by Tokso??z and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking). The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (?? = 3.52-3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S-much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600-1300 K) or 0.029 (Tl group, Tcond < 600 K). The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11. Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. ?? 1979.

  17. Cleaning verification: A five parameter study of a Total Organic Carbon method development and validation for the cleaning assessment of residual detergents in manufacturing equipment.

    PubMed

    Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei

    2018-02-05

    A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100 ® and CIP200 ® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Vehicular air pollution, playgrounds, and youth athletic fields.

    PubMed

    Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri

    2006-07-01

    In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.

  19. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.

    PubMed

    Mansfield, C M; Alloy, M M; Hamilton, J; Verbeck, G F; Newton, K; Klaine, S J; Roberts, A P

    2015-02-01

    Titanium dioxide nanoparticles (TiO2 NP) are one of the most abundantly utilized nanoparticles in the world. Studies have demonstrated the ability of the anatase crystal of TiO2 NP to produce reactive oxygen species (ROS) in the presence of ultraviolet radiation (UVR), a co-exposure likely to occur in aquatic ecosystems. The goal of this study was to examine the photo-induced toxicity of anatase TiO2 NP under natural sunlight to Daphnia magna. D. magna were exposed to a range of UVR intensities and anatase TiO2 concentrations in an outdoor exposure system using the sun as the source of UVR. Different UVR intensities were achieved using UVR opaque and transparent plastics. AnataseTiO2-NP demonstrated the reciprocal relationship seen in other phototoxic compounds such as polycyclic aromatic hydrocarbons (PAHs) at higher UVR treatments. The calculated 8h LC50 of anatase TiO2 NP was 139 ppb under full intensity ambient natural sunlight, 778 ppb under 50% natural sunlight, and >500 ppm under 10% natural sunlight. Mortality was also compared between animals allowed to accumulate a body burden of anatase TiO2 for 1h and organisms whose first exposure to anatase TiO2 aqueous suspensions occurred under UVR. A significantly greater toxic effect was observed in aqueous, low body burden suspensions than that of TiO2 1h body burdens, which is dissimilar from the model presented in PAHs. Anatase TiO2 presents a unique photo-induced toxic model that is different than that of established phototoxic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    PubMed

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  1. Searching for the Source of Salt Marsh Buried Mercury.

    NASA Astrophysics Data System (ADS)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  2. Anthropogenic and biogenic sources of Ethylene and the potential for human exposure: A literature review.

    PubMed

    Morgott, David A

    2015-11-05

    This review examines available published information on ethylene emission sources, emission magnitudes, and inhalation exposures in order to assess those factors and circumstances that can affect human contact with this omnipresent gas. The results reveal that airborne ethylene concentrations at the ppb levels are commonplace and can arise in the vicinity of traffic corridors, forest fires, indoor kitchens, horticultural areas, oil fields, house fires, and petrochemical sites. The primary biogenic sources of ethylene derive from microbial activity in most soil and marine environments as well as its biological formation in wide variety of plant species. Sizable amounts of ethylene can also result from the burning of fossil fuels, forest and savanna fires, and crop residue combustion. Motor vehicle exhaust is the largest contributor to urban ethylene levels under most circumstances, but industrial flare releases and fugitive emissions may also be of relevance. Occupational exposures generally range up to about 50-100 ppm and have been documented for those working in the horticultural, petrochemical, and fire and rescue industries. Continuous personal monitoring at the community level has documented exposures of 3-4 ppb. These levels are more closely associated with the ethylene concentrations found indoors rather than outdoors indicating the importance of exposure sources found within the home. Indoor air sources of ethylene are associated with environmental tobacco smoke, wood or propane fuel use, fruit and vegetable storage, and cooking. Ethylene is not found in any consumer or commercial products and does not off-gas from building products to any appreciable extent. The review indicates that outdoor sources located some distance from the home do not make an appreciable contribution to personal exposures given the strength and variety of sources found in the immediate living environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Reduced carbonic fluid at magmatic PT conditions: new experimental data.

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander; Salova, Tamara; Rinat, Gabitov; Sergey, Isaenko

    2017-04-01

    We study properties of the dry fluid of C-O-S composition at P=2000 bar and T=900-1000oC. Dry carbonic fluid was generated at the thermal decomposition of FeCO3 and (Fe,Mg)CO3. At the decomposition of pure FeCO3 assemblages of Wus-Mt and pure Mt was recognized. Wus-Mt corresponds to the fO2 on the level around QFM-2. Native carbon was formed from the fluid when CO concentration was above constrained by CCO buffer. Generated fluid was trapped as the bubbles within welded albite glass matrix. Micro-Raman study yields around 15 vol.% of CO in the mixture with CO2. The glass trap composition was interpreted to estimate the minimum solubilities of different elements in the studied fluid: Pt - 15 ppm, Mn - 262 ppm, P - 4100 ppm, Ce -22 ppm, S- 3400 ppm, Sr - 3300 ppm (Simakin et al., 2016). We add sulfur to the system in the form of FeS2, thermally decomposing after carbonates. Fluid interaction with platinum capsule walls to form PtS leads to the fast removal of sulfur. Analysis of the interaction products provides preliminary estimate of the Pt solubility. We observe transformation of magnetite to FeS at the reaction with COS. Pyrrhotite formed from oxide contains in average 1.5 wt.% of Pt. Assuming that at the reaction 1/3Fe3O4+COS+1/3CO = FeS +CO2 all dissolved in the fluid platinum was incorporated into the sulfide we get minimum Pt solubility of about 5000 ppm. To capture fluid composition we perform experiments in the Au capsules with sodium-silicate glass trap. Micro-Raman shows that presence of water in sodium-silicate leads to the partial COS decomposition to thiols and H2S, however, COS still was prevailing form of sulfur in the fluid as predicted theoretically (Simakin, 2014). Transport of siderophile (Ni, Cr, PGE, Au), LILE (Ba, Cs, Rb, Sr), LREE and chalcophile (Ag, Zn, Cu) elements by the dry fluid of C-O-S composition can be decisive during the formation of different volcanic aerosol phases. Study was partially supported by RFBR-DFG grant # 16-55-12040. References. Simakin AG, Salova TP, Gabitov RI and Isaenko SI. Dry CO2-CO fluid as an important potential deep Earth solvent. Geofluids (2016, online). Simakin AG (2014) Peculiarities of the fluid composition in the dry C-O-S system at PT parameters of the low crust by the data of the thermodynamic modeling. Petrology, 22, 50-59.

  4. Heparin bridge therapy and post-polypectomy bleeding.

    PubMed

    Kubo, Toshiyuki; Yamashita, Kentaro; Onodera, Kei; Iida, Tomoya; Arimura, Yoshiaki; Nojima, Masanori; Nakase, Hiroshi

    2016-12-07

    To identify risk factors for post-polypectomy bleeding (PPB), focusing on antithrombotic agents. This was a case-control study based on medical records at a single center. PPB was defined as bleeding that occurred 6 h to 10 d after colonoscopic polypectomy and required endoscopic hemostasis. As risk factors for PPB, patient-related factors including anticoagulants, antiplatelets and heparin bridge therapy as well as polyp- and procedure-related factors were evaluated. All colonoscopic hot polypectomies, endoscopic mucosal resections and endoscopic submucosal dissections performed between January 2011 and December 2014 were reviewed. PPB occurred in 29 (3.7%) of 788 polypectomies performed during the study period. Antiplatelet or anticoagulant agents were prescribed for 210 (26.6%) patients and were ceased before polypectomy except for aspirin and cilostazol in 19 cases. Bridging therapy using intravenous unfractionated heparin was adopted for 73 patients. The univariate analysis revealed that anticoagulants, heparin bridge, and anticoagulants plus heparin bridge were significantly associated with PPB ( P < 0.0001) whereas antiplatelets and antiplatelets plus heparin were not. None of the other factors including age, gender, location, size, shape, number of resected polyps, prophylactic clipping and resection method were correlated with PPB. The multivariate analysis demonstrated that anticoagulants and anticoagulants plus heparin bridge therapy were significant risk factors for PPB ( P < 0.0001). Of the 29 PPB cases, 4 required transfusions and none required surgery. A thromboembolic event occurred in a patient who took anticoagulant. Patients taking anticoagulants have an increased risk of PPB, even if the anticoagulants are interrupted before polypectomy. Heparin-bridge therapy might be responsible for the increased PPB in patients taking anticoagulants.

  5. Platinum complexes of a borane-appended analogue of 1,1'-bis(diphenylphosphino)ferrocene: flexible borane coordination modes and in situ vinylborane formation.

    PubMed

    Cowie, Bradley E; Emslie, David J H

    2014-12-15

    A bis(phosphine)borane ambiphilic ligand, [Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh2 )-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is η(3) BCC-coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6-dimethylphenyl) afforded [PtL(FcPPB)] {L=CO (2) and CNXyl (3)} featuring η(2) BC- and η(1) B-arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ-H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2 H to [Pt(FcPPB)] afforded [Pt(C2 Ph)(μ-H)(FcPPB)] (5), which rapidly converted to [Pt(FcPPB')] (6; FcPPB'=[Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh-CPh=CHPh-Z)-ortho}]) in which the newly formed vinylborane is η(3) BCC-coordinated. Unlike arylborane complex 1, vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2 Ph at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. K2xSn4–xS8–x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions† †Electronic supplementary information (ESI) available: Raman spectra, thermogravimetric analysis, scanning electron microgram, X-ray crystallographic file (CIF) containing crystallographic refinement details, atomic coordinates with equivalent isotropic displacement parameters, anisotropic displacement parameters, and selected bond distances for KTS-3. See DOI: 10.1039/c5sc03040d

    PubMed Central

    Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; Islam, Saiful M.

    2016-01-01

    The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. Here we report the synthesis and crystal structure of K2xSn4–xS8–x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs+, Sr2+ and UO22+ ion exchange properties in varying conditions. The compound adopts a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K2xSn4–xS8–x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P21/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs+, Sr2+ and UO22+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (Kd) for KTS-3 are high for Cs+ (5.5 × 104), Sr2+ (3.9 × 105) and UO22+ (2.7 × 104) at neutral pH (7.4, 6.9, 5.7 ppm Cs+, Sr2+ and UO22+, respectively; V/m ∼ 1000 mL g–1). KTS-3 exhibits impressive Cs+, Sr2+ and UO22+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste. PMID:29910868

  7. Post-partum blues among Korean mothers: a structural equation modelling approach.

    PubMed

    Chung, Sung Suk; Yoo, Il Young; Joung, Kyoung Hwa

    2013-08-01

    The objective of this study was to propose the post-partum blues (PPB) model and to estimate the effects of self-esteem, social support, antenatal depression, and stressful events during pregnancy on PPB. Data were collected from 249 women post-partum during their stay in the maternity units of three hospitals in Korea using a self-administered questionnaire. A structural equation modelling approach using the Analysis of Moments Structure program was used to identify the direct and indirect effects of the variables on PPB. The full model had a good fit and accounted for 70.3% of the variance of PPB. Antenatal depression and stressful events during pregnancy had strong direct effects on PPB. Household income showed indirect effects on PPB via self-esteem and antenatal depression. Social support indirectly affected PPB via self-esteem, antenatal depression, and stressful events during pregnancy. © 2012 The Authors; International Journal of Mental Health Nursing © 2012 Australian College of Mental Health Nurses Inc.

  8. Multi-species trace gas sensing with dual-wavelength QCLs

    NASA Astrophysics Data System (ADS)

    Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas

    2018-06-01

    Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

  9. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles). The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  10. Removal of atmospheric oxidants with annular denuders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, E.L. II; Grosjean, D.

    1990-06-01

    Annular denuders have been tested for their ability to remove atmospheric photochemical oxidants including ozone (150-170 ppb), nitrogen dioxide (40-200 ppb), nitric acid (35 ppb), and peroxyacetyl nitrate (PAN, 6-25 ppb). Formaldehyde (80-140 ppb) was also tested as a copollutant. Tests were carried out at low rates of 1,2, and 20 L/min, with oxidants tested singly or as part of photochemical mixtures in purified air. Efficient collection was obtained with annular denuders coated with potassium iodide (O{sub 3}), phenoxamine (O{sub 3}), sodium carbonate (HNO{sub 3}), potassium hydroxide (PAN), and 2,4-dinitrophenylhydrazine (HCHO).

  11. Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls.

    PubMed Central

    Schütz, A; Bergdahl, I A; Ekholm, A; Skerfving, S

    1996-01-01

    OBJECTIVES: To test a simple procedure for preparing samples for measurement of lead in blood plasma (P-Pb) and whole blood (B-Pb) by inductively coupled plasma mass spectrometry (ICP-MS), to measure P-Pb and B-Pb in lead workers and controls, and to evaluate any differences in the relation between B-Pb and P-Pb between people. METHODS: P-Pb and B-Pb were measured by ICP-MS in 43 male lead smelter workers and seven controls without occupational exposure to lead. For analysis, plasma and whole blood were diluted 1 in 4 and 1 in 9, respectively, with a diluted ammonia solution containing Triton-X 100 and EDTA. The samples were handled under routine laboratory conditions, without clean room facilities. RESULTS: P-Pb was measured with good precision (CV = 5%) even at concentrations present in the controls. Freeze storage of the samples had no effect on the results. The detection limit was 0.015 microgram/l. The P-Pb was 0.15 (range 0.1-0.3) microgram/l in controls and 1.2 (0.3-3.6) micrograms/l in lead workers, although the corresponding B-Pbs were 40 (24-59) micrograms/l and 281 (60-530) micrograms/l (1 microgram Pb/I = 4.8 nmol/l). B-Pb was closely associated with P-Pb (r = 0.90). The association was evidently non-linear; the ratio B-Pb/P-Pb decreased with increasing P-Pb. CONCLUSIONS: By means of ICP-MS and a simple dilution procedure, P-Pb may be measured accurately and with good precision down to concentrations present in controls. Contamination of blood at sampling and analysis is no major problem. With increasing P-Pb, the percentage of lead in plasma increases. In studies of lead toxicity, P-Pb should be considered as a complement to current indicators of lead exposure and risk. PMID:9038796

  12. Pleuropulmonary Blastoma DICER1 Syndrome Study

    Cancer.gov

    Pleuropulmonary blastoma (PPB) is a rare tumor of the lung that affects young children. The PPB DICER1 Syndrome Study an observational clinical research study is enrolling children with PPB and their families.

  13. Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression

    PubMed Central

    Islam, Shaikhul; Akanda, Abdul M.; Prova, Ananya; Islam, Md. T.; Hossain, Md. M.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be utilized to augment plant growth and suppress plant diseases. The objectives of this study were to identify and characterize PGPR indigenous to cucumber rhizosphere in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3, PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on their in vitro plant growth promoting attributes and antagonism of phytopathogens. Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus amyloliquefaciens. The selected isolates produced high levels (26.78–51.28 μg mL-1) of indole-3-acetic acid, while significant acetylene reduction activities (1.79–4.9 μmole C2H4 mg-1 protein h-1) were observed in eight isolates. Cucumber plants grown from seeds that were treated with these PGPR strains displayed significantly higher levels of germination, seedling vigour, growth, and N content in root and shoot tissue compared to non-treated control plants. All selected isolates were able to successfully colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and characteristic morphological alterations in P. capsici hyphae that grew toward PGPR colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial to the host plants, they may be applied in the development of new, safe, and effective seed treatments as an alternative to chemical fungicides. PMID:26869996

  14. Heparin bridge therapy and post-polypectomy bleeding

    PubMed Central

    Kubo, Toshiyuki; Yamashita, Kentaro; Onodera, Kei; Iida, Tomoya; Arimura, Yoshiaki; Nojima, Masanori; Nakase, Hiroshi

    2016-01-01

    AIM To identify risk factors for post-polypectomy bleeding (PPB), focusing on antithrombotic agents. METHODS This was a case-control study based on medical records at a single center. PPB was defined as bleeding that occurred 6 h to 10 d after colonoscopic polypectomy and required endoscopic hemostasis. As risk factors for PPB, patient-related factors including anticoagulants, antiplatelets and heparin bridge therapy as well as polyp- and procedure-related factors were evaluated. All colonoscopic hot polypectomies, endoscopic mucosal resections and endoscopic submucosal dissections performed between January 2011 and December 2014 were reviewed. RESULTS PPB occurred in 29 (3.7%) of 788 polypectomies performed during the study period. Antiplatelet or anticoagulant agents were prescribed for 210 (26.6%) patients and were ceased before polypectomy except for aspirin and cilostazol in 19 cases. Bridging therapy using intravenous unfractionated heparin was adopted for 73 patients. The univariate analysis revealed that anticoagulants, heparin bridge, and anticoagulants plus heparin bridge were significantly associated with PPB (P < 0.0001) whereas antiplatelets and antiplatelets plus heparin were not. None of the other factors including age, gender, location, size, shape, number of resected polyps, prophylactic clipping and resection method were correlated with PPB. The multivariate analysis demonstrated that anticoagulants and anticoagulants plus heparin bridge therapy were significant risk factors for PPB (P < 0.0001). Of the 29 PPB cases, 4 required transfusions and none required surgery. A thromboembolic event occurred in a patient who took anticoagulant. CONCLUSION Patients taking anticoagulants have an increased risk of PPB, even if the anticoagulants are interrupted before polypectomy. Heparin-bridge therapy might be responsible for the increased PPB in patients taking anticoagulants. PMID:28018108

  15. B1-Phytoprostanes Trigger Plant Defense and Detoxification Responses1[w

    PubMed Central

    Loeffler, Christiane; Berger, Susanne; Guy, Alexandre; Durand, Thierry; Bringmann, Gerhard; Dreyer, Michael; von Rad, Uta; Durner, Jörg; Mueller, Martin J.

    2005-01-01

    Phytoprostanes are prostaglandin/jasmonate-like products of nonenzymatic lipid peroxidation that not only occur ubiquitously in healthy plants but also increase in response to oxidative stress. In this work, we show that the two naturally occurring B1-phytoprostanes (PPB1) regioisomers I and II (each comprising two enantiomers) are short-lived stress metabolites that display a broad spectrum of biological activities. Gene expression analysis of Arabidopsis (Arabidopsis thaliana) cell cultures treated with PPB1-I or -II revealed that both regioisomers triggered a massive detoxification and defense response. Interestingly, expression of several glutathione S-transferases, glycosyl transferases, and putative ATP-binding cassette transporters was found to be increased by one or both PPB1 regioisomers, and hence, may enhance the plant's capacity to inactivate and sequester reactive products of lipid peroxidation. Moreover, pretreatment of tobacco (Nicotiana tabacum) suspension cells with PPB1 considerably prevented cell death caused by severe CuSO4 poisoning. Several Arabidopsis genes induced by PPB1, such as those coding for adenylylsulfate reductase, tryptophan synthase β-chain, and PAD3 pointed to an activation of the camalexin biosynthesis pathway that indeed led to the accumulation of camalexin in PPB1 treated leaves of Arabidopsis. Stimulation of secondary metabolism appears to be a common plant reaction in response to PPB1. In three different plant species, PPB1-II induced a concentration dependent accumulation of phytoalexins that was comparable to that induced by methyl jasmonate. PPB1-I was much weaker active or almost inactive. No differences were found between the enantiomers of each regioisomer. Thus, results suggest that PPB1 represent stress signals that improve plants capacity to cope better with a variety of stresses. PMID:15618427

  16. RanGAP1 is a continuous marker of the Arabidopsis cell division plane

    PubMed Central

    Xu, Xianfeng Morgan; Zhao, Qiao; Rodrigo-Peiris, Thushani; Brkljacic, Jelena; He, Chao Sylvia; Müller, Sabine; Meier, Iris

    2008-01-01

    In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division. PMID:19011093

  17. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone.

    PubMed

    Xin, Yue; Yuan, Xiangyang; Shang, Bo; Manning, William J; Yang, Aizhen; Wang, Younian; Feng, Zhaozhong

    2016-11-01

    A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health. Copyright © 2016. Published by Elsevier B.V.

  18. First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.

    2012-06-01

    The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.

  19. Indigenous Carbon Embedded in Apollo 17 Black Volcanic Glass Surface Deposits

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Ross, D. K.; Le, L.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. The levels of such organic material were expected to be and found to be small. Previous work on this topic includes Murphy et al. [1] who reported the presence of anthropogenic organics with sub-ppm concentrations in Apollo 11 fines. In Apollo 12 samples, Preti et al. [2] detected low levels, < 10 ppb or below, of more complex organic material that may have been synthesized by abrupt heating during analysis. Kvenvolden et al. [3] detected porphyrin-like pigments at the ng to pg level in an Apollo 11 bulk sample. Hodgson et al. [4] and Ponnamperuma et al. [5] suggested that most if not all porphyrins were synthesized from rocket fuel during module landing. Chang et al. [6] reported indigenous carbon ranging from 5-20 g/g in the form of metal carbides in Apollo 11 fines. Hare et al. [7] reported amino acids at he 50 ng/g level in Apollo 11 samples but suggested the results may be explained as contamination. More recently, Clemett et al. [8] reported simple polycyclic aromatic hydrocarbons at concentrations of < 1ppm in an Apollo 16 soil. Low concentrations of lunar organics may be a consequence not only of its paucity, but also its heterogeneous distribution. If the sample size required for a measurement is large relative to the localization of organics, detection is limited not by ultimate sensitivity but rather by the ability to distinguish an indigenous signature from background contamination [9].

  20. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia

    NASA Astrophysics Data System (ADS)

    Brügmann, G. E.; Naldrett, A. J.; Asif, M.; Lightfoot, P. C.; Gorbachev, N. S.; Fedorenko, V. A.

    1993-05-01

    In this study Cu, Ni, and platinum-group elements (PGE) were determined in a sequence of basaltic and picritic lavas from the Siberian Trap in the Noril'sk area of Russia to constrain genetic relationships between the basalts and the petrogenesis of Ni-Cu-PGE sulfide deposits associated with the Talnakh and Noril'sk intrusions. In the most primitive basalts (8-19 wt% MgO) of the Tuklonsky (Tk) suite, Pt and Pd concentrations range from 4-13 ppb, increasing with decreasing MgO content; whereas Ir contents decrease with MgO from 0.8-0.05 ppb. The contrasting behavior of these elements, which all have very high sulfide-silicate partition coefficients, as well as the primitive mantle-like ratios of Cu/Y and Pd/Y, suggests that these magmas were not sulfide-saturated. The high PGE abundances imply that their parental magmas were also not sulfide saturated during partial melting in the mantle. Due to sulfide segregation, the overlying basalts of the Nadezhdinsky (Nd) series are low in Cu and Ni (52 and 38 ppm, respectively); highly depleted in all PGE; and have very low Cu/Y, Pd/Y, and Pd/Cu ratios. However, in stratigraphically higher levels, Cu, Ni, and PGE concentrations increase systematically through the Morongovsky (Mr) suite to reach a concentration plateau in the uppermost Mokulaevsky (Mk) suite (Pt 8 ppb; Pd: 9 ppb; Ir: 0.12 ppb; Rh: 0.4 ppb). At the same time, ratios such as Cu/Y increase and approach primitive mantle values. However, ratios involving PGE, such as Pd/Y, remain low, suggesting the removal of small amounts of sulfide (0.01-0.03%). The compositional variations in the basalts and the sulfide liquids can be quantitatively described by fractional segregation of a sulfide liquid in an open- or closed-system magma chamber. The latter model suggests that the basalts represent the eruption products of a zoned magma chamber in which light magma, with crustal components contaminated, overlies less contaminated, denser magma. Crustal contamination caused sulfide saturation, and the resulting sulfide liquids settled through a magma column and accumulated at the bottom of the chamber. In this model, the sulfide liquid is not in equilibrium with the whole magma mass, and sulfide segregation is compared with the zone-refining process of metallurgy. The sulfides become more enriched as they move through the magma; and although the magma left behind is depleted in PGE, Cu, and Ni, their concentrations also increase with depth. Eventually, the magma chamber is emptied from the top to the bottom, producing the flood basalt sequence and the associated intrusions and ore deposits. In the open-system model, sulfide saturation was initially caused by assimilation of crustal material by the Tuklonsky magma. Continuous and simultaneous replenishment, assimilation, and crystallization processes formed the lower Nd lavas. The concurrent removal of 0.5-1% sulfide strongly depleted these magmas in chalcophile and siderophile metals. Due to the continuous replenishment of the magma chamber with uncontaminated PGE-rich magma, succeeding lavas (Mr, Mk) show diminishing signs of crustal contamination and become less sulfide-saturated, as indicated by the increasing Ni, Cu, and PGE abundances. During the evolution of the chamber, the magma remained sulfur-saturated, and sulfides accumulated at the base. The composition of the sulfide ores could be regarded as a mixture consisting of low Ni-, Cu-, and PGE-sulfides derived with a low silicate/sulfide ratio (100) from the Tk-Nd magma and high Ni-, Cu-, and PGE-sulfides formed with a high ratio (10,000) from the Mr-Mk magma.

  1. A high ozone episode in winter 2013 in the Uinta Basin oil and gas region characterized by aircraft measurements

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Karion, A.; Schnell, R. C.; Pétron, G.; Sweeney, C.; Wolter, S.; Neff, D.; Montzka, S. A.; Miller, B. R.; Helmig, D.; Johnson, B. J.; Hueber, J.

    2014-08-01

    During the winter of 2012-2013 atmospheric surface ozone mole fractions exceeded the US 8 h standard of 75 ppb on 39 days in the Uinta Basin of Utah. As part of the Uinta Basin Winter Ozone Study (UBWOS) aircraft flights were conducted throughout the basin with continuous measurements of ozone (O3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide (NO2), and discrete whole air flask samples for determination of ∼50 trace gases including a number of non-methane hydrocarbons (NMHCs). During the course of seven flights conducted between 31 January and 7 February 2013, coinciding with strong, multi-day temperature inversions, O3 levels gradually built up in the shallow boundary layer from ∼45 ppb to ∼140 ppb. Near-surface CH4 mole fractions increased during the episode from near background levels of ∼2 ppm to over 10 ppm. Based on elevated levels of CH4 across the basin and high correlations of CH4 with NMHCs from the discrete air samples, O3 precursor NMHCs were also inferred to be elevated throughout the basin. Discrete plumes of high NO2 were observed in the gas production region of the basin suggesting that gas processing plants and compressor facilities were important point sources of reactive nitrogen oxides (NOx). Vertical profiles obtained during the flights showed that the high O3 mole fractions (as well as other elevated constituents) were confined to a shallow layer from near the ground to 300-400 m above ground level (m a.g.l.) capped by a strong temperature inversion. The highest mole fractions of the measured constituents during the study period were in an isothermal cold layer that varied from ∼300 m depth on 4 February to ∼150 m on 5 February. A gradient layer with declining mole fractions with altitude extended above the isothermal layer to ∼1900 m a.s.l. (300-400 m a.g.l.) indicative of some mixing of air out of the boundary layer. O3 mole fractions continued to increase within the basin as the high O3 episode developed over the course of a week. CH4 mole fractions, on the other hand, leveled off after several days. On several flights, the aircraft sampled the plume of a coal-fired power plant (located east of the main gas field) flowing above the inversion layer. These measurements ruled out the effluents of the power plant as a significant source of NOx for O3 production beneath the temperature inversion in the basin. The presence of elevated O3 precursors within the basin and the rapid daytime production of O3 in the atmosphere beneath the temperature inversion both indicated that O3 was being produced from precursors emitted within the basin beneath the temperature inversion. Although observations show that horizontal winds in the surface layer were relatively light during the high ozone event, they were sufficient to disperse precursors up to 80 km from primary sources in the main gas field in the southeast quadrant to the balance of the Uinta Basin.

  2. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    DOE PAGES

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb andmore » observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.« less

  3. The relation between respiratory illness in primary schoolchildren and the use of gas for cooking--II. Factors affecting nitrogen dioxide levels in the home.

    PubMed

    Goldstein, B D; Melia, R J; Chinn, S; Florey, C V; Clark, D; John, H H

    1979-12-01

    The study was designed to determine whether there was an association between indoor levels of nitrogen dioxide (NO2) and respiratory illness and lung function in schoolchildren. NO2 was measured for one week in the winter outside and inside the homes of children aged 6-7 years living and attending primary schools in a defined 4 square km area in Middlesbrough, Cleveland, UK. Outdoor levels of NO2 measured at 75 points within the area ranged from 14-24 ppb weekly average. Measurements were also made in 428 kitchens with gas cookers, range 5-317 ppb, mean 112.2 ppb, and in 87 kitchens with electric cookers, range 6-188 ppb, mean 18.0 ppb. In a random subsample of homes the range of NO2 levels in 107 children's bedrooms in homes where gas was used for cooking was 4-169 ppb, mean 30.5 ppb, in 18 bedrooms in electric cooking homes the range was 3-37 ppb, mean 13.9 ppb. NO2 levels in the gas cooking kitchens were positively related to the presence of pilot lights, use of gas fires for main heating, number of regular smokers, and the number of people in the home. Information from 29 homes with the highest kitchen NO2 levels paired with 29 low NO2 gas cooking homes showed that the daily number of meals eaten and the frequency with which the cooker was used for heating and drying clothes were significantly greater in the high NO2 homes.

  4. PPB | What is a Clinical Study

    Cancer.gov

    The Pleuropulmonary blastoma (PPB) DICER1 Syndrome Study ‹an observational clinical research study‹is enrolling children with PPB and their families. In an observational study, investigators assess health outcomes in groups of participants according to a protocol or research plan.

  5. Long-term lead elimination from plasma and whole blood after poisoning.

    PubMed

    Rentschler, Gerda; Broberg, K; Lundh, T; Skerfving, S

    2012-04-01

    Blood lead (B-Pb), one of the most used toxicological biomarker all kind, has serious limitations. Thus, the objective is to evaluate whether plasma lead (P-Pb) is more adequate. A long-term follow-up study of five cases of lead poisoning. P-Pb was analysed by inductively coupled plasma mass spectrometry. Kinetics after end of exposure was modelled. P-Pb at severe poisoning was about 20 μg/L; haematological effects at about 5 μg/L. Biological half-time of P-Pb was about 1 month; B-Pb decay was much slower. P-Pb is a valuable biomarker of exposure to and risk, particularly at high exposure.

  6. Temporal trends (1989–2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey)more » did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2669 ppb to 329 ppb)). Although mercury levels decreased from 2003–2008 (6430 ppb to 1042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6430 ppb) are in the range associated with adverse effects (5000 ppb for feathers). -- Highlights: ► Metals were monitored in feathers of great egrets from Barnegat Bay, New Jersey. ► Levels of cadmium and lead decreased significantly from 1989–2011. ► Mercury levels in feathers from great egrets did not decline from 1989–2011. ► Metal levels were generally higher in great egrets and black-crowned night heron feathers than in snowy egrets.« less

  7. Larvicidal potential of some plants from West Africa against Culex quinquefasciatus (Say) and Anopheles gambiae Giles (Diptera: Culicidae).

    PubMed

    Azokou, Alain; Koné, Mamidou W; Koudou, Benjamin G; Tra Bi, Honora F

    2013-01-01

    Mosquitoes increased resistance to insecticides, and environmental concerns about the use of insecticides, pose a major challenge in the search for new molecules to deplete and incapacitate mosquito populations. Plants are the valuable source as practices consisting in exploiting plant materials as repellents, and are still in wide use throughout developing countries. The aim of the present study was to screen plants from Cτte d'Ivoire for larvicidal activity against mosquitoes. Resistant and sensitive larvae (III and IV instar) of Anopheles gambiae and Culex quinquefasciatus were exposed to crude ethanol extracts (90%) of 45 plants and viability observed after 30 min, 6, 12 and 24 h postincubation. After partition of active extracts, each fraction (hexane and chloroform washed with NaCl 1%, tannins and aqueous) was tested using the same protocol at various concentrations (1000- 31.2 ppm). Of 49 extracts tested, 7 exhibited high potential (LC50 = 80 to 370 ppm) against resistant and sensitive III and IV instar larvae of An. gambiae and Cx. quinquefasciatus. These extracts were from Cissus populnea, Cochlospermum planchonii, Heliotropium indicum, Phyllanthus amarus, Vitex grandifolia and Alchornea cordifolia. However, three most active plant species (LC50 = 80- 180 ppm) were Cs. populnea, Cm. planchonii and P. amarus Their hexane and chloroform fractions showed high larvicidal activity. This study demonstrated that plants from Cτte d'Ivoire have a real potential for malaria, yellow fever, filarial and dengue vector control. Those could be used as sources or provide lead compounds for the development of safe plant-based biocides.

  8. Environmental and occupational exposure to benzene in Thailand.

    PubMed

    Navasumrit, Panida; Chanvaivit, Sirirat; Intarasunanont, Pornpat; Arayasiri, Manaswee; Lauhareungpanya, Narumon; Parnlob, Varaporn; Settachan, Daam; Ruchirawat, Mathuros

    2005-05-30

    Exposure to benzene in air is a concern in Thailand, particularly since it was observed that the incidence of blood-related cancers, such as leukemia and lymphoma, has increased in the past few decades. In Bangkok, the mean atmospheric levels of benzene on main roads and in schools were 33.71 and 8.25 ppb, respectively, while in gasoline service stations and petrochemical factories the mean ambient levels were 64.78 and 66.24 ppb, respectively. Cloth vendors (22.61 ppb) and grilled-meat vendors (28.19 ppb) working on the roadsides were exposed to significantly higher levels of benzene than the control group (12.95 ppb; p<0.05). Bangkok school children (5.50 ppb) were exposed to significantly higher levels of benzene than provincial school children (2.54 ppb; p<0.01). Factory workers (73.55 ppb) and gasoline service attendants (121.67 ppb) were exposed to significantly higher levels of benzene than control workers (4.77 ppb; p<0.001). In accordance with the increased benzene exposures, levels of urinary trans,trans-muconic acid (MA) were significantly increased in all benzene-exposed groups. In school children, the levels of MA were relatively high, taking into account the much lower level of exposure. Blood benzene levels were also significantly increased in Bangkok school children (77.97 ppt; p<0.01), gasoline service attendants (641.84 ppt; p<0.05) and factory workers (572.61 ppt; p<0.001), when compared with the respective controls. DNA damage, determined as DNA strand breaks, was found to be elevated in gasoline service attendants, petrochemical factory workers, and Bangkok school children (p<0.001). The cytogenetic challenge assay, which measures DNA repair capacity, showed varying levels of significant increases in the numbers of dicentrics and deletions in gasoline service attendants, petrochemical factory workers and Bangkok school children, indicating a decrease in DNA repair capacity in these subjects.

  9. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Saeki, T.; Yoshida, Y.; Yokota, T.; Sweeney, C.; Tans, P. P.; Biraud, S. C.; Machida, T.; Pittman, J. V.; Kort, E. A.; Tanaka, T.; Kawakami, S.; Sawa, Y.; Tsuboi, K.; Matsueda, H.

    2014-09-01

    Column-averaged dry-air mole fractions of methane (XCH4), retrieved from Greenhouse gases Observing SATellite (GOSAT) short-wavelength infrared (SWIR) spectra, were validated by using aircraft measurement data from the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. In the calculation of XCH4 from aircraft measurements (aircraft-based XCH4), other satellite data were used for the CH4 profiles above the tropopause. We proposed a data-screening scheme for aircraft-based XCH4 for reliable validation of GOSAT XCH4. Further, we examined the impact of GOSAT SWIR column averaging kernels (CAK) on the aircraft-based XCH4 calculation and found that the difference between aircraft-based XCH4 with and without the application of the GOSAT CAK was less than ±9 ppb at maximum, with an average difference of -0.5 ppb. We compared GOSAT XCH4 Ver. 02.00 data retrieved within ±2° or ±5° latitude-longitude boxes centered at each aircraft measurement site with aircraft-based XCH4 measured on a GOSAT overpass day. In general, GOSAT XCH4 was in good agreement with aircraft-based XCH4. However, over land, the GOSAT data showed a positive bias of 1.5 ppb (2.0 ppb) with a standard deviation of 14.9 ppb (16.0 ppb) within the ±2° (±5°) boxes, and over ocean, the average bias was 4.1 ppb (6.5 ppb) with a standard deviation of 9.4 ppb (8.8 ppb) within the ±2° (±5°) boxes. In addition, we obtained similar results when we used an aircraft-based XCH4 time series obtained by curve fitting with temporal interpolation for comparison with GOSAT data.

  10. Lead contamination of chicken eggs and tissues from a small farm flock.

    PubMed

    Trampel, Darrell W; Imerman, Paula M; Carson, Thomas L; Kinker, Julie A; Ensley, Steve M

    2003-09-01

    Twenty mixed-breed adult laying hens from a small farm flock in Iowa were clinically normal but had been exposed to chips of lead-based paint in their environment. These chickens were brought to the Iowa State University Veterinary Diagnostic Laboratory, Ames, Iowa, where the concentration of lead in blood, eggs (yolk, albumen, and shell), and tissues (liver, kidney, muscle, and ovary) from 5 selected chickens was determined over a period of 9 days. Blood lead levels ranged from less than 50 to 760 ppb. Lead contamination of the yolks varied from less than 20 to 400 ppb, and shells were found to contain up to 450 ppb lead. Albumen contained no detectable amount. Lead content of the egg yolks strongly correlated with blood lead levels. Deposition of lead in the shells did not correlate well with blood lead levels. Mean tissue lead accumulation was highest in kidneys (1,360 ppb), with livers ranking second (500 ppb) and ovarian tissue third (320 ppb). Muscle contained the lowest level of lead (280 ppb). Lead contamination of egg yolks and edible chicken tissues represents a potential public health hazard, especially to children repeatedly consuming eggs from contaminated family-owned flocks.

  11. The Pb Isotope Pedigree of Western Samoan Volcanics: New Insights From High-Precision Analysis by NEPTUNE ICP/MS

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Workman, R. K.; Coetzee, M.; Blusztajn, J. S.; Ball, L.; Johnson, K. T.

    2002-12-01

    The Samoan hotspot has produced a chain of volcanism stretching from the island of Savai'i in the west to the presently active "leading-edge" volcano, Vailulu'u, in the east. An alignment of seamounts and submarine banks extending west of Savai'i is believed to be the earliest expression of the hotspot (Johnson, 1986). In 2001, we sampled the oldest shield exposures on Savai'i and western Upolu; these, and samples from the western banks Lalla Rookh, Combe and Alexa, have been analyzed for Pb isotopes using a new high precision Pb technique developed on the NEPTUNE ICP/Multi-Collector at W.H.O.I. Pb samples were doped with the NBS 997 thallium standard, with Pb/Tl ratios between 4 and 10; mass discrimination was adjusted to 205Tl/203Tl=2.387075 using an exponential fractionation law. Each run consisted of 35 cycles (16 s each) at an uptake rate of 0.13 μl/min (~12 minutes per run). The abundance sensitivity of the NEPTUNE is 2 ppm downmass and 1 ppm upmass; tailing at mass 204 from Tl is therefore ~30 ppm for 204Pb in a Pb/Tl = 4 solution. This can be adequately accounted for by careful selection of off-peak baseline positions. Beyond this effect, there is no dependence of Pb isotope ratios on Pb/Tl, over the range from 4-10. The correction on 204Pb for 204Hg was also minimal (20-30 ppm) and quite stable. Thirty runs of the NBS 981 standard (200 ppb solution, 12 different days over a period of 5 months) produced results very similar to the best TIMS data, with excellent external reproducibility: 206Pb/204Pb=19.9309(90), 207Pb/204Pb=15.4843(98), 208Pb/204Pb=36.6756(112) (in parenthesis, +/- 2σ in ppm). Similar external reproducibility was achieved for the Samoan basalt samples (duplicate runs on different days on solution splits from a single chemistry: +/- 2σ ppm = 101, 89 and 117, respectively). Over this time period, the variability of Tl mass bias was very small (+/- 130 ppm standard deviation). The only significant pitfall we have encountered is a memory effect that we believe is related to re-sputtering of prior Pb's (particularly the unradiogenic 981's) from the cones. Our results from the Savai'i and Upolu shields form well-defined linear arrays, separate but parallel in 208/204-206/204 and intersecting in 207/204-206/204; the Savai'i array in the latter plot is unusual in that it has a negative slope. The Upolu shield data is distinct from the Upolu post-erosional field; however, the Savai'i shield is only marginally resolvable from the Savai'i post-erosional field. The Pb data from Lalla Rookh and Combe banks are firmly ensconced in the general field of Samoan Pb's; the data from Alexa Bank, while outside the Samoan field, is aligned with it and arguably "Samoan". This new data extend the evidence of Samoan hotspot activity back in time by at least 600 km, and possibly 1400 km (9-20 m.y. at 7cm/year plate velocity).

  12. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals

    DOE PAGES

    He, Yihui; Matei, Liviu; Jung, Hee Joon; ...

    2018-04-23

    Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materialsmore » in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10 –3 cm 2 V –1) derives mainly from the record long hole carrier lifetime (over 25 μs). Here, the easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.« less

  13. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yihui; Matei, Liviu; Jung, Hee Joon

    Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materialsmore » in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10 –3 cm 2 V –1) derives mainly from the record long hole carrier lifetime (over 25 μs). Here, the easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.« less

  14. The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-01-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  15. Determination of heavy metals in mussel and oyster samples with tris (2,2‧-bipyridyl) ruthenium (II)/graphene/Nafion® modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palisoc, Shirley T.; Uy, Donald Jans S.; Natividad, Michelle T.; Lopez, Toni Beth G.

    2017-11-01

    Tris (2,2‧-bipyridyl)ruthenium(II)/graphene/Nafion® modified glassy carbon electrodes (GCEs) were fabricated using the drop coating method. The modified electrode was used as the working electrode in differential pulse voltammetry (DPV) for the determination of lead, cadmium, and copper in mussel and oyster samples. The concentration of Tris (2,2‧-bipyridyl) ruthenium (II) and graphene were varied while those of Nafion®, methanol, and ethanol were held constant in the coating solution. The morphology and elemental composition of the fabricated electrodes were analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Cyclic voltammetry (CV) was done to investigate the reversibility and stability of the modified electrodes. The modified electrode with the best figures of merit was utilized for the detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) via DPV. This was the electrode modified with 4 mg [Ru (bpy)3]2+ and 3 mg graphene. The anodic current and metal concentration showed linear relationship in the range of 48 ppb-745 ppb for Pb2+, 49 ppb-613 ppb for Cd2+, and 28 ppb-472 ppb for Cu2+. The limits of detection for lead, cadmium, and copper were 48 ppb, 49 ppb, and 28 ppb, respectively. Results from atomic absorption spectrometry (AAS) were compared with those measured with DPV. Lead, cadmium, and copper were in mussels, oysters, and sea water. In addition, DPV was able to detect other metals such as zinc, iron, tin and mercury in sea water samples and some samples of oysters.

  16. Effects of chromium nanoparticle dosage on growth, body composition, serum hormones and tissue chromium in Sprague-Dawley rats*

    PubMed Central

    Zha, Long-ying; Xu, Zi-rong; Wang, Min-qi; Gu, Liang-ying

    2007-01-01

    This 6-week study was conducted to evaluate the effects of seven different levels of dietary chromium (Cr) (0, 75, 150, 300, 450, 600, and 1 200 ppb Cr) in the form of Cr nanoparticle (CrNano) on growth, body composition, serum hormones and tissue Cr in Sprague-Dawley (SD) rats. Seventy male SD rats (average initial body weight of (83.2±4.4) g) were randomly assigned to seven dietary treatments (n=10). At the end of the trial, body composition was assessed via dual energy X-ray absorptiometry (DEXA). All rats were then sacrificed to collect samples of blood, organs and tissues for determination of serum hormones and tissue Cr contents. The results indicated that lean body mass was significantly increased (P<0.05) due to the addition of 300 and 450 ppb Cr from CrNano. Supplementation of 150, 300, 450, and 600 ppb Cr decreased (P<0.05) percent body fat significantly. Average daily gain was increased (P<0.05) by addition of 75, 150, and 300 ppb Cr and feed efficiency was increased (P<0.05) by supplementation of 75, 300, and 450 ppb Cr. Addition of 300 and 450 ppb Cr decreased (P<0.05) the insulin level in serum greatly. Cr contents in liver and kidney were greatly increased (P<0.05) by the addition of Cr as CrNano in the dosage of from 150 ppb to 1 200 ppb. In addition, Supplementation of 300, 450, and 600 ppb Cr significantly increased (P<0.05) Cr content in the hind leg muscle. These results suggest that supplemental CrNano has beneficial effects on growth performance and body composition, and increases tissue Cr concentration in selected muscles. PMID:17542060

  17. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-06-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  18. 2,4 - dinitrophenylhydrazine - coated silica gel cartridge method for determination of formaldehyde in air: Identification of an ozone interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnts, R.R.; Tejada, S.B.

    1989-01-01

    Two versions of the 2,4-dinitrophenylhydrazine method, a coated silica gel cartridge (solid) and acetonitrile impinger (solvent based), were used simultaneously to sample varied concentrations of ozone (0-770 ppb) and formaldehyde (20-140 ppb). Ozone was found to be a negative interference in the determination of formaldehyde by the 2,4-dinitrophenylhydrazine-coated silica gel cartridge method. At 120 ppb of ozone, formaldehyde at 40 ppb was under-reported by the cartridge method by 34% and at 300 ppb of ozone, formaldehyde measurements were 61% low. Greater losses were seen at higher ozone concentrations. Impinger sampling (2,4-DNPH in acetonitrile) showed no formaldehyde losses due to ozone.

  19. Modification of Surface Density of a Porous Medium

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  20. Higher Levels of Aflatoxin M1 Contamination and Poorer Composition of Milk Supplied by Informal Milk Marketing Chains in Pakistan

    PubMed Central

    Aslam, Naveed; Tipu, Muhammad Yasin; Ishaq, Muhammad; Cowling, Ann; McGill, David; Warriach, Hassan Mahmood; Wynn, Peter

    2016-01-01

    The present study was conducted to observe the seasonal variation in aflatoxin M1 and nutritional quality of milk along informal marketing chains. Milk samples (485) were collected from three different chains over a period of one year. The average concentrations of aflatoxin M1 during the autumn and monsoon seasons (2.60 and 2.59 ppb) were found to be significantly higher (standard error of the difference, SED = 0.21: p = 0.003) than in the summer (1.93 ppb). The percentage of added water in milk was significantly lower (SED = 1.54: p < 0.001) in summer (18.59%) than in the monsoon season (26.39%). There was a significantly different (SED = 2.38: p < 0.001) mean percentage of water added by farmers (6.23%), small collectors (14.97%), large collectors (27.96%) and retailers (34.52%). This was reflected in changes in milk quality along the marketing chain. There was no difference (p = 0.178) in concentration of aflatoxin M1 in milk collected from the farmers (2.12 ppb), small collectors (2.23 ppb), large collectors (2.36 ppb) and retailers (2.58 ppb). The high levels of contamination found in this study, which exceed the standards set by European Union (0.05 ppb) and USFDA (0.5 ppb), demand radical intervention by regulatory authorities and mass awareness of the consequences for consumer health and safety. PMID:27929386

Top