Science.gov

Sample records for pr isoform expression

  1. Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells.

    PubMed

    Wang, Honggang; Lee, Eun-Woo; Zhou, Lin; Leung, Peter C K; Ross, Douglas D; Unadkat, Jashvant D; Mao, Qingcheng

    2008-03-01

    Breast cancer resistance protein (BCRP) plays a significant role in drug disposition and in conferring multidrug resistance in cancer cells. Previous studies have shown that steroid hormones such as 17beta-estradiol and progesterone can affect BCRP expression in cancer cells. In this study, we investigated the molecular mechanism by which BCRP expression in human placental choriocarcinoma BeWo cells is regulated by progesterone. Transfection of the progesterone receptor (PR) isoforms PRA and PRB resulted in a similarly increased expression of PRA and PRB, respectively. However, progesterone significantly increased BCRP expression and activity only in PRB-transfected cells. This stimulatory effect of progesterone was abrogated by the PR antagonist mifepristone (RU-486). Consistently, transcriptional activity of the BCRP promoter was induced 2- to 6-fold by 10(-8) to 10(-5) M progesterone in PRB-transfected cells. Progesterone had little effect on BCRP expression and activity and transcriptional activity of the BCRP promoter in PRA-transfected cells; however, cotransfection of PRA and PRB significantly decreased the progesterone-response compared with that in cells transfected with only PRB. Mutations in a novel progesterone response element (PRE) identified between -243 to -115 bp of the BCRP promoter region significantly attenuated the progesterone-response in PRB-transfected cells, and deletion of the PRE nearly completely abrogated the progesterone effect. Specific binding of both PRA and PRB to the BCRP promoter through the identified PRE was confirmed using the electrophoretic mobility shift assay. Collectively, progesterone induces BCRP expression in BeWo cells via PRB but not PRA. PRA represses the PRB activity. Thus, PRA and PRB differentially regulate BCRP expression in BeWo cells.

  2. Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen

    PubMed Central

    Schenk, Martijn F; Cordewener, Jan HG; America, Antoine HP; van't Westende, Wendy PC; Smulders, Marinus JM; Gilissen, Luud JWJ

    2009-01-01

    Background Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. Results All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01) were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01) was only found in B. pendula and its closest relatives. Conclusion Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies. PMID:19257882

  3. Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus.

    PubMed

    González-Flores, Oscar; Gómora-Arrati, Porfirio; García-Juárez, Marcos; Miranda-Martínez, Alfredo; Armengual-Villegas, Alejandra; Camacho-Arroyo, Ignacio; Guerra-Araiza, Christian

    2011-10-01

    Progesterone exerts a variety of actions in the brain through the interaction with its receptors (PR) which have two isoforms with different function and regulation: PR-A and PR-B. Progesterone may modulate neurotransmission by regulating the expression of neurotransmitters synthesizing enzymes or their receptors in several brain regions. The role of PR isoforms in this modulation is unknown. We explored the role of PR isoforms in the regulation of tryptophan (TPH) and tyrosine (TH) hydroxylase, and glutamic acid decarboxylase (GAD) expression in the hypothalamus of ovariectomized rats. Two weeks after ovariectomy, animals were subcutaneously injected with 5 μg of estradiol benzoate (EB), and 40 h later, progesterone (P) was intracerebroventricularly (ICV) injected. Each animal received two ICV injections of 1 μg/μl (4 nmol) of PR-B and total PR (PR-A+PR-B) sense or antisense (As) oligonucleotides (ODNs). First injection was made immediately before sc EB injection, and 24h later animals received the second one. Twenty-four hours after P administration, rats were euthanized and brains removed to measure the expression of PR-A and PR-B, TPH, TH and GAD by Western blot. We observed that sense ODNs modified neither PR isoforms nor enzymes expression in the hypothalamus, whereas PR A+B antisense (PR A+B As) clearly decreased the expression of both PR isoforms in this region. ICV administration of PR-B As only decreased PR-B isoform expression with no significant effects on PR-A expression. A differential protein expression of TPH, TH and GAD was observed after PR isoforms antisense administration. PR-B As administration decreased the expression of TPH (65% with respect to control). In contrast, PR A+B As and PR-B As administration increased (51.6% and 34.4%, respectively) TH expression. The administration of PR A+B As and PR-B As diminished GAD expression (33.4% and 41.6%, respectively). Our findings indicate that PR isoforms play a differential role in the

  4. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  5. Developmental expression of two Haliotis asinina hemocyanin isoforms.

    PubMed

    Streit, Klaus; Jackson, Daniel; Degnan, Bernard M; Lieb, Bernhard

    2005-09-01

    Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.

  6. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells. PMID:26676302

  7. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells.

  8. Cell-specific expression of TLR9 isoforms in inflammation.

    PubMed

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  9. Expression, activation, and role of AKT isoforms in the uterus.

    PubMed

    Fabi, François; Asselin, Eric

    2014-11-01

    The three isoforms of AKT: AKT1, AKT2, and AKT3, are crucial regulators of both normal and pathological cellular processes. Each of these isoforms exhibits a high level of homology and functional redundancy with each other. However, while being highly similar and structurally homologous, a rising amount of evidence is showing that each isoform possesses specific targets as well as preferential subcellular localization. The role of AKT has been studied extensively in reproductive processes, but isoform-specific roles are yet to be fully understood. This review will focus on the role of AKT in the uterus and its function in processes related to cell death and proliferation such as embryo implantation, decidualization, endometriosis, and endometrial cancer in an isoform-centric manner. In this review, we will cover the activation of AKT in various settings, localization of isoforms in subcellular compartments, and the effect of isoform expression on cellular processes. To fully understand the dynamic molecular processes taking place in the uterus, it is crucial that we better understand the physiological role of AKT isoforms as well as their function in the emergence of diseases.

  10. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression.

    PubMed

    Esber, Nathalie; Le Billan, Florian; Resche-Rigon, Michèle; Loosfelt, Hugues; Lombès, Marc; Chabbert-Buffet, Nathalie

    2015-01-01

    The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required. PMID:26474308

  11. Differential isoform expression and selective muscle involvement in muscular dystrophies.

    PubMed

    Huovinen, Sanna; Penttilä, Sini; Somervuo, Panu; Keto, Joni; Auvinen, Petri; Vihola, Anna; Huovinen, Sami; Pelin, Katarina; Raheem, Olayinka; Salenius, Juha; Suominen, Tiina; Hackman, Peter; Udd, Bjarne

    2015-10-01

    Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.

  12. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  13. Discrete phosphorylated Retinoblastoma protein isoform expression in mouse tooth development

    PubMed Central

    Zhang, Weibo; Vazquez, Betsy; Andreeva, Viktoria; Spear, Daisy; Kong, Elizabeth; Hinds, Philip W.; Yelick, Pamela C.

    2015-01-01

    It is widely accepted that Retinoblastoma protein (pRb) phosphorylation plays a central role in mediating cell cycle G1/S stage transition, together with E2 promoter-binding factors (E2F). The binding of pRb to E2F is controlled by the sequential and cumulative phosphorylation of pRb at various amino acids. In addition to the well characterized roles for pRb as a tumor suppressor, pRb has more recently been implicated in osteoprogenitor and other types of stem cell maintenance, proliferation and differentiation, thereby influencing the morphogenesis of developing organs. In this study, we present data characterizing the expression of three phosphorylated pRb (ppRb) isoforms - ppRbS780, ppRbS795, and ppRbS807/811- in developing mouse molar and incisor tooth buds. Also, we analyzed the co-localization of pRb isoforms and histone H3 expression in incisor tooth buds. Our results reveal distinct developmental expression patterns for individual ppRb isoforms in differentiating dental epithelial and dental mesenchymal cells, suggesting discrete functions for each in tooth development. PMID:22476877

  14. Changes in progesterone receptor isoforms expression and in the morphology of the oviduct magnum of mature laying and aged nonlaying hens.

    PubMed

    González-Morán, María Genoveva

    2016-09-16

    The aim of this study was to evaluate changes in the morphology and expression of progesterone receptor (PR) isoforms in different cell subpopulations of the magnum region of the left oviduct of mature laying and aged nonlaying hens through histomorphometric and immunohistological methods. Histological results demonstrated several changes in the oviduct magnum of mature and aged hens, mainly in the mucosal tissue. Immunohistochemical analysis showed that both PR isoforms are expressed in all cell types of the oviduct magnum of mature laying hens. In contrast, in each cell type of the oviduct magnum of aged nonlaying hens only one PR isoform (PR-A or PR-B) was expressed. The results indicate that PR percentage and the PR-A and PR-B ratio change according to the cell type of the oviduct magnum and in an age-specific manner, and suggest that these variations contribute to the regulation of progesterone actions in the oviduct magnum with the normal aging of the animal. PMID:27526993

  15. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas.

    PubMed

    Wu, Yulong; Cheng, Mei; Shi, Zhen; Feng, Zhenqing; Guan, Xiaohong

    2014-01-01

    Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.

  16. Invertases involved in the development of the parasitic plant Phelipanche ramosa: characterization of the dominant soluble acid isoform, PrSAI1.

    PubMed

    Draie, Rida; Péron, Thomas; Pouvreau, Jean-Bernard; Véronési, Christophe; Jégou, Sandrine; Delavault, Philippe; Thoiron, Séverine; Simier, Philippe

    2011-09-01

    Phelipanche ramosa L. parasitizes major crops, acting as a competitive sink for host photoassimilates, especially sucrose. An understanding of the mechanisms of sucrose utilization in parasites is an important step in the development of new control methods. Therefore, in this study, we characterized the invertase gene family in P. ramosa and analysed its involvement in plant development. Invertase-encoded cDNAs were isolated using degenerate primers corresponding to highly conserved regions of invertases. In addition to enzyme assays, gene expression was analysed using real-time quantitative reverse transcriptase-polymerase chain reaction during overall plant development. The dominant isoform was purified and sequenced using electrospray ionization-liquid chromatography-tandem mass spectrometry (ESI-LC-MS/MS). Five invertase-encoded cDNAs were thus characterized, including PrSai1 which encodes a soluble acid invertase (SAI). Of the five invertases, PrSai1 transcripts and SAI activity were dominant in growing organs. The most active invertase corresponded to the PrSai1 gene product. The purified PrSAI1 displayed low pI and optimal pH values, specificity for β-fructofuranosides and inhibition by metallic ions and competitive inhibition by fructose. PrSAI1 is a typical vacuolar SAI that is actively involved in growth following both germination and attachment to host roots. In addition, germinated seeds displayed enhanced cell wall invertase activity (PrCWI) in comparison with preconditioned seeds, suggesting the contribution of this activity in the sink strength of infected roots during the subsequent step of root penetration. Our results show that PrSAI1 and, possibly, PrCWI constitute good targets for the development of new transgenic resistance in host plants using proteinaceous inhibitors or silencing strategies. PMID:21726369

  17. T gene isoform expression pattern is significantly different between chordomas and notochords.

    PubMed

    Wang, Ke; Hu, Qingtao; Wang, Liang; Chen, Wei; Tian, Kaibing; Cao, Chunwei; Wu, Zhen; Jia, Guijun; Zhang, Liwei; Zeng, Changqing; Zhang, Junting

    2015-11-13

    The T gene plays a key role in chordoma pathology. To investigate the role of T gene isoforms in chordoma, 22 skull base chordomas, three chordoma cell lines and 9 infant notochords, which were used as normal controls, were collected. We first conducted droplet digital PCR to quantify the absolute expression levels of the long and short isoforms of the T gene (T-long and T-short, respectively) and revealed that T-long was dominantly expressed in all chordomas and chordoma cell lines, but not in the notochords. The T-long/T-short ratio was significantly different between the chordomas and the notochords. Next, we validated the isoform expression pattern at protein expression level using Western blot in 9 chordomas. Furthermore, the T gene single nucleotide polymorphism site rs2305089, which is the only marker reported to be associated with chordomas, was sequenced in all of the chordoma samples. Association between rs2305089 and T-long/T-short ratio was not significant, indicating it was not involved in T gene alternative splicing. In conclusion, two T gene isoforms were investigated in skull base chordomas and chordoma cell lines, and the longer isoform was dominantly expressed. The distinct expression patterns of these T gene isoforms may contribute to the pathogenesis of skull base chordomas. However, further studies on the function of these isoforms are needed. PMID:26435504

  18. Alteration of wing size through over-expression of scribbler isoforms.

    PubMed

    LaJeuensse, Dennis

    2010-01-01

    Scribbler was identified as a genetic modifier of the Drosophila tumor suppressor gene Merlin. Loss of Merlin results in hyperplasia in a number of different epithelial tissues including the wing and eye imaginal discs, however loss of scribbler does not. The lack of an overt proliferation sbb phenotype has complicated the mechanistic link between sbb and Merlin. Scribbler encodes two novel transcriptional repressors which function in numerous processes including axon guidance and pattern formation within the wing. While the two sbb isoforms have some redundant functions over-expression of two sbb isoforms within the wing show distinct and opposite effects. Over-expression of the smaller SbbA isoform results in a larger wing, while over-expression of larger SbbB isoform results in a smaller wing with defects in venation. Co-expression of sbb isoforms ameliorates the effects of expression of either isoform alone, suggesting that a balance between the express of each scribbler isoform is required to ensure proper size of the wing.

  19. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease.

    PubMed

    Kamphuis, Willem; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    2014-03-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.

  20. Estimation of isoform expression in RNA-seq data using a hierarchical Bayesian model.

    PubMed

    Wang, Zengmiao; Wang, Jun; Wu, Changjing; Deng, Minghua

    2015-12-01

    Estimation of gene or isoform expression is a fundamental step in many transcriptome analysis tasks, such as differential expression analysis, eQTL (or sQTL) studies, and biological network construction. RNA-seq technology enables us to monitor the expression on genome-wide scale at single base pair resolution and offers the possibility of accurately measuring expression at the level of isoform. However, challenges remain because of non-uniform read sampling and the presence of various biases in RNA-seq data. In this paper, we present a novel hierarchical Bayesian method to estimate isoform expression. While most of the existing methods treat gene expression as a by-product, we incorporate it into our model and explicitly describe its relationship with corresponding isoform expression using a Multinomial distribution. In this way, gene and isoform expression are included in a unified framework and it helps us achieve a better performance over other state-of-the-art algorithms for isoform expression estimation. The effectiveness of the proposed method is demonstrated using both simulated data with known ground truth and two real RNA-seq datasets from MAQC project. The codes are available at http://www.math.pku.edu.cn/teachers/dengmh/GIExp/.

  1. Expression of Tropomyosin 1 Gene Isoforms in Human Breast Cancer Cell Lines

    PubMed Central

    Dube, Syamalima; Yalamanchili, Santhi; Lachant, Joseph; Abbott, Lynn; Benz, Patricia; Mitschow, Charles; Dube, Dipak K.; Poiesz, Bernard J.

    2015-01-01

    Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1γ and TPM1δ were the dominant transcripts of TPM1, there was no clear evidence for TPM1δ protein expression. Four novel human TPM1 gene RNA isoforms were discovered (λ, μ, ν, and ξ), which were not identified in adult and fetal human cardiac tissues. TPM1λ was the most frequent isoform expressed in the malignant breast cell lines, and it was absent in normal breast epithelial cell lines. By western blotting, we were unable to distinguish between TPM1γ, λ, and ν protein expression, which were the only TPM1 gene protein isoforms potentially expressed. Some malignant cell lines demonstrated increased or decreased expression of these isoforms relative to the normal breast cell lines. Stress fiber formation did not correlate with TPM1γ RNA expression but significantly and inversely correlated with TPM1δ and TPM1λ expression, respectively. The exact differences in expression of these novel isoforms and their functional properties in breast epithelial cells will require further study. PMID:26171250

  2. Myosin heavy chain-2b transcripts and isoform are expressed in human laryngeal muscles.

    PubMed

    Smerdu, Vika; Cvetko, Erika

    2013-01-01

    Three fast myosin heavy chain (MyHC) isoforms, i.e. MyHC-2a, -2x and -2b, are expressed in skeletal muscles of smaller mammals. In contrast, only MyHC-2a and -2x have been revealed in humans so far. The expression of MyHC isoforms is known to be wider in the functionally more specialized laryngeal muscles. Though mRNA transcripts of the MyHC-2b gene were found to be expressed in certain human skeletal and laryngeal muscles, the corresponding isoform has not been demonstrated in these muscles. To our knowledge, we are the first to demonstrate not only the expression of MyHC-2b transcripts using an in situ hybridization technique but also the corresponding protein, i.e. the MyHC-2b isoform, in some human laryngeal muscles by immunohistochemistry but not by polyacrylamide gel electrophoresis. Using a set of antibodies specific to MyHC isoforms, we demonstrated that MyHC-2b was always co-expressed with the major MyHC isoforms, not only with the fast ones (MyHC-2a and -2x) but with the slow isoform (MyHC-1) as well.

  3. Effect of proteasome inhibitors on expression of HLA-G isoforms.

    PubMed

    Poláková, K; Bandzuchová, E; Bystrická, M; Pancuchárová, H; Russ, G

    2006-01-01

    HLA-G primary transcript is alternatively spliced into a number of mRNAs. In addition to full length HLA-G1 protein isoform these mRNAs might also encode truncated HLA-G protein isoforms lacking one or two extracellular domains. Whereas HLA-G1 protein isoform is regularly identified, truncated HLAG protein isoforms are not detected even if all alternative spliced mRNAs are present in cells. The absence of entire domain(s) renders the truncated HLA-G protein isoforms incapable of binding peptide and beta2-microglobulin. These features of truncated HLA-G protein isoforms may result in their rapid degradation by proteasomes. Here we show that despite the presence of all alternatively spliced HLA-G transcripts in JEG-3 cells pretreated with proteasome inhibitors only a full length HLA-G1 protein isoform was regularly detected. Interestingly, immunoblot analysis showed slight increase of HLA-G1 protein in cells pretreated with proteasome inhibitors, although the expression of HLA-G1 transcript was basically not affected. Expression of HLA-G3 transcript increased in JEG-3 cells pre-incubated with LLL, however, neither HLA-G3 nor other HLA-G short protein isoform was regularly detected. In K562 transfectants proteasome inhibitor LLL greatly enhanced expression of the HLA-G1 and -G2 transcripts as well as corresponding protein isoforms. Flow cytometry analysis showed that in cells pre-treated with proteasome inhibitors cell surface expression of HLA-G1 protein decreased but the quantity of intracellularly localized HLA-G antigens increased. Altogether our results suggest that truncated HLA-G proteins isoforms are not detected in JEG-3 cells as a result of their instability and the low translation efficiency of truncated HLA-G transcripts.

  4. Regulated expression of a calmodulin isoform alters growth and development in potato.

    PubMed

    Poovaiah, B W; Takezawa, D; An, G; Han, T J

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodulin isoform on plant growth and development. Eight genomic clones of potato calmodulin (PCM1 to 8) have been isolated and characterized (Takezawa et al., 1995). Among the potato calmodulin isoforms studied, PCM1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM1 fused to the CaMV 35S promoter. Transgenic plants showing a moderate increase in PCM1 mRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM1 mRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM1 mRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM1 protein in transgenic plants, indicating that the expression of both mRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM1 alters growth and development in potato plants.

  5. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  6. The plethora of PMCA isoforms: Alternative splicing and differential expression.

    PubMed

    Krebs, Joachim

    2015-09-01

    In this review the four different genes of the mammalian plasma membrane calcium ATPase (PMCA) and their spliced isoforms are discussed with respect to their tissue distribution, their differences during development and their importance for regulating Ca²⁺ homeostasis under different conditions. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  7. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    PubMed Central

    Hansberg-Pastor, Valeria; Piña-Medina, Ana Gabriela; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2015-01-01

    The CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP) with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle. PMID:26064112

  8. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle.

    PubMed

    Hansberg-Pastor, Valeria; Piña-Medina, Ana Gabriela; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2015-01-01

    The CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP) with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle. PMID:26064112

  9. VAMP/synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues

    PubMed Central

    1996-01-01

    VAMP/synaptobrevin is part of the synaptic vesicle docking and fusion complex and plays a central role in neuroexocytosis. Two VAMP (vesicle- associated membrane protein) isoforms are expressed in the nervous system and are differently distributed among the specialized parts of the tissue. Here, VAMP-1 and -2 are shown to be present in all rat tissues tested, including kidney, adrenal gland, liver, pancreas, thyroid, heart, and smooth muscle. The two isoforms are differentially expressed in various tissues and their level may depend on differentiation. VAMP-1 is restricted to exocrine pancreas and to kidney tubular cells, whereas VAMP-2 is the predominant isoform present in Langerhans islets and in glomerular cells. Both isoforms show a patchy vesicular intracellular distribution in confocal microscopy. The present results provide evidence for the importance of neuronal VAMP proteins in the physiology of all cells. PMID:8567721

  10. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors

    PubMed Central

    Shlensky, David; Mirrielees, Jennifer A.; Zhao, Zibo; Wang, Lu; Mahajan, Aparna; Yu, Menggang; Sherer, Nathan M.; Wilke, Lee G.; Xu, Wei

    2015-01-01

    Purpose Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL) and truncated CARM1 (CARM1ΔE15). CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models. Methods To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors. Results Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement. Conclusions The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens. PMID:26030442

  11. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice.

    PubMed

    Tchilian, Elma Z; Dawes, Ritu; Hyland, Lisa; Montoya, Maria; Le Bon, Agnes; Borrow, Persephone; Hou, Sam; Tough, David; Beverley, Peter C L

    2004-09-01

    Transgenic mice have been constructed expressing high (CD45RABC) and low (CD45R0) molecular weight CD45 isoforms on a CD45-/- background. Phenotypic analysis and in vivo challenge of these mice with influenza and lymphocytic choriomeningitis viruses shows that T cell differentiation and peripheral T cell function are related to the level of CD45 expression but not to which CD45 isoform is expressed. In contrast, B cell differentiation is not restored, irrespective of the level of expression of a single isoform. All CD45 trangenic mice have T cells with an activated phenotype and increased T cell turnover. These effects are more prominent in CD8 than CD4 cells. The transgenic mice share several properties with humans expressing variant CD45 alleles and provide a model to understand immune function in variant individuals. PMID:15302847

  12. Expression of leptin and leptin receptor isoforms in the human stomach

    PubMed Central

    Mix, H; Widjaja, A; Jandl, O; Cornberg, M; Kaul, A; Goke, M; Beil, W; Kuske, M; Brabant, G; Manns, M; Wagner, S

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biopsies, primary cultures of human gastric epithelial cells, and the human gastric cancer cell line AGS were screened for expression of leptin and different leptin receptor isoform mRNA by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed for localisation of leptin and leptin receptor proteins in gastric mucosa.
RESULTS—mRNA of leptin and its four receptor isoforms (huOB-R, long receptor isoform; huB219.1-3, short receptor isoforms) was detected in gastric mucosal biopsies, cultured human gastric epithelial cells, and gastric cancer cells. Immunohistochemistry demonstrated that chief as well as parietal cells were reactive to leptin and leptin receptors.
CONCLUSIONS—Leptin and leptin receptors are expressed in human gastric mucosa. These findings suggest a paracrine and/or autocrine effect of leptin on gastric epithelial cell function.


Keywords: leptin; leptin receptor isoforms; immunohistochemistry; gastric mucosa PMID:10986207

  13. Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms.

    PubMed Central

    Olivares, E B; Tanksley, S J; Airey, J A; Beck, C F; Ouyang, Y; Deerinck, T J; Ellisman, M H; Sutko, J L

    1991-01-01

    Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:1873458

  14. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    PubMed Central

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2008-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by use of an alternative 5’ splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by use of another 5’ alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5’ splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites. PMID:18023161

  15. Identification and differential expression of two thioredoxin h isoforms in germinating seeds from pea.

    PubMed

    Montrichard, Françoise; Renard, Michelle; Alkhalfioui, Fatima; Duval, Frédéric D; Macherel, David

    2003-07-01

    The NADPH/NADP-thioredoxin (Trx) reductase (NTR)/Trx system (NTS) is a redox system that plays a posttranslational regulatory role by reducing protein targets involved in crucial cellular processes in microorganisms and animals. In plants, the system includes several h type Trx isoforms and has been shown to intervene in reserve mobilization during early seedling growth of cereals. To determine whether NTS was operational during germination of legume seeds and which Trx h isoforms could be implicated, Trx h isoforms expression was monitored in germinating pea (Pisum sativum cv Baccara) seeds, together with the amount of NTR and NADPH. Two new isoforms were identified: Trx h3, similar to the two isoforms already described in pea but not expressed in seeds; and the more divergent isoform, Trx h4. Active recombinant proteins were produced in Escherichia coli and used to raise specific antibodies. The expression of new isoforms was analyzed at both mRNA and protein levels. The lack of correlation between mRNA and protein abundances suggests the occurrence of posttranscriptional regulation. Trx h3 protein amount remained constant in both axes and cotyledons of dry and imbibed seeds but then decreased 2 d after radicle protrusion. In contrast, Trx h4 was only expressed in axes of dry and imbibed seeds but not in germinated seeds or in seedlings, therefore appearing as closely linked to germination. The presence of NTR and NADPH in seeds suggests that NTS could be functional during germination. The possible role of Trx h3 and h4 in this context is discussed.

  16. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants.

    PubMed

    Persson, Staffan; Rosenquist, Magnus; Svensson, Karin; Galvão, Rafaelo; Boss, Wendy F; Sommarin, Marianne

    2003-11-01

    Calreticulin (CRT) is a multifunctional protein mainly localized to the endoplasmic reticulum in eukaryotic cells. Here, we present the first analysis, to our knowledge, of evolutionary diversity and expression profiling among different plant CRT isoforms. Phylogenetic studies and expression analysis show that higher plants contain two distinct groups of CRTs: a CRT1/CRT2 group and a CRT3 group. To corroborate the existence of these isoform groups, we cloned a putative CRT3 ortholog from Brassica rapa. The CRT3 gene appears to be most closely related to the ancestral CRT gene in higher plants. Distinct tissue-dependent expression patterns and stress-related regulation were observed for the isoform groups. Furthermore, analysis of posttranslational modifications revealed differences in the glycosylation status among members within the CRT1/CRT2 isoform group. Based on evolutionary relationship, a new nomenclature for plant CRTs is suggested. The presence of two distinct CRT isoform groups, with distinct expression patterns and posttranslational modifications, supports functional specificity among plant CRTs and could account for the multiple functional roles assigned to CRTs.

  17. A Subtle Alternative Splicing Event Gives Rise to a Widely Expressed Human RNase k Isoform

    PubMed Central

    Karousis, Evangelos D.; Sideris, Diamantis C.

    2014-01-01

    Subtle alternative splicing leads to the formation of RNA variants lacking or including a small number of nucleotides. To date, the impact of subtle alternative splicing phenomena on protein biosynthesis has been studied in frame-preserving incidents. On the contrary, mRNA isoforms derived from frame-shifting events were poorly studied and generally characterized as non-coding. This work provides evidence for a frame-shifting subtle alternative splicing event which results in the production of a novel protein isoform. We applied a combined molecular approach for the cloning and expression analysis of a human RNase κ transcript (RNase κ-02) which lacks four consecutive bases compared to the previously isolated RNase κ isoform. RNase κ-02 mRNA is expressed in all human cell lines tested end encodes the synthesis of a 134-amino-acid protein by utilizing an alternative initiation codon. The expression of RNase κ-02 in the cytoplasm of human cells was verified by Western blot and immunofluorescence analysis using a specific polyclonal antibody developed on the basis of the amino-acid sequence difference between the two protein isoforms. The results presented here show that subtle changes during mRNA splicing can lead to the expression of significantly altered protein isoforms. PMID:24797913

  18. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses.

  19. Differences in expression, actions and cocaine regulation of two isoforms for the brain transcriptional regulator NAC1.

    PubMed

    Korutla, L; Wang, P J; Lewis, D M; Neustadter, J H; Stromberg, M F; Mackler, S A

    2002-01-01

    BTB/POZ proteins can influence the cell cycle and contribute to oncogenesis. Many family members are present in the mammalian CNS. Previous work demonstrated elevated NAC1 mRNA levels in the rat nucleus accumbens in response to cocaine. NAC1 acts like other BTB/POZ proteins that regulate transcription but is unusual because of the absence of identifiable DNA binding domains. cDNAs were isolated encoding two NAC1 isoforms differing by only 27 amino acids (the longer isoform contains 514 amino acids). The mRNAs for both isoforms were simultaneously expressed throughout the rat brain and peripheral tissues. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed that the mRNA of the longer isoform was more abundant than the mRNA of the shorter isoform. Western blot analysis demonstrated a similar unequal distribution between the isoforms in the CNS. The longer isoform was the more abundant of the two NAC1 proteins and the ratio between them differed throughout the rat brain. The shorter isoform was not detected in most of the examined peripheral tissues, suggesting differences from the CNS in post-transcriptional processing. Both isoforms repressed transcription in H293T cells using a Gal4-luciferase reporter system. However, the shorter isoform did not repress transcription as effectively as the longer isoform. Transfection of different ratios for both isoforms, in order to replicate the relative amounts observed throughout the CNS, supported an interaction between the isoforms. The net effect on transcriptional repression was determined by the ratio of the two NAC1 isoforms. Each isoform exhibited the subnuclear localization that is characteristic of many BTB/POZ proteins. A rapid and transient increase in the level of the shorter isoform occurred in the nucleus accumbens 2 h following a single i.p. cocaine injection. We conclude that the two isoforms of NAC1 may differentially affect neuronal functions, including the regulation of

  20. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  1. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes.

    PubMed

    Sundaresan, A; Risin, D; Pellis, N R

    2004-06-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  2. Modeled Microgravity-Induced Protein Kinase C Isoform Expression in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2003-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited both in microgravity and modeled microgravity (MMG) as reflected in diminished DNA synthess in peripheral blood lymphocytes and their locomotion through gelled type 1 collagen. Direct activation of Protein Kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 19 and MMG-culture. Human lymphocytes were cultured and harvested at 24, 48, 72 and 96 hours and serial samples assessed for locomotion using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta and -epsilon was assessed by RT-PCR, flow cytometry and immunoblotting. Results indicated that PKC isoforms delta and epsilon were down-regulated by more than 50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 19 controls. Events upstream of PKC such as phosphorylation of Phospholipase C(gamma) (PLC-gamma) in MMG, revealed accumulation of inactive enzyme. Depressed Ca++ -independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than, but after ligand-receptor interaction. Keywords: Signal transduction, locomotion, immunity

  3. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  4. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    SciTech Connect

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  5. CD44 standard and variant isoform expression in normal human skin appendages and epidermis.

    PubMed

    Seelentag, W K; Günthert, U; Saremaslani, P; Futo, E; Pfaltz, M; Heitz, P U; Roth, J

    1996-09-01

    CD44 isoforms have been implicated in tumor progression and metastasis formation. This study presents a thorough immunohistochemical analysis of CD44 standard and isoform expression in normal human skin appendages and epidermis applying monoclonal antibodies against CD44s, CD44v3, -v4, -v5, -v6, and -v9. An improved immunohistochemical protocol with microwave-based antigen retrieval in paraffin sections and heavy metal amplification of the diaminobenzidine reaction product provided enhanced resolution and sensitivity as compared to studies on frozen sections. The hair follicle, the seborrheic and eccrine sweat glands were strongly positive for all CD44 isoforms studied. In the latter, the clear cells but not the dark (intercalated) cells were positive. the sudoriferous ducts adjacent to the glands were weakly positive for all CD44 isoforms and strongly positive near the skin surface. In the apocrine glands, the basal cells showed only a moderate positivity. The myoepithelial cells expressed only CD44s. In the epidermis, all CD44 isoforms were detectable, with strongest CD44 immunostaining in the lower third of the stratum spinosum and weaker staining in the stratum basale and the upper two-thirds of the stratum granulosum. The stratum granulosum and corneum were unreactive. Thus, a regional and cell type-specific CD44 expression was revealed. PMID:8897069

  6. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization. PMID:25748451

  7. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  8. FMR1 transcript isoforms: association with polyribosomes; regional and developmental expression in mouse brain.

    PubMed

    Brackett, David M; Qing, Feng; Amieux, Paul S; Sellers, Drew L; Horner, Philip J; Morris, David R

    2013-01-01

    The primary transcript of the mammalian Fragile X Mental Retardation-1 gene (Fmr1), like many transcripts in the central nervous system, is alternatively spliced to yield mRNAs encoding multiple proteins, which can possess quite different biochemical properties. Despite the fact that the relative levels of the 12 Fmr1 transcript isoforms examined here vary by as much as two orders of magnitude amongst themselves in both adult and embryonic mouse brain, all are associated with polyribosomes, consistent with translation into the corresponding isoforms of the protein product, FMRP (Fragile X Mental Retardation Protein). Employing the RiboTag methodology developed in our laboratory, the relative proportions of the 7 most abundant transcript isoforms were measured specifically in neurons and found to be similar to those identified in whole brain. Measurements of isoform profiles across 11 regions of adult brain yielded similar distributions, with the exceptions of the hippocampus and the olfactory bulb. These two regions differ from most of the brain in relative amounts of transcripts encoding an alternate form of one of the KH RNA binding domains. A possible relationship between patterns of expression in the hippocampus and olfactory bulb and the presence of neuroblasts in these two regions is suggested by the isoform patterns in early embryonic brain and in cultured neural progenitor cells. These results demonstrate that the relative levels of the Fmr1 isoforms are modulated according to developmental stage, highlighting the complex ramifications of losing all the protein isoforms in individuals with Fragile X Syndrome. It should also be noted that, of the eight most prominent FMRP isoforms (1-3, 6-9 and 12) in mouse, only two have the major site of phosphorylation at Ser-499, which is thought to be involved in some of the regulatory interactions of this protein.

  9. Mycobacterium bovis infection in cattle induces differential expression of prolactin receptor isoforms in macrophages.

    PubMed

    López-Rincón, Gonzalo; Gutiérrez-Pabello, José Ángel; Díaz-Otero, Fernando; Muñoz-Valle, José Francisco; Pereira-Suárez, Ana Laura; Estrada-Chávez, Ciro

    2013-12-01

    Prolactin receptor (PRLr) is a member of the cytokine receptor superfamily 1 showing tissue specific structural diversity. Expression of PRLr isoforms in lymphoid tissues has been associated with immunomodulatory function of prolactin. Bovine tuberculosis (bTB) is characterized by chronic inflammation caused by the persistent infection of lymphoid tissues with Mycobacterium bovis. To test the hypothesis of the influence of PRLr in the pathogenesis of bTB, the aim of this study was to identify PRLr isoforms expressed during bTB in different tissues and to analyze their association with the pathogenesis of bTB. We examined lymphoid and non-lymphoid tissues ex vivo from experimentally and naturally infected cattle, as well as from bTB-free cattle, by Western blot (WB) and immunohistochemistry (IH). In vitro, monocytes from exposed, infected, and healthy cattle were stimulated with M. bovis antigens and then analyzed by WB. To detect transcriptional levels of PRLr in macrophages (MØ) exposed to M. bovis, real time PCR was performed. WB revealed diversity of PRLr isoforms in tissues from infected cattle but not in tissues from bTB-free cattle. PRLr isoforms 100 kDa 75, 50 and 40 were found expressed in tissues of animals infected with M. bovis, while only the short isoform of 40 kDa correlated with the immunopathology and ability to infect MØ. We confirmed the synthesis of PRLr mRNA in MØ after M. bovis exposure and propose that molecular pathogen patterns of M. bovis might modulate inflammation during bTB through expression of the PRLr isoform in MØ.

  10. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    PubMed Central

    Abbott, Lynn; Alshiekh-Nasany, Ruham; Mitschow, Charles

    2016-01-01

    In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s) of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa) in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart. PMID:27703814

  11. DIFFERENTIAL EXPRESSION OF STROMA DERIVED FACTOR-1 ISOFORMS IN BLADDER CANCER

    PubMed Central

    Yates, Travis J; Shields, John; Veerapen, Muthu K.; Merseburger, Axel S.; Rosser, Charles J; Soloway, Mark S.; Lokeshwar, Vinata B.

    2014-01-01

    Purpose Stroma-Derived Factor (SDF)-1 is a ligand for chemokine receptors CXCR4 and CXCR7. The six known SDF-1 isoforms are generated by alternative mRNA splicing. While SDF-1 expression has been detected in various malignancies, only a few studies have reported differential expression of SDF-1 isoforms and its clinical significance. In this study we evaluated the expression three SDF-1 isoforms (α,β,γ) in bladder cancer (BCa). Methods Using quantitative PCR, mRNA levels of SDF-1α, SDF-1β and SDF-1γ were measured in bladder tissues (normal: 25; BCa: 44) and urine specimens (n=210; normal: 28; benign conditions: 74; BCa: 57, history of BCa (HxBCa): 35, Hx other Ca: 8; other Ca: 8) from consecutive patients. These levels were correlated with clinical outcome. Results Among SDF-1 isoforms, only SDF-1β mRNA was significantly overexpressed by 2.5-6-fold in BCa tissues when compared to normal bladder tissues. While SDF-1α was expressed in bladder tissues, SDF-1γ expression was undetectable. In multivariate analysis, SDF-1β (P=0.017) was an independent predictor of metastasis and disease specific mortality (P=0.043). In exfoliated urothelial cells, only SDF-1β mRNA levels were differentially expressed and having a 91.2% sensitivity and 73.8% specificity for detecting BCa. In patients with HxBCa, elevated SDF-1β levels indicated 4.3-fold increased risk (P=0.0001) for developing recurrence within 6-months. Conclusion SDF-1 isoforms are differentially expressed in bladder tissues and exfoliated urothelial cells. SDF-1β mRNA levels in BCa tissues predict poor prognosis. Further, SDF-1β mRNA levels in exfoliated cells detect BCa with high sensitivity and are potential predictors of future recurrence. PMID:24291546

  12. Expression of fibronectin, fibronectin isoforms and integrin receptors in melanocytic lesions.

    PubMed Central

    Natali, P. G.; Nicotra, M. R.; Di Filippo, F.; Bigotti, A.

    1995-01-01

    In vitro studies have demonstrated that fibronectin (FN) can deliver a mitogenic signal to quiescent human melanoma cells and that the alpha 5/beta 1-integrin receptor mediates this stimulus. In view of this finding we have analysed the in vivo expression of FN, and of ED-A and ED-B FN isoforms, in benign and malignant lesions of melanocyte origin. In the same specimens the expression of fibronectin integrin receptors was evaluated. The results demonstrate that, while detection of FN does not correlate with transformation and tumour progression, the expression of the two isoforms is associated with transformation and that only the ED-A variant is found in metastases. Integrin phenotyping disclosed that alpha 3/beta 1 expression is associated with tumour progression, alpha v/beta 3 is a marker of transformation, alpha 4 is rarely expressed and alpha 5 is expressed by about 50% and 30% of the primary and metastatic lesions respectively. Taken together, the results of this study demonstrate that transformation and tumour progression of the melanocyte lineage are associated with modulation of expression of FN isoforms and FN integrin receptors. Furthermore, the expression of alpha 5-integrin in a considerable percentage of primary and metastatic lesions indicates that FN may deliver a proliferative stimulus to melanoma cells in vivo. Images Figure 1 PMID:7779718

  13. Differential expression of a new isoform of DLG2 in renal oncocytoma

    PubMed Central

    Zubakov, Dmitry; Stupar, Zorica; Kovacs, Gyula

    2006-01-01

    Background Renal oncocytoma, a benign tumour of the kidney, may pose a differential diagnostic problem due to overlapping phenotype with chromophobe renal cell carcinoma or other types of renal cell tumours. Therefore, identification of molecular markers would be of great value for molecular diagnostics of this tumour type. Methods In the current study we applied various techniques, including Affymetrix microarray hybridization and semiquantitative RT-PCR, to identify genes expressed differentially in renal oncocytomas. Subsequently, we used RACE and Northern blot hybridization to characterize the potential candidates for molecular diagnosis. Results We have identified new isoform of DLG2 gene, which contains 3'-end exons of the known DLG2 gene along with the hypothetical gene FLJ37266. The new isoform is specifically upregulated in renal oncocytoma, whereas the known DLG2 gene is downregulated in this type of kidney tumour. Conclusion The new isoform of DLG2 is the promising candidate gene for molecular differential diagnostics of renal oncocytoma. PMID:16640776

  14. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts

    PubMed Central

    Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela

    2016-01-01

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503

  15. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system.

    PubMed

    Caldwell, James T; Melkani, Girish C; Huxford, Tom; Bernstein, Sanford I

    2012-01-01

    Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.

  16. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie

    PubMed Central

    Sarradin, Pierre; Viglietta, Céline; Limouzin, Claude; Andréoletti, Olivier; Daniel-Carlier, Nathalie; Barc, Céline; Leroux-Coyau, Mathieu; Berthon, Patricia; Chapuis, Jérôme; Rossignol, Christelle; Gatti, Jean-Luc; Belghazi, Maya; Labas, Valérie; Vilotte, Jean-Luc; Béringue, Vincent; Lantier, Frédéric; Laude, Hubert; Houdebine, Louis-Marie

    2015-01-01

    Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6–8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background. PMID:26248157

  17. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    SciTech Connect

    Nemazanyy, Ivan . E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T. . E-mail: i.gout@ucl.ac.uk

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

  18. Expression of tropomyosin 2 gene isoforms in human breast cancer cell lines

    PubMed Central

    DUBE, SYAMALIMA; THOMAS, ANISH; ABBOTT, LYNN; BENZ, PATRICIA; MITSCHOW, CHARLES; DUBE, DIPAK K.; POIESZ, BERNARD J.

    2016-01-01

    In humans, four tropomyosin genes (TPM1, TPM2, TPM3, and TPM4) are known to produce a multitude of isoforms via alternate splicing and/or using alternate promoters. Expression of tropomyosin has been shown to be modulated at both the transcription and the translational levels. Tropomyosins are known to make up some of the stress fibers of human epithelial cells and differences in their expression has been demonstrated in malignant breast epithelial cell lines compared to 'normal' breast cell lines. We have recently reported the expression of four novel TPM1 isoforms (TPM1λ, TPM1µ, TPM1ν, and TPM1ξ) from human malignant tumor breast cell lines that are not expressed in adult and fetal cardiac tissue. Also, we evaluated their expression in relation to the stress fiber formation. In this study, nine malignant breast epithelial cell lines and three 'normal' breast cell lines were examined for stress fiber formation and expression of tropomyosin 2 (TPM2) isoform-specific RNAs and proteins. Stress fiber formation was assessed by immunofluorescence using Leica AF6000 Deconvolution microscope. Stress fiber formation was strong (++++) in the 'normal' cell lines and varied among the malignant cell lines (negative to +++). No new TPM2 gene RNA isoforms were identified, and TPM2β was the most frequently expressed TPM2 RNA and protein isoform. Stress fiber formation positively correlated with TPM2β RNA or protein expression at high, statistically significant degrees. Previously, we had shown that TPM1δ and TPM1λ positively and inversely, respectively, correlated with stress fiber formation. The most powerful predictor of stress fiber formation was the combination of TPM2β RNA, TPM1δ RNA, and the inverse of TPM1λ RNA expression. Our results suggest that the increased expression of TPM1λ and the decreased expression of TPM1δ RNA and TPM2β may lead to decreased stress fiber formation and malignant transformation in human breast epithelial cells. PMID:27108600

  19. Age-associated expression of HCN channel isoforms in rat sinoatrial node.

    PubMed

    Huang, Xin; Yang, Pei; Yang, Zhao; Zhang, Hong; Ma, Aiqun

    2016-02-01

    The expression of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms varies among species, cardiac tissues, developmental stages, and disease generation. However, alterations in the HCN channels during aging remain unclear. We investigated the protein expressions of HCN channel isoforms, HCN1-HCN4, in the sinoatrial nodes (SANs) from young (1-month-old), adult (4-month-old), and aged (30-month-old) rats. We found that HCN2 and HCN4 proteins were present in rat SAN using immunohistochemistry; therefore, we quantitatively analyzed their expression by Western blot. Aim to correlate protein expression and pacemaking function, specific blockade of HCN channels with 3 µmol/L ivabradine prolonged the cycle length in the intact rat heart. During the senescent process, the HCN2 and HCN4 protein levels declined, which was accompanied with a decreased effect of ivabradine on rat SAN automaticity. These results indicated the age-associated expression and relative function of HCN channel isoforms.

  20. Age-associated expression of HCN channel isoforms in rat sinoatrial node

    PubMed Central

    Huang, Xin; Yang, Pei; Yang, Zhao; Zhang, Hong

    2015-01-01

    The expression of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms varies among species, cardiac tissues, developmental stages, and disease generation. However, alterations in the HCN channels during aging remain unclear. We investigated the protein expressions of HCN channel isoforms, HCN1-HCN4, in the sinoatrial nodes (SANs) from young (1-month-old), adult (4-month-old), and aged (30-month-old) rats. We found that HCN2 and HCN4 proteins were present in rat SAN using immunohistochemistry; therefore, we quantitatively analyzed their expression by Western blot. Aim to correlate protein expression and pacemaking function, specific blockade of HCN channels with 3 µmol/L ivabradine prolonged the cycle length in the intact rat heart. During the senescent process, the HCN2 and HCN4 protein levels declined, which was accompanied with a decreased effect of ivabradine on rat SAN automaticity. These results indicated the age-associated expression and relative function of HCN channel isoforms. PMID:26341471

  1. Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development.

    PubMed

    Basak, Sayantani; Raju, Karthik; Babiarz, Joanne; Kane-Goldsmith, Noriko; Koticha, Darshan; Grumet, Martin

    2007-11-15

    The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions. PMID:17936266

  2. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers

    PubMed Central

    Staszewska, Ilona; Fischer, Irmgard; Wiche, Gerhard

    2015-01-01

    Plectin is a highly versatile cytoskeletal protein that acts as a mechanical linker between intermediate filament (IF) networks and various cellular structures. The protein is crucial for myofiber integrity. Its deficiency leads to severe pathological changes in skeletal muscle fibers of patients suffering from epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Skeletal muscle fibers express four major isoforms of plectin which are distinguished solely by alternative, relatively short, first exon-encoded N-terminal sequences. Each one of these isoforms is localized to a different subcellular compartment and plays a specific role in maintaining integrity and proper function(s) of myofibers. The unique role of individual isoforms is supported by distinct phenotypes of isoform-specific knockout mice and recently discovered mutations in first coding exons of plectin that lead to distinct, tissue-specific, pathological abnormalities in humans. In this study, we demonstrate that the lack of plectin isoform 1 (P1) in myofibers of mice leads to alterations of nuclear morphology, similar to those observed in various forms of MD. We show that P1-mediated targeting of desmin IFs to myonuclei is essential for maintenance of their typically spheroidal architecture as well as their proper positioning and movement along the myofiber. Furthermore, we show that P1 deficiency affects chromatin modifications and the expression of genes involved in various cellular functions, including signaling pathways mediating mechanotransduction. Mechanistically, P1 is shown to specifically interact with the myonuclear membrane-associated (BAR domain-containing) protein endophilin B. Our results open a new perspective on cytoskeleton-nuclear crosstalk via specific cytolinker proteins. PMID:26487297

  3. mRNA expression of diacylglycerol kinase isoforms in insulin-sensitive tissues: effects of obesity and insulin resistance.

    PubMed

    Mannerås-Holm, Louise; Kirchner, Henriette; Björnholm, Marie; Chibalin, Alexander V; Zierath, Juleen R

    2015-04-01

    Diacylglycerol kinase (DGK) isoforms regulate signal transduction and lipid metabolism. DGKδ deficiency leads to hyperglycemia, peripheral insulin resistance, and metabolic inflexibility. Thus, dysregulation of other DGK isoforms may play a role in metabolic dysfunction. We investigated DGK isoform mRNA expression in extensor digitorum longus (EDL) and soleus muscle, liver as well as subcutaneous and epididymal adipose tissue in C57BL/6J mice and obese and insulin-resistant ob/ob mice. All DGK isoforms, except for DGKκ, were detectable, although with varying mRNA expression. Liver DGK expression was generally lowest, with several isoforms undetectable. In soleus muscle, subcutaneous and epididymal adipose tissue, DGKδ was the most abundant isoform. In EDL muscle, DGKα and DGKζ were the most abundant isoforms. In liver, DGKζ was the most abundant isoform. Comparing obese insulin-resistant ob/ob mice to lean C57BL/6J mice, DGKβ, DGKι, and DGKθ were increased and DGKε expression was decreased in EDL muscle, while DGKβ, DGKη and DGKθ were decreased and DGKδ and DGKι were increased in soleus muscle. In liver, DGKδ and DGKζ expression was increased in ob/ob mice. DGKη was increased in subcutaneous fat, while DGKζ was increased and DGKβ, DGKδ, DGKη and DGKε were decreased in epididymal fat from ob/ob mice. In both adipose tissue depots, DGKα and DGKγ were decreased and DGKι was increased in ob/ob mice. In conclusion, DGK mRNA expression is altered in an isoform- and tissue-dependent manner in obese insulin-resistant ob/ob mice. DGK isoforms likely have divergent functional roles in distinct tissues, which may contribute to metabolic dysfunction. PMID:25847921

  4. Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain.

    PubMed

    Boschi, N M; Takeuchi, K; Sterling, C; Tank, A W

    2015-02-12

    Polycytosine-binding proteins (PCBPs) are RNA-binding proteins that participate in post-transcriptional control pathways. Among the diverse functions of these proteins is the interaction with a 27 nucleotide pyrimidine-rich domain within the 3'UTR of tyrosine hydroxylase (TH) mRNA. Mutations to this domain result in decreased stability of TH mRNA and loss of cAMP-mediated activation of TH mRNA translation. PCBPs are hypothesized to play key roles in these regulatory mechanisms. In order to further test this hypothesis, we examined the tissue distribution of PCBPs in catecholaminergic cells. Initial studies demonstrated that proteins from catecholaminergic tissues bind to TH mRNA 3'UTR sequences and these proteins have an apparent Mr of ∼ 44 kDa, which is close to the molecular sizes for PCBPs. Fluorescent immunohistochemistry and confocal microscopy was used to analyze the distribution of PCBP isoforms in TH-positive cells of the rat midbrain, locus coeruleus, and adrenal gland. Our results suggest that: (1) PCBP2 is the predominant isoform in TH-positive cells of the rat midbrain; (2) PCBP3 is the predominant isoform in TH-positive cells of the locus coeruleus; and (3) PCBP1 is the predominant isoform in the adrenal medulla. The localization of PCBP proteins to TH-positive cells in these catecholaminergic tissues is consistent with the hypothesis that PCBPs play a role in the regulation of TH expression.

  5. Expression and regulation of the ΔN and TAp63 isoforms in salivary gland tumorigenesis clinical and experimental findings.

    PubMed

    Mitani, Yoshitsugu; Li, Jie; Weber, Randal S; Lippman, Scott L; Flores, Elsa R; Caulin, Carlos; El-Naggar, Adel K

    2011-07-01

    The TP63 gene, a TP53 homologue, encodes for two main isoforms by different promoters: one retains (TA) and the other lacks (ΔN) the transactivation domain. p63 plays a critical role in the maintenance of basal and myoepithelial cells in ectodermally derived tissues and is implicated in tumorigenesis of several neoplastic entities. However, the biological and regulatory roles of these isoforms in salivary gland tumorigenesis remain unknown. Our results show a reciprocal expression between TA and ΔN isoforms in both benign and malignant salivary tumors. The most dominantly expressed were the ΔN isoforms, whereas the TA isoforms showed generally low levels of expression, except in a few tumors. High ΔNp63 expression characterized tumors with aggressive behavior, whereas tumors with high TAp63 expression were significantly smaller and less aggressive. In salivary gland cells, high expression of ΔNp63 led to enhanced cell migration and invasion and suppression of cell senescence independent of TAp63 and/or TP53 gene status. We conclude the following: i) overexpression of ΔNp63 contributes to salivary tumorigenesis, ii) ΔNp63 plays a dominant negative effect on the TA isoform in the modulation of cell migration and invasion, and iii) the ΔN isoform plays an oncogenic role and may represent an attractive target for therapeutic intervention in patients with salivary carcinomas.

  6. Isoforms of agrin are widely expressed in the developing rat and may function as protease inhibitors.

    PubMed

    Biroc, S L; Payan, D G; Fisher, J M

    1993-09-17

    The agrin family of extracellular matrix proteins may be important in the formation of the neuromuscular junction. Using in situ hybridization with a probe recognizing all agrin isoforms, we demonstrate that it is widely expressed during mammalian embryogenesis. In the developing rat, particularly high levels of expression are found in the dorsal root and cranial ganglia, gut, whisker rudiments, penis, snout, teeth, retina, hippocampus, cerebral cortex and the lining of brain ventricles. Functional analysis of the recombinant rat protein shows that it is a potent inhibitor of the proteases trypsin, chymotrypsin and plasmin but not thrombin or the plasminogen activators. We conclude that agrin and its isoforms may play multiple roles in mammalian development including the regulation of proteolysis in the extracellular matrix.

  7. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    NASA Astrophysics Data System (ADS)

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  8. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals.

    PubMed

    Lakowski, Jörn; Majumder, Anirban; Lauderdale, James D

    2007-07-15

    The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.

  9. Expression of TGF-betas in the embryonic nervous system: analysis of interbalance between isoforms.

    PubMed

    Mecha, M; Rabadán, M A; Peña-Melián, A; Valencia, M; Mondéjar, T; Blanco, M J

    2008-06-01

    Transforming growth factor-beta (TGF-beta) is a family of growth factors with essential and multiple roles during embryonic development. In mammals, three isoforms (TGF-beta1, TGF-beta2, TGF-beta3) have been described. In the nervous system, the presence of TGF-beta1 has remained undetectable in other structures than meninges and choroids plexus, while TGF-beta2 and TGF-beta3 were considered as the neural members of the family. In the present study, we have analysed the expression pattern of the three isoforms in the neural tube, brain, and spinal cord during development in both mouse and chicken. The data reveal specific patterns for each isoform. This work also shows that both TGF-beta1 and TGF-beta3 are expressed in neural crest cells. In addition, we demonstrate the existence of interbalance between TGF-beta1 and TGF-beta3 with possible functional implications, which, together with the expression of TGF-beta1 in the CNS, represents one of the most important contributions of this work.

  10. Differential expression of two activating transcription factor 5 isoforms in papillary thyroid carcinoma

    PubMed Central

    Vicari, Luisa; La Rosa, Cristina; Forte, Stefano; Calabrese, Giovanna; Colarossi, Cristina; Aiello, Eleonora; Salluzzo, Salvatore; Memeo, Lorenzo

    2016-01-01

    Background Activating transcription factor 5 (ATF5) is a member of the activating transcription/cAMP response element-binding protein family of basic leucine zipper proteins that plays an important role in cell survival, differentiation, proliferation, and apoptosis. The ATF5 gene generates two transcripts: ATF5 isoform 1 and ATF5 isoform 2. A number of studies indicate that ATF5 could be an attractive target for therapeutic intervention in several tumor types; however, so far, the role of ATF5 has not been investigated in papillary thyroid carcinoma (PTC). Methods Quantitative real-time reverse transcription polymerase chain reaction and immuno-histochemical staining were used to study ATF5 mRNA and protein expression in PTC. Results We report here that ATF5 is expressed more in PTC tissue than in normal thyroid tissue. Furthermore, this is the first study that describes the presence of both ATF5 isoforms in PTC. Conclusion These findings could provide potential applications in PTC cancer treatment. PMID:27785070

  11. The mitochondrial ornithine transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms.

    PubMed

    Fiermonte, Giuseppe; Dolce, Vincenza; David, Laura; Santorelli, Filippo Maria; Dionisi-Vici, Carlo; Palmieri, Ferdinando; Walker, John E

    2003-08-29

    Two isoforms of the human ornithine carrier, ORC1 and ORC2, have been identified by overexpression of the proteins in bacteria and by study of the transport properties of the purified proteins reconstituted into liposomes. Both transport L-isomers of ornithine, lysine, arginine, and citrulline by exchange and by unidirectional mechanisms, and they are inactivated by the same inhibitors. ORC2 has a broader specificity than ORC1, and L- and D-histidine, L-homoarginine, and D-isomers of ornithine, lysine, and ornithine are all substrates. Both proteins are expressed in a wide range of human tissues, but ORC1 is the predominant form. The highest levels of expression of both isoforms are in the liver. Five mutant forms of ORC1 associated with the human disease hyperornithinemia-hyperammonemia-homocitrullinuria were also made. The mutations abolish the transport properties of the protein. In patients with hyperornithinemia-hyperammonemia-homocitrullinuria, isoform ORC2 is unmodified, and its presence compensates partially for defective ORC1. PMID:12807890

  12. HGH isoforms: cDNA expression, adipogenic activity and production in cell culture.

    PubMed

    Rincón-Limas, D E; Reséndez-Pérez, D; Ortíz-López, R; Alvídrez-Quihui, L E; Castro-MuñozLedo, F; Kuri-Harcuch, W; Martínez-Rodríguez, H G; Barrera-Saldaña, H A

    1993-02-20

    We have isolated, cloned and achieved functional expression of the cDNAs for both 22 kDa and 20 kDa human growth hormone (hGH) isoforms. A selective cDNA cloning strategy was used to preferentially and simultaneously obtain both hGH 22 kDa and hGH 20 kDa cDNAs. These were used to construct minigenes which were subcloned into two eukaryotic expression vectors and then introduced transiently in COS-7 cells and stably into CHO cells in culture. Transfection assays in COS-7 cells of both minigenes allowed the detection of the secreted hGH 22 kDa and hGH 20 kDa. These hGHs isoforms secreted into COS-7 medium were able to specifically promote differentiation of 3T3-F442A preadipocytes to adipose cells. Adipocyte differentiation was quantitated by Oil Red O triacylglycerol staining or glycerophosphate dehydrogenase activity. Furthermore, stable CHO cell lines have been derived that produce these hGH isoforms.

  13. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice

    PubMed Central

    Pierre, Karin; Parent, Annabelle; Jayet, Pierre-Yves; Halestrap, Andrew P; Scherrer, Urs; Pellerin, Luc

    2007-01-01

    Monocarboxylate transporters (MCTs) are membrane carriers for lactate and ketone bodies. Three isoforms, MCT1, MCT2 and MCT4, have been described in the central nervous system but little information is available about the regulation of their expression in relation to altered metabolic and/or nutritional conditions. We show here that brains of mice fed on a high fat diet (HFD) up to 12 weeks as well as brains of genetically obese (ob/ob) or diabetic (db/db) mice exhibit an increase of MCT1, MCT2 and MCT4 expression as compared to brains of control mice fed a standard diet. Enhanced expression of each transporter was visible throughout the brain but most prominently in the cortex and in the hippocampus. Using immunohistochemistry, we observed that neurons (expressing mainly MCT2 but also sometimes low levels of MCT1 under normal conditions) were immunolabelled for all three transporters in HFD mice as well as in ob/ob and db/db mice. At the subcellular level, changes were most remarkable in neuronal cell bodies. Western blotting performed on brain structure extracts allowed us to confirm quantitatively the enhancement of MCT1 and MCT2 expression. Our data demonstrate that the expression of cerebral MCT isoforms can be modulated by alterations of peripheral metabolism, suggesting that the adult brain is sensitive and adapts to new metabolic states. This observation could be relevant in the context of obesity development and its consequences for brain function. PMID:17599960

  14. New brain-specific beta-synuclein isoforms show expression ratio changes in Lewy body diseases.

    PubMed

    Beyer, Katrin; Munoz-Marmol, Ana M; Sanz, Carolina; Marginet-Flinch, Ruth; Ferrer, Isidro; Ariza, Aurelio

    2012-02-01

    Lewy body diseases (LBDs) include dementia with Lewy bodies (DLB) and Parkinson disease (PD). Alpha-synuclein (AS) aggregation is a key event in the pathogenesis of LBDs and beta-synuclein (BS) inhibits AS aggregation in vitro and in vivo. Recently, BS has been shown to interact directly with AS regulating its functionality and preventing its oligomerization, and a molecular subgroup of pure DLB lacks BS in cortical regions. In this study, we characterized four new BS transcript variants and analyzed their expression in neuronal and non-neuronal tissue, and their differential expression in frozen samples of three areas from brains of patients with pure Lewy body pathology (LBP), common LBP, Alzheimer pathology, and of controls. Relative mRNA expression was determined by real-time PCR with neuron-specific enolase 2 and synaptophysin as housekeeping genes, and expression changes were evaluated by the ΔΔCt method. Two main findings are in concordance with earlier studies. First, all BS isoforms are drastically diminished in the cortex of patients with pure LBP that had presented clinically as DLB but not PD with dementia. Second, an important shift of the isoform expression ratio was observed in the temporal cortex of all LBD cases, and the minor isoforms, normally absent in the midbrain, were detected in the caudate nucleus of all DLB samples. Our results provide further evidence for the role of minor transcript variants in the development of complex diseases and provide new insights into the pathogenesis of LBDs that may be important for the understanding of molecular mechanisms involved in these complex diseases.

  15. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    PubMed

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) P<0.001 metastatic vs nonmetastatic), irrespective of tumour thickness, while the surrounding epidermis showed no difference in expression. Staining for total VEGF expression showed staining in metastatic and nonmetastatic melanomas, and normal epidermis. An absence of VEGF(xxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  16. DIFERENTIALLY EXPRESSED ADENYLYL CYCLASE ISOFORMS MEDIATE SECRETORY FUNCTIONS IN CHOLANGIOCYTE SUBPOPULATION

    PubMed Central

    Strazzabosco, Mario; Fiorotto, Romina; Melero, Saida; Glaser, Shannon; Francis, Heather; Spirlì, Carlo; Alpini, Gianfranco

    2009-01-01

    cAMP is generated by adenylyl cyclases (ACs) a group of enzymes with different tissue specificity and regulation. We hypothesized that AC isoforms are heterogeneously expressed along the biliary tree, are associated with specific secretory stimuli and are differentially modulated in cholestasis. Methods: Small (SDC) and large (LDC) cholangiocytes were isolated from controls and from lipopolysaccharide-treated (LPS) or α-naphthylisothiocyanate-treated (ANIT) rats. ACs isoforms expression was assessed by real-time PCR. Secretion and cAMP levels were measured in intrahepatic bile duct units after stimulation with secretin, forskolin, HCO3−/CO2, cholinergic and β-adrenergic agonists, with or without selected inhibitors or after silencing of AC8 or sAC with siRNA. Results: Gene expression of the Ca2+-insensitive isoforms (AC4, AC7) was higher in SDC, while that of the Ca2+-inhibitable (AC5, AC6, AC9), the Ca2+/calmodulin stimulated AC8, and the soluble sAC, was higher in LDC. Ca2+/calmodulin-inhibitors and AC8 gene silencing inhibited choleresis and cAMP production stimulated by secretin and acetylcholine, but not by forskolin. Secretion stimulated by isoproterenol and calcineurin-inibitors was cAMP-dependent and GABA-inhibitable, consistent with activation of AC9. Cholangiocyte secretion stimulated by isohydric changes in [HCO3−]i, was cAMP-dependent and inhibited by sAC-inhibitior and by sAC gene silencing. Treatment with LPS or ANIT increased expression of AC7 and sAC, while decreasing that of the others ACs. Conclusion: These studies demonstrate a previously unrecognized role of AC in biliary pathophysiology. In fact: 1) ACs isoforms are differentially expressed in cholangiocyte subpopulations, 2) AC8, AC9, and sAC mediate cholangiocyte secretion in response to secretin, β-adrenergic agonists, or changes in [HCO3−]i, respectively, 3) ACs gene expression is modulated in experimental cholestasis. PMID:19444869

  17. Muscle fiber type characterization and myosin heavy chain (MyHC) isoform expression in Mediterranean buffaloes.

    PubMed

    Francisco, C L; Jorge, A M; Dal-Pai-Silva, M; Carani, F R; Cabeço, L C; Silva, S R

    2011-07-01

    This study aimed to evaluate myosin heavy chain (MyHC) isoform expression and muscle fiber types of Longissimus dorsi (LD) and Semitendinosus (ST) in Mediterranean buffaloes and possible fibers muscles modulation according to different slaughter weights. The presence of MyHC IIb isoforms was not found. Only three isoforms of MyHC (IIa, IIx/d and I) were observed and their percentages did not vary significantly among slaughter weights. The confirmation of the presence of hybrid muscles fibers (IIA/X) in LD and ST muscles necessitated classifying the fiber types into fast and slow according to their contractile activity, by m-ATPase assay. For both muscles, the muscle fiber frequency was higher for fast than for slow fibers in all weight groups. There was a difference (P<0.05) in the frequency of LD and ST muscle fiber types according to slaughter weights, which demonstrate that the slaughter weight influences the profile of muscle fibers from buffaloes. PMID:21371827

  18. Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms.

    PubMed

    Fuccillo, Marc V; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E; Sun, Gordon L; Malenka, Robert C; Südhof, Thomas C

    2015-07-15

    Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell-type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell-type-specific expression patterns of multiple neurexins at the single-cell level and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity.

  19. Single-Cell mRNA Profiling Reveals Cell-Type Specific Expression of Neurexin Isoforms

    PubMed Central

    Fuccillo, Marc V.; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E.; Sun, Gordon L.; Malenka, Robert C.; Südhof, Thomas C.

    2016-01-01

    Summary Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell type-specific expression patterns of multiple neurexins at the single-cell level, and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity. PMID:26182417

  20. Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development.

    PubMed

    Budzinski, I G F; Santos, T B; Sera, T; Pot, D; Vieira, L G E; Pereira, L F P

    2011-05-01

    As a first step towards understanding the physiological role and regulation of the expansin gene (EXP) family in Coffea arabica fruits during growth and maturation, we identified 11 expansin genes, nine belonging to the α-expansin family (EXPA), one EXLA and one EXLB, through in silico analysis of expressed sequence tags (ESTs). Within the α-expansin family, three isoforms were selected for detailed examination based on their high expression in coffee fruits or because they were specifically induced during different fruit developmental stages, according to the EST information. The expression patterns were analysed in different fruit tissues (perisperm, endosperm and pericarp) of C. arabica cv. IAPAR-59 and C. arabica cv. IAPAR-59 Graúdo, the latter being a closely related cultivar with a larger fruit size. Accumulation of CaEXPA1 and CaEXPA3 transcripts was high in the perisperm (tissue responsible for coffee bean size) and in the early stages of pericarp development. Transcripts of CaEXPA2 were detected only in the pericarp during the later stages of fruit maturation and ripening. There was no detectable transcription of the three EXPs analysed in the endosperm. The observed differences in mRNA expression levels of CaEXPA1 and CaEXP3 in the perisperm of IAPAR-59 and IAPAR-59 Graúdo suggest the participation of these two isoforms in the regulation of grain size.

  1. Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development.

    PubMed

    Budzinski, I G F; Santos, T B; Sera, T; Pot, D; Vieira, L G E; Pereira, L F P

    2011-05-01

    As a first step towards understanding the physiological role and regulation of the expansin gene (EXP) family in Coffea arabica fruits during growth and maturation, we identified 11 expansin genes, nine belonging to the α-expansin family (EXPA), one EXLA and one EXLB, through in silico analysis of expressed sequence tags (ESTs). Within the α-expansin family, three isoforms were selected for detailed examination based on their high expression in coffee fruits or because they were specifically induced during different fruit developmental stages, according to the EST information. The expression patterns were analysed in different fruit tissues (perisperm, endosperm and pericarp) of C. arabica cv. IAPAR-59 and C. arabica cv. IAPAR-59 Graúdo, the latter being a closely related cultivar with a larger fruit size. Accumulation of CaEXPA1 and CaEXPA3 transcripts was high in the perisperm (tissue responsible for coffee bean size) and in the early stages of pericarp development. Transcripts of CaEXPA2 were detected only in the pericarp during the later stages of fruit maturation and ripening. There was no detectable transcription of the three EXPs analysed in the endosperm. The observed differences in mRNA expression levels of CaEXPA1 and CaEXP3 in the perisperm of IAPAR-59 and IAPAR-59 Graúdo suggest the participation of these two isoforms in the regulation of grain size. PMID:21489097

  2. Stress-induced switch in Numb isoforms enhances Notch-dependent expression of subtype-specific transient receptor potential channel.

    PubMed

    Kyriazis, George A; Belal, Cherine; Madan, Meenu; Taylor, David G; Wang, Jang; Wei, Zelan; Pattisapu, Jogi V; Chan, Sic L

    2010-02-26

    The Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood. We previously reported that Numb switches from isoforms containing the insertion in PTB to isoforms lacking this insertion in neuronal cells subjected to trophic factor withdrawal (TFW). The functional relevance of the TFW-induced switch in Numb isoforms is not known. Here we provide evidence that the TFW-induced switch in Numb isoforms regulates Notch signaling strength and Notch target gene expression. PC12 cells stably overexpressing Numb isoforms lacking the PTB insertion exhibited higher basal Notch activity and Notch-dependent transcription of the transient receptor potential channel 6 (TRPC6) when compared with those overexpressing Numb isoforms with the PTB insertion. The differential regulation of TRPC6 expression is correlated with perturbed calcium signaling and increased neuronal vulnerability to TFW-induced death. Pharmacological inhibition of the Notch pathway or knockdown of TRPC6 function ameliorates the adverse effects caused by the TFW-induced switch in Numb isoforms. Taken together, our results indicate that Notch and Numb interaction may influence the sensitivity of neuronal cells to injurious stimuli by modulating calcium-dependent apoptotic signaling cascades.

  3. A new animal model for modulating myosin isoform expression by altered mechanical activity

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Ma, E.; McCue, S. A.; Smith, E.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.

  4. Expression of the Bgp gene and characterization of mouse colon biliary glycoprotein isoforms.

    PubMed

    McCuaig, K; Rosenberg, M; Nédellec, P; Turbide, C; Beauchemin, N

    1993-05-30

    The biliary glycoprotein (BGP)-encoding gene is a member of the human carcinoembryonic antigen (CEA) gene family. We have now cloned several mouse Bgp cDNAs from an outbred CDR-1 mouse colon cDNA library, as well as by reverse transcription-PCR amplification of colon RNA. The distinguishing features of the deduced Bgp protein isoforms are found in the two divergent N-terminal domains, the highly conserved internal C2-set immunoglobulin domains, and an intracytoplasmic domain of either 10 or 73 amino acids (aa). The cDNA structures suggest that these mRNAs are produced through alternative splicing of a Bgp gene and the usage of multiple transcriptional terminators. The Bgp deduced aa sequences are highly homologous to several well characterized rat hepatocyte proteins such as the cell CAM105/ecto-ATPase/pp120/HA4 proteins. Oligodeoxyribonucleotide probes representing the various cDNA isoform domains revealed predominant transcripts of 1.8, 3.1 and 4.0 kb on Northern analyses of mouse colon RNA; some of these bands are actually composed of several co-migrating transcripts. The transcripts encoding the long intracytoplasmic-tailed Bgp proteins are expressed at one-tenth the relative abundance of the shorter-tailed species. We have previously demonstrated that several mouse Bgp cDNAs, when transfected into eukaryotic cells, express BGP proteins at the cell surface and function in vitro as cell adhesion molecules, much like their human and rat counterparts. The expression of the many Bgp isoforms at the surface of epithelial cells, such as colon, suggests that these proteins play a determinant role, through self- or heterologous contact, in renewal and/or differentiation of their epithelia.

  5. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm.

    PubMed Central

    Morell, M K; Blennow, A; Kosar-Hashemi, B; Samuel, M S

    1997-01-01

    Three forms of starch branching enzyme (BE) from developing hexaploid wheat (Triticum aestivum) endosperm have been partially purified and characterized. Immunological cross-reactivities indicate that two forms (WBE-IAD, 88 kD, and WBE-IB, 87 kD) are related to the maize BE I class and that WBE-II (88 kD) is related to maize BE II. Comparison of the N-terminal sequences from WBE-IAD and WBE-II with maize and rice BEs confirms these relationships. Evidence is presented from the analysis of nullisomic-tetrasomic wheat lines demonstrating that WBE-IB is located on chromosome 7B and that the WBE-IAD fraction contains polypeptides that are encoded on chromosomes 7A and 7D. The wheat endosperm BE classes are differentially expressed during endosperm development. WBE-II is expressed at a constant level throughout mid and late endosperm development. In contrast, WBE-IAD and WBE-IB are preferentially expressed in late endosperm development. Differences are also observed in the kinetic characteristics of the enzymes. The WBE-I isoforms have a 2- to 5-fold higher affinity for amylose than does WBE-II, and the WBE-I isoforms are activated up to 5-fold by phosphorylated intermediates and inorganic phosphate, whereas WBE-II is activated only 50%. The potential implications of this activation of BE I for starch biosynthesis are discussed. PMID:9008395

  6. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    SciTech Connect

    Holst, L.S.; Laurell, H.; Holm, C.

    1996-08-01

    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  7. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-01-01

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations. PMID:27323111

  8. Cell-Specific Fine-Tuning of Neuronal Excitability by Differential Expression of Modulator Protein Isoforms

    PubMed Central

    Jepson, James; Sheldon, Amanda; Shahidullah, Mohammad; Fei, Hong; Koh, Kyunghee

    2013-01-01

    SLOB (SLOWPOKE-binding protein) modulates the Drosophila SLOWPOKE calcium-activated potassium channel. We have shown previously that SLOB deletion or RNAi knockdown decreases excitability of neurosecretory pars intercerebralis (PI) neurons in the adult Drosophila brain. In contrast, we found that SLOB deletion/knockdown enhances neurotransmitter release from motor neurons at the fly larval neuromuscular junction, suggesting an increase in excitability. Because two prominent SLOB isoforms, SLOB57 and SLOB71, modulate SLOWPOKE channels in opposite directions in vitro, we investigated whether divergent expression patterns of these two isoforms might underlie the differential modulation of excitability in PI and motor neurons. By performing detailed in vitro and in vivo analysis, we found strikingly different modes of regulatory control by the slob57 and slob71 promoters. The slob71, but not slob57, promoter contains binding sites for the Hunchback and Mirror transcriptional repressors. Furthermore, several core promoter elements that are absent in the slob57 promoter coordinately drive robust expression of a luciferase vector by the slob71 promoter in vitro. In addition, we visualized the expression patterns of the slob57 and slob71 promoters in vivo and found clear spatiotemporal differences in promoter activity. SLOB57 is expressed prominently in adult PI neurons, whereas larval motor neurons exclusively express SLOB71. In contrast, at the larval neuromuscular junction, SLOB57 expression appears to be restricted mainly to a subset of glial cells. Our results illustrate how the use of alternative transcriptional start sites within an ion channel modulator locus coupled with functionally relevant alternative splicing can be used to fine-tune neuronal excitability in a cell-specific manner. PMID:24133277

  9. Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging.

    PubMed

    Jenkins, A K; Paterson, C; Wang, Y; Hyde, T M; Kleinman, J E; Law, A J

    2016-05-01

    Neurexin 1 (NRXN1), a presynaptic cell adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including autism, intellectual disability and schizophrenia. To gain insight into NRXN1's involvement in human cortical development we used quantitative real-time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms, NRXN1-α and NRXN1-β, in prefrontal cortex from fetal stages to aging. In addition, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison with non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, markedly increasing with gestational age. In the postnatal dorsolateral prefrontal cortex, expression levels were negatively correlated with age, peaking at birth until ~3 years of age, after which levels declined markedly to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared with non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human dorsolateral prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders.

  10. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle

    PubMed Central

    Chaponnier, Christine; Gabbiani, Giulio

    2016-01-01

    Higher vertebrates (mammals and birds) express six different highly conserved actin isoforms that can be classified in three subgroups: 1) sarcomeric actins, α-skeletal (α-SKA) and α-cardiac (α-CAA), 2) smooth muscle actins (SMAs), α-SMA and γ-SMA, and 3) cytoplasmic actins (CYAs), β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb) against an actin isoform (α-SMA) was produced and characterized in our laboratory in 1986 (Skalli  et al., 1986) . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS). In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes. PMID:27335638

  11. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the αD-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the αA-globin gene), recurrent losses of αD-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  12. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    PubMed

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  13. Expression of human protein phosphatase-1 in Saccharomyces cerevisiae highlights the role of phosphatase isoforms in regulating eukaryotic functions.

    PubMed

    Gibbons, Jennifer A; Kozubowski, Lukasz; Tatchell, Kelly; Shenolikar, Shirish

    2007-07-27

    Human (PP1) isoforms, PP1alpha, PP1beta, PP1gamma1, and PP1gamma2, differ in primary sequences at N and C termini that potentially bind cellular regulators and define their physiological functions. The GLC7 gene encodes the PP1 catalytic subunit with >80% sequence identity to human PP1 and is essential for viability of Saccharomyces cerevisiae. In yeast, Glc7p regulates glycogen and protein synthesis, actin cytoskeleton, gene expression, and cell division. We substituted human PP1 for Glc7p in yeast to investigate the ability of individual isoforms to catalyze Glc7p functions. S. cerevisiae expressing human PP1 isoforms were viable. PP1alpha-expressing yeast grew more rapidly than strains expressing other isoforms. On the other hand, PP1alpha-expressing yeast accumulated less glycogen than PP1beta-or PP1gamma1-expressing yeast. Yeast expressing human PP1 were indistinguishable from WT yeast in glucose derepression. However, unlike WT yeast, strains expressing human PP1 failed to sporulate. Analysis of chimeric PP1alpha/beta subunits highlighted a critical role for their unique N termini in defining PP1alpha and PP1beta functions in yeast. Biochemical studies established that the differing association of PP1 isoforms with the yeast glycogen-targeting subunit, Gac1p, accounted for their differences in glycogen synthesis. In contrast to human PP1 expressed in Escherichia coli, enzymes expressed in yeast displayed in vitro biochemical properties closely resembling PP1 from mammalian tissues. Thus, PP1 expression in yeast should facilitate future structure-function studies of this protein serine/threonine phosphatase.

  14. Na(+)/H (+) exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4.

    PubMed

    Mlih, Mohamed; Abdulrahman, Nabeel; Gadeau, Alain-Pierre; Mohamed, Iman A; Jaballah, Maiy; Mraiche, Fatima

    2015-06-01

    Osteopontin (OPN), a multifunctional glycophosphoprotein, has been reported to contribute to the development and progression of cardiac remodeling and hypertrophy. Cardiac-specific OPN knockout mice were protected against hypertrophy and fibrosis mediated by Ang II. Recently, transgenic mice expressing the active form of the Na(+)/H(+) exchanger isoform 1 (NHE1) developed spontaneous hypertrophy in association with elevated levels of OPN. The mechanism by which active NHE1 induces OPN expression and contributes to the hypertrophic response remains unclear. To validate whether expression of the active form of NHE1 induces OPN, cardiomyocytes were stimulated with Ang II, a known inducer of both OPN and NHE1. Ang II induced hypertrophy and increased OPN protein expression (151.6 ± 28.19 %, P < 0.01) and NHE1 activity in H9c2 cardiomyoblasts. Ang II-induced hypertrophy and OPN protein expression were regressed in the presence of an NHE1 inhibitor, EMD 87580, or a calcineurin inhibitor, FK506. In addition, our results indicated that activation of NHE1-induced NFAT3 translocation into the nucleus and a significant activation of the transcription factor Gata4 (NHE1: 149 ± 28 % of control, P < 0.05). NHE1-induced activation of Gata4 was inhibited by FK506. In summary, our results suggest that activation of NHE1 induces hypertrophy through the activation of NFAT3/Gata4 and OPN expression. PMID:25758355

  15. Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas.

    PubMed

    Giorgi, R R; Correa-Giannella, M L C; Casarini, A P M; Machado, M C; Bronstein, M D; Cescato, V A; Giannella-Neto, D

    2005-01-01

    In order to search for candidate genes related to pituitary adenoma aggressiveness, the present investigation was intended to compare the mRNA expression profile from a pool of four nonfunctional pituitary adenomas (NFPA) with a spinal cord metastasis of a nonfunctional pituitary carcinoma (MNFPC). The metallothionein isoform 3 (MT3) gene was differentially expressed in nonfunctional adenomas in comparison to the metastasis of nonfunctional carcinoma. A microarray dataset comprising 19,881 probes was employed for comparing expression profiles of a spinal cord metastasis of a nonfunctional pituitary carcinoma with a pool of four nonfunctional pituitary adenomas. RT-qPCR confirmed the microarray findings and was used to investigate MT3 mRNA gene expression in tumor samples of a series of 52 different pituitary adenoma subtypes comprising 10 corticotropin (ACTH)-producing, 18 growth hormone (GH)-producing, 8 prolactin (PRL)-producing, and 16 nonfunctional adenomas. Microarray data analysis by GeneSifter program unveiled Gene Ontology terms related to zinc ion-binding activity closely related to MT3 function. MT3 mRNA expression was statistically significantly higher in ACTH-producing pituitary adenomas and in nonfunctional pituitary adenomas in comparison to the other pituitary adenoma subtypes. The more abundant expression of this gene in ACTH-producing pituitary adenomas suggests that MT3 could be related to distinct pituitary cell lineage regulating the activity of some transcription factor of importance in hormone production and/or secretion. PMID:16601360

  16. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation

    PubMed Central

    Lunt, Sophia Y.; Muralidhar, Vinayak; Hosios, Aaron M.; Israelsen, William J.; Gui, Dan Y.; Newhouse, Lauren; Ogrodzinski, Martin; Hecht, Vivian; Xu, Kali; Acevedo, Paula N. Marín; Hollern, Daniel P.; Bellinger, Gary; Dayton, Talya L.; Christen, Stefan; Elia, Ilaria; Dinh, Anh T.; Stephanopoulos, Gregory; Manalis, Scott R.; Yaffe, Michael B.; Andrechek, Eran R.; Fendt, Sarah-Maria; Heiden, Matthew G. Vander

    2014-01-01

    SUMMARY Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2-deletion affects proliferation and metabolism in non-transformed, non-immortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis. PMID:25482511

  17. S1PR1 Tyr143 phosphorylation downregulates endothelial cell surface S1PR1 expression and responsiveness

    PubMed Central

    Chavez, Alejandra; Schmidt, Tracy Thennes; Yazbeck, Pascal; Rajput, Charu; Desai, Bhushan; Sukriti, Sukriti; Giantsos-Adams, Kristina; Knezevic, Nebojsa; Malik, Asrar B.; Mehta, Dolly

    2015-01-01

    ABSTRACT Activation of sphingosine-1-phosphate receptor 1 (S1PR1) plays a key role in repairing endothelial barrier function. We addressed the role of phosphorylation of the three intracellular tyrosine residues of S1PR1 in endothelial cells in regulating the receptor responsiveness and endothelial barrier function regulated by sphingosine 1-phosphate (S1P)-mediated activation of S1PR1. We demonstrated that phosphorylation of only Y143 site was required for S1PR1 internalization in response to S1P. Maximal S1PR1 internalization was seen in 20 min but S1PR1 returned to the cell surface within 1 h accompanied by Y143-dephosphorylation. Cell surface S1PR1 loss paralleled defective endothelial barrier enhancement induced by S1P. Expression of phospho-defective (Y143F) or phospho-mimicking (Y143D) mutants, respectively, failed to internalize or showed unusually high receptor internalization, consistent with the requirement of Y143 in regulating cell surface S1PR1 expression. Phosphorylation of the five S1PR1 C-terminal serine residues did not affect the role of Y143 phosphorylation in signaling S1PR1 internalization. Thus, rapid reduction of endothelial cell surface expression of S1PR1 subsequent to Y143 phosphorylation is a crucial mechanism of modulating S1PR1 signaling, and hence the endothelial barrier repair function of S1P. PMID:25588843

  18. Isoform-Specific Up-Regulation of Plasma Membrane Ca2+ATPase Expression During Colon and Gastric Cancer Cell Differentiation

    PubMed Central

    Ribiczey, Polett; Tordai, Attila; Andrikovics, Hajnalka; Filoteo, Adelaida G.; Penniston, John T.; Enouf, Jocelyne; Enyedi, Ágnes; Papp, Béla; Kovács, Tünde

    2007-01-01

    Summary In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype. PMID:17433436

  19. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    PubMed Central

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  20. Antidigoxin antiserum prevents endogenous digitalis-like compound-mediated reperfusion injury via modulating sodium pump isoform gene expression.

    PubMed

    Wang, He-Gui; Chu, Yue-Feng; Zou, Jian-Gang; Ke, Yong-Sheng

    2010-01-01

    Endogenous digitalis-like compound (EDLC) is an endogenous ligand of the digitalis receptor and can remarkably inhibit Na+/K+-ATPase activity. Antidigoxin antiserum (ADA), a selective EDLC antagonist, may lessen myocardial reperfusion injury; however, the molecular mechanisms underlying the effect remain unclear. Therefore, this study investigated whether ADA may prevent myocardial reperfusion injury and modulate gene expression of sodium pump alpha isoforms. Cardiac function was examined in isolated rat hearts subjected to ischemia and reperfusion (I/R). The infarct size, EDLC level, Na+/K+-ATPase activity, and the levels of mRNA for sodium pump alpha isoforms were measured in vivo I/R rat hearts in the presence or absence of ADA. It was found that ADA significantly improved the recovery of cardiac function, decreased infarct size, decreased EDLC level, and recovered Na+/K+-ATPase activity in I/R hearts. Further studies showed that sodium pump alpha1, alpha2, and alpha3 isoform mRNA levels were significantly reduced in I/R hearts, and pretreatment with ADA induced a large increase in the mRNA levels. These results indicate that EDLC may participate in depressing Na+/K+-ATPase activity and sodium pump alpha isoform gene expression in I/R heart. It is suggested that treatment with ADA may prevent EDLC-mediated reperfusion injury via modulating sodium pump isoform gene expression. PMID:20130737

  1. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells

    PubMed Central

    Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; Reitano, Rita; Saccone, Salvatore; Federico, Concetta; Parenti, Rosalba; Magro, Gaetano; D'Agata, Velia

    2016-01-01

    Wilms tumor 1 gene (WT1) is a tumor suppressor gene originally identified in nephroblastoma. It is also expressed in neuroblastoma which represents the most aggressive extracranial pediatric tumor. Many evidences have shown that neuroblastoma may undergo maturation, by transforming itself in a more differentiated tumors such as ganglioneuroblastoma and ganglioneuroma, or progressing into a highly aggressive metastatic malignancy. To date, 13 WT1 mRNA alternative splice variants have been identified. However, most of the studies have focused their attention only on isoform of ∼49 kDa. In the present study, it has been investigated the expression pattern of WT1 isoforms in an in vitro model of neuroblastoma consisting in undifferentiated or all-trans retinoic acid (RA) differentiated cells. These latter representing the less malignant phenotype of this tumor. Results have demonstrated that WT1.1-WT1.5, WT1.6-WT1.9, WT1.10 WT1.11-WT1.12 and WT1.13 isoforms are expressed in both groups of cells, but their levels are significantly increased after RA treatment. These data have also been confirmed by immunofluorescence analysis. Moreover, the inhibition of PI3K/Akt and MAPK/ERK, that represent two signalling pathway specifically involved in NB differentiation, induces an overexpression of WT1 isoforms. These data suggest that WT1 isoforms might be involved in differentiation of neuroblastic into mature ganglion cells. PMID:27014421

  2. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    PubMed

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  3. Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression

    PubMed Central

    Nicot, Arnaud; DiCicco-Bloom, Emanuel

    2001-01-01

    Although neurogenesis in the embryo proceeds in a region- or lineage-specific fashion coincident with neuropeptide expression, a regulatory role for G protein-coupled receptors (GPCR) remains undefined. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates sympathetic neuroblast proliferation, whereas the peptide inhibits embryonic cortical precursor mitosis. Here, by using ectopic expression strategies, we show that the opposing mitogenic effects of PACAP are determined by expression of PACAP receptor splice isoforms and differential coupling to the phospholipase C (PLC) pathway, as opposed to differences in cellular context. In embryonic day 14 (E14) cortical precursors transfected with the hop receptor variant, but not cells transfected with the short variant, PACAP activates the PLC pathway, increasing intracellular calcium and eliciting translocation of protein kinase C. Ectopic expression of the hop variant in cortical neuroblasts transforms the antimitotic effect of PACAP into a promitogenic signal. Furthermore, PACAP promitogenic effects required PLC pathway function indicated by antagonist U-73122 studies in hop-transfected cortical cells and native sympathetic neuroblasts. These observations highlight the critical role of lineage-specific expression of GPCR variants in determining mitogenic signaling in neural precursors. PMID:11296303

  4. Functional expression of two system A glutamine transporter isoforms in rat auditory brainstem neurons

    PubMed Central

    Blot, A.; Billups, D.; Bjørkmo, M.; Quazi, A.Z.; Uwechue, N.M.; Chaudhry, F.A.; Billups, B.

    2009-01-01

    Glutamine plays multiple roles in the CNS, including metabolic functions and production of the neurotransmitters glutamate and GABA. It has been proposed to be taken up into neurons via a variety of membrane transport systems, including system A, which is a sodium-dependent electrogenic amino acid transporter system. In this study, we investigate glutamine transport by application of amino acids to individual principal neurons of the medial nucleus of the trapezoid body (MNTB) in acutely isolated rat brain slices. A glutamine transport current was studied in patch-clamped neurons, which had the electrical and pharmacological properties of system A: it was sodium-dependent, had a non-reversing current-voltage relationship, was activated by proline, occluded by N-(methylamino)isobutyric acid (MeAIB), and was unaffected by 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH). Additionally, we examined the expression of different system A transporter isoforms using immunocytochemical staining with antibodies raised against system A transporter 1 and 2 (SAT1 and SAT2). Our results indicate that both isoforms are expressed in MNTB principal neurons, and demonstrate that functional system A transporters are present in the plasma membrane of neurons. Since system A transport is highly regulated by a number of cellular signaling mechanisms and glutamine then goes on to activate other pathways, the study of these transporters in situ gives an indication of the mechanisms of neuronal glutamine supply as well as points of regulation of neurotransmitter production, cellular signaling and metabolism in the native neuronal environment. PMID:19751803

  5. Cloning, expression and identification of an isoform of human stromal cell derived factor-1α

    PubMed Central

    LIANG, YIN-KU; PING, WEI; BIAN, LIU-JIAO

    2015-01-01

    Human stromal cell derived factor-1α (hSDF-1α), a chemotactic factor of stem cells, regulates inflammation, promotes the mobilization of stem cells and induces angiogenesis following ischemia. Six SDF-1 isoforms, SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1ϕ, which all contain a signal peptide at the N-terminus, have been reported. In the present study a special isoform of hSDF-1α is described that does not contain the N-terminal signal peptide sequence. The hSDF-1α gene was cloned with the recombinant plasmid pCMV-SPORT6-hSDF1 as the template, and the prokaryotic expression vector pET15b-hSDF-1α was constructed. This hSDF-1α was successfully expressed as an inclusion body in Escherichia coli BL21(DE3). The recombinant hSDF-1α was refolded in vitro and separated by cation exchange chromatography. Following these two steps the purity of the hSDF-1α was able to reach >85%. The recombinant hSDF-1α was then purified by size-exclusion chromatography. SDS-PAGE analysis demonstrated that the purity of the hSDF-1α was >95%, which meets almost all the requirements of a protein experiment. Chemotactic activity of the recombinant hSDF-1α was analyzed by Transwell migration assay and it was found that the recombinant hSDF-1α was able to stimulate THP-1 cell migration. These data suggest that the procedure of producing recombinant hSDF-1α proteins with chemotactic activity was feasible and the N-terminal signal peptide of hSDF-1α has little effect on the chemotactic activity of hSDF-1α. PMID:26136888

  6. Embryonic expression of the divergent Drosophila beta3-tubulin isoform is required for larval behavior.

    PubMed Central

    Dettman, R W; Turner, F R; Hoyle, H D; Raff, E C

    2001-01-01

    We have sought to define the developmental and cellular roles played by differential expression of distinct beta-tubulins. Drosophila beta3-tubulin (beta3) is a structurally divergent isoform transiently expressed during midembryogenesis. Severe beta3 mutations cause larval lethality resulting from failed gut function and consequent starvation. However, mutant larvae also display behavioral abnormalities consistent with defective sensory perception. We identified embryonic beta3 expression in several previously undefined sites, including different types of sensory organs. We conclude that abnormalities in foraging behavior and photoresponsiveness exhibited by prelethal mutant larvae reflect defective beta3 function in the embryo during development of chordotonal and other mechanosensory organs and of Bolwig's organ and nerve. We show that microtubule organization in the cap cells of chordotonal organs is altered in mutant larvae. Thus transient zygotic beta3 expression has permanent consequences for the architecture of the cap cell microtubule cytoskeleton in the larval sensilla, even when beta3 is no longer present. Our data provide a link between the microtubule cytoskeleton in embryogenesis and the behavioral phenotype manifested as defective proprioreception at the larval stage. PMID:11333234

  7. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer

    PubMed Central

    Wiesner, Thomas; Lee, William; Obenauf, Anna C.; Ran, Leili; Murali, Rajmohan; Zhang, Qi Fan; Wong, Elissa W. P.; Hu, Wenhuo; Scott, Sasinya N.; Shah, Ronak H.; Landa, Iñigo; Button, Julia; Lailler, Nathalie; Sboner, Andrea; Gao, Dong; Murphy, Devan A.; Cao, Zhen; Shukla, Shipra; Hollmann, Travis J.; Wang, Lu; Borsu, Laetitia; Merghoub, Taha; Schwartz, Gary K.; Postow, Michael A.; Ariyan, Charlotte E.; Fagin, James A.; Zheng, Deyou; Ladanyi, Marc; Busam, Klaus J.; Berger, Michael F.; Chen, Yu; Chi, Ping

    2016-01-01

    Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ~ 11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALKATI. In ALKATI-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites1. ALKATI is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALKATI transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALKATI stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALKATI, suggesting that patients with ALKATI-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation. PMID:26444240

  8. Identification and expression of an atypical isoform of metallothionein in the African clawed frog Xenopus laevis.

    PubMed

    Scudiero, Rosaria; Tussellino, Margherita; Carotenuto, Rosa

    2015-05-01

    Exploiting the annotation of the western clawed frog Silurana tropicalis genome, we identified a new metallothionein (MT) gene, exhibiting all the features to be considered an active gene, but with an atypical coding region, showing only 17 cysteine residues instead of the canonical 20 cysteines of vertebrate metallothioneins and two anomalous cysteine triplets. However, the presence of a gene in the genome does not ensure its effective expression. By using conventional and Real-Time PCR analyses, we demonstrated that this atypical MT is constitutively expressed throughout the life cycle of the African clawed frog Xenopus laevis; moreover, this gene is highly expressed in the adult liver, the major site of MT expression and synthesis in vertebrates. To our knowledge, the X. laevis MT described in this paper is the first sequence of a vertebrate MT showing only 17 cysteine residues, arranged in two Cys-Cys-Cys motifs. Phylogenetic analyses also demonstrated that the atypical X. laevis MT merges in the anuran clade, but is the most derived sequence among tetrapods MTs. Finally, Tajima's Relative Rate Test suggested a different evolutionary rate between the canonical X. laevis MT and this novel isoform.

  9. Estimation of Gene Expression at Isoform Level from mRNA-Seq Data by Bayesian Hierarchical Modeling

    PubMed Central

    Bhattacharjee, M.; Gupta, Ravi; Davuluri, R. V.

    2012-01-01

    mRNA-Seq is a precise and highly reproducible technique for measurement of transcripts levels and yields sequence information of a transcriptome at a single nucleotide base-level thus enabling us to determine splice junctions and alternative splicing events with high confidence. Often analysis of mRNA-Seq data does not attempt to quantify the expressions at isoform level. In this paper our objective would be use the mRNA-Seq data to infer expression at isoform level, where splicing patterns of a gene is assumed to be known. A Bayesian latent variable based modeling framework is proposed here, where the parameterization enables us to infer at various levels. For example, expression variability of an isoform across different conditions; the model parameterization also allows us to carry out two-sample comparisons, e.g., using a Bayesian t-test, in addition simple presence or absence of an isoform can also be estimated by the use of the latent variables present in the model. In this paper we would carry out inference on isoform expression under different normalization techniques, since it has been recently shown that one of the most prominent sources of variation in differential call using mRNA-Seq data is the normalization method used. The statistical framework is developed for multiple isoforms and easily extends to reads mapping to multiple genes. This could be achieved by slight conceptual modifications in definitions of what we consider as a gene and what as an exon. Additionally proposed framework can be extended by appropriate modeling of the design matrix to infer about yet unknown novel transcripts. However such attempts should be made judiciously since the input date used in the proposed model does not use reads from splice junctions. PMID:23293650

  10. Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development.

    PubMed

    González-Morán, María Genoveva

    2015-10-01

    In this work, the immunohistochemical expression of progesterone receptor (PR) isoforms and estrogen receptor alpha (ER-α), as well as the histomorphometric changes of the magnum region of the left oviduct from 8-day-old chicken embryos to one-month-old chickens were evaluated. Results indicate evident histological changes in the oviduct magnum during development mainly in the magnum's mucosa. Immunohistochemical analysis showed that the oviduct magnum from 8-day-old chicken embryos to one-day-old chickens did not present any PR isoform, but the oviduct magnum of one-week and one-month-old chickens expressed PR in the nuclei of all cell types. In epithelial cells, PR-B was the only isoform expressed; in muscle and serosa cells, PR-A isoform was the only isoform expressed; and stromal cells expressed both isoforms. The results also demonstrate positive ER-α immunostaining in the nuclei of different cells from embryonic life to later developmental stages of the oviduct magnum. Data indicate that the variations of ER-α or PR expression or dominance of either PR expression is differentially regulated depending on the cell type, the development of the oviduct, and in an age-specific manner. These variations in sex steroids hormone receptors are related with histological changes of the oviduct magnum through development.

  11. Perinatal malnutrition programs gene expression of leptin receptors isoforms in testis and prostate of adult rats.

    PubMed

    Gombar, Flavia Meireles; Ramos, Cristiane Fonte

    2013-06-10

    The aim of this paper was to evaluate if maternal malnutrition during lactation programs the expression of leptin receptor isoforms in the testes and prostate ventral lobe of adult rats. At delivery, Wistar rats were separated into 3 groups: control group (C) with free access to a standard laboratory diet containing 22% protein; protein-energy restricted group (PER) with free access to an isoenergy and protein-restricted diet containing 8% protein; and energy-restricted group (ER) receiving standard laboratory diet in restricted quantities, which were calculated according to the mean ingestion of the PER group. All animals were sacrificed at 90 days of age. Both PER and ER groups presented low body weight from the first days after birth, however, while the ER group reached the control weight around day 80, the body weight of PER group was significantly lower compared to controls until the day the animals were killed. In relation to tissue weight, only the relative testis weight of the ER group presented an alteration compared to the control group (p<0.03). There was also no alteration in the leptin serum levels among the groups. The main leptin receptors isoforms, OBRa and OBRb were significantly increased in the testis (OBRa: C=0.71±0.10; PER=1.14±0.17; ER=1.92±0.70, p<0.0007, OBRb: C=0.87±0.04; PER=1.20±0.05; ER=1.44±0.17, p<0.001) and prostate (OBRa: C=0.70±0.18; PER=1.30±0.14; ER=1.65±0.22, p<0.014, OBRb: C=0.77±0.14; PER=1.16±0.04; ER=1.30±0.13, p<0.027) of both malnourished groups. However, the testis OBRc (C=1.52±0.06; PER=1.35±0.23; ER=3.50±0.72, p<0.023) and OBRf (C=1.31±0.12; PER=1.66±0.27; ER=3.47±0.55, p<0.009) and prostate OBRc (C=0.48±0.13; ER=1.18±0.34, p<0.01) and OBRf (C=0.73±0.15; PER=0.99±0.11; ER=1.83±0.30, p<0.016) isoforms were significantly increased only in the ER group. The results presented here show for the first time that both testis and prostate leptin receptor isoforms gene expression are programmed by perinatal

  12. Identification of novel isoforms of dairy goat EEF1D and their mRNA expression characterization.

    PubMed

    Zhang, Sihuan; Wu, Xianfeng; Pan, Chuanying; Lei, Chuzhao; Dang, Ruihua; Chen, Hong; Lan, Xianyong

    2016-04-25

    Eukaryotic translation elongation factor 1 delta (EEF1D) gene encodes guanine nucleotide exchange protein eEF1Bδ, which participates in the eukaryotic protein synthesis, and plays important roles in regulating cell cycling and milk production. This study firstly focused on detecting the isoforms of dairy goat EEF1D gene and their mRNA expression characterization. Herein, two novel isoforms, EEF1Da and EEF1Dc, were identified in dairy goat. The entire coding sequences of EEF1Da and EEF1Dc isoforms were 843bp and 267bp in length, respectively. Goat EEF1Da had complete conserved domains of elongation factor 1 (EF1) family, and the evolution of goat EEF1Da isoform was agreed with the evolution of species. Expression pattern analysis of different isoforms revealed relatively ubiquitous expression of EEF1D and EEF1Da. While EEF1Dc only expressed in heart, lung, kidney, adipose and muscle. Combining with the analysis results of cloning, qRT-PCR and bioinformatics, EEF1Da is the major alternative splicing form of EEF1D gene. Interestingly, qRT-PCR result showed that the highest expression of EEF1D was in adipose, which is the major component of mammary. This result was consistent with the early research that EEF1D expressed highly in the mammary, which indicated that EEF1D played a potential key role in regulating adipose development and milk production. All these findings would provide a foundation for the further research of EEF1D gene and development of dairy goat industry. PMID:26794801

  13. Identification of novel isoforms of dairy goat EEF1D and their mRNA expression characterization.

    PubMed

    Zhang, Sihuan; Wu, Xianfeng; Pan, Chuanying; Lei, Chuzhao; Dang, Ruihua; Chen, Hong; Lan, Xianyong

    2016-04-25

    Eukaryotic translation elongation factor 1 delta (EEF1D) gene encodes guanine nucleotide exchange protein eEF1Bδ, which participates in the eukaryotic protein synthesis, and plays important roles in regulating cell cycling and milk production. This study firstly focused on detecting the isoforms of dairy goat EEF1D gene and their mRNA expression characterization. Herein, two novel isoforms, EEF1Da and EEF1Dc, were identified in dairy goat. The entire coding sequences of EEF1Da and EEF1Dc isoforms were 843bp and 267bp in length, respectively. Goat EEF1Da had complete conserved domains of elongation factor 1 (EF1) family, and the evolution of goat EEF1Da isoform was agreed with the evolution of species. Expression pattern analysis of different isoforms revealed relatively ubiquitous expression of EEF1D and EEF1Da. While EEF1Dc only expressed in heart, lung, kidney, adipose and muscle. Combining with the analysis results of cloning, qRT-PCR and bioinformatics, EEF1Da is the major alternative splicing form of EEF1D gene. Interestingly, qRT-PCR result showed that the highest expression of EEF1D was in adipose, which is the major component of mammary. This result was consistent with the early research that EEF1D expressed highly in the mammary, which indicated that EEF1D played a potential key role in regulating adipose development and milk production. All these findings would provide a foundation for the further research of EEF1D gene and development of dairy goat industry.

  14. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation.

    PubMed

    Longo, Alessandra; Librizzi, Mariangela; Naselli, Flores; Caradonna, Fabio; Tobiasch, Edda; Luparello, Claudio

    2013-10-01

    Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation.

  15. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation.

    PubMed

    Longo, Alessandra; Librizzi, Mariangela; Naselli, Flores; Caradonna, Fabio; Tobiasch, Edda; Luparello, Claudio

    2013-10-01

    Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation. PMID:23810909

  16. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    PubMed

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  17. Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco.

    PubMed

    Liu, Jun-Jun; Ekramoddoullah, Abul K M

    2003-05-01

    We report here the isolation and characterization of a novel PR10 gene, PmPR10-1.14, from western white pine (Pinus monticola Dougl. ex. D. Don). The PmPR10-1.14 gene encodes a polypeptide exhibiting high similarity with other members of the PR10 family and corresponds to one of six isoforms immunodetected in the roots of western white pine. Northern blot and western immunoblot analyses showed that expression of the PR10 gene family, including PmPR10-1.14, was detected in vegetative tissues constitutively, but not in developing reproductive organs. RT-PCR with gene-specific primers showed that the transcript of PmPR10-1.14 gene was found only in lateral roots and needles during growth. To study PR10 gene regulation at the cellular level, PmPR10-1.14 promoter was fused to the beta-glucuronidase (GUS) report gene, and analyzed for transient and stable gene expression. The transient expression assays in agroinfiltrated tobacco leaves indicated that the core promoter of PmPR10-1.14 gene resided in the sequence from -101 to +69 relative to the first nucleotide of PR10 cDNA. Furthermore, the promoter region from -311 to -101 acted as an enhancer, and the region from -506 to -311 as a silencer. Fluorometric GUS assays of transgenic tobacco plants demonstrated that the longest promoter of 1675 bp directed GUS expression constitutively at high levels in the roots of mature plants, but expression levels were too low to be detectable in other organs in histochemical assays. Histochemical localization analysis showed that PmPR10-1.14 promoter directed a tissue-specific expression exclusively during the initiation and development of the lateral roots. The distal 5' deletion of the promoter to -311 did not decrease the expression level significantly in the roots, suggesting that the cis-regulatory elements necessary for a high level of gene expression reside in the proximal fragment from -311 to +69. As one striking feature, PmPR10-1.14 promoter contains two copies of direct

  18. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1)/Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele.

    PubMed

    Davis, Melissa B; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M; Ford, DeJuana; Howerth, Elizabeth W; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  19. Regulation of estrogen receptor (ER) isoform messenger RNA expression by different ER ligands in female rat pituitary.

    PubMed

    Tena-Sempere, M; Navarro, V M; Mayen, A; Bellido, C; Sánchez-Criado, J E

    2004-03-01

    Net estrogen sensitivity in target tissues critically depends on the regulated expression of full-length and alternately processed estrogen receptor (ER) isoforms. However, the molecular mechanisms for the control of pituitary responsiveness to estrogen remain partially unknown. In the present communication, we report the ability of different ligands, with distinct agonistic or antagonistic properties at the ER, to modulate the expression of the transcripts encoding ERalpha and ERbeta isoforms, as well as those for the truncated ERalpha product (TERP), and the variant ERbeta2, in pituitaries from ovariectomized rats, i.e., a background devoid of endogenous estrogen. Compared with expression levels at the morning of proestrus, ovariectomy (OVX) resulted in increased pituitary expression of ERbeta and ERbeta2 mRNAs, whereas it decreased TERP-1 and -2 levels without affecting those of ERalpha. Administration of estradiol benzoate (as potent agonist for alpha and beta forms of ER) or the selective ERalpha agonist, propyl pyrazole triol, fully reversed the responses to OVX, while the ERbeta ligand, diarylpropionitrile, failed to induce any significant effect except for a partial stimulation of TERP-1 and -2 mRNA expression levels. To note, the ERbeta agonist was also ineffective in altering pituitary expression of progesterone receptor-B mRNA, i.e., a major estrogen-responsive target. In all parameters tested, tamoxifen, a selective ER modulator with mixed agonist/antagonist activity, behaved as ERalpha agonist, although the magnitude of tamoxifen effects was significantly lower than those of the ERalpha ligand, except for TERP induction. In contrast, the pure antiestrogen RU-58668 did not modify the expression of any of the targets under analysis. Overall, our results indicate that endogenous estrogen differentially regulates pituitary expression of the mRNAs encoding several ER isoforms with distinct functional properties, by a mechanism that is mostly conducted

  20. Multiple breast cancer risk variants are associated with differential transcript isoform expression in tumors

    PubMed Central

    Caswell, Jennifer L.; Camarda, Roman; Zhou, Alicia Y.; Huntsman, Scott; Hu, Donglei; Brenner, Steven E.; Zaitlen, Noah; Goga, Andrei; Ziv, Elad

    2015-01-01

    Genome-wide association studies have identified over 70 single-nucleotide polymorphisms (SNPs) associated with breast cancer. A subset of these SNPs are associated with quantitative expression of nearby genes, but the functional effects of the majority remain unknown. We hypothesized that some risk SNPs may regulate alternative splicing. Using RNA-sequencing data from breast tumors and germline genotypes from The Cancer Genome Atlas, we tested the association between each risk SNP genotype and exon-, exon–exon junction- or transcript-specific expression of nearby genes. Six SNPs were associated with differential transcript expression of seven nearby genes at FDR < 0.05 (BABAM1, DCLRE1B/PHTF1, PEX14, RAD51L1, SRGAP2D and STXBP4). We next developed a Bayesian approach to evaluate, for each SNP, the overlap between the signal of association with breast cancer and the signal of association with alternative splicing. At one locus (SRGAP2D), this method eliminated the possibility that the breast cancer risk and the alternate splicing event were due to the same causal SNP. Lastly, at two loci, we identified the likely causal SNP for the alternative splicing event, and at one, functionally validated the effect of that SNP on alternative splicing using a minigene reporter assay. Our results suggest that the regulation of differential transcript isoform expression is the functional mechanism of some breast cancer risk SNPs and that we can use these associations to identify causal SNPs, target genes and the specific transcripts that may mediate breast cancer risk. PMID:26472073

  1. Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes

    PubMed Central

    Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Eijo, Guadalupe; Magri, María L.; Pisera, Daniel; Seilicovich, Adriana

    2012-01-01

    Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2

  2. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight

    PubMed Central

    Saif, Z.; Hodyl, N.A.; Stark, M.J.; Fuller, P.J.; Cole, T.; Lu, N.; Clifton, V.L.

    2016-01-01

    Introduction Administration of betamethasone to women at risk of preterm delivery is known to be associated with reduced fetal growth via alterations in placental function and possibly direct effects on the fetus. The placental glucocorticoid receptor (GR) is central to this response and recent evidence suggests there are numerous isoforms for GR in term placentae. In this study we have questioned whether GR isoform expression varies in preterm placentae in relation to betamethasone exposure, fetal sex and birthweight. Methods Preterm (24–36 completed weeks of gestation, n = 55) and term placentae (>37 completed weeks of gestation, n = 56) were collected at delivery. Placental GR expression was examined using Western Blot and analysed in relation to gestational age at delivery, fetal sex, birthweight and beta-methasone exposure. Data was analysed using non-parametric tests. Results Eight known isoforms of the GR were detected in the preterm placenta and include GRα (94 kDa), GRβ (91 kDa), GRα C (81 kDa) GR P (74 kDa) GR A (65 kDa), GRα D1–3 (50–55 kDa). Expression varied between preterm and term placentae with a greater expression of GRα C in preterm placentae relative to term placentae. The only sex differences in preterm placentae was that GRα D2 expression was higher in males than females. There were no alterations in preterm placental GR expression in association with betamethasone exposure. Discussion GRα C is the isoform involved in glucocorticoid induced apoptosis and suggests that its predominance in preterm placentae may contribute to the pathophysiology of preterm birth. PMID:25990415

  3. Two isoforms of Xenopus retinoic acid receptor gamma 2 (B) exhibit differential expression and sensitivity to retinoic acid during embryogenesis.

    PubMed

    Crawford, M J; Liversage, R A; Varmuza, S L

    1995-01-01

    We report the isolation of two retinoic acid receptor isoforms (RAR gamma), which differ only in the 5'untranslated and putative N-terminus A regions. The two isoforms appear to serve as early markers for the presumptive neural axis; however, their expression patterns differ. RAR-gamma 2.1 is first expressed at gastrulation at the dorsal lip and subsequently along the presumptive neural axis. RAR- gamma 2.2 represents the full-length sequence of a receptor cDNA already partially characterized and present as a maternal transcript [Ellinger-Ziegelbauer and Dreyer (1991); Genes Dev 5:94-104, (1993): Mech Dev 41:31-46; Pfeffer and DeRobertis, (1994) Mech Dev: 45:147-153]. Unlike RAR-gamma 2.2, the 2.1 variant is not expressed either in pre-somitic mesoderm or notochord. RAR-gamma 2.1 is strongly expressed in branchial arches and to a lesser extent in the neural floor plate. The two isoforms also exhibit differential sensitivity to retinoic acid. Constitutive expression of RAR gamma 2.2 following neurulation appears to be depressed by treatment with retinoic acid, but domains of highest expression, namely, the head and tail, remain relatively unaffected, as do patterns of expression prior to late neurulation. By contrast, RAR-gamma 2.1 is not transcribed in retinoid-inhibited structures. Using microinjection techniques, we show that changes of RAR-gamma 2.1 expression in presumptive head structures occur as an early and local consequence of retinoic acid administration. Since RAR-gamma 2.1 expression is inhibited by retinoic acid, we tested to see if other treatments that perturb axis formation had any effect. Surprisingly, UV irradiation did not suppress that its inhibition by retinoic acid is not due solely to inhibition of anterior neural development. These experiments demonstrate a new subdivision of isoforms that undergo differential expression during development and that exhibit differential sensitivity to retinoic acid and to UV. This sensitivity and the presence

  4. Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain.

    PubMed Central

    Lai, F A; Dent, M; Wickenden, C; Xu, L; Kumari, G; Misra, M; Lee, H B; Sar, M; Meissner, G

    1992-01-01

    Mammalian brain possesses ryanodine-sensitive Ca2+ channels, which in muscle cells mediate rapid Ca2+ release from intracellular stores during excitation-contraction coupling. Analysis of bovine brain ryanodine receptor (RyR) channels suggests specific expression of the cardiac-muscle RyR isoform in mammalian brain. Localization using cardiac-muscle RyR-specific antibodies and antisense RNA revealed that brain RyRs were present in dendrites, cell bodies and terminals of rat forebrain, and highly enriched in the hippocampus. Activity of skeletal-muscle RyR channels is coupled to sarcolemmal voltage sensors, in contrast with cardiac-muscle RyR channels, which are known to be Ca(2+)-induced Ca(2+)-release channels. Thus Ca(2+)-induced Ca2+ release from intracellular stores mediated by brain RyR channels may be a major Ca(2+)-signalling pathway in specific regions of mammalian brain, and hence may play a fundamental role in neuronal Ca2+ homoeostasis. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 9. Fig. 10. Fig. 11. PMID:1334409

  5. Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin Isoform

    PubMed Central

    Zuellig, Richard A.; Bornhauser, Beat C.; Amstutz, Ralf; Constantin, Bruno; Schaub, Marcus C.

    2011-01-01

    Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constants K1 = ∼5 × 106 and K2 = ∼1 × 105 M−1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues. PMID:22228988

  6. Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity.

    PubMed

    Suphioglu, C; Mawdsley, D; Schäppi, G; Gruehn, S; de Leon, M; Rolland, J M; O'Hehir, R E

    1999-12-01

    A novel isoform of a major rye grass pollen allergen Lol p 5 was isolated from a cDNA expression library. The new isoform, Lol p 5C, shares 95% amino acid sequence identity with Lol p 5A. Both isoforms demonstrated shared antigenic activity but different allergenic activities. Recombinant Lol p 5C demonstrated 100% IgE reactivity in 22 rye grass pollen sensitive patients. In comparison, recombinant Lol p 5A showed IgE reactivity in less than 64% of the patients. Therefore, Lol p 5C represents a novel and highly IgE-reactive isoform allergen of rye grass pollen.

  7. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver

    PubMed Central

    Zhang, Hai-Feng; Li, Zhi-Hui; Liu, Jia-Yu; Liu, Ting-Ting; Wang, Ping; Fang, Yan; Zhou, Jun; Cui, Ming-Zhu; Gao, Na; Tian, Xin; Gao, Jie; Wen, Qiang; Jia, Lin-Jing

    2016-01-01

    Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism. PMID:27271371

  8. IsoDOT Detects Differential RNA-isoform Expression/Usage with respect to a Categorical or Continuous Covariate with High Sensitivity and Specificity

    PubMed Central

    Sun, Wei; Liu, Yufeng; Crowley, James J.; Chen, Ting-Hued; Zhou, Hua; Chu, Haitao; Huang, Shunping; Kuan, Pei-Fen; Li, Yuan; Miller, Darla R.; Shaw, Ginger D.; Wu, Yichao; Zhabotynsky, Vasyl; McMillan, Leonard; Zou, Fei; Sullivan, Patrick F.; de Villena, Fernando Pardo-Manuel

    2015-01-01

    We have developed a statistical method named IsoDOT to assess differential isoform expression (DIE) and differential isoform usage (DIU) using RNA-seq data. Here isoform usage refers to relative isoform expression given the total expression of the corresponding gene. IsoDOT performs two tasks that cannot be accomplished by existing methods: to test DIE/DIU with respect to a continuous covariate, and to test DIE/DIU for one case versus one control. The latter task is not an uncommon situation in practice, e.g., comparing the paternal and maternal alleles of one individual or comparing tumor and normal samples of one cancer patient. Simulation studies demonstrate the high sensitivity and specificity of IsoDOT. We apply IsoDOT to study the effects of haloperidol treatment on the mouse transcriptome and identify a group of genes whose isoform usages respond to haloperidol treatment. PMID:26617424

  9. Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans.

    PubMed Central

    Váradi, A; Molnár, E; Ostenson, C G; Ashcroft, S J

    1996-01-01

    Glucose-dependent sequestration of Ca2+ into endoplasmic reticulum and its subsequent release play an important role in the control of intracellular Ca2+ concentration, which regulates insulin secretion in pancreatic beta-cells. The active uptake of cytosolic Ca2+ into endoplasmic reticulum is mediated by sarco-(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs). We found, using RT-PCR with isoform-specific primers, that SERCA 2 and SERCA 3 mRNAs are co-expressed in human and rat islets of Langerhans and in the RINm5F beta-cell line. Immunochemical analysis also revealed the existence of two SERCA proteins with molecular masses of 110 and 115 kDa in beta-cell membranes. The 115 kDa protein was identified as SERCA 2b by its reaction with an isoform-specific antibody and the 110 kDa protein most probably corresponds to SERCA 3. The presence of two functionally different SERCA isoforms raises the possibility that they are located in distinct Ca2+ stores. There is evidence that altered Ca2+ handling in the beta-cell may contribute to the decreased insulin secretion seen in non-insulin dependent diabetes mellitus (NIDDM). We therefore investigated SERCA 2 and SERCA 3 mRNA expression by quantitative RT-PCR in islets prepared from Goto-Kakizaki (GK) rats, a non-obese spontaneous model of NIDDM. We found a significant reduction (about 68%) in SERCA 3 isoform expression. Since SERCA 2 expression was not significantly reduced, these genes are independently regulated and probably play distinct roles in islets of Langerhans. The marked decrease of SERCA 3 expression may constitute a defect in Ca2+ signalling in GK rat islets which could be a component of NIDDM. PMID:8912690

  10. Mass Spectrometric Identification of Isoforms of PR Proteins in Xylem Sap of Fungus-Infected Tomato1

    PubMed Central

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J.C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during compatible or incompatible interactions. A new member of the PR-5 family was identified that accumulated early in both types of interaction. Other pathogenesis-related proteins appeared in compatible interactions only, concomitantly with disease development. This study demonstrates the feasibility of using proteomics for the identification of known and novel proteins in xylem sap, and provides insights into plant-pathogen interactions in vascular wilt diseases. PMID:12376655

  11. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions1

    PubMed Central

    Azzi, Sandy; Gallerne, Cindy; Romei, Cristina; Le Coz, Vincent; Gangemi, Rosaria; Khawam, Krystel; Devocelle, Aurore; Gu, Yanhong; Bruno, Stefania; Ferrini, Silvano; Chouaib, Salem; Eid, Pierre; Azzarone, Bruno; Giron-Michel, Julien

    2015-01-01

    Intrarenal interleukin-15 (IL-15) participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15) isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC) to peritumoral (ptumTEC), tumoral (RCC), and cancer stem cells (CSC/CD105+). RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα) chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15) isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα). This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa) displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression. PMID:26152359

  12. Molecular characterization and expression profiles of four transformer-2 isoforms in the Chinese mitten crab Eriocheir sinensis

    NASA Astrophysics Data System (ADS)

    Luo, Danli; Liu, Yuan; Hui, Min; Song, Chengwen; Liu, Hourong; Cui, Zhaoxia

    2016-09-01

    The transformer-2 (tra-2) gene plays a key role in the regulatory hierarchy of sexual differentiation in somatic tissues and in the germline of Drosophila melanogaster. In this study, sequences and expression profiles of tra-2 in the Chinese mitten crab Eriocheir sinensis were characterized. Four tra-2 isoforms, designated as Estra-2a, Estra-2b, Estra-2c and Estra-2d, were isolated. They all contained an RNA-recognition motif (RRM) and a linker region, which shared high similarity with other reported tra-2s. Sequence analysis revealed that Estra-2a, Estra-2b and Estra-2c are encoded by the same genomic locus and are generated by alternative splicing of the pre-mRNA. Compared with the other three isoforms, Estra-2d lacks the RS2 domain. Quantitative real-time PCR showed that all four isoforms were highly expressed in the fertilized egg, and in the 2-4 cell and blastula stages compared with larval stages (P≤ 0.01), suggesting their maternal origin in early embryonic developmental stages. Notably, Estra-2a was highly expressed in male somatic tissues, while Estra-2c was significantly highly expressed in the ovary. These results suggest that Estra-2c is involved in sexual differentiation of the Chinese mitten crab. Our findings provide basic information for further functional studies of the tra-2 gene/protein in this species.

  13. Temporal expression and mitochondrial localization of a Foxp2 isoform lacking the forkhead domain in developing Purkinje cells.

    PubMed

    Tanabe, Yuko; Fujiwara, Yuji; Matsuzaki, Ayumi; Fujita, Eriko; Kasahara, Tadashi; Yuasa, Shigeki; Momoi, Takashi

    2012-07-01

    FOXP2, a forkhead box-containing transcription factor, forms homo- or hetero-dimers with FOXP family members and localizes to the nucleus, while FOXP2(R553H), which contains a mutation related to speech/language disorders, features reduced DNA binding activity and both cytoplasmic and nuclear localization. In addition to being a loss-of-function mutation, it is possible that FOXP2(R553H) also may act as a gain-of-function mutation to inhibit the functions of FOXP2 isoforms including FOXP2Ex10+ lacking forkhead domain. Foxp2(R552H) knock-in mouse pups exhibit impaired ultrasonic vocalization and poor dendritic development in Purkinje cells. However, expressions of Foxp2 isoforms in the developing Purkinje are unclear. The appearance of 'apical cytoplasmic swelling' (mitochondria-rich regions that are the source of budding processes) correlates with dendritic development of Purkinje cells. In the present study, we focused on Foxp2 isoforms localizing to the apical cytoplasmic swelling and identified two isoforms lacking forkhead domain: Foxp2Ex12+ and Foxp2Ex15. They partly localized to the membrane fraction that includes mitochondria. Foxp2Ex12+ mainly localized to the apical cytoplasmic swelling in early developing Purkinje cells at the stellate stage (P2-P4). Mitochondrial localization of Foxp2Ex12+ in Purkinje cells was confirmed by immune-electron microscopic analysis. Foxp2Ex12+ may play a role in dendritic development in Purkinje cells.

  14. High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers

    PubMed Central

    Brimmell, M; Burns, J S; Munson, P; McDonald, L; O’Hare, M J; Lakhani, S R; Packham, G

    1999-01-01

    Sensitivity to oestrogens and apoptosis are critical determinants of the development and progression of breast cancer and reflect closely linked pathways in breast epithelial cells. For example, induction of BCL-2 oncoprotein expression by oestrogen contributes to suppression of apoptosis and BCL-2 and oestrogen receptor (ER) are frequently co-expressed in tumours. BAG-1/HAP is a multifunctional protein which complexes with BCL-2 and steroid hormone receptors (including the ER), and can suppress apoptosis and influence steroid hormone-dependent transcription. Therefore, analysis of expression of BAG-1 in human breast cancer is of considerable interest. BAG-1 was readily detected by immunostaining in normal breast epithelial cells and most ER-positive tumours, but was undetectable or weakly expressed in ER-negative tumours. BAG-1 positive cells showed a predominantly cytoplasmic or cytoplasmic plus nuclear distribution of staining. A correlation between ER and BAG-1 was also evident in breast cancer derived cell lines, as all lines examined with functional ER expression also expressed high levels of BAG-1. In addition to the prototypical 36 kDa BAG-1 isoform, breast cancer cells expressed higher molecular weight isoforms and, in contrast to BCL-2, BAG-1 expression was independent of oestrogens. BAG-1 isoforms were differentially localized to the nucleus or cytoplasm and this was also independent of oestrogens. These results demonstrate a close association between BAG-1 and functional ER expression and suggest BAG-1 may be useful as a therapeutic target or prognostic marker in breast cancer. © 1999 Cancer Research Campaign PMID:10576663

  15. Myosin isoform expression in the prehensile tails of didelphid marsupials: functional differences between arboreal and terrestrial opossums.

    PubMed

    Rupert, J E; Schmidt, E Cordero; Moreira-Soto, A; Herrera, B Rodríguez; Vandeberg, J L; Butcher, M T

    2014-08-01

    Prehensile tails are defined as having the ability to grasp objects and are commonly used as a fifth appendage during arboreal locomotion. Despite the independent evolution of tail prehensility in numerous mammalian genera, data relating muscle structure, physiology, and function of prehensile tails are largely incomplete. Didelphid marsupials make an excellent model to relate myosin heavy chain (MHC) isoform fiber type with structure/function of caudal muscles, as all opossums have a prehensile tail and tail use varies between arboreal and terrestrial forms. Expanding on our previous work in the Virginia opossum, this study tests the hypothesis that arboreal and terrestrial opossums differentially express faster versus slower MHC isoforms, respectively. MHC isoform expression and percent fiber type distribution were determined in the flexor caudae longus (FCL) muscle of Caluromys derbianus (arboreal) and Monodelphis domestica (terrestrial), using a combination of gel electrophoresis and immunohistochemistry analyses. C. derbianus expresses three MHC isoforms (1, 2A, 2X) that are distributed (mean percentage) as 8.2% MHC-1, 2.6% 1/2A, and 89.2% 2A/X hybrid fibers. M. domestica also expresses MHC-1, 2A, and 2X, in addition to the 2B isoform, distributed as 17.0% MHC-1, 1.3% 1/2A, 9.0% 2A, 75.2% 2A/X, and 0.3% 2X/B hybrid fibers. The distribution of similar isoform fiber types differed significantly between species (P < 0.001). Although not statistically significant, C. derbianus was observed to have larger cross-sectional area (CSA) for each corresponding fiber type along with a greater amount of extra-cellular matrix. An overall faster fiber type composition (and larger fibers) in the tail of an arboreal specialist supports our hypothesis, and correlates with higher muscle force required for tail hanging and arboreal maneuvering on terminal substrates. Conversely, a broader distribution of highly oxidative fibers in the caudal musculature is well suited for

  16. Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

    PubMed Central

    Jangravi, Zohreh; Najafi, Mohammad; Shabani, Mohammd

    2016-01-01

    Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active gene. In this light, the aim of this study was to investigate isoform/transcript-specific expression profiles of KDM5D in three prostate cancer cell lines, Du-145, LNCaP, and PC3. Methods: Real-time PCR analysis was performed to determine the expression levels of different KDM5D transcripts in the prostate cell lines. A gene regulatory network was established to analyze the gene expression profile. Results: Significantly different expression levels of both isoforms were found among the three cell lines. Interestingly, isoform I was expressed in three cell lines while isoform III did only in DU-145. The expression levels of both isoforms were higher in DU-145 when compared to other cell lines (P<0.0001). The observed expression profile was determined by using regulatory network analyses. Conclusion: The present study, for the first time, not only showed the expression profiles of KDM5D isoforms in prostate cancer cell lines but also evaluated the effects of the gene regulatory network on the expression profile of this gene. PMID:26728332

  17. Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields.

    PubMed

    Yang, Yang; Linke, Martin; von Haimberger, Theodore; Matute, Ricardo; González, Leticia; Schmieder, Peter; Heyne, Karsten

    2014-01-01

    Photoisomerization of a protein bound chromophore is the basis of light sensing of many photoreceptors. We tracked Z-to-E photoisomerization of Cph1 phytochrome chromophore PCB in the Pr form in real-time. Two different phycocyanobilin (PCB) ground state geometries with different ring D orientations have been identified. The pre-twisted and hydrogen bonded PCB(a) geometry exhibits a time constant of 30 ps and a quantum yield of photoproduct formation of 29%, about six times slower and ten times higher than that for the non-hydrogen bonded PCB(b) geometry. This new mechanism of pre-twisting the chromophore by protein-cofactor interaction optimizes yields of slow photoreactions and provides a scaffold for photoreceptor engineering. PMID:26798771

  18. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis

    PubMed Central

    Shah, Mrinal Y.; Vasanthakumar, Aparna; Barnes, Natalie Y.; Figueroa, Maria E.; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R.; Davis, Elizabeth M.; Lin, Shang; Anastasi, John; Le Beau, Michelle M.; Moskowitz, Ivan; Melnick, Ari; Pytel, Peter; Godley, Lucy A.

    2010-01-01

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the C-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic are bred with Eμ-Myc transgenic mice, which model aggressive B cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Eμ-Myc animals. Eμ-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared to Eμ-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the re-distribution of DNA methylation characterizing virtually every human tumor. PMID:20587527

  19. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis.

    PubMed

    Shah, Mrinal Y; Vasanthakumar, Aparna; Barnes, Natalie Y; Figueroa, Maria E; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R; Davis, Elizabeth M; Lin, Shang; Anastasi, John; Le Beau, Michelle M; Moskowitz, Ivan P; Melnick, Ari; Pytel, Peter; Godley, Lucy A

    2010-07-15

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic mice are bred with Emicro-Myc transgenic mice, which model aggressive B-cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Emicro-Myc animals. Emicro-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared with Emicro-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the redistribution of DNA methylation characterizing virtually every human tumor.

  20. Recommendations for Accurate Resolution of Gene and Isoform Allele-Specific Expression in RNA-Seq Data

    PubMed Central

    Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.

    2015-01-01

    Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996

  1. Hepatocyte nuclear factor 4 alpha isoforms originated from the P1 promoter are expressed in human pancreatic beta-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms.

    PubMed

    Eeckhoute, J; Moerman, E; Bouckenooghe, T; Lukoviak, B; Pattou, F; Formstecher, P; Kerr-Conte, J; Vandewalle, B; Laine, B

    2003-05-01

    The nuclear receptor hepatocyte nuclear factor (HNF) 4 alpha is involved in a transcriptional network and plays an important role in pancreatic beta-cells. Mutations in the HNF4 alpha gene are correlated with maturity-onset diabetes of the young 1. HNF4 alpha isoforms result from both alternative splicing and alternate usage of promoters P1 and P2. It has recently been reported that HNF4 alpha transcription is driven almost exclusively by the P2 promoter in pancreatic islets. We observed that transcripts from both P1 and P2 promoters were expressed in human pancreatic beta-cells and in the pancreatic beta-cell lines RIN m5F and HIT-T15. Expression of HNF4 alpha proteins originating from the P1 promoter was confirmed by immunodetection. Due to the presence of the activation function module AF-1, HNF4 alpha isoforms originating from the P1 promoter exhibit stronger transcriptional activities and recruit coactivators more efficiently than isoforms driven by the P2 promoter. Conversely, activities of isoforms produced by both promoters were similarly repressed by the corepressor small heterodimer partner. These behaviors were observed on the promoter of HNF1 alpha that is required for beta-cell function. Our results highlight that expression of P1 promoter-driven isoforms is important in the control of pancreatic beta-cell function.

  2. Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood.

    PubMed

    Muscari, Claudio; Gamberini, Chiara; Carboni, Marco; Basile, Ilaria; Farruggia, Giovanna; Bonafè, Francesca; Giordano, Emanuele; Caldarera, Claudio Marcello; Guarnieri, Carlo

    2007-11-01

    Cord blood and peripheral-adult blood were compared as different sources of early endothelial precursor cells (eEPCs). Total mononuclear cells (MNCs) were obtained from both blood types and committed to eEPCs by exposure to fibronectin, VEGF, IGF-I, and bFGF. Under this condition, MNCs seeded at the density of 3 x 10(5) cells/cm(2) assumed a spindle shape, which was indicative of developing eEPCs, and expanded in a similar manner irrespective to the blood sources. Ulex europaeus agglutinin (UEA-1) and acetylated low density lipoprotein (acLDL) double staining was present in 90% in both peripheral- and cord-blood eEPCs after 2-week expansion. Also, the ability of eEPCs to form tubule-like structures in Matrigel was independent of their blood source, but dependent on the presence of human umbilical vein endothelial cells (HUVECs). eNOS and nNOS were not detectable by Western blotting in both peripheral and cord-blood eEPCs upon 3 weeks and their mRNA levels were lower than 2% relative to those present in HUVECs. On the contrary, iNOS protein was detectable in peripheral-blood eEPCs, but not in cord-blood eEPCs and HUVECs, as well as iNOS mRNA was more concentrated in peripheral-blood eEPCs than in cord-blood eEPCs and HUVECs. These data suggest that: (a) peripheral and cord blood can be considered comparable sources of eEPCs when they are expanded and differentiated in a short-term period; (b) the extremely low expression of constitutive NOS isoforms in the eEPCs of both blood types should markedly reduce their ability to regulate NO-dependent vasorelaxation; (c) the presence of iNOS in peripheral-blood eEPCs could improve the process of vasculogenesis.

  3. Identification and characterization of a constitutively expressed Ctenopharyngodon idella ADAR1 splicing isoform (CiADAR1a).

    PubMed

    Liu, Xiancheng; Huang, Keyi; Hou, Qunhao; Sun, Zhicheng; Wang, Binhua; Lin, Gang; Li, Dongming; Liu, Yong; Xu, Xiaowen; Hu, Chengyu

    2016-10-01

    As one member of ADAR family, ADAR1 (adenosine deaminase acting on RNA 1) can convert adenosine to inosine within dsRNA. There are many ADAR1 splicing isoforms in mammals, including an interferon (IFN) inducible ∼150 kD protein (ADAR1-p150) and a constitutively expressed ∼110 kD protein (ADAR1-p110). The structural diversity of ADAR1 splicing isoforms may reflect their multiple functions. ADAR1 splicing isoforms were also found in fish. In our previous study, we have cloned and identified two different grass carp ADAR1 splicing isoforms, i.e. CiADAR1 and CiADAR1-like, both of them are IFN-inducible proteins. In this paper, we identified a novel CiADAR1 splicing isoform gene (named CiADAR1a). CiADAR1a gene contains 15 exons and 14 introns. Its full-length cDNA is comprised of a 5' UTR (359 bp), a 3' UTR (229 bp) and a 2952 bp ORF encoding a polypeptide of 983 amino acids with one Z-DNA binding domain, three dsRNA binding motifs and a highly conserved hydrolytic deamination domain. CiADAR1a was constitutively expressed in Ctenopharyngodon idella kidney (CIK) cells regardless of Poly I:C stimulation by Western blot assay. In normal condition, CiADAR1a was found to be present mainly in the nucleus. After treatment with Poly I:C, it gradually shifted to cytoplasm. To further investigate the mechanism of transcriptional regulation of CiADAR1a, we cloned and identified its promoter sequence. The transcriptional start site of CiADAR1a is mapped within the truncated exon 2. CiADAR1a promoter is 1303 bp in length containing 4 IRF-Es. In the present study, we constructed pcDNA3.1 eukaryotic expression vectors with IRF1 and IRF3 and co-transfected them with pGL3-CiADAR1a promoter into CIK cells. The results showed that neither the over-expression of IRF1 or IRF3 nor Poly I:C stimulation significantly impacted CiADAR1a promoter activity in CIK cells. Together, according to the molecular and expression characteristics, subcellular localization and transcriptional

  4. Differential expression and regulation of leptin receptor isoforms in the rat brain: effects of fasting and oestrogen.

    PubMed

    Bennett, P A; Lindell, K; Karlsson, C; Robinson, I C; Carlsson, L M; Carlsson, B

    1998-01-01

    Leptin affects body weight and reproduction mainly via receptors in the central nervous system. Different isoforms of the leptin receptor (leptin-R) exist, including a long isoform (leptin-RL) with signalling capacity and short isoforms (leptin-RS) with unknown function. The aim of this study was to examine leptin-R gene expression in different regions of the brain under conditions with altered body weight, in the female rat, including ovariectomy (OVX), oestradiol (E2) treatment, fasting and a genetic model of obesity (Zucker fa/fa). Leptin-R gene expression was analysed by in situ hybridization using probes recognizing all receptor isoforms (leptin-R) or specifically leptin-RL. Transcripts recognized by the leptin-R probe were abundant in the choroid plexus (CP), arcuate nucleus (ARC), ventromedial nucleus (VMN), thalamus (TH) and piriform cortex (PC). Leptin-RL transcripts were detected in the ARC, VMN, TH and PC but not in the CP. Although no sex difference was observed, leptin-R gene expression was reduced by E2 administration and increased by OVX. Administration of E2 reduced leptin-RL gene expression in the ARC and VMN but did not alter the expression in the TH or PC. OVX had no effect on the expression of leptin-RL mRNA. Fasting also caused a differential regulation of leptin-R mRNAs, with an increase in abundance of leptin-RL transcripts in the TH despite a decrease in leptin-R in this area. Obese Zucker rats had a similar pattern of expression with an increased expression of leptin-RL transcripts in all brain areas analysed and a decrease in leptin-R gene expression. These results demonstrate a differential regulation of leptin-RL and leptin-RS which could provide a mechanism for regulating access to, and sensitivity of, discrete regions of the brain for circulating leptin. We suggest that fasting and E2 alter the balance between leptin-RL and leptin-RS and that this could increase tissue sensitivity to leptin.

  5. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Spencer, Melissa J.

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  6. Cloning of two putative ecdysteroid receptor isoforms from Tenebrio molitor and their developmental expression in the epidermis during metamorphosis.

    PubMed

    Mouillet, J F; Delbecque, J P; Quennedey, B; Delachambre, J

    1997-09-15

    Using the Drosophila EcR-B1 cDNA as a probe, we have cloned the putative ecdysteroid receptor from the mealworm Tenebrio molitor. We have isolated two cDNAs with different 5' termini that contain a complete open reading frame. These two cDNAs encode two proteins with distinct N-terminal regions corresponding to two isoforms. The coleopteran receptor is obviously related to the ecdysteroid receptor of other insects, but shares only 89% and 61% amino acid identities with the DNA-binding and ligand-binding domains of the Drosophila receptor, respectively. Its expression pattern has been examined in the epidermis during the last larval instar and pupal stage of T. molitor, in correlation with the hemolymph ecdysteroid titer. Hybridizations revealed two transcripts of 7 kb and 6.5 kb detected in most stages during metamorphosis and corresponding to the A and B1 isoforms. These two mRNAs are highly evident just before the rise of each ecdysteroid peak both in prepupae and in pupae. They show almost the same expression pattern in epidermis except for the second part of the pupal stage, during which only the A isoform is detected.

  7. Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants.

    PubMed

    Ulzheimer, Jochen C; Peles, Elior; Levinson, S Rock; Martini, Rudolf

    2004-01-01

    To elucidate the impact of myelinating Schwann cells on the molecular architecture of the node of Ranvier, we investigated the nodal expression of voltage-gated sodium channel (VGSC) isoforms and the localization of paranodal and juxtaparanodal membrane proteins in a severely affected Schwann cell mutant, the mouse deficient in myelin protein zero (P0). The abnormal myelin formation and compaction was associated with immature nodal cluster types of VGSC. Most strikingly, P0-deficient motor nerves displayed an ectopic nodal expression of the Na(v)1.8 isoform, where it is coexpressed with the ubiquitous Na(v)1.6 channel. Furthermore, Caspr was distributed asymmetrically or was even absent in the mutant nerve fibers. The potassium channel K(v)1.2 and Caspr2 were not confined to juxtaparanodes, but often protruding into the paranodes. Thus, deficiency of P0 leads to dysregulation of nodal VGSC isoforms and to altered localization of paranodal and juxtaparanodal components of the nodal complex. PMID:14962742

  8. Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.

    PubMed Central

    Gallo, J M; Hanger, D P; Twist, E C; Kosik, K S; Anderton, B H

    1992-01-01

    The neuronal microtubule-associated protein, tau, is expressed as a set of isoforms containing either three or four tandemly repeated 31-amino-acid motifs in the C-terminal half of the molecule that can bind to microtubules. Three-repeat forms are the only ones expressed early in development. A single three-repeat isoform of tau has been stably expressed in non-neuronal cells which do not express endogenous tau. Chinese hamster ovary (CHO) cells were transfected with a full-length cDNA coding for the foetal form of human tau cloned downstream of the simian virus 40 (SV40) promoter, and a cell line constitutively expressing tau, CHO[pSVtau3], was isolated. Double-label immunofluorescence microscopy reveals that tau co-localizes with the microtubular network of normal or taxol-treated CHO[pSVtau3] cells, without inducing any dramatic change in cell morphology. Tau is expressed in CHO[pSVtau3] cells as three bands in SDS/PAGE recognized by antibodies to tau, the slow-migrating tau species being the most abundant. Tau also appears as three bands in a heat-stable fraction from CHO[pSVtau3] cells, but a single band of enhanced immunoreactivity is detected following treatment of this fraction with alkaline phosphatase. This single band co-migrates with the fast-migrating band of untreated fractions or whole-cell extracts. In conclusion, a three-repeat isoform of tau is capable of binding to microtubules in transfected non-neuronal cells; furthermore, in this system, the protein is phosphorylated in at least two different states inducing a reduced electrophoretic mobility. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1530572

  9. Transforming growth factor-{beta}1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    SciTech Connect

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J. . E-mail: Noreen.Hickok@jefferson.edu

    2007-05-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-{beta}1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-{beta}1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-{beta}1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-{beta}1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.

  10. Expression and inducibility of cytochrome P450 isoforms in 1-year-old intrasplenic liver cell transplants in rats.

    PubMed

    Lupp, Amelie; Danz, Manfred; Müller, Dieter; Klinger, Wolfgang

    2002-03-01

    Syngenic fetal liver tissue suspensions were transplanted into the spleens of 60- to 90-day-old male Fischer 344 inbred rats. Transplant recipients were compared with age-matched control rats. One year after surgery, the animals were treated orally with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the respective solvents 24 or 48 h before being killed. Expression of cytochrome P450 (P450) isoforms in spleens and orthotopic livers was assessed by immunohistochemistry and P450-dependent monooxygenase functions by the model reactions ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), pentoxyresorufin O-depentylation (PROD) and ethylmorphine N-demethylation (EMND). Spleens of control animals displayed almost no expression of P450 isoforms and P450-mediated monooxygenase functions. Similar to liver, in the transplanted hepatocytes no P450 1A1 but distinct P450 2B1 and 3A2 expression was observed. Furthermore, the transplant-containing spleens displayed significant EROD, ECOD, PROD and EMND activities. Similar to normal liver, BNF treatment enhanced P450 1A1 and 2B1, PB induced P450 2B1 and 3A2, and DEX induced P450 3A2 expression in the transplanted hepatocytes. Correspondingly, in the transplant-containing spleens EROD, ECOD and PROD activities were significantly enhanced following BNF treatment, EROD, ECOD, PROD and EMND activities after PB administration, and EMND activity by DEX treatment. These results demonstrate that hepatocytes originating from fetal liver tissue suspensions can survive in the spleen at least for 1 year. They have differentiated into adult hepatocytes and even 1 year after transplantation express different P450 isoforms which are inducible by BNF, PB and DEX, corresponding to normal adult liver.

  11. Expression Profiles of PIWIL2 Short Isoforms Differ in Testicular Germ Cell Tumors of Various Differentiation Subtypes

    PubMed Central

    Gainetdinov, Ildar V.; Skvortsova, Yulia V.; Stukacheva, Elena A.; Bychenko, Oksana S.; Kondratieva, Sofia A.; Zinovieva, Marina V.; Azhikina, Tatyana L.

    2014-01-01

    PIWI family proteins have recently emerged as essential contributors in numerous biological processes including germ cell development, stem cell maintenance and epigenetic reprogramming. Expression of some of the family members has been shown to be elevated in tumors. In particular, PIWIL2 has been probed as a potential neoplasia biomarker in many cancers in humans. Previously, PIWIL2 was shown to be expressed in most tumours as a set of its shorter isoforms. In this work, we demonstrated the presence of its 60 kDa (PL2L60A) and 80 kDa (PL2L80A) isoforms in testicular cancer cell lines. We also ascertained the transcriptional boundaries of mRNAs and alternative promoter regions for these PIWIL2 isoforms. Further, we probed a range of testicular germ cell tumor (TGCT) samples and found PIWIL2 to be predominantly expressed as PL2L60A in most of them. Importantly, the levels of both PL2L60A mRNA and protein products were found to vary depending on the differentiation subtype of TGCTs, i.e., PL2L60A expression is significantly higher in undifferentiated seminomas and appears to be substantially decreased in mixed and nonseminomatous TGCTs. The higher level of PL2L60A expression in undifferentiated TGCTs was further validated in the model system of retinoic acid induced differentiation in NT2/D1 cell line. Therefore, both PL2L60A mRNA and protein abundance could serve as an additional marker distinguishing between seminomas and nonseminomatous tumors with different prognosis and therapy approaches. PMID:25384072

  12. Expression of hyperpolarization-activated cyclic nucleotide-gated channel isoforms in a canine model of atrial fibrillation

    PubMed Central

    HE, WEI; ZHANG, JIAN; GAN, TIANYI; XU, GUOJUN; TANG, BAOPENG

    2016-01-01

    The aim of the present study was to analyze the mRNA and protein expression levels of atrial hyperpolarization-activated cyclic nucleotide-gated (HCN) channel isoforms in the left atrial muscle of dogs with multiple organ failure. A total of 14 beagle dogs with multiple organ failure, including seven cases with sinus rhythm and seven cases with atrial fibrillation (AF), underwent surgery to remove a sample of left atrial appendage tissue. The expression levels of a number of HCN channel subtypes were subsequently measured using quantitative polymerase chain reaction and western blot analysis. The mRNA and protein expression levels of HCN2 and HCN4 increased significantly in the AF group when compared with the sinus rhythm group. However, expression of the HCN1 isoform was not detected. Therefore, increased expression levels of HCN2 and HCN4 may be important molecular mechanisms in the pathogenesis of AF, which were associated with differences in patients with valvular heart disease. PMID:27347074

  13. Expression of the two mRNA isoforms of the iron transporter Nramp2/DMTI in mice and function of the iron responsive element.

    PubMed Central

    Tchernitchko, Dimitri; Bourgeois, Monique; Martin, Marie-Elise; Beaumont, Carole

    2002-01-01

    Nramp2/DMT1 is a transmembrane proton-coupled Fe(2+) transporter. Two different mRNAs are generated by alternative splicing; isoform I contains an iron responsive element (IRE), whereas isoform II does not. They encode two proteins differing at their C-terminal end and by their subcellular localization. IRE-mediated stabilization of isoform I mRNA is thought to stimulate DMT1 expression in response to iron deficiency. We have measured the two mRNAs by real-time quantitative PCR in several mouse tissues, in normal conditions or following injection of phenylhydrazine, a potent haemolytic agent. Isoform I mRNA is expressed in the duodenum and is induced by stimulation of erythropoiesis, whereas the non-IRE isoform is mostly induced in erythropoietic spleen. Surprisingly, both isoforms are highly expressed in the kidney and are not regulated by erythropoiesis. To evaluate the role of the IRE in regulating isoform I mRNA stability, in response to variations in cell iron status, several constructs were made in pCDNA3 with either a normal or a mutated IRE placed at the 3' end of a stable mRNA. These constructs were transfected into HT29 cells and mRNAs were analysed after growing cells in the presence or absence of exogenous iron. There was no difference in the level of expression of the different messages, suggesting that the IRE does not regulate stability of isoform I mRNA. The half-life of the endogenous IRE-mRNA was also measured following actinomycin D addition in iron- or desferrioxamine-treated cells. Decay of the mRNA was very similar in both conditions. These results suggest that additional transcriptional regulations at the promoter level, or iron-dependent regulation of alternative splicing are likely to participate in the induction of isoform I mRNA by iron deficiency. PMID:11964145

  14. Hypothyroid-mediated changes in adult rat diaphragm muscle contractile properties and MHC isoform expression.

    PubMed

    Gosselin, L E; Zhan, W Z; Sieck, G C

    1996-06-01

    The purpose of the present study was to examine the effect of acute hypothyroidism on myosin heavy chain (MHC) isoform composition and contractile properties in the adult rat diaphragm muscle. Hypothyroidism was induced by the addition of propylthiouracil (0.05%) in the drinking water for a period of 3 wk. MHC isoform composition of control and hypothyroid diaphragm muscles was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vitro isometric contractile properties of midcostal diaphragm muscle segements were measured at 26 degrees C, whereas the maximal unloaded shortening velocity was measured at 15 degrees C with the "slack test" method. Serum triiodothyronine and thyroxine values were significantly lower in the hypothyroid compared with the control group. A small but significant increase in the percentage of slow MHC isoform in the diaphragm was observed with acute hypothyroidism, whereas the percentage of the fast MHC isoforms (2A, 2X, and 2B) did not significantly differ between groups. Peak twitch force did not differ between groups. However, twitch contraction and half-relaxation times were significantly prolonged in the hypothyroid group compared with control. Maximal specific force was reduced in the hypothyroid compared with the control group, averaging 15.7 and 19.8 N/cm2, respectively (P < 0.05). The maximal unloaded shortening velocity averaged 4.3 and 8.2 muscle lengths/s in the hypothyroid and control groups, respectively (P < 0.05). We conclude that acute hypothyroidism results in alterations in adult diaphragm muscle contractile properties that cannot be attributed solely to changes in MHC isoform composition.

  15. Anti-angiogenic VEGFA164B isoform mRNA is more abundant in E2-inactive, atretic follicles while expression of angiogenic VEGFA isoforms is greater in granulosa cells from developing bovine follicles prior to the LH surge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular endothelial growth factor A (VEGFA) is expressed by granulosa cells of the follicle and if its actions are blocked, ovulation and antral follicle development is inhibited. However, the role of anti-angiogenic VEGFA isoforms in bovine dominant follicle development, especially prior to and a...

  16. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato.

    PubMed

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M

    2012-02-01

    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  17. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes*

    PubMed Central

    Smith, Gina A.; Howell, Gareth J.; Phillips, Clair; Muench, Stephen P.; Ponnambalam, Sreenivasan; Harrison, Michael A.

    2016-01-01

    Plasma membrane vacuolar H+-ATPase (V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution, and activity of V-ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between plasma membrane V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro. Isoform a1 was recruited to the cell surface from the early endosome-recycling complex pathway, its knockdown arresting transferrin receptor recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and transferrin-transferrin receptor, decreased proton efflux, and reduced cell growth and invasiveness; this latter effect was at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence it is an important factor in expression of the invasive phenotype. PMID:26912656

  18. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  19. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  20. Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin alpha) from bovine brain.

    PubMed Central

    Kato, M; Watanabe, Y; Iino, S; Takaoka, Y; Kobayashi, S; Haga, T; Hidaka, H

    1998-01-01

    Neurocalcin (NC), a neuron-specific EF-hand Ca2+-binding protein, purified from bovine brain [Terasawa, Nakano, Kobayashi and Hidaka (1992) J. Biol. Chem. 267, 19596-19599] contains multiple isoforms. We previously cloned NCdelta from bovine brain and showed high expression in neuronal tissues [Okazaki, Watanabe, Ando, Hagiwara, Terasawa and Hidaka (1992) Biochem. Biophys. Res. Commun. 185, 147-153]. We report here the molecular cloning and expression of a cDNA encoding bovine brain NCalpha. The translated bovine protein is 191 amino acids long and shares 69.1% of its amino acid sequence with NCdelta. Recombinant NCalpha migrates as a single 23 kDa band and exhibits a Ca2+-dependent mobility shift on SDS/PAGE. Analysis of fluorescence emission spectra showed the Ca2+-induced peak at 337 nm. Interestingly, the mobility shift and the fluorescence intensity at 337 nm were larger for NCalpha than for NCdelta. In Ca2+-overlay experiments, however, the apparent affinity of NCalpha for 45Ca2+ was similar to that of NCdelta. Immunohistochemical analysis revealed NCalpha expression in the granular layer of the rat cerebellar cortex whereas NCdelta was found in the Purkinje cell layer. In the rat olfactory bulb, NCalpha was located in external tufted cells, and NCdelta was found in the periglomerular cells. These data demonstrate that NC isoforms differ in their tissue distribution and conformational changes induced by Ca2+ binding. Thus differential regulation of the two NC isoforms may be involved in control of neuron function. PMID:9560316

  1. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots.

    PubMed

    Castiglia, Daniela; Cardi, Manuela; Landi, Simone; Cafasso, Donata; Esposito, Sergio

    2015-08-01

    In plant cells, glucose 6 phosphate dehydrogenase (G6PDH-EC 1.1.1.49) regulates the oxidative pentose phosphate pathway (OPPP), a metabolic route involved in the production of NADPH for various biosynthetic processes and stress response. In this study, we report the overexpression of a cytosolic G6PDH isoform from barley (Hordeum vulgare) roots in bacteria, and the biochemical characterization of the purified recombinant enzyme (HvCy-G6PDH). A full-length cDNA coding for a cytosolic isoform of G6PDH was isolated, and the sequence was cloned into pET3d vector; the protein was overexpressed in Escherichia coli BL21 (DE3) and purified by anion exchange and affinity chromatography. The kinetic properties were calculated: the recombinant HvCy-G6PDH showed KMs and KINADPH comparable to those observed for the enzyme purified from barley roots; moreover, the analysis of NADPH inhibition suggested a competitive mechanism. Therefore, this enzyme could be utilised for the structural and regulatory characterization of this isoform in higher plants.

  2. Decreased expression of hippocampal Na⁺/Ca²⁺ exchanger isoform-1 by pentylenetetrazole kindling in mice.

    PubMed

    Kawanai, Takuya; Taruta, Atsuki; Inoue, Aya; Watanabe, Ryo; Ago, Yukio; Hashimoto, Hitoshi; Hasebe, Shigeru; Ooi, Yasuhiro; Takuma, Kazuhiro; Matsuda, Toshio

    2015-09-01

    Previous studies have shown that inhibitors of the Na(+)/Ca(2+) exchanger (NCX) attenuate seizure activity in drug-induced epilepsy models, but the role of NCX in epilepsy is not fully understood. The present study examined the effects of pentylenetetrazole (PTZ)-induced kindling on the mRNA expression of NCX isoforms (NCX1, NCX2 and NCX3) in mouse brain. Chronic administration of PTZ at 40mg/kg resulted in kindling seizure development. It caused decreases in the mRNA levels of NCX1 and NCX2, but not NCX3, in the hippocampus. Changes in NCX isoform expression levels were not observed in the prefrontal cortex or striatum. Acute PTZ at 40mg/kg, which caused little seizure activity, also decreased NCX2, but not NCX1 mRNA levels in the hippocampus. These results suggest that down-regulation of hippocampal NCX1 expression is associated with PTZ-induced kindling seizure development.

  3. Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-based Diagnosis in Breast Cancer.

    PubMed

    Yang, Ting; Xu, Feifei; Fang, Danjun; Chen, Yun

    2015-11-17

    The distinct roles of protein isoforms in cancer are becoming increasingly evident. FRα and FRβ, two major isoforms of the folate receptor family, generally have different cellular distribution and tissue specificity. However, the presence of FRβ in breast tumors, where FRα is normally expressed, complicates this situation. Prior to applying any FR isoform-based diagnosis and therapeutics, it is essential to monitor the expression profile of FR isoforms in a more accurate manner. An LC-MS/MS-based targeted proteomics assay was developed and validated in this study because of the lack of suitable methodology for the simultaneous and specific measurement of highly homologous isoforms occurring at low concentrations. FRα and FRβ monitoring was achieved by measuring their surrogate isoform-specific peptides. Five human breast cell lines, isolated macrophages and 60 matched pairs of breast tissue samples were subjected to the analysis. The results indicated that FRβ was overexpressed in tumor-associated macrophages (TAMs) but not epithelial cells, in addition to an enhanced level of FRα in breast cancer cells and tissue samples. Moreover, the levels of the FR isoforms were evaluated according to the histology, histopathological features and molecular subtypes of breast cancer. Several positive associations with PR/ER and HER2 status and metastasis were revealed.

  4. Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-based Diagnosis in Breast Cancer

    PubMed Central

    Yang, Ting; Xu, Feifei; Fang, Danjun; Chen, Yun

    2015-01-01

    The distinct roles of protein isoforms in cancer are becoming increasingly evident. FRα and FRβ, two major isoforms of the folate receptor family, generally have different cellular distribution and tissue specificity. However, the presence of FRβ in breast tumors, where FRα is normally expressed, complicates this situation. Prior to applying any FR isoform-based diagnosis and therapeutics, it is essential to monitor the expression profile of FR isoforms in a more accurate manner. An LC-MS/MS-based targeted proteomics assay was developed and validated in this study because of the lack of suitable methodology for the simultaneous and specific measurement of highly homologous isoforms occurring at low concentrations. FRα and FRβ monitoring was achieved by measuring their surrogate isoform-specific peptides. Five human breast cell lines, isolated macrophages and 60 matched pairs of breast tissue samples were subjected to the analysis. The results indicated that FRβ was overexpressed in tumor-associated macrophages (TAMs) but not epithelial cells, in addition to an enhanced level of FRα in breast cancer cells and tissue samples. Moreover, the levels of the FR isoforms were evaluated according to the histology, histopathological features and molecular subtypes of breast cancer. Several positive associations with PR/ER and HER2 status and metastasis were revealed. PMID:26573433

  5. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  6. Differential expression of p38 MAPK α, β, γ, δ isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration

    PubMed Central

    Yang, Chen; Cao, Peng; Gao, Yang; Wu, Ming; Lin, Yun; Tian, Ye; Yuan, Wen

    2016-01-01

    P38MAPK mediates cytokine induced inflammation in nucleus pulposus (NP) cells and involves in multiple cellular processes which are related to intervertebral disc degeneration (IDD). The aim of this study was to investigate the expression, activation and function of p38 MAPK isoforms (α,β, γ and δ) in degenerative NP and the effect of p38 activation in NP cells on macrophage polarization. P38 α, β and δ isoforms are preferential expressed, whereas the p38γ isoform is absent in human NP tissue. LV-sh-p38α, sh-p38β transfection in NP cells significantly decreased the ADAMTS-4,-5, MMP-13,CCL3 expression and restored collagen-II and aggrecan expression upon IL-1β stimulation. As compared with p38α and p38β, p38δ exhibited an opposite effect on ADAMTS-4,-5, MMP-13 and aggrecan expression in NP cells. Furthermore, the production of GM-CSF and IFNγ which were trigged by p38α or p38β in NP cells induced macrophage polarization into M1 phenotype. Our finding indicates that p38 MAPK α, β and δ isoform are predominantly expressed and activated in IDD. P38 positive NP cells modulate macrophage polarization through the production of GM-CSF and IFNγ. Hence, Our study suggests that selectively targeting p38 isoforms could ameliorate the inflammation in IDD and regard IDD progression. PMID:26911458

  7. Expression of full-length p53 and its isoform Δp53 in breast carcinomas in relation to mutation status and clinical parameters

    PubMed Central

    Baumbusch, Lars O; Myhre, Simen; Langerød, Anita; Bergamaschi, Anna; Geisler, Stephanie B; Lønning, Per E; Deppert, Wolfgang; Dornreiter, Irene; Børresen-Dale, Anne-Lise

    2006-01-01

    Background The tumor suppressor gene p53 (TP53) controls numerous signaling pathways and is frequently mutated in human cancers. Novel p53 isoforms suggest alternative splicing as a regulatory feature of p53 activity. Results In this study we have analyzed mRNA expression of both wild-type and mutated p53 and its respective Δp53 isoform in 88 tumor samples from breast cancer in relation to clinical parameters and molecular subgroups. Three-dimensional structure differences for the novel internally deleted p53 isoform Δp53 have been predicted. We confirmed the expression of Δp53 mRNA in tumors using quantitative real-time PCR technique. The mRNA expression levels of the two isoforms were strongly correlated in both wild-type and p53-mutated tumors, with the level of the Δp53 isoform being approximately 1/3 of that of the full-length p53 mRNA. Patients expressing mutated full-length p53 and non-mutated (wild-type) Δp53, "mutational hybrids", showed a slightly higher frequency of patients with distant metastasis at time of diagnosis compared to other patients with p53 mutations, but otherwise did not differ significantly in any other clinical parameter. Interestingly, the p53 wild-type tumors showed a wide range of mRNA expression of both p53 isoforms. Tumors with mRNA expression levels in the upper or lower quartile were significantly associated with grade and molecular subtypes. In tumors with missense or in frame mutations the mRNA expression levels of both isoforms were significantly elevated, and in tumors with nonsense, frame shift or splice mutations the mRNA levels were significantly reduced compared to those expressing wild-type p53. Conclusion Expression of p53 is accompanied by the functionally different isoform Δp53 at the mRNA level in cell lines and human breast tumors. Investigations of "mutational hybrid" patients highlighted that wild-type Δp53 does not compensates for mutated p53, but rather may be associated with a worse prognosis. In tumors

  8. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  9. Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.

    PubMed

    Valletti, Alessio; Gigante, Margherita; Palumbo, Orazio; Carella, Massimo; Divella, Chiara; Sbisà, Elisabetta; Tullo, Apollonia; Picardi, Ernesto; D'Erchia, Anna Maria; Battaglia, Michele; Gesualdo, Loreto; Pesole, Graziano; Ranieri, Elena

    2013-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common malignant renal epithelial tumor and also the most deadly. To identify molecular changes occurring in ccRCC, in the present study we performed a genome wide analysis of its entire complement of mRNAs. Gene and exon-level analyses were carried out by means of the Affymetrix Exon Array platform. To achieve a reliable detection of differentially expressed cassette exons we implemented a novel methodology that considered contiguous combinations of exon triplets and candidate differentially expressed cassette exons were identified when the expression level was significantly different only in the central exon of the triplet. More detailed analyses were performed for selected genes using quantitative RT-PCR and confocal laser scanning microscopy. Our analysis detected over 2,000 differentially expressed genes, and about 250 genes alternatively spliced and showed differential inclusion of specific cassette exons comparing tumor and non-tumoral tissues. We demonstrated the presence in ccRCC of an altered expression of the PTP4A3, LAMA4, KCNJ1 and TCF21 genes (at both transcript and protein level). Furthermore, we confirmed, at the mRNA level, the involvement of CAV2 and SFRP genes that have previously been identified. At exon level, among potential candidates we validated a differentially included cassette exon in DAB2 gene with a significant increase of DAB2 p96 splice variant as compared to the p67 isoform. Based on the results obtained, and their robustness according to both statistical analysis and literature surveys, we believe that a combination of gene/isoform expression signature may remarkably contribute, after suitable validation, to a more effective and reliable definition of molecular biomarkers for ccRCC early diagnosis, prognosis and prediction of therapeutic response. PMID:24194935

  10. Genome-Wide Analysis of Differentially Expressed Genes and Splicing Isoforms in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Palumbo, Orazio; Carella, Massimo; Divella, Chiara; Sbisà, Elisabetta; Tullo, Apollonia; Picardi, Ernesto; D’Erchia, Anna Maria; Battaglia, Michele; Gesualdo, Loreto; Pesole, Graziano; Ranieri, Elena

    2013-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common malignant renal epithelial tumor and also the most deadly. To identify molecular changes occurring in ccRCC, in the present study we performed a genome wide analysis of its entire complement of mRNAs. Gene and exon-level analyses were carried out by means of the Affymetrix Exon Array platform. To achieve a reliable detection of differentially expressed cassette exons we implemented a novel methodology that considered contiguous combinations of exon triplets and candidate differentially expressed cassette exons were identified when the expression level was significantly different only in the central exon of the triplet. More detailed analyses were performed for selected genes using quantitative RT-PCR and confocal laser scanning microscopy. Our analysis detected over 2,000 differentially expressed genes, and about 250 genes alternatively spliced and showed differential inclusion of specific cassette exons comparing tumor and non-tumoral tissues. We demonstrated the presence in ccRCC of an altered expression of the PTP4A3, LAMA4, KCNJ1 and TCF21 genes (at both transcript and protein level). Furthermore, we confirmed, at the mRNA level, the involvement of CAV2 and SFRP genes that have previously been identified. At exon level, among potential candidates we validated a differentially included cassette exon in DAB2 gene with a significant increase of DAB2 p96 splice variant as compared to the p67 isoform. Based on the results obtained, and their robustness according to both statistical analysis and literature surveys, we believe that a combination of gene/isoform expression signature may remarkably contribute, after suitable validation, to a more effective and reliable definition of molecular biomarkers for ccRCC early diagnosis, prognosis and prediction of therapeutic response. PMID:24194935

  11. Developmental changes in glutathione S-transferase isoforms expression and activity in intrasplenic fetal liver tissue transplants in rats.

    PubMed

    Lupp, Amelie; Anschütz, Tino; Lindström-Seppä, Pirjo; Müller, Dieter

    2003-09-01

    The aim of the present study was to characterise developmental changes in glutathione S-transferase (GST) isoforms expression and in glutathione conjugation capacity in intrasplenic liver tissue transplants. For this purpose, syngenic fetal liver tissue suspensions were transplanted into the spleens of adult male Fischer 344 rats. Three days, 1, 2, 4 weeks, 2, 4, 6 months and 1 year later, transplant-recipients and control animals were sacrificed and class alpha, mu and pi GST isoforms expression and GST activities using the substrates o-dinitrobenzene and 1-chloro-2,4-dinitrobenzene were assessed in livers and spleens. In the hepatocytes of the adult livers no class pi, but a distinct class alpha and mu GST expression was seen. The bile duct epithelia were class pi GST positive. Fetal livers displayed almost no class alpha and mu, but a slight class pi GST expression. The same pattern was seen in 3-day-old intrasplenic liver tissue transplants. Up to 2 weeks after surgery the class alpha and mu GST expression increased in the hepatocytes of the transplants, whereas the immunostaining for class pi GST disappeared. No remarkable changes were seen thereafter. Normal conjugation capacities were observed with the livers of both groups of rats. Control spleens displayed only low GST activities. From 2 months after transplantation on activities were significantly higher in transplant-containing spleens than in respective control organs with a further increase up to one year after grafting. These results show that intrasplenically transplanted fetal liver cells proliferate and differentiate into mature cells displaying a GST expression pattern with respective enzyme activities similar to adult liver.

  12. Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells

    PubMed Central

    2012-01-01

    Background The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins. Methods We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development. Results Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development. Conclusions In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents. PMID:23273262

  13. Role of nuclear progesterone receptor isoforms in uterine pathophysiology

    PubMed Central

    Patel, Bansari; Elguero, Sonia; Thakore, Suruchi; Dahoud, Wissam; Bedaiwy, Mohamed; Mesiano, Sam

    2015-01-01

    BACKGROUND Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors function primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcriptional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-specific expression and function of PR-A and PR-B are critical for normal uterine function. METHODS Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and Google Scholar and critically reviewed. RESULTS Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myometrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen on eutopic normal endometrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells through inhibition of key

  14. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  15. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  16. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients

    PubMed Central

    Leitch, Helen F.; Harvey, John N.; Thomas, Trevor H.

    2016-01-01

    Cardiovascular disease and cancer are increased in Type 2 diabetes. TPM1 and TPM4 genes encode proteins associated with cardiovascular and neoplastic disease. High (HMW) and low (LMW) molecular weight isoforms from TPM1 and TPM4 are altered in several cancer cells and the 3'UTR of TPM1 mRNA is tumour suppressive. Leukocytes influence cardiovascular and neoplastic disease by immunosurveillance for cancer and by chronic inflammation in Type 2 diabetes and cardiovascular disease. The aim was to determine changes in expression of isoforms from TPM1 and TPM4 genes in leukocytes from Type 2 diabetic patients and to use the leukocyte cell line THP1 to identify possible mediators of changes in the patients. Gene expression was determined by RT-qPCR. In diabetes, expression of HMW isoforms from TPM1 were markedly decreased (0.55 v 1.00; p = 0.019) but HMW isoforms from TPM4 were not significantly different (0.76 v 1.00; p = 0.205). Within individual variance in expression of HMW isoforms was very high. The change in expression in HMW isoforms from TPM1 and TPM4 was replicated in THP1 cells treated with 1 ng/ml TNFα (0.10 and 0.12 v 1.00 respectively) or 10 ng/ml IL-1α (0.17 and 0.14 v 1.00 respectively). Increased insulin or glucose concentrations had no substantial effects on TPM1 or TPM4 expression. Decreased TPM1 mRNA resulted in decreases in HMW protein levels. Expression of HMW isoforms from TPM1 is decreased in Type 2 diabetes. This is probably due to increased levels of inflammatory cytokines TNFα and IL-1α in Type 2 diabetes. Lower levels of TPM1 mRNA reduce tumour suppression and could contribute to increased cancer risk in Type 2 diabetes. Decreased HMW tropomyosin isoforms are associated with cancer. Decreased HMW isoforms give rise to cells that are more plastic, motile, invasive and prone to dedifferentiation resulting in leukocytes that are more invasive but less functionally effective. PMID:27649540

  17. Inflammatory Adipokines Decrease Expression of Two High Molecular Weight Isoforms of Tropomyosin Similar to the Change in Type 2 Diabetic Patients.

    PubMed

    Savill, Stuart A; Leitch, Helen F; Harvey, John N; Thomas, Trevor H

    2016-01-01

    Cardiovascular disease and cancer are increased in Type 2 diabetes. TPM1 and TPM4 genes encode proteins associated with cardiovascular and neoplastic disease. High (HMW) and low (LMW) molecular weight isoforms from TPM1 and TPM4 are altered in several cancer cells and the 3'UTR of TPM1 mRNA is tumour suppressive. Leukocytes influence cardiovascular and neoplastic disease by immunosurveillance for cancer and by chronic inflammation in Type 2 diabetes and cardiovascular disease. The aim was to determine changes in expression of isoforms from TPM1 and TPM4 genes in leukocytes from Type 2 diabetic patients and to use the leukocyte cell line THP1 to identify possible mediators of changes in the patients. Gene expression was determined by RT-qPCR. In diabetes, expression of HMW isoforms from TPM1 were markedly decreased (0.55 v 1.00; p = 0.019) but HMW isoforms from TPM4 were not significantly different (0.76 v 1.00; p = 0.205). Within individual variance in expression of HMW isoforms was very high. The change in expression in HMW isoforms from TPM1 and TPM4 was replicated in THP1 cells treated with 1 ng/ml TNFα (0.10 and 0.12 v 1.00 respectively) or 10 ng/ml IL-1α (0.17 and 0.14 v 1.00 respectively). Increased insulin or glucose concentrations had no substantial effects on TPM1 or TPM4 expression. Decreased TPM1 mRNA resulted in decreases in HMW protein levels. Expression of HMW isoforms from TPM1 is decreased in Type 2 diabetes. This is probably due to increased levels of inflammatory cytokines TNFα and IL-1α in Type 2 diabetes. Lower levels of TPM1 mRNA reduce tumour suppression and could contribute to increased cancer risk in Type 2 diabetes. Decreased HMW tropomyosin isoforms are associated with cancer. Decreased HMW isoforms give rise to cells that are more plastic, motile, invasive and prone to dedifferentiation resulting in leukocytes that are more invasive but less functionally effective. PMID:27649540

  18. Cell surface expression of PrP-c and the presence of scrapie prions in the blood of goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical scrapie is a naturally occurring fatal brain disease of goats and sheep which is caused by prions, a novel class of infectious agent, and is accompanied by the accumulation of abnormal isoforms of prion protein (PrP-Sc) in certain neural and lymphoid tissues. Although collection of a blood...

  19. Molecular cloning of rat cardiac troponin I and analysis of troponin I isoform expression in developing rat heart.

    PubMed

    Murphy, A M; Jones, L; Sims, H F; Strauss, A W

    1991-01-22

    We have isolated and sequenced a cDNA encoding rat cardiac troponin I. The predicted amino acid sequence was highly identical with previously reported chemically derived amino acid sequences for rabbit and bovine cardiac troponin I. Clones for slow skeletal muscle troponin I were also obtained from neonatal rat cardiac ventricle by the polymerase chain reaction. The nucleotide sequences of these clones were determined to be more than 99% identical with a previously reported rat slow skeletal troponin I cDNA [Koppe et al. (1989) J. Biol. Chem. 264, 14327-14333]. The troponin I clones hybridized to RNA from the appropriate muscle from adult animals. However, RNA from fetal and neonatal rat heart also hybridized with the slow skeletal troponin I cDNA, demonstrating its expression in fetal and neonatal rat heart. Slow skeletal troponin I steady-state mRNA levels decreased with increasing age, but cardiac troponin I mRNA levels increased through fetal and early neonatal cardiac development. Thus, during fetal and neonatal development, slow skeletal and cardiac troponin I isoforms are coexpressed in the rat heart and regulated in opposite directions. The degree of primary sequence differences in these isoforms, especially at phosphorylation sites, may result in important functional differences in the neonatal myocardium.

  20. Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania.

    PubMed

    Gagnon, Dominic; Foucher, Aude; Girard, Isabelle; Ouellette, Marc

    2006-11-01

    Serine hydroxymethyltransferase (SHMT) catalyses the reversible conversion of serine and tetrahydrofolate to glycine and methylene-tetrahydrofolate. The recent completion of the genome sequence of Leishmania major revealed the presence of two genes coding for two isoforms of this protein. In silico analysis showed that one isoform had an extension at its N-terminus and was predicted to localize to the mitochondrion. The situation is different in other kinetoplastid parasites with only one SHMT encoding gene in Trypanosoma cruzi and no SHMT encoding gene in Trypanosoma brucei. The two L. major SHMT genes were cloned in frame with the green fluorescent protein and the resulting fusion proteins showed differential localization: the short form (SHMT-S) was found in the cytosol while the long one (SHMT-L) was found in an organelle that has hallmarks of the parasite mitochondrion. Indeed, SHMT-L had a similar cellular fractionation pattern as the mitochondrial HSP60 as determined by digitonin fractionation. Both SHMT-S and SHMT-L genes were expressed preferentially in the amastigote stage of the parasite and the RNA levels of SHMT-L could be modulated by glycine, serine, and folate. Overexpression of SHMT-S increased resistance to the antifolate methotrexate and to a lower level to the inhibitor thiosemicarbazide in a rich folate containing medium. These findings suggest that folate metabolism is compartmentalised in Leishmania and that SHMT RNA levels are responsive to environmental conditions. PMID:16876889

  1. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  2. The CCAAT/Enhancer-Binding Protein Beta-2 Isoform (CEBPβ-2) Upregulates Galectin-7 Expression in Human Breast Cancer Cells

    PubMed Central

    Campion, Carole G.; Labrie, Marilyne; Grosset, Andrée-Anne; St-Pierre, Yves

    2014-01-01

    Galectin-7 is considered a gene under the control of p53. However, elevated expression of galectin-7 has been reported in several forms of cancer harboring an inactive p53 pathway. This is especially true for breast cancer where galectin-7 expression is readily expressed in a high proportion in basal-like breast cancer tissues, conferring cancer cells with increased resistance to cell death and metastatic properties. These observations suggest that other transcription factors are capable of inducing galectin-7 expression. In the present work, we have examined the role of CCAAT/enhancer-binding protein beta (C/EBPβ) in inducing expression of galectin-7. C/EBP proteins have been shown to contribute to breast cancer by upregulating pro-metastatic genes. We paid particular attention to C/EBPβ-2 (also known as LAP2), the most transcriptionally active of the C/EBPβ isoforms. Our results showed that ectopic expression of C/EBPβ-2 in human breast cancer cells was sufficient to induce expression of galectin-7 at both the mRNA and protein levels. In silico analysis further revealed the presence of an established CEBP element in the galectin-7 promoter. Mutation of this binding site abolished the transcriptional activity of the galectin-7 promoter. Chromatin immunoprecipitation analysis confirmed that C/EBPβ-2 binds to the endogenous galectin-7 promoter. Analysis of galectin-7 protein expression in normal epithelia and in breast carcinoma by immunohistochemistry further showed the expression pattern of C/EBPβ closely micmicked that of galectin-7, most notably in mammary myoepithelial cells and basal-like breast cancer where galectin-7 is preferentially expressed. Taken together, our findings suggest that C/EBPβ is an important mediator of galectin-7 gene activation in breast cancer cells and highlight the different transcriptional mechanisms controlling galectin-7 in cancer cells. PMID:24789216

  3. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked

    PubMed Central

    Sandberg, Malin K.; Al-Doujaily, Huda; Sharps, Bernadette; De Oliveira, Michael Wiggins; Schmidt, Christian; Richard-Londt, Angela; Lyall, Sarah; Linehan, Jacqueline M.; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Collinge, John

    2014-01-01

    Prions are lethal infectious agents thought to consist of multi-chain forms (PrPSc) of misfolded cellular prion protein (PrPC). Prion propagation proceeds in two distinct mechanistic phases: an exponential phase 1, which rapidly reaches a fixed level of infectivity irrespective of PrPC expression level, and a plateau (phase 2), which continues until clinical onset with duration inversely proportional to PrPC expression level. We hypothesized that neurotoxicity relates to distinct neurotoxic species produced following a pathway switch when prion levels saturate. Here we show a linear increase of proteinase K-sensitive PrP isoforms distinct from classical PrPSc at a rate proportional to PrPC concentration, commencing at the phase transition and rising until clinical onset. The unaltered level of total PrP during phase 1, when prion infectivity increases a million-fold, indicates that prions comprise a small minority of total PrP. This is consistent with PrPC concentration not being rate limiting to exponential prion propagation and neurotoxicity relating to critical concentrations of alternate PrP isoforms whose production is PrPC concentration dependent. PMID:25005024

  4. The Ontogeny of Nuclear Estrogen Receptor Isoform Expression and the Effect of 17β Estradiol in Embryonic Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Boyce-Derricott, Josh; Nagler, James J.; Cloud, J.G.

    2009-01-01

    Ligand bound nuclear estrogen receptor (ER) acts as a transcription factor regulating the expression of estrogen dependent genes. There are four nuclear ER isoforms in rainbow trout (Oncorhynchus mykiss). The objective of this study was to measure whole body mRNA levels of the two ERα isoforms (α1/α2) and the two ERβ isoforms (β1/β2) in male and female embryos from 50 to 600 degree-days (DD; days post-fertilization x water temperature) and in embryos exposed to vehicle or 17β-estradiol E2) for 2 hours at 230, 240 and 250 DD. All four isoforms were detected at every time point in both sexes. Sexual dimorphism was rarely observed; at 50 DD the level of ERα2 mRNA was significantly greater in males than in females and at 100 DD the level of ERβ1 mRNA was significantly greater in females than in males (p<0.05). Expression profiles of the two ERα isoforms were slightly different from one another, whereas the ERβ isoforms exhibited similar expression patterns. The effect of E2 was not different between male and female embryos. The level of ERα1 mRNA increased significantly at 240 DD; a similar but not statistically significant trend was observed at 230 and 250 DD. Despite the critical role of estrogen during sex differentiation in rainbow trout, the receptivity to this hormone as measured by the response in mRNA levels of ER appears to be largely the same between males and females and ERα1 is the only E2 responsive isoform. PMID:19818378

  5. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death

    PubMed Central

    Frías, Alex; Lambies, Guillem; Viñas-Castells, Rosa; Martínez-Guillamon, Catalina; Dave, Natàlia

    2015-01-01

    Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor β1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3β (GSK-3β) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3β phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the β-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3β inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3β inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism. PMID:26711268

  6. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection.

    PubMed

    Linthorst, H J; Meuwissen, R L; Kauffmann, S; Bol, J F

    1989-03-01

    Samsun NN tobacco cells were transformed with chimeric genes for pathogenesis-related (PR) proteins derived from genomic (PR-1a, GRP) or cDNA (PR-S) clones under the transcriptional control of the cauliflower mosaic virus 35S promoter. Regenerated plants were assayed by RNA and protein gel blotting, and plants showing high specific expression of the inserted genes were selected for self-pollination and seed formation. Inspection of second generation transformants showed that constitutive expression of PR-1a, GRP, and PR-S in tobacco in general does not have an effect on the phenotypic appearance of the plants or the expression of other endogenous PR genes. Furthermore, constitutive expression of the above genes does not affect the susceptibility of the plants to infection with tobacco mosaic virus or alfalfa mosaic virus.

  7. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs.

    PubMed

    Mathew, Divya Elizabeth; Larsen, Kaitlyn; Janeczek, Paulina; Lewohl, Joanne M

    2016-09-01

    The 14-3-3 proteins are a family of highly conserved molecular chaperones involved in the regulation of a number of key cellular functions including metabolism, stress response, protein trafficking, cell-cycle control, signal transduction, transcription, apoptosis and neurotransmission. 14-3-3 proteins have also been implicated in the pathophysiology of neurodegenerative disorders including Alzheimer disease and Parkinson disease. Recent studies have also shown that 14-3-3s are differentially expressed in the frontal cortex of human alcoholics suggesting a potential role in the pathophysiology of alcohol use disorders. Here we measured the expression of 14-3-3 transcripts in HEK293T cells in response to chronic ethanol treatment. Five of the seven transcripts (14-3-3β, 14-3-3γ, 14-3-3ζ, 14-3-3ε and 14-3-3θ) were significantly down-regulated following chronic exposure to ethanol for a five day period with these changes persisting even after withdrawal from ethanol treatment. One transcript, 14-3-3σ, was significantly up-regulated following chronic ethanol exposure and 14-3-3η showed no differences in expression in the same treatment model. The pattern of expression changes is similar to those seen in the frontal cortex of human alcoholics. To investigate the role of miRNAs in mediating the expression changes we measured the expression of the 14-3-3 transcripts following transfection with miR-203, miR-144 and miR-7 mimics. Although these miRNAs had predicted target sites in the 3'untranslated region of each 14-3-3 isoform, only miR-203 resulted in a down-regulation of 14-3-3θ transcript. In addition, the expression of 14-3-3γ was upregulated following transfection with miR-7 and miR-144 mimics. MiRNA regulation of these isoforms following alcohol exposure may lead to alterations in neurotransmission, the balance between cell survival and cell death, as well as changing the rewarding effects of alcohol. PMID:27370936

  8. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin. PMID:27467217

  9. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  10. Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions.

    PubMed

    Hu, Q; Jin, L W; Starbuck, M Y; Martin, G M

    2000-04-01

    FE65 is a key "adapter" protein that links a multiprotein complex to an intracellular domain of beta-amyloid precursor protein (betaPP). Its overexpression modulates the trafficking of betaPP and facilitates the generation of beta-amyloid (Abeta). FE65 is predominantly expressed in brain tissues. An exon 9-inclusive isoform is exclusively expressed in neurons, and an exon 9-exclusive isoform is only expressed in non-neuronal cells. We quantitated the two isoforms in middle temporal cortex, middle frontal cortex, cerebellar cortex and caudate nucleus of 17 Alzheimer disease (AD) patients, 12 normal controls and 9 non-AD neurodegenerative disease controls by reverse transcription-competitive polymerase chain reaction (RT-cPCR). Expression of the two isoforms was significantly and differentially altered, with a 30-57% decrease in levels of the neuronal form (P < 0.05-0.002) and a 73-135% increase in levels of non-neuronal form (P < 0.02-0.001), in the temporal and frontal cortex of AD brains. These alterations presumably reflect advanced neurodegenerative processes of these regions. Surprisingly, expression of both isoforms was significantly up-regulated by 42-66% in the cerebellar cortex and caudate nucleus of AD brains when compared to normal brains (P < 0.05-0.005). Diffuse Abeta-positive plaques were observed in the cerebellum of these AD subjects but not in the normal controls. Selective up-regulation of only the FE65 neuronal isoform was seen in the cerebellar cortex in association with other neurodegenerative diseases (largely Parkinson's disease). Because FE65 modulates trafficking of betaPP toward the production of Abeta, the up-regulation of FE65 in AD cerebellum may be relevant to the genesis of diffuse plaques. Thus, early biochemical alterations in AD, not complicated by advanced pathology, may be beneficially investigated in the less-affected regions of the brain, such as the cerebellum. PMID:10723070

  11. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  12. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    SciTech Connect

    Jambaldorj, Jamiyansuren; Makino, Satoshi; Munkhbat, Batmunkh; Tamiya, Gen

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  13. Differential Expression of Melanopsin Isoforms Opn4L and Opn4S during Postnatal Development of the Mouse Retina

    PubMed Central

    Hughes, Steven; Welsh, Laura; Katti, Christiana; González-Menéndez, Irene; Turton, Michael; Halford, Stephanie; Sekaran, Sumathi; Peirson, Stuart N.; Hankins, Mark W.; Foster, Russell G.

    2012-01-01

    Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development. PMID:22496826

  14. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    PubMed Central

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2015-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codons in exon 6 (type IIC). This transcript is produced by utilization of another 5’ splice site present in exon 2. To determine the role of this IIC splicing event in vivo, we generated transgenic mice containing silent knock-in mutations at the IIC 5’ splice site (Col2a1-mIIC), thereby inhibiting production of IIC transcripts. Heterozygous and homozygous knock-in mice were viable and display no overt skeletal phenotype to date. However, RNA expression profiles revealed that chondrocytes in cartilage from an age range of Col2a1-mIIC mice produced higher levels of IIA and IID mRNAs and decreased levels of IIB mRNAs throughout pre-natal and post-natal development, when compared to chondrocytes from littermate control mice. Immunofluorescence analyses showed a clear increase in expression of embryonic type II collagen protein isoforms (i.e. containing the exon 2-encoded cysteine-rich (CR) protein domain) in cartilage extracellular matrix (ECM). Interestingly, at P14, P28 and P56, expression of embryonic Col2a1 isoforms in Col2a1-mIIC mice persisted in the pericellular domain of the ECM in articular and growth plate cartilage. We also show that persistent expression of the exon 2-encoded CR domain in the ECM of post-natal cartilage tissue may be due, in part, to the embryonic form of type XI collagen (the α3 chain of which is also encoded by the Col2a1 gene). In conclusion, expression of the Col2a1 IIC splice form may have a regulatory function in controlling alternative

  15. Characterization and expression of two cDNA encoding 3-Hydroxy-3-methylglutaryl coenzyme A reductase isoforms in coffee (Coffea arabica L.).

    PubMed

    Tiski, Iris; Marraccini, Pierre; Pot, David; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2011-10-01

    In higher plants there are two independent pathways for isoprenoid biosynthesis, located in the cytosol (mevalonic acid or MVA pathway) or in the plastids [methylerythritol phosphate (MEP) pathway]. The 3-hydroxy-3-methyglutaryl-CoA reductase (HMGR) is the first committed step in the MVA pathway. Using the information available from the Brazilian Coffee Genome Project, we found 13 ESTs that originated two isoforms, CaHMGR1 and CaHMGR2, for the enzyme HMGR of Coffea arabica. A complementary DNA encoding the isoform CaHMGR1 was cloned, and its complete nucleotide sequence determined. The full-length cDNA of CaHMGR1 was 2,242 bp containing a 1,812-bp ORF encoding 604 amino acids. Bioinformatic analyses revealed that the deduced CaHMGR1 had extensive homology with other plant HMGRs and contained two transmembrane domains and two putative HMGR binding sites and two NADP(H)-binding sites. Under normal growth conditions, transcripts of isoform CaHMRG1 were detected in fruit tissues (pulp, perisperm, and endosperm) only at the initial stages of development, flower buds and leaves. CaHMRG2 was expressed in all tissues and during all fruit development stages examined. These results suggest a constitutive expression of isoform CaHMGR2, while the isoform CaHMGR1 shows temporal and tissue-specific transcriptional activation.

  16. Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection.

    PubMed

    El-kereamy, Ashraf; Jayasankar, S; Taheri, Ali; Errampalli, Deena; Paliyath, Gopinadhan

    2009-01-01

    Plant PR10 is one of the pathogenesis related proteins, induced upon exposure to different stress conditions including fungal infection. PR10 proteins have been implicated in fungal disease resistance in some species; however its transcriptional regulation is not well understood. In the present work we cloned a PR10 gene from European plums (Prunus domestica L.) and monitored the quantitative changes in its transcript levels as a result of fungal infection in two varieties. We also studied the possible involvement of the membrane degrading enzyme phospholipase D-alpha (PLDalpha). In the susceptible variety, 'Veeblue', infection with the brown rot fungus Monilinia fructicola induced PLDalpha and PR10 expression, while in the resistant variety, 'Violette', a constitutive expression of PLDalpha and PR10 transcripts levels were observed. Resistance to M. fructicola also coincides with a sharp decrease in the expression of ABI1, a protein phosphatase and elevated hydrogen peroxide content after infection. Further, inhibition of PLDalpha by hexanal treatment, up-regulated ABI1 and decreased PR10 expression, suggesting a possible relationship between the two. We further confirm these results in Arabidopsis abi1 mutant that shows a higher level of PR10 transcripts.

  17. Developmental expression of PrP in the post-implantation embryo

    PubMed Central

    Tremblay, Patrick; Bouzamondo-Bernstein, Essia; Heinrich, Cornelia; Prusiner, Stanley B.; DeArmond, Stephen J.

    2009-01-01

    Since prion protein (PrP) mRNA and PrPC expression levels in transgenic (Tg) mice using the CosSHa.tet vector correlate well with the PrP transgene copy, we constructed Prnp-LacZ Tg animals expressing β-galactosidase that was inserted into the CosSHa.tet vector. The CosSHa.tet vector was created from a large PrP cosmid clone in which the PrP open reading frame was deleted. In the developing nervous system, the β-galactosidase marker was not expressed in the neural progenitors of the mitotically active ventricular zone. It is first expressed in cells that have ceased proliferating, migrated radially from the ventricular zone, and differentiated into neurons in the intermediate layer. At E11.5 p.c., motor neurons in the ventral neural tube clearly express the marker transgene. Expression in dorsal neural tube neurons is observed at later stages, after their differentiation. These results indicate that Prnp gene expression in the nervous system begins in post-mitotic neural cells that have undergone neuronal differentiation. This pattern of Prnp expression in the nervous system appears to persist throughout the adult life of mammals. PMID:17292334

  18. Molecular Cloning of HbPR-1 Gene from Rubber Tree, Expression of HbPR-1 Gene in Nicotiana benthamiana and Its Inhibition of Phytophthora palmivora.

    PubMed

    Khunjan, Uraiwan; Ekchaweng, Kitiya; Panrat, Tanate; Tian, Miaoying; Churngchow, Nunta

    2016-01-01

    This is the first report to present a full-length cDNA (designated HbPR-1) encoding a putative basic HbPR-1 protein from rubber tree (Hevea brasiliensis) treated with salicylic acid. It was characterized and also expressed in Nicotiana benthamiana using Agrobacterium-mediated transient gene expression system in order to investigate the role of HbPR-1 gene in rubber tree against its oomycete pathogen Phytopthora palmivora and to produce recombinant HbPR-1 protein for microbial inhibition test. The HbPR-1 cDNA was 647 bp long and contained an open reading frame of 492 nucleotides encoding 163 amino acid residues with a predicted molecular mass of 17,681 Da and an isoelectric point (pI) of 8.56, demonstrating that HbPR-1 protein belongs to the basic PR-1 type. The predicted 3D structure of HbPR-1 was composed of four α-helices, three β-sheets, seven strands, and one junction loop. Expression and purification of recombinant HbPR-1 protein were successful using Agrobacterium-mediated transient expression and one-step of affinity chromatography. Heterologous expression of HbPR-1 in N. benthamiana reduced necrosis areas which were inoculated with P. palmivora zoospores, indicating that the expressed HbPR-1 protein played an important role in plant resistance to pathogens. The purified recombinant HbPR-1 protein was found to inhibit 64% of P. palmivora zoospore germination on a water agar plate compared with control, suggesting that it was an antimicrobial protein against P. palmivora. PMID:27337148

  19. Molecular Cloning of HbPR-1 Gene from Rubber Tree, Expression of HbPR-1 Gene in Nicotiana benthamiana and Its Inhibition of Phytophthora palmivora

    PubMed Central

    Khunjan, Uraiwan; Ekchaweng, Kitiya; Panrat, Tanate; Tian, Miaoying; Churngchow, Nunta

    2016-01-01

    This is the first report to present a full-length cDNA (designated HbPR-1) encoding a putative basic HbPR-1 protein from rubber tree (Hevea brasiliensis) treated with salicylic acid. It was characterized and also expressed in Nicotiana benthamiana using Agrobacterium-mediated transient gene expression system in order to investigate the role of HbPR-1 gene in rubber tree against its oomycete pathogen Phytopthora palmivora and to produce recombinant HbPR-1 protein for microbial inhibition test. The HbPR-1 cDNA was 647 bp long and contained an open reading frame of 492 nucleotides encoding 163 amino acid residues with a predicted molecular mass of 17,681 Da and an isoelectric point (pI) of 8.56, demonstrating that HbPR-1 protein belongs to the basic PR-1 type. The predicted 3D structure of HbPR-1 was composed of four α-helices, three β-sheets, seven strands, and one junction loop. Expression and purification of recombinant HbPR-1 protein were successful using Agrobacterium-mediated transient expression and one-step of affinity chromatography. Heterologous expression of HbPR-1 in N. benthamiana reduced necrosis areas which were inoculated with P. palmivora zoospores, indicating that the expressed HbPR-1 protein played an important role in plant resistance to pathogens. The purified recombinant HbPR-1 protein was found to inhibit 64% of P. palmivora zoospore germination on a water agar plate compared with control, suggesting that it was an antimicrobial protein against P. palmivora. PMID:27337148

  20. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition.

    PubMed

    Vaquero, Javier; Monte, Maria J; Dominguez, Mercedes; Muntané, Jordi; Marin, Jose J G

    2013-10-01

    The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXRα1(+/-), whereas FXRα2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXRα(1/2)(+) and FXRα(1/2)(-) isoforms, i.e., with and without a 12bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXRα1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.

  1. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats.

    PubMed Central

    Thorens, B; Weir, G C; Leahy, J L; Lodish, H F; Bonner-Weir, S

    1990-01-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor. Images PMID:2204056

  2. Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT).

    PubMed

    Prados, María B; Caramelo, Julio J; Miranda, Silvia E

    2013-12-01

    UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.

  3. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  4. RELATIONSHIP BETWEEN BRAIN AND OVARY AROMATASE ACTIVITY AND ISOFORM-SPECIFIC AROMATASE MRNA EXPRESSION IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS) - JOURNAL ARTICLE

    EPA Science Inventory

    There is growing evidence that some chemicals present in the environment have the capacity to inhibit, or potentially induce, aromatase activity. This study compared aromatase activities and isoform-specific mRNA expression in brain and ovary tissue from non-exposed fathead minn...

  5. Expression of Ik6 and Ik8 Isoforms and Their Association with Relapse and Death in Mexican Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Reyes-León, Adriana; Juárez-Velázquez, Rocío; Medrano-Hernández, Alma; Cuenca-Roldán, Teresa; Salas-Labadía, Consuelo; del Pilar Navarrete-Meneses, María; Rivera-Luna, Roberto; López-Hernández, Gerardo; Paredes-Aguilera, Rogelio; Pérez-Vera, Patricia

    2015-01-01

    Expression of the 6 and 8 dominant-negative Ikaros isoforms in pediatric patients with acute lymphoblastic leukemia has been associated with a high risk of relapse and death; due to these isoforms disrupting the differentiation and proliferation of lymphoid cells. The aim of this study was to know the frequency of Ik6 and Ik8 in 113 Mexican ALL-children treated within the National Popular Medical Insurance Program to determine whether there was an association with relapse-free survival, event-free survival and overall survival, and to assess its usefulness in the initial stratification of patients. The expression of these isoforms was analyzed using specific primer sets and nested RT-PCR. The detected transcripts were classified according to the isoforms’s sizes reported. A non-expected band of 300 bp from one patient was analyzed by sequencing. Twenty-six patients expressed Ik6 and/or Ik8 and one of them expressed a variant of Ik8 denominated Ik8-deleted. Although the presence of them was not statistically associated with lower relapse free survival (p = 0.432), event free survival (p = 0.667) or overall survival (p = 0.531), inferior overall survival was observed in patients that expressed these isoforms and showed high or standard risk by age and white blood-cell count at diagnosis. Of the 26 patients Ik6+ and/or Ik8+, 14 did not present adverse events; from them 6 were exclusively Ik6+ and/or Ik8+, and 8 were positive for the other Ikaros isoforms (Ik1, Ik2, Ik5, Ik3A, Ik4, Ik4A, Ik7). In the patients studied, the expression of Ik6 and Ik8 did not constitute an independent prognostic factor for relapse or death related to disease; therefore, they could not be used in the initial risk stratification. PMID:26131904

  6. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Govindarajoo, Brandon; Panwar, Bharat; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2015-09-01

    Alternative splicing allows a single gene to produce multiple transcript-level splice isoforms from which the translated proteins may show differences in their expression and function. Identifying the major functional or canonical isoform is important for understanding gene and protein functions. Identification and characterization of splice isoforms is a stated goal of the HUPO Human Proteome Project and of neXtProt. Multiple efforts have catalogued splice isoforms as "dominant", "principal", or "major" isoforms based on expression or evolutionary traits. In contrast, we recently proposed highest connected isoforms (HCIs) as a new class of canonical isoforms that have the strongest interactions in a functional network and revealed their significantly higher (differential) transcript-level expression compared to nonhighest connected isoforms (NCIs) regardless of tissues/cell lines in the mouse. HCIs and their expression behavior in the human remain unexplored. Here we identified HCIs for 6157 multi-isoform genes using a human isoform network that we constructed by integrating a large compendium of heterogeneous genomic data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, and ANXA7. We found that functional networks of isoforms of the same gene can show large differences. Interestingly, differential expression between HCIs and NCIs was also observed in the human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, kidney, and liver. Using proteomic data from normal human retina and placenta, we showed that HCIs are a promising indicator of expressed protein isoforms exemplified by NUDFB6 and M6PR. Furthermore, we found that a significant percentage (20%, p = 0.0003) of human and mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs expand the repertoire of canonical isoforms and are expected to facilitate studying main protein products, understanding gene

  7. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Govindarajoo, Brandon; Panwar, Bharat; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2015-09-01

    Alternative splicing allows a single gene to produce multiple transcript-level splice isoforms from which the translated proteins may show differences in their expression and function. Identifying the major functional or canonical isoform is important for understanding gene and protein functions. Identification and characterization of splice isoforms is a stated goal of the HUPO Human Proteome Project and of neXtProt. Multiple efforts have catalogued splice isoforms as "dominant", "principal", or "major" isoforms based on expression or evolutionary traits. In contrast, we recently proposed highest connected isoforms (HCIs) as a new class of canonical isoforms that have the strongest interactions in a functional network and revealed their significantly higher (differential) transcript-level expression compared to nonhighest connected isoforms (NCIs) regardless of tissues/cell lines in the mouse. HCIs and their expression behavior in the human remain unexplored. Here we identified HCIs for 6157 multi-isoform genes using a human isoform network that we constructed by integrating a large compendium of heterogeneous genomic data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, and ANXA7. We found that functional networks of isoforms of the same gene can show large differences. Interestingly, differential expression between HCIs and NCIs was also observed in the human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, kidney, and liver. Using proteomic data from normal human retina and placenta, we showed that HCIs are a promising indicator of expressed protein isoforms exemplified by NUDFB6 and M6PR. Furthermore, we found that a significant percentage (20%, p = 0.0003) of human and mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs expand the repertoire of canonical isoforms and are expected to facilitate studying main protein products, understanding gene

  8. Upstream open reading frames regulate the expression of the nuclear Wnt13 isoforms

    SciTech Connect

    Tang Tao; Rector, Kyle; Barnett, Corey D.; Mao, Catherine D.

    2008-02-22

    Wnt proteins control cell survival and cell fate during development. Although Wnt expression is tightly regulated in a spatio-temporal manner, the mechanisms involved both at the transcriptional and translational levels are poorly defined. We have identified a downstream translation initiation codon, AUG(+74), in Wnt13B and Wnt13C mRNAs responsible for the expression of Wnt13 nuclear forms. In this report, we demonstrate that the expression of the nuclear Wnt13C form is translationally regulated in response to stress and apoptosis. Though the 5'-leaders of both Wnt13C and Wnt13B mRNAs have an inhibitory effect on translation, they did not display an internal ribosome entry site activity as demonstrated by dicistronic reporter assays. However, mutations or deletions of the upstream AUG(-99) and AUG(+1) initiation codons abrogate these translation inhibitory effects, demonstrating that Wnt13C expression is controlled by upstream open reading frames. Since long 5'-untranslated region with short upstream open reading frames characterize other Wnt transcripts, our present data on the translational control of Wnt13 expression open the way to further studies on the translation control of Wnt expression as a modulator of their subcellular localization and activity.

  9. Avian Cytochrome P450 (CYP) 1-3 Family Genes: Isoforms, Evolutionary Relationships, and mRNA Expression in Chicken Liver

    PubMed Central

    Ikenaka, Yoshinori; Kawata, Minami; Ikushiro, Shin-Ichi; Sakaki, Toshiyuki; Ishizuka, Mayumi

    2013-01-01

    Cytochrome P450 (CYP) of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR) activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene. PMID:24098714

  10. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hundreds of Bombyx mori miRNAs had been identified in recent years, but their function in vivo remains poorly understood. The silkworm EcR gene (BmEcR) has three transcriptional isoforms, A, B1 and B2. Isoform sequences are different in the 3’UTR region of the gene, which is the case only in insects...

  11. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.

  12. Common distal elements orchestrate CIITA isoform-specific expression in multiple cell types

    PubMed Central

    Lohsen, Sarah; Majumder, Parimal; Scharer, Christopher D.; Barwick, Benjamin G.; Austin, James W.; Zinzow-Kramer, Wendy M.

    2014-01-01

    Major histocompatibility class II (MHC-II) expression is critical for immune responses and is controlled by the MHC-II transactivator CIITA. CIITA is primarily regulated at the transcriptional level and is expressed from three main promoters with myeloid, lymphoid, and IFN-γ treated non-hematopoietic cells using promoters pI, pIII, and pIV, respectively. Recent studies in non-hematopoietic cells suggest a series of distal regulatory elements may be involved in regulating CIITA transcription. To identify distal elements in B cells, a DNase I-hypersensitivity screen was performed, revealing a series of potential novel regulatory elements. These elements were analyzed computationally and biochemically. Several regions displayed active histone modifications and/or enhanced expression of a reporter gene. Four of the elements interacted with pIII in B cells. These same four regions were also found to interact with pI in splenic dendritic cells (spDC). Intriguingly, examination of the above interactions in pI-knockout-derived spDC showed a switch to the next available promoter, pIII. Extensive DNA methylation was found at the pI region in B cells, suggesting that this promoter is not accessible in B cells. Thus, CIITA expression is likely mediated in hematopoietic cells by common elements with promoter accessibility playing a part in promoter choice. PMID:25101797

  13. Expression of the mouse PR domain protein Prdm8 in the developing central nervous system.

    PubMed

    Komai, Tae; Iwanari, Hiroko; Mochizuki, Yasuhiro; Hamakubo, Takao; Shinkai, Yoichi

    2009-10-01

    It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord. PMID:19616129

  14. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  15. Cell- and Isoform-specific Increases in Arginase Expression in Acute Silica-induced Pulmonary Inflammation

    PubMed Central

    Poljakovic, Mirjana; Porter, Dale W.; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G.; Castranova, Vincent; Morris, Sidney M.

    2009-01-01

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase was elucidated in lungs of Sprague-Dawley rats 24 hr following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time PCR, and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced 2- and 3-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no iNOS immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572

  16. Influence of recipient gender on cytochrome P450 isoforms expression in intrasplenic fetal liver tissue transplants in rats.

    PubMed

    Lupp, Amelie; Hugenschmidt, Sabine; Danz, Manfred; Müller, Dieter

    2003-06-30

    Rat livers display a sex-specific cytochrome P450 (P450) isoforms expression pattern which is regulated by a differential profile of growth hormone (GH) secretion. The aim of the present study was to elucidate whether liver cell transplants at an ectopic site are also subject to this influence. Fetal liver tissue suspensions of mixed gender were transplanted into the spleen of adult male or female syngenic recipients. Four months after grafting transplant recipients and age-matched controls were treated with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the solvents and sacrificed 24 or 48 h thereafter. Livers and intrasplenic transplants were evaluated for the expression of the P450 subtypes 1A1, 2B1, 2E1, 3A2 and 4A1 by means of immunohistochemistry. The livers of both male and female rats displayed nearly no P450 1A1, but a distinct P450 2B1, 2E1, 3A2 and 4A1 expression. Whereas no sex differences were seen in the P450 1A1 expression, the immunostaining for P450 2B1, 3A2 and 4A1 was stronger in males and that for P450 2E1 in females. Similarly, in the intrasplenic liver cell transplants almost no P450 1A1, but a noticeable P450 2B1, 2E1, 3A2 and 4A1 expression was observed. Like in the respective livers, the immunostaining for P450 2B1, 3A2 and 4A1 was stronger in the transplants hosted by male than by female rats, whereas the opposite was the case for the P450 2E1 expression. Both in livers and transplants with some sex-specific differences P450 1A1 and 2E1 expression was induced by BNF, that of P450 2B1 by BNF and PB, and that of P450 3A2 by PB and DEX. These results indicate that the P450 system of ectopically transplanted liver cells is influenced by the gender of the recipient organism like that of the orthotopic livers.

  17. Constitutive expression and structural diversity of inducible isoform of nitric oxide synthase in human tissues.

    PubMed

    Park, C S; Park, R; Krishna, G

    1996-01-01

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) plays a major role in immune responses to bacteria and tumors, and the gene is induced by endotoxin and cytokines. However, we have detected iNOS cDNA sequences expressed constitutively at low level from human retinal, cerebellar and skeletal muscle tissues using northern-blot and RT-PCR analyses. In northern-blot analysis, two types (4.5 kb and 4.2 kb) of iNOS mRNA have been observed in retinal tissue, whereas only one type of mRNA was observed in cerebellum (4.5 kb) and skeletal muscle (4.2 kb). This result indicates that the presence of differential expression and/or structural diversity of the iNOS gene in various tissues, and some cells can express iNOS gene constitutively. We have also demonstrated a structural diversity formed by alternative splicing in the open reading frame sequence of the iNOS cDNA cloned from retinal tissue, which may reflect functional differences of iNOS gene.

  18. Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia.

    PubMed

    Kibbe, M R; Hirsch, A T; Mendelsohn, F O; Davies, M G; Pham, H; Saucedo, J; Marston, W; Pyun, W-B; Min, S-K; Peterson, B G; Comerota, A; Choi, D; Ballard, J; Bartow, R A; Losordo, D W; Sherman, W; Driver, V; Perin, E C

    2016-03-01

    VM202, a plasmid DNA that expresses two isoforms of hepatocyte growth factor, may elicit angiogenic effects that could benefit patients with critical limb ischemia (CLI). In a phase 2, double-blind trial in 52 CLI patients, we examined the safety and potential efficacy of intramuscular injections of low-dose (n=21) or high-dose (n=20) VM202 or placebo (n=11) in the affected limb (days 0, 14, 28 and 42). Adverse events and serious adverse events were similar among the groups; no malignancy or proliferative retinopathy was seen. In exploratory efficacy analyses, we found no differences in ankle or toe-brachial index, VAS, VascuQuol or amputation rate among the groups. Complete ulcer healing was significantly better in high-dose (8/13 ulcers; P<0.01) versus placebo (1/9) patients. Clinically meaningful reductions (>50%) in ulcer area occurred in high-dose (9/13 ulcers) and low-dose (19/27) groups versus placebo (1/9; P<0.05 and P<0.005, respectively). At 12 months, significant differences were seen in TcPO2 between the high-dose and placebo groups (47.5 ± 17.8 versus 36.6 ± 24.0 mm Hg, respectively; P<0.05) and in the change from baseline among the groups (P<0.05). These data suggest that VM202 is safe and may provide therapeutic bioactivity in CLI patients. PMID:26649448

  19. Expression of an isoform of the testis-specific estrogen sulfotransferase in the murine placenta during the late gestational period.

    PubMed

    Takehara, K; Kubushiro, K; Iwamori, Y; Tsukazaki, K; Nozawa, S; Iwamori, M

    2001-10-15

    Cytosolic sulfotransferases play essential roles in regulating the activities and transfer of steroids. To evaluate their biological significance in the murine uterus and placenta during the course of gestation, we determined their activities with several steroids as substrates. Activated estrogen sulfotransferase (EST) was found in the placenta and uterus during the late gestational period. Reverse-transcribed cDNA of murine placental EST (mpEST) was isolated from mouse placenta at 18 days of gestation and its expression in the tissue coincided with a change in its enzyme activity. The open-reading frame of mpEST encodes a protein composed of 296 amino acids with a predicted molecular mass of 35.5 kDa and was revealed to be an isoform of the murine testis-specific EST gene (99.7%). Also, the amino acid sequence of mpEST showed 49.6 and 77.9% homology with human placental and endometrial EST, respectively, showing that it corresponds to human endometrial EST. COS-7 cells transfected with mpEST exhibited sulfotransferase activity with the phenolic hydroxy groups of steroids and artificial substrates. The best acceptor substrate was estrogen.

  20. Differential expression of laminin isoforms and alpha 6-beta 4 integrin subunits in the developing human and mouse intestine.

    PubMed

    Simon-Assmann, P; Duclos, B; Orian-Rousseau, V; Arnold, C; Mathelin, C; Engvall, E; Kedinger, M

    1994-09-01

    The intestinal tissue is characterized by important morphogenetic movements during development as well as by a continuous dynamic crypt to villus epithelial cell migration leading to differentiation of specialized cells. In this study, we have examined the spatio-temporal distribution of laminin A and M chains as well as of alpha 6 and beta 4 integrin subunits in adult and developing human and mouse intestine by indirect immunofluorescence. Selective expression of the constituent polypeptides of laminin isoforms (A and M chains) was demonstrated. In the mature human intestine, A and M chains were found to be complementary, the M chain being restricted to the base of crypts and the A chain lining the villus basement membrane. In the developing human intestine, M chain expression was delayed as compared to that of A chain; as soon as the M chain was visualized, it exhibited the typical localization in the crypt basement membrane. A somewhat different situation was found in the adult mouse intestine, since both M and A chains were found in the crypts. During mouse intestinal development the delayed expression of the M chain as compared to that of the A chain was also obvious. The absence of M chain expression in mutant dy mouse did not impair intestinal morphogenesis nor cell differentiation. The expression of alpha 6 and beta 4 subunits was not coordinated. In both species the alpha 6 expression preceded that of beta 4. Furthermore, while beta 4 staining in adult mouse intestine was detected at the basal surface of all cells lining the crypt-villus, that of alpha 6 was mainly confined to the crypt cell compartment. An overall similarity of location between alpha 6 integrin subunit and laminin A chain at the epithelial/stromal interface was noted. These data indicate that the spatial and temporal distribution of laminin variants in the developing intestine may be characteristic for each species and that interactions of laminin variants with particular receptors may be

  1. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2.

    PubMed

    Llorens, Franc; Ansoleaga, Belén; Garcia-Esparcia, Paula; Zafar, Saima; Grau-Rivera, Oriol; López-González, Irene; Blanco, Rosi; Carmona, Margarita; Yagüe, Jordi; Nos, Carlos; Del Río, José Antonio; Gelpí, Ellen; Zerr, Inga; Ferrer, Isidre

    2013-01-01

    Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.

  2. Expression of 11β-hydroxysteroid dehydrogenase isoforms in canine adrenal glands treated with trilostane.

    PubMed

    Teshima, Takahiro; Matsumoto, Hirotaka; Kumagai, Takayuki; Kurano, Mai; Koyama, Hidekazu

    2014-06-01

    Trilostane, a competitive inhibitor of 3β-hydroxysteroid dehydrogenase, is often used to treat canine hyperadrenocorticism. In some species, trilostane has been shown to have additional effects on steroid biosynthesis, and it has been postulated that trilostane might have effects on 11β-hydroxysteroid dehydrogenase (11β-HSD) in dogs. To investigate the effect of trilostane on 11β-HSD in canine adrenal glands, healthy Beagle dogs were treated with trilostane for 8 weeks. Trilostane treatment resulted in a significant decrease of the cortisol/cortisone ratio in the serum. The adrenal gland mRNA and protein expression levels of 11β-HSD type 1 and 11β-HSD type 2 were significantly higher and significantly lower respectively in dogs treated with trilostane compared to those in control healthy Beagle dogs. These findings suggest that trilostane may have an effect on 11β-HSD activity in canine adrenal glands.

  3. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species.

    PubMed

    Mascarello, Francesco; Toniolo, Luana; Cancellara, Pasqua; Reggiani, Carlo; Maccatrozzo, Lisa

    2016-09-01

    In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b).

  4. Expression of transforming growth factor-beta isoforms in small round cell tumors of childhood. An immunohistochemical study.

    PubMed Central

    McCune, B. K.; Patterson, K.; Chandra, R. S.; Kapur, S.; Sporn, M. B.; Tsokos, M.

    1993-01-01

    The transforming growth factor (TGF)-betas are a highly conserved group of potent multifunctional cell regulatory proteins with variable effects on cell growth and differentiation. Most of the small round cell group of childhood tumors are thought to arise from either primitive mesenchyme or neuroectoderm and show evidence of skeletal muscle or neural differentiation, and rarely both. To investigate the possibility that the TGF-betas have a role in the growth or differentiation of these neoplasms, we used antibodies specific for peptide sequences of the three known mammalian TGF-beta isoforms (TGF-betas 1, 2, and 3) to probe for TGF-beta protein expression in a total of 49 cases. TGF-beta 1 immunoreactivity was present in 16/17 (94%) of rhabdomyosarcomas, and the staining intensity was usually strong. TGF-beta 1 was also present in three of three ectomesenchymomas. In contrast, TGF-beta 1 was absent in all but one out of nine poorly differentiated neuroblastomas. Differentiating neuronal cells of ganglioneuroblastomas, however, were strongly positive for TGF-beta 1. Ewing's sarcomas and peripheral primitive neuroectodermal tumors had a less consistent, but usually positive, staining pattern. TGF-beta 3 staining patterns were very similar to those of TGF-beta 1. TGF-beta 2 immunoreactivity was only rarely detected in this group of tumors. The results suggest different roles for TGF-betas 1 and 3 in neuroblastoma and rhabdomyosarcoma. Expression of TGF-betas 1 and 3 is associated with neuronal differentiation of neuroblastoma. In contrast, these proteins may promote the growth of rhabdomyosarcoma by suppressing differentiation. Images Figure 1 Figure 2 Figure 3 PMID:8380955

  5. Farnesoic acid O-methyl transferase (FAMeT) isoforms: conserved traits and gene expression patterns related to caste differentiation in the stingless bee, Melipona scutellaris.

    PubMed

    Vieira, Carlos U; Bonetti, Ana M; Simões, Zilá L P; Maranhão, Andréa Q; Costa, Christiane S; Costa, Maria Cristina R; Siquieroli, Ana Carolina S; Nunes, Francis M F

    2008-02-01

    Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.

  6. Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.

    PubMed

    Blanco, Nicolás E; Ceccoli, Romina D; Vía, María V Dalla; Voss, Ingo; Segretin, María E; Bravo-Almonacid, Fernando F; Melzer, Michael; Hajirezaei, Mohammad-Reza; Scheibe, Renate; Hanke, Guy T

    2013-02-01

    Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms. PMID:23370717

  7. Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.

    PubMed

    Blanco, Nicolás E; Ceccoli, Romina D; Vía, María V Dalla; Voss, Ingo; Segretin, María E; Bravo-Almonacid, Fernando F; Melzer, Michael; Hajirezaei, Mohammad-Reza; Scheibe, Renate; Hanke, Guy T

    2013-02-01

    Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms.

  8. Expression of the Minor Isoform Pea Ferredoxin in Tobacco Alters Photosynthetic Electron Partitioning and Enhances Cyclic Electron Flow1[W

    PubMed Central

    Blanco, Nicolás E.; Ceccoli, Romina D.; Vía, María V. Dalla; Voss, Ingo; Segretin, María E.; Bravo-Almonacid, Fernando F.; Melzer, Michael; Hajirezaei, Mohammad-Reza; Scheibe, Renate; Hanke, Guy T.

    2013-01-01

    Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms. PMID:23370717

  9. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation.

    PubMed Central

    Nawrath, C; Métraux, J P

    1999-01-01

    In Arabidopsis, systemic acquired resistance against pathogens has been associated with the accumulation of salicylic acid (SA) and the expression of the pathogenesis-related proteins PR-1, PR-2, and PR-5. We report here the isolation of two nonallelic mutants impaired in the pathway leading to SA biosynthesis. These SA induction-deficient (sid) mutants do not accumulate SA after pathogen inoculation and are more susceptible to both virulent and avirulent forms of Pseudomonas syringae and Peronospora parasitica. However, sid mutants are not as susceptible to these pathogens as are transgenic plants expressing the nahG gene encoding an SA hydroxylase that degrades SA to catechol. In contrast to NahG plants, only the expression of PR-1 is strongly reduced in sid mutants, whereas PR-2 and PR-5 are still expressed after pathogen attack. Furthermore, the accumulation of the phytoalexin camalexin is normal. These results indicate that SA-independent compensation pathways that do not operate in NahG plants are active in sid mutants. One of the mutants is allelic to eds5 (for enhanced disease susceptibility), whereas the other mutant has not been described previously. PMID:10449575

  10. Major isoform of zebrafish P0 is a 23.5 kDa myelin glycoprotein expressed in selected white matter tracts of the central nervous system.

    PubMed

    Bai, Qing; Sun, Ming; Stolz, Donna B; Burton, Edward A

    2011-06-01

    The zebrafish mpz gene, encoding the ortholog of mammalian myelin protein zero, is expressed in oligodendrocytes of the zebrafish central nervous system (CNS). The putative gene product, P0, has been implicated in promoting axonal regeneration in addition to its proposed structural functions in compact myelin. We raised novel zebrafish P0-specific antibodies and established that P0 is a 23.5 kDa glycoprotein containing a 3 kDa N-linked carbohydrate moiety. P0 was localized to myelin sheaths surrounding axons, but was not detected in the cell bodies or proximal processes of oligodendrocytes. Many white matter tracts in the adult zebrafish CNS were robustly immunoreactive for P0, including afferent visual and olfactory pathways, commissural and longitudinal tracts of the brain, and selected ascending and descending tracts of the spinal cord. P0 was first detected during development in premyelinating oligodendrocytes of the ventral hindbrain at 48 hours postfertilization (hpf). By 72 hpf, short segments of longitudinally oriented P0-immunoreactive myelinating axons were seen in the hindbrain; expression in the spinal cord, optic pathways, hindbrain commissures, midbrain, and peripheral nervous system followed. The mpz transcript was found to be alternatively spliced, giving rise to P0 isoforms with alternative C-termini. The 23.5 kDa isoform was most abundant in the CNS, but other isoforms predominated in the myelin sheath surrounding the Mauthner axon. These data provide a detailed account of P0 expression and demonstrate novel P0 isoforms, which may have discrete functional properties. The restriction of P0 immunoreactivity to myelin sheaths indicates that the protein is subject to stringent intracellular compartmentalization, which likely occurs through posttranslational mechanisms.

  11. Differential expression of neuregulin-1 isoforms and downregulation of erbin are associated with Erb B2 receptor activation in diabetic peripheral neuropathy

    PubMed Central

    2013-01-01

    Background Aberrant neuron/glia interactions can contribute to a variety of neurodegenerative diseases and we have previously demonstrated that enhanced activation of Erb B2, which is a member of the epidermal growth factor receptor (EGFR) family, can contribute to the development of diabetic peripheral neuropathy (DPN). In peripheral nerves, Erb B receptors are activated by various members of the neuregulin-1 (NRG1) family including NRG1 Type I, NRG1 Type II and NRG1 Type III to regulate Schwann cell (SC) growth, migration, differentiation and dedifferentiation. Alternatively, Erb B2 activity can be negatively regulated by association with the Erb B2-interacting protein, erbin. Since the effect of diabetes on the expression of NRG1 isoforms and erbin in peripheral nerve are unknown, the current study determined whether changes in NRG1 isoforms and erbin may be associated with altered Erb B2 signaling in DPN. Results Swiss Webster mice were rendered diabetic with streptozotocin (STZ) and after 12 weeks of diabetes, treated with erlotinib, an inhibitor of Erb B2 activation. Inhibition of Erb B2 signaling partially reversed several pathophysiologic aspects of DPN including a pronounced sensory hypoalgesia, nerve conduction velocity deficits and the decrease in epidermal nerve fiber innervation. We also observed a decrease of NRG1 Type III but an increase of NRG1 Type I level in diabetic sural nerves at early stage of diabetes. With disease progression, we detected reduced erbin expression and enhanced MAPK pathway activity in diabetic mice. Inhibition of Erb B2 receptor suppressed MAPK pathway activity in treated-diabetic sural nerves. Conclusions These results support that hyperglycemia may impair NRG1/Erb B2 signaling by disrupting the balance between NRG1 isoforms, decreasing the expression of erbin and correspondingly activating the MAPK pathway. Together, imbalanced NRG1 isoforms and downregulated erbin may contribute to the dysregulation of Erb B2 signaling in

  12. Interaction of NIMIN1 with NPR1 Modulates PR Gene Expression in Arabidopsis

    PubMed Central

    Weigel, Ralf R.; Pfitzner, Ursula M.; Gatz, Christiane

    2005-01-01

    The Arabidopsis thaliana NONEXPRESSER OF PR GENES1 (NPR1, also known as NIM1) protein is an essential positive regulator of salicylic acid (SA)-induced PATHOGENESIS-RELATED (PR) gene expression and systemic acquired resistance (SAR). PR gene activity is regulated at the level of redox-dependent nuclear transport of NPR1. NPR1 interacts with members of the TGA family of transcription factors that are known to bind to SA-responsive elements in the PR-1 promoter. In an attempt to identify proteins involved in SA-mediated signal transduction, we previously described the isolation of three novel genes encoding distinct albeit structurally related proteins designated NIMIN1 (for NIM1-INTERACTING1), NIMIN2, and NIMIN3 that interact with NPR1 in the yeast two-hybrid system. Here, we show that NIMIN1 and NPR1 can be copurified from plant extracts, providing biochemical evidence for their interaction. We provide functional evidence for this interaction by describing transgenic plants constitutively expressing high amounts of NIMIN1. These plants show reduced SA-mediated PR gene induction and a compromised SAR, thus mimicking the described phenotype conferred by npr1. Moreover, they showed reduced RESISTANCE gene–mediated protection. These effects were dependent on the ability of NIMIN1 to interact with NPR1. Mutant plants with a T-DNA insertion in NIMIN1 as well as transgenic plants with reduced NIMIN1 mRNA levels showed hyperactivation of PR-1 gene expression after SA treatment but no effect on the disease resistance phenotype. Our results strongly suggest that NIMIN1 negatively regulates distinct functions of NPR1, providing a mechanism to modulate specific features of SAR. PMID:15749762

  13. Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol)lyase) from Arabidopsis thaliana.

    PubMed

    Hesse, H; Lipke, J; Altmann, T; Höfgen, R

    1999-01-01

    Cysteine synthase, the key enzyme for fixation of inorganic sulfide, catalyses the formation of cysteine from O-acetylserine and inorganic sulfide. Here we report the cloning of cDNAs encoding cysteine synthase isoforms from Arabidopsis thaliana. The isolated cDNA clones encode for a mitochondrial and a plastidic isoform of cysteine synthase (O-acetylserine (thiol)-lyase, EC 4.2.99.8), designated cysteine synthase C (AtCS-C, CSase C) and B (AtCS-B; CSase B), respectively. AtCS-C and AtCS-B, having lengths of 1569-bp and 1421-bp, respectively, encode polypeptides of 430 amino acids (approximately 45.8 kD) and of 392 amino acids (approximately 41.8 kD), respectively. The deduced amino acid sequences of the mitochondrial and plastidic isoforms exhibit high homology even with respect to the presequences. The predicted presequence of AtCS-C has a N-terminal extension of 33 amino acids when compared to the plastidic isoform. Northern blot analysis showed that AtCS-C is higher expressed in roots than in leaves whereas the expression of AtCS-B is stronger in leaves. Furthermore, gene expression of both genes was enhanced by sulfur limitation which in turn led to an increase in enzyme activity in crude extracts of plants. Expression of the AtCS-B gene is regulated by light. The mitochondrial, plastidic and cytosolic (Hesse and Altmann, 1995) isoforms of cysteine synthase of Arabidopsis are able to complement a cysteine synthase-deficient mutant of Escherichia coli unable to grow on minimal medium without cysteine, indicating synthesis of functional plant proteins in the bacterium. Two lines of evidence proved that AtCS-C encodes a mitochondrial form of cysteine synthase; first, import of in vitro translation products derived from AtCS-C in isolated intact mitochondria and second, Western blot analysis of mitochondria isolated from transgenic tobacco plants expressing AtCS-C cDNA/c-myc DNA fusion protein.

  14. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells.

    PubMed

    Arkhipenko, Alexander; Syan, Sylvie; Victoria, Guiliana Soraya; Lebreton, Stéphanie; Zurzolo, Chiara

    2016-01-01

    The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures. PMID:27389581

  15. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells

    PubMed Central

    Arkhipenko, Alexander; Syan, Sylvie; Victoria, Guiliana Soraya

    2016-01-01

    The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures. PMID:27389581

  16. Leishmania amazonensis amastigotes highly express a tryparedoxin peroxidase isoform that increases parasite resistance to macrophage antimicrobial defenses and fosters parasite virulence.

    PubMed

    Henard, Calvin A; Carlsen, Eric D; Hay, Christie; Kima, Peter E; Soong, Lynn

    2014-07-01

    Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen Leishmania. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some Leishmania species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of L. amazonensis is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO-), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by L. amazonensis promastigotes significantly enhances parasite resistance against ONOO- cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to Leishmania's ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis.

  17. Leishmania amazonensis Amastigotes Highly Express a Tryparedoxin Peroxidase Isoform That Increases Parasite Resistance to Macrophage Antimicrobial Defenses and Fosters Parasite Virulence

    PubMed Central

    Henard, Calvin A.; Carlsen, Eric D.; Hay, Christie; Kima, Peter E.; Soong, Lynn

    2014-01-01

    Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen Leishmania. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some Leishmania species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of L. amazonensis is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO−), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by L. amazonensis promastigotes significantly enhances parasite resistance against ONOO− cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to Leishmania's ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis. PMID:25033301

  18. Acute Myosin Heavy Chain Isoform mRNA Expression in Response to Two Resistance Exercise Intensities With Equal Volume Load in Resistance-Trained Men.

    PubMed

    Schwarz, Neil A; Spillane, Mike B; McKinley, Sarah K; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2015-08-01

    The purpose of this study was to determine if resistance exercise intensity, in the context of equal volume load, differentially affected myosin heavy chain (MHC) isoform messenger RNA (mRNA) expression in resistance-trained men. In a crossover, uniform-balanced design, 10 male participants (23.7 ± 2.8 years, 178.8 ± 5.9 cm, 85.9 ± 9.2 kg) completed 2 lower-body resistance exercise sessions of different intensities with equal volume load. For the higher-intensity exercise session, participants performed 5 sets of 6 repetitions at 80% of 1 repetition maximum (1RM). For the lower-intensity exercise session, participants performed 3 sets of 16 repetitions at 50% of 1RM. Muscle samples from the vastus lateralis were acquired before exercise (PRE), 45 minutes postexercise (45MINPE), 3 hours postexercise (3HRPE), 24 hours postexercise (24HRPE), and 48 hours postexercise (48HRPE). Statistical analyses of mRNA expression were performed using separate 2 × 5 two-way repeated-measures analyses of variance for each criterion variable (p ≤ 0.05). There were no statistically significant interactions between intensity and time. Likewise, there were no significant differences between exercise intensity in MHC expression. Expression of mRNA for all MHC isoforms decreased at all postexercise time points, except 3HRPE (p = 0.051), compared with PRE following both exercise bouts (p ≤ 0.05). The results of this study found no difference in mRNA expression of MHC isoforms as a function of resistance exercise intensity. In addition, in contrast to results found in previous studies of untrained men, MHC mRNA expression seems to decrease in response to acute resistance exercise in previously resistance-trained men.

  19. Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains.

    PubMed

    Ostrom, Rennolds S; Liu, Xiaoqiu; Head, Brian P; Gregorian, Caroline; Seasholtz, Tammy M; Insel, Paul A

    2002-11-01

    A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse transcription-polymerase chain reaction detected expression of AC3, AC5, and AC6 mRNA, whereas immunoblot analysis indicated expression of AC3 and AC5/6 protein primarily in caveolin-rich membrane (cav) fractions relative to noncaveolin (noncav) fractions. Beta(1)-adrenergic receptors (AR), beta(2)AR, and G(s) were detected in both cav and noncav fractions, whereas the prostanoid receptors EP(2)R and EP(4)R were excluded from cav fractions. We used an adenoviral construct to increase AC6 expression. Overexpressed AC6 localized only in noncav fractions. Two-fold overexpression of AC6 caused enhancement of forskolin-, isoproterenol- and prostaglandin E(2)-stimulated cAMP formation but no changes in basal levels of cAMP. At higher levels of AC6 overexpression, basal and adenosine receptor-stimulated cAMP levels were increased. Stimulation of cAMP levels by agents that increase Ca(2+) in native cells was consistent with the expression of AC3, but overexpression of AC6, which is inhibited by Ca(2+), blunted the Ca(2+)-stimulable cAMP response. These data indicate that: 1) RASMC express multiple AC isoforms that localize in both caveolin-rich and noncaveolin domains, 2) expression of AC6 in non-caveolin-rich membranes can increase basal levels of cAMP and response to several stimulatory agonists, and 3) Ca(2+)-mediated regulation of cAMP formation depends upon expression of different AC isoforms in RASMC. Compartmentation of GPCRs and AC is different in cardiomyocytes than in RASMC, indicating that targeting of these components to caveolin-rich membranes can be cell-specific. Moreover, our results imply that the

  20. Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains.

    PubMed

    Ostrom, Rennolds S; Liu, Xiaoqiu; Head, Brian P; Gregorian, Caroline; Seasholtz, Tammy M; Insel, Paul A

    2002-11-01

    A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse transcription-polymerase chain reaction detected expression of AC3, AC5, and AC6 mRNA, whereas immunoblot analysis indicated expression of AC3 and AC5/6 protein primarily in caveolin-rich membrane (cav) fractions relative to noncaveolin (noncav) fractions. Beta(1)-adrenergic receptors (AR), beta(2)AR, and G(s) were detected in both cav and noncav fractions, whereas the prostanoid receptors EP(2)R and EP(4)R were excluded from cav fractions. We used an adenoviral construct to increase AC6 expression. Overexpressed AC6 localized only in noncav fractions. Two-fold overexpression of AC6 caused enhancement of forskolin-, isoproterenol- and prostaglandin E(2)-stimulated cAMP formation but no changes in basal levels of cAMP. At higher levels of AC6 overexpression, basal and adenosine receptor-stimulated cAMP levels were increased. Stimulation of cAMP levels by agents that increase Ca(2+) in native cells was consistent with the expression of AC3, but overexpression of AC6, which is inhibited by Ca(2+), blunted the Ca(2+)-stimulable cAMP response. These data indicate that: 1) RASMC express multiple AC isoforms that localize in both caveolin-rich and noncaveolin domains, 2) expression of AC6 in non-caveolin-rich membranes can increase basal levels of cAMP and response to several stimulatory agonists, and 3) Ca(2+)-mediated regulation of cAMP formation depends upon expression of different AC isoforms in RASMC. Compartmentation of GPCRs and AC is different in cardiomyocytes than in RASMC, indicating that targeting of these components to caveolin-rich membranes can be cell-specific. Moreover, our results imply that the

  1. Aberrant Expression of Connexin Isoforms in the Corpus Epididymis of the Adult Rat by Exposure to Estradiol Benzoate or Flutamide at the Weaning Age.

    PubMed

    Lee, Seong-Kyu; Lee, Ki-Ho

    2015-12-01

    A proper development of the epididymis during the early postnatal development is required for successful fertility in the adult male. Direct cell-cell communication via connexin (Cx) molecules is a common way of cellular interactions to achieve normal development of a given tissue consisting of different cell types. The present research was attempted to determine the effect of exogenous exposure to estrogenic agonist or antiandrogen at the weaning age on expression of Cx isoforms in the adult corpus epididymis. Male rats were subcutaneously administrated with estradiol benzoate (EB) or flutamide (Flu) at the weaning age. The tissue was collected at 4 months of age. Expressional levels of Cx isoforms were determined by a quantitative real-time PCR. Statistical comparison showed significant increases of Cxs31, 32, 37, 40, and 43 transcript amounts by a treatment of 0.015 mg of EB /kg body weight (BW). A treatment of 1.5 μg of EB /kg BW caused a significant decrease of Cx43 gene expression but increases of Cxs26, 31, 32, 37, and 40 transcript levels. Exposure to 500 mg of Flu/kg BW induced an increase of Cx37 expression but significant decreases of Cxs43 and 45 mRNA levels. Expression of Cx37 was increased by a treatment of 5 mg of Flu/kg BW, while transcript levels of Cxs26, 30.3, 31, 31.1, 32, and 43 were significantly decreased by same treatment. These results demonstrate that exposure to steroidal compounds at the early developmental age alters expression of Cx isoforms in the adult corpus epididymis. PMID:26973973

  2. Na(+)-K(+)-ATPase alpha(2)-isoform expression in guinea pig hearts during transition from compensation to decompensation.

    PubMed

    Trouve, P; Carre, F; Belikova, I; Leclercq, C; Dakhli, T; Soufir, L; Coquard, I; Ramirez-Gil, J; Charlemagne, D

    2000-10-01

    Disturbance in ionic gradient across sarcolemma may lead to arrhythmias. Because Na(+)-K(+)-ATPase regulates intracellular Na(+) and K(+) concentrations, and therefore intracellular Ca(2+) concentration homeostasis, our aim was to determine whether changes in the Na(+)-K(+)-ATPase alpha-isoforms in guinea pigs during transition from compensated (CLVH) to decompensated left ventricular hypertrophy (DLVH) were concomitant with arrhythmias. After 12- and 20-mo aortic stenosis, CLVH and DLVH were characterized by increased mean arterial pressure (30% and 52.7%, respectively). DLVH differed from CLVH by significantly increased end-diastolic pressure (34%), decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (-75%), and increased Na(+)/Ca(2+) exchanger (25%) mRNA levels and by the occurrence of ventricular arrhythmias. The alpha-isoform (mRNA and protein levels) was significantly lower in DLVH (2.2 +/- 0.2- and 1. 4 +/- 0.15-fold, respectively, vs. control) than in CLVH (3.5 +/- 0. 4- and 2.2 +/- 0.13-fold, respectively) and was present in sarcolemma and T tubules. Changes in the levels of alpha(1)- and alpha(3)-isoform in CLVH and DLVH appear physiologically irrelevant. We suggest that the increased level of alpha(2)-isoform in CLVH may participate in compensation, whereas its relative decrease in DLVH may enhance decompensation and arrhythmias. PMID:11009487

  3. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    PubMed

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  4. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes

    PubMed Central

    Bellance, Catherine; Khan, Junaid A.; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-01-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(–) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl­amino)­phenyl-17β-hydroxy-17-(1-propynyl)­estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes. PMID:23485561

  5. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea.

    PubMed

    Syam Prakash, S R; Jayabaskaran, Chelliah

    2006-11-01

    In plants, calcium-dependent protein kinases (CPKs) constitute a unique family of enzymes consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. We isolated two cDNAs encoding calcium-dependent protein kinase isoforms (CaCPK1 and CaCPK2) from chickpea. Both isoforms were expressed as fusion proteins in Escherichia coli. Biochemical analyses have identified CaCPK1 and CaCPK2 as Ca(2+)-dependent protein kinases since both enzymes phosphorylated themselves and histone III-S as substrate only in the presence of Ca(2+). The kinase activity of the recombinant enzymes was calmodulin independent and sensitive to CaM antagonists W7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazoilum. Phosphoamino acid analysis revealed that the isoforms transferred the gamma-phosphate of ATP only to serine residues of histone III-S and their autophosphorylation occurred on serine and threonine residues. These two isoforms showed considerable variations with respect to their biochemical and kinetic properties including Ca(2+) sensitivities. The recombinant CaCPK1 has a pH and temperature optimum of pH 6.8-8.6 and 35-42 degrees C, respectively, whereas CaCPK2 has a pH and temperature optimum of pH 7.2-9 and 35-42 degrees C, respectively. Taken together, our results suggest that CaCPK1 and CaCPK2 are functional serine/threonine kinases and may play different roles in Ca(2+)-mediated signaling in chickpea plants.

  6. Identification of two isoforms of CYP4 in Marsupenaeus japonicus and their mRNA expression profile response to benzo[a]pyrene.

    PubMed

    Zheng, Jinbin; Mao, Yong; Qiao, Yin; Shi, Zhuangzhuang; Su, Yongquan; Wang, Jun

    2015-12-01

    CYP4 enzymes are essential components of cellular detoxification systems and play important roles in monitoring persistent organic pollutants in marine environments. However, there are few studies on CYP4 in shrimp. In this study, two CYP4 isoforms, CYP4V28 and CYP4V29, were cloned from Marsupenaeus japonicus for the first time, and the tissue distributions and mRNA expression profile in response to benzo[a]pyrene (B[a]P) were analyzed by quantitative real-time PCR (QRT-PCR). The full lengths of CYP4V28 and CYP4V29 were 1771 bp and 1647 bp respectively, with deduced amino acid sequences of 511 and 515 amino acids. The two CYP4s were predominantly expressed in the hepatopancreas and weakly expressed in other six tested tissues. As demonstrated by QRT-PCR, the mRNA levels of the two CYP4s show both a time- and dose-dependent response to B[a]P. The mRNA expression levels of CYP4V28 and CYP4V29 peaked at 12 h and 6 h respectively, and the peak level exhibited a tendency of positive correlation with the concentration of B[a]P. This study provides clues for further elucidating the function and regulation mechanisms of the two CYP4s in M. japonicas and evaluating of the biomarker potential of the two CYP4 isoforms. PMID:26476689

  7. BDE-99 deregulates BDNF, Bcl-2 and the mRNA expression of thyroid receptor isoforms in rat cerebellar granular neurons.

    PubMed

    Blanco, Jordi; Mulero, Miquel; López, Marta; Domingo, José L; Sánchez, Domènec J

    2011-12-18

    Although the disruption of thyroid hormone (TH) signaling can largely explain the neurotoxic effects of polybrominated diphenyl ethers (PBDEs), there are still many unknowns about how this interference occurs. In this study, we expose a primary culture of rat cerebellar granule neurons (CGNs) to a 25μM concentration of one of the most prevalent PBDE congeners in humans, 2,2',4,4',5-pentaBDE (BDE-99). The main goal was to investigate the time course of BDE-99 toxicity in relation to the disruption of thyroid receptor (TR) function over 24h. In a first stage, we found that BDE-99 directly down-regulated the transcription of the isoforms TR-alpha1 and TR-alpha2, which may be a consequence of a hypothetical state that mimics hyperthyroidism. In a later stage, BDE-99 disrupted the expression of triiodothyronine (T3)-responsive genes, possibly as an effect of its metabolism. A down-regulation of the expression of the T3-mediated neurotrophin brain-derived neurotrophic factor (BDNF) and the anti-apoptotic Bcl-2 protein was also observed. Down-regulation of these two proteins was correlated with an increase in the production of reactive oxygen species (ROS). It was also found that expression of the TR-beta1 isoform, which is normally transcriptionally repressed by T3 in CGNs, was up-regulated. This up-regulation could compensate the down-regulation of the TR-alpha1 isoform, and thus slow down cell death. The dually disruptive action of BDE-99 might provide a better understanding of the potentially neurotoxic mechanism of PBDEs.

  8. Urocortins and CRF type 2 receptor isoforms expression in the rat stomach are regulated by endotoxin: role in the modulation of delayed gastric emptying.

    PubMed

    Yuan, Pu-Qing; Wu, S Vincent; Taché, Yvette

    2012-07-01

    Peripheral activation of corticotropin-releasing factor receptor type 2 (CRF(2)) by urocortin 1, 2, or 3 (Ucns) exerts powerful effects on gastric function; however, little is known about their expression and regulation in the stomach. We investigated the expression of Ucns and CRF(2) isoforms by RT-PCR in the gastric corpus (GC) mucosa and submucosa plus muscle (S+M) or laser captured layers in naive rats, their regulations by lipopolysaccharide (LPS, 100 μg/kg ip) over 24 h, and the effect of the CRF(2) antagonist astresssin(2)-B (100 μg/kg sc) on LPS-induced delayed gastric emptying (GE) 2-h postinjection. Transcripts of Ucns and CRF(2b,) the most common wild-type CRF(2) isoform in the periphery, were expressed in all layers, including myenteric neurons. LPS increased Ucn mRNA levels significantly in both mucosa and S+M, reaching a maximal response at 6 h postinjection and returning to basal levels at 24 h except for Ucn 1 in S+M. By contrast, CRF(2b) mRNA level was significantly decreased in the mucosa and M+S with a nadir at 6 h. In addition, CRF(2a), reportedly only found in the brain, and the novel splice variant CRF(2a-3) were also detected in the GC, antrum, and pylorus. LPS reciprocally regulated these variants with a decrease of CRF(2a) and an increase of CRF(2a-3) in the GC 6 h postinjection. Astressin(2)-B exacerbated LPS-delayed GE (42-73%, P < 0.001). These data indicate that Ucn and CRF(2) isoforms are widely distributed throughout the rat stomach and inversely regulated by immune stress. The CRF(2) signaling system may act to counteract the early gastric motor alterations to endotoxemia. PMID:22517775

  9. Inference of Isoforms from Short Sequence Reads

    NASA Astrophysics Data System (ADS)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  10. Effects of chronic academic stress on mental state and expression of glucocorticoid receptor α and β isoforms in healthy Japanese medical students.

    PubMed

    Kurokawa, Ken; Tanahashi, Toshihito; Murata, Akiho; Akaike, Yoko; Katsuura, Sakurako; Nishida, Kensei; Masuda, Kiyoshi; Kuwano, Yuki; Kawai, Tomoko; Rokutan, Kazuhito

    2011-07-01

    Chronic academic stress responses were assessed by measuring mental state, salivary cortisol levels, and the glucocorticoid receptor (GR) gene expression in healthy Japanese medical students challenging the national medical license examination. Mental states of 17 male and 9 female medical undergraduates, aged 25.0 ± 1.2 years (mean ± SD), were assessed by the State and Trait Anxiety Inventory (STAI) and the Self-Rating Depression Scale (SDS) 2 months before, 2 days before, and 1 month after the examination. At the same time points, saliva and blood were collected. STAI-state scores peaked 2 days before the examination. Scores on STAI-trait and SDS, and salivary cortisol levels were consistently higher during the pre-examination period. One month after the examination, all these measures had significantly decreased to baseline levels. Real-time reverse transcription PCR showed that this chronic anxious state did not change the expression of the functional GRα mRNA isoform in peripheral leukocytes, while it resulted in reduced expression of the GRβ isoform 2 days before the examination. Our results replicate and extend a significant impact of chronic academic stressors on the mental state of healthy Japanese medical students and suggest a possible association of GRβ gene in response to psychological stress.

  11. Application of capillary immunoelectrophoresis revealed an age- and gender-dependent regulated expression of PrPC in liver.

    PubMed

    Arora, Amandeep Singh; Zafar, Saima; Kollmar, Otto; Llorens, Franc; Tahir, Waqas; Vanselow, Sven; Kumar, Prateek; Schmerr, Mary Jo; Schmitz, Matthias; Zerr, Inga

    2015-12-01

    The cellular prion protein (PrPC) is a glycoprotein, anchored to the plasma membrane and abundantly expressed in the central nervous system. The expression of PrPC in the peripheral tissues is low and only little information is available on its functions in the nonneuronal tissues. The antioxidant function of PrPC during the activation of hepatic stellate cells has already been reported. Therefore, the aim of the study was to expand our knowledge on the functions of PrPC by detailed characterization of its expressional profile in the liver. In a combined strategy by using capillary immunoelectrophoresis and standard techniques, we have shown a sexually dimorphic expression of PrPC in mice and human liver tissues. Further, we showed a significant age-dependent upregulation of PrPC expression in the liver of 14- and 9-month-old mice as compared to 3 months of age. Therefore, this study may provide new insights into the gender-specific role of PrPC in the liver, which may further be linked to its protective role against oxidative stress during aging. In addition, the current study also shows an application of immunoelectrophoresis with a low coefficient of variation to analyze the miniscule amount of PrPC in the mouse liver tissue.

  12. Molecular properties and fibril ultrastructure of types II and XI collagens in cartilage of mice expressing exclusively the α1(IIA) collagen isoform.

    PubMed

    McAlinden, Audrey; Traeger, Geoffrey; Hansen, Uwe; Weis, Mary Ann; Ravindran, Soumya; Wirthlin, Louisa; Eyre, David R; Fernandes, Russell J

    2014-02-01

    Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner. Specifically, chondroprogenitor cells synthesize predominantly IIA mRNA isoforms while differentiated chondrocytes produce mainly IIB mRNA isoforms. Recent characterization of the Col2a1(+ex2) mice has surprisingly shown that disruption of alternative splicing does not affect overt cartilage formation. In the present study, biochemical analyses showed that type IIA collagen extracted from ki/ki mouse rib cartilage can form homopolymers that are stabilized predominantly by hydroxylysyl pyridinoline (HP) cross-links at levels that differed from wild type rib cartilage. The findings indicate that mature type II collagen derived exclusively from type IIA procollagen molecules can form hetero-fibrils with type XI collagen and contribute to cartilage structure and function. Heteropolymers with type XI collagen also formed. Electron microscopy revealed mainly thin type IIA collagen fibrils in ki/ki mouse rib cartilage. Immunoprecipitation and mass spectrometry of purified type XI collagen revealed a heterotrimeric molecular composition of α1(XI)α2(XI)α1(IIA) chains where the α1(IIA) chain is the IIA form of the α3(XI) chain. Since the N-propeptide of type XI collagen regulates type II collagen fibril diameter in cartilage, the retention of the exon 2-encoded IIA globular domain would structurally alter the N-propeptide of type XI collagen

  13. Akt isoforms in vascular disease.

    PubMed

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-08-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease.

  14. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  15. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation

    PubMed Central

    Mullikin, James C.; Klein, David C.; Park, Morgan; Coon, Steven L.

    2016-01-01

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome. PMID:27684375

  16. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    PubMed

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum

    PubMed Central

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  18. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum.

    PubMed

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  19. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle.

    PubMed

    Wyckelsma, V L; McKenna, M J; Serpiello, F R; Lamboley, C R; Aughey, R J; Stepto, N K; Bishop, D J; Murphy, R M

    2015-03-15

    The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and β1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.

  20. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight.

    PubMed

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness.

  1. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species.

    PubMed

    Piccoli, Claudia; D'Aprile, Annamaria; Ripoli, Maria; Scrima, Rosella; Lecce, Lucia; Boffoli, Domenico; Tabilio, Antonio; Capitanio, Nazzareno

    2007-02-23

    Consolidated evidence highlights the importance of redox signalling in poising the balance between self-renewal and differentiation in adult stem cells. The present study shows that human hematopoietic stem/progenitor cells (HSCs) constitutively generate low levels of hydrogen peroxide whose production is inhibited by DPI, apocynin, catalase, and LY294002 and scarcely stimulated by PMA. Moreover, it is shown that HSCs express at the mRNA and protein levels the catalytic subunits of NOX1, NOX2, and NOX4 isoforms of the NADPH oxidase family along with the complete battery of the regulatory subunits p22, p40, p47, p67, rac1, rac2, NOXO1, and NOXA1 as well as the splicing variant NOX2s and that the three NOX isoforms are largely co-expressed in the same HSC. These findings are interpreted in terms of a positive feed-back mechanism of NOXs activation enabling a fine tuning of the ROS level to be possibly used in redox-mediated signalling for growth and differentiation of HSCs. PMID:17204244

  2. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight

    PubMed Central

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  3. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species.

    PubMed

    Piccoli, Claudia; D'Aprile, Annamaria; Ripoli, Maria; Scrima, Rosella; Lecce, Lucia; Boffoli, Domenico; Tabilio, Antonio; Capitanio, Nazzareno

    2007-02-23

    Consolidated evidence highlights the importance of redox signalling in poising the balance between self-renewal and differentiation in adult stem cells. The present study shows that human hematopoietic stem/progenitor cells (HSCs) constitutively generate low levels of hydrogen peroxide whose production is inhibited by DPI, apocynin, catalase, and LY294002 and scarcely stimulated by PMA. Moreover, it is shown that HSCs express at the mRNA and protein levels the catalytic subunits of NOX1, NOX2, and NOX4 isoforms of the NADPH oxidase family along with the complete battery of the regulatory subunits p22, p40, p47, p67, rac1, rac2, NOXO1, and NOXA1 as well as the splicing variant NOX2s and that the three NOX isoforms are largely co-expressed in the same HSC. These findings are interpreted in terms of a positive feed-back mechanism of NOXs activation enabling a fine tuning of the ROS level to be possibly used in redox-mediated signalling for growth and differentiation of HSCs.

  4. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight.

    PubMed

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  5. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    PubMed

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  6. Multiple isoforms of the tumor protein p73 are expressed in the adult human telencephalon and choroid plexus and present in the cerebrospinal fluid.

    PubMed

    Cabrera-Socorro, Alfredo; Pueyo Morlans, Mercedes; Suarez Sola, Maria Luisa; Gonzalez Delgado, Francisco J; Castañeyra-Perdomo, Agustin; Marin, Maria C; Meyer, Gundela

    2006-04-01

    p73, a homolog of the p53 tumor suppressor, codes for full-length transactivating (TA) and N-terminally truncated (DeltaN) isoforms, with pro- and anti-apoptotic activities, respectively. We examined the expression of the main p73 isoforms in adult human and mouse telencephalon and choroid plexus by immunohistochemistry on paraffin sections, and immunoblotting (IB) of tissue extracts and cerebrospinal fluid (CSF), using antibodies against different protein domains. Cortical neurons expressed TAp73 predominantly in the cytoplasm and DeltaNp73 mainly in the nucleus, with partial overlap in the cytoplasm. Highest expression was found in the hippocampus. IB showed an array of TAp73 variants in adult human cortex and hippocampus. IB of human choroid plexus and CSF using TAp73-specific antibodies revealed the presence of a approximately 90-kDa protein whose molecular weight was reduced after N-deglycosylation, suggesting that glycosylated TAp73 is exported into the CSF. In the mouse, high expression of TAp73 was also detected in the subcommissural organ (SCO), an ependymal gland absent in adult humans. TAp73 colocalized with anti-fibra-Reissner-antibody (AFRU), which is a marker of Reissner's fiber, the secreted SCO product. p73-deficient mice had generalized cortical hypoplasia and hydrocephalus; in addition, we observed a dramatic size reduction of the choroid plexus. However, the SCOs were apparently unaltered and continued to secrete Reissner's fiber. Our findings point to complex and widespread p73 activities in the maintenance of adult cortical neurons and in brain homeostasis. TAp73 in the CSF may play important roles in the maintenance of the adult ventricular wall as well as in the development of the proliferating neuroepithelium.

  7. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    PubMed

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  8. Temporal and topographic alterations in expression of the α3 isoform of Na+/K+-ATPase in the rat freeze lesion model of microgyria and epileptogenesis

    PubMed Central

    Chu, Yunxiang; Parada, Isabel; Prince, David A.

    2009-01-01

    Na+/K+-ATPase contributes to the asymmetrical distribution of sodium and potassium ions across the plasma membrane and to maintenance of the membrane potential in many types of cells. Alterations in this protein may play a significant role in many human neurological disorders, including epilepsy. We studied expression of the α3 isoform of Na+/K+-ATPase in the freeze lesion (FL) microgyrus model of developmental epileptogenesis to test the hypothesis that it is down-regulated following neonatal cortical injury. FL and sham-operated rat brains were examined at P7, P10, P14, P21–28 and P50–60 after placement of a transcranial freeze lesion at P0 or P1. Immunohistochemistry and in situ hybridization were used to assess the expression of the α3 isoform of Na+/K+-ATPase (termed α3, or α3 subunit below) in neuropil and the perisomatic areas of pyramidal and parvalbumin-containing interneurons. There was a significant decrease (p<0.05) in α3 subunit immunoreactivity (IR) in the neuropil of FL cortical layer V of the P14 and P21–28 groups that extended up to 360 μm from the border of the microgyrus, an area that typically exhibits evoked epileptiform activity. Alpha-3 was decreased in the perisomatic area of pyramidal but not parvalbumin-containing cells in P21–28 FL animals. A reduction in α3 mRNA was observed in the neuropil of FL cortical layer V up to 1610 μm from the microgyral edge. The developmental time course for expression of the α3 subunit between P7-P60 was examined in naïve rat cortices and results showed that there was a significant increase in α3 IR between P7 and P10. The significant decreases in Na+/K+-ATPase in the paramicrogyral cortex may contribute to epileptogenesis. PMID:19362129

  9. NF-κB and Androgen Receptor Variant 7 Induce Expression of SRD5A Isoforms and Confer 5ARI Resistance

    PubMed Central

    Austin, David C.; Strand, Douglas W.; Love, Harold L.; Franco, Omar E.; Grabowska, Magdalena M.; Miller, Nicole L.; Hameed, Omar; Clark, Peter E.; Matusik, Robert J.; Jin, Ren J.; Hayward, Simon W.

    2016-01-01

    BACKGROUND Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy. METHODS Tissue was collected from “Surgical” patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from “Incidental” patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions. CONCLUSION Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism

  10. Expression and characterization of a new isoform of the 9 kDa allergenic lipid transfer protein from tomato (variety San Marzano).

    PubMed

    Volpicella, Mariateresa; Leoni, Claudia; Fanizza, Immacolata; Rinalducci, Sara; Placido, Antonio; Ceci, Luigi R

    2015-11-01

    Lipid transfer proteins (LTPs) are food allergens found first in fruits of the Rosaceae family and later identified in other food plants. Their high structural stability causes them to behave as allergens in cooked and processed foods. Allergenic LTPs have been identified in tomato fruits as well, but studies of their thermal stability and structural characteristics are limited. In this article we report the identification of the coding region for a novel 9 kDa LTP isoform in the tomato variety San Marzano, together with the expression of the recombinant mature protein. The purified recombinant protein was further characterized for its thermal stability and was found to bind 1-palmitoil-2-lysophosphatidylcholine (Lyso-C16) after thermal treatments up to 105 °C. Analysis of a modeling derived structure of the protein allowed the identification of possible epitope regions on the molecular surface. PMID:26232648

  11. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  12. Ecdysone receptor isoform-B mediates soluble trehalase expression to regulate growth and development in the mirid bug, Apolygus lucorum (Meyer-Dür).

    PubMed

    Tan, Y-A; Xiao, L-B; Zhao, J; Xiao, Y-F; Sun, Y; Bai, L-X

    2015-12-01

    Ecdysone receptor (EcR) is the hormonal receptor of ecdysteroids and strictly regulates growth and development in insects. However, the action mechanism of EcR is not very clear. In this study, the cDNA of EcR isoform-B was cloned from Apolygus lucorum (AlEcR-B) and its expression profile was investigated. We reduced AlEcR-B mRNA expression using systemic RNA interference in vivo, and obtained knockdown specimens. Examination of these specimens indicated that AlEcR-B is required for nymphal survival, and that reduced expression is associated with longer development time and lower nymphal weight. To investigate the underlying molecular mechanism of the observed suppression effects, we selected trehalase for a detailed study. Transcript encoding soluble trehalase (AlTre-1) was up-regulated by 20-hydroxyecdysone and in agreement with the mRNA expression of AlEcR-B. The expression profile of AlTre-1, soluble trehalase activity and translated protein level in the midgut of surviving nymphs were down-regulated, compared with controls, after the knockdown expression of AlEcR-B. By contrast, membrane-bound trehalase activity, the related gene expression and translated protein level remained at their initial levels. However, trehalose content significantly increased and the glucose content significantly decreased under the same conditions. We propose that AlEcR-B controls normal carbohydrate metabolism by mediating the expression of AlTre-1 to regulate the growth and development in A. lucorum, which provide an extended information into the functions of AlEcR-B.

  13. Structure of the mouse leukaemia inhibitory factor receptor gene: regulated expression of mRNA encoding a soluble receptor isoform from an alternative 5' untranslated region.

    PubMed Central

    Chambers, I; Cozens, A; Broadbent, J; Robertson, M; Lee, M; Li, M; Smith, A

    1997-01-01

    The low-affinity leukaemia inhibitory factor receptor (LIF-R) is a component of cell-surface receptor complexes for the multifunctional cytokines leukaemia inhibitory factor, ciliary neurotrophic factor, oncostatin M and cardiotrophin-1. Both soluble and transmembrane forms of the protein have been described and several LIF-R mRNAs have been reported previously. In order to determine the coding potential of LIF-R mRNAs we have isolated and characterized the mouse LIF-R gene. mRNA encoding soluble LIF-R (sLIF-R) is formed by inclusion of an exon in which polyadenylation signals are provided by a B2 repeat. This exon is located centrally within the LIF-R gene but is excluded from the transmembrane LIF-R mRNA by alternative splicing. The transmembrane receptor is encoded by 19 exons distributed over 38 kb. Two distinct 5' non-coding exons have been identified, indicating the existence of alternative promoters. One of these is G/C rich and possesses a consensus initiator sequence as well as potential Sp1 binding sites. Expression of exon 1 from this promoter occurs in a wide variety of tissues, whereas expression of the alternative 5' untranslated region (exon 1a) is normally restricted to liver, the principal source of sLIF-R. During pregnancy expression of exon 1a becomes detectable also in the uterus. Expression of exon 1a increases dramatically during gestation and is accompanied by a similar quantitative rise in expression of sLIF-R mRNA. These findings establish that expression of LIF-R is under complex transcriptional control and indicate that regulated expression of the soluble cytokine receptor isoform may be due principally to an increase in the activity of a dedicated promoter. PMID:9396734

  14. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients.

    PubMed

    Ahmadi Rastegar, Diba; Sharifi Tabar, Mehdi; Alikhani, Mehdi; Parsamatin, Pouria; Sahraneshin Samani, Fazel; Sabbaghian, Marjan; Sadighi Gilani, Mohammad Ali; Mohammad Ahadi, Ali; Mohseni Meybodi, Anahita; Piryaei, Abbas; Ansari-Pour, Naser; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    The human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)). This was undertaken using quantitative real-time PCR (qPCR) at the transcript level and Western blotting (WB) and immunohistochemistry (IHC) at the protein level. We profiled the expression of 41 alternative transcripts encoded by 14 AZFa, AZFb, and AZFc region genes (USP9Y, DDX3Y, XKRY, HSFY1, CYORF15A, CYORF15B, KDM5D, EIF1AY, RPS4Y2, RBMY1A1, PRY, BPY2, DAZ1, and CDY1) as well as their X chromosome homologue transcripts and a few autosomal homologues. Of the 41 transcripts, 18 were significantly down-regulated in men with NOA when compared with those of men with complete spermatogenesis. In contrast, the expression of five transcripts increased significantly in NOA patients. Furthermore, to confirm the qPCR results at the protein level, we performed immunoblotting and IHC experiments (based on 24 commercial and homemade antibodies) that detected 10 AZF-encoded proteins. In addition, their localization in testis cell types and organelles was determined. Interestingly, the two missing proteins, XKRY and CYORF15A, were detected for the first time. Finally, we focused on the expression patterns of the significantly altered genes in 12 MA patients with successful sperm retrieval compared to those of 12 MA patients with failed sperm retrieval to predict the success of sperm retrieval in

  15. Calmodulin Gene Family in Potato: Developmental and Touch-Induced Expression of the mRNA Encoding a Novel Isoform

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Liu, Z. H.; An, G.; Poovaiah, B. W.

    1995-01-01

    Eight genomic clones of potato calmodulin (PCM1 to 8) were isolated and characterized. Sequence comparisons of different genes revealed that the deduced amino acid sequence of PCM1 had several unique substitutions, especially in the fourth Ca(2+)-binding area. The expression patterns of different genes were studied by northern analysis using the 3'-untranslated regions as probes. The expression of PCM1, 5, and 8 was highest in the stolon tip and it decreased during tuber development. The expression of PCM6 did not vary much in the tissues tested, except in the leaves, where the expression was lower; whereas, the expression of PCM4 was very low in all the tissues. The expression of PCM2 and PCM3 was not detected in any of the tissues tested. Among these genes, only PCM1 showed increased expression following touch stimulation. To study the regulation of PCM1, transgenic potato plants carrying the PCM1 promoter fused to the beta-glucuronidase (GUS) reporter gene were produced. GUS expression was found to be developmentally regulated and touch-responsive, indicating a positive correlation between the expression of PCM1 and GUS mRNAs. These results suggest that the 5'-flanking region of PCM1 controls developmental and touch-induced expression. X-Gluc staining patterns revealed that GUS localization is high in meristematic tissues such as the stem apex, stolon tip, and vascular regions.

  16. An alternatively spliced isoform of PECAM-1 is expressed at high levels in human and murine tissues, and suggests a novel role for the C-terminus of PECAM-1 in cytoprotective signaling.

    PubMed

    Bergom, Carmen; Paddock, Cathy; Gao, Cunji; Holyst, Trudy; Newman, Debra K; Newman, Peter J

    2008-04-15

    The Ig-ITIM family member PECAM-1 is expressed in vascular and endothelial cells, and its functions include suppression of mitochondria-dependent apoptosis. Previous studies have identified distinct PECAM-1 cytoplasmic domain splice variants at the mRNA, but not protein, level. Several relatively abundant mRNA isoforms lack exon 15 (Delta15) and would theoretically encode a protein with a truncated cytoplasmic domain and a unique C-terminal sequence. Using a novel rabbit polyclonal antibody that specifically recognizes Delta15 PECAM-1, we found that the Delta15 PECAM-1 isoform was expressed in human tissues, including brain, testes and ovary. This isoform was also expressed on the cell surface of human platelets, human umbilical vein endothelial cells (HUVECs) and the Jurkat T-cell leukemia, human erythroleukemia (HEL) and U937 histiocytic lymphoma cell lines. Furthermore, murine platelets and lung lysates demonstrated abundant amounts of exon-15-deficient PECAM-1. Functional studies revealed that Delta15 PECAM-1 retains both its homophilic binding capacity and its ability to signal by means of its immunoreceptor tyrosine-based inhibitory motif (ITIM) domains. Delta15 PECAM-1 was unable, however, to protect against apoptosis induced by overexpression of Bax or treatment with the chemotherapy agent etoposide. These studies suggest a novel role for the PECAM-1 C-terminus in cytoprotective signaling and highlight a need for further characterization of expression of PECAM-1 isoforms in normal and malignant tissues. PMID:18388311

  17. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    PubMed

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption. PMID:27153755

  18. Global transcriptome and chromatin occupancy analysis reveal the short isoform of GATA1 is deficient for erythroid specification and gene expression.

    PubMed

    Chlon, Timothy M; McNulty, Maureen; Goldenson, Benjamin; Rosinski, Alexander; Crispino, John D

    2015-05-01

    GATA1 is a master transcriptional regulator of the differentiation of several related myeloid blood cell types, including erythrocytes and megakaryocytes. Germ-line mutations that cause loss of full length GATA1, but allow for expression of the short isoform (GATA1s), are associated with defective erythropoiesis in a subset of patients with Diamond Blackfan Anemia. Despite extensive studies of GATA1s in megakaryopoiesis, the mechanism by which GATA1s fails to support normal erythropoiesis is not understood. In this study, we used global gene expression and chromatin occupancy analysis to compare the transcriptional activity of GATA1s to GATA1. We discovered that compared to GATA1, GATA1s is less able to activate the erythroid gene expression program and terminal differentiation in cells with dual erythroid-megakaryocytic differentiation potential. Moreover, we found that GATA1s bound to many of its erythroid-specific target genes less efficiently than full length GATA1. These results suggest that the impaired ability of GATA1s to promote erythropoiesis in DBA may be caused by failure to occupy erythroid-specific gene regulatory elements. PMID:25682601

  19. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  20. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice)

    PubMed Central

    Todorov, Teodor

    2016-01-01

    The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice. PMID:27689088

  1. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    PubMed

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption.

  2. Expression of a novel isoform of Na(+)/H(+) exchanger 3 in the kidney and intestine of banded houndshark, Triakis scyllium.

    PubMed

    Li, Shanshan; Kato, Akira; Takabe, Souichirou; Chen, An-Ping; Romero, Michael F; Umezawa, Takahiro; Nakada, Tsutomu; Hyodo, Susumu; Hirose, Shigehisa

    2013-05-15

    Na(+)/H(+) exchanger 3 (NHE3) provides one of the major Na(+) absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na(+) reabsorption, urine acidification, and intestinal Na(+) absorption in elasmobranchs.

  3. Identification and sexually dimorphic expression of vasa isoforms in Dabry's sturgeon (Acipenser dabryanus), and functional analysis of vasa 3'-untranslated region.

    PubMed

    Ye, Huan; Yue, Hua-Mei; Yang, Xiao-Ge; Li, Chuang-Ju; Wei, Qi-Wei

    2016-10-01

    Germ cells are set aside from somatic cells early in embryogenesis, and are responsible for transmitting genetic information through generations. Vasa is a highly conserved germ cell marker across animal phyla, and widely used to label primordial germ cells. Dabry's sturgeon is a rare and endangered species distributed solely in the Yangtze River basin. Here, seven vasa isoforms, named Advasa1-7, were isolated and characterized in Dabry's sturgeon. RT-PCR and western blot analyses revealed that vasa mRNA and protein were mainly restricted to the testis and ovary, but exhibited sexually dimorphic expression. Cellular and subcellular localization uncovered that Advasa mRNA and protein displayed mitotic and meiotic expression in females, and mainly showed mitotic expression in males; surprisingly, they exhibited both cytoplasmic and nuclear expression in the ovarian germ cells, while showing exclusively cytoplasmic expression in the testicular germ cells. By microinjecting chimeric RNA consisting of the red fluorescent protein coding region and the Advasa 3'-untranslated region into embryos of Dabry's sturgeon, zebrafish and medaka, we demonstrated that it had the ability to visualize primordial germ cells (PGCs) in Dabry's sturgeon and zebrafish but not in medaka. It seemed that the machinery of vasa 3'UTR RNA localization was conserved between Dabry's sturgeon and ostariophysan, while possibly changed during the divergence of euteleosts and ostariophysan. Finally, Dabry's sturgeon PGCs moved on the yolk ball, and migrated toward the genital ridge via mesenchyme. Taken together, these results provide new information for vasa expression pattern and function, and lay a foundation for PGC cryopreservation and conservation of Dabry's sturgeon.

  4. Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B" subunits of protein phosphatase 2A

    PubMed Central

    Zwaenepoel, Karen; Louis, Justin V; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Background Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase displaying vital functions in growth and development through its role in various signalling pathways. PP2A holoenzymes comprise a core dimer composed of a catalytic C and a structural A subunit, which can associate with a variable B-type subunit. The importance of the B-type subunits for PP2A regulation cannot be overestimated as they determine holoenzyme localisation, activity and substrate specificity. Three B-type subunit families have been identified: PR55/B, PR61/B' and PR72/B", of which the latter is currently the least characterised. Results We deduced the sequences and genomic organisation of the different murine PR72/B" isoforms: three genes encode nine isoforms, five of which are abundantly expressed and give rise to genuine PP2A subunits. Thereby, one novel subunit was identified. Using Northern blotting, we examined the tissue-specific and developmental expression of these subunits. All subunits are highly expressed in heart, suggesting an important cardiac function. Immunohistochemical analysis revealed a striated expression pattern of PR72 and PR130 in heart and skeletal muscle, but not in bladder smooth muscle. The subcellular localisation and cell cycle regulatory ability of several PR72/B" isoforms were determined, demonstrating differences as well as similarities. Conclusion In contrast to PR55/B and PR61/B', the PR72/B" family seems evolutionary more divergent, as only two of the murine genes have a human orthologue. We have integrated these results in a more consistent nomenclature of both human and murine PR72/B" genes and their transcripts/proteins. Our results provide a platform for the future generation of PR72/B" knockout mice. PMID:18715506

  5. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer.

    PubMed

    Chen, Chi-Yuan; Jan, Chia-Ing; Pi, Wen-Chieh; Wang, Wen-Lung; Yang, Pan-Chyr; Wang, Tong-Hong; Karni, Rotem; Wang, Tzu-Chien V

    2016-03-29

    The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis. PMID:26919236

  6. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer

    PubMed Central

    Chen, Chi-Yuan; Jan, Chia-Ing; Pi, Wen-Chieh; Wang, Wen-Lung; Yang, Pan-Chyr; Wang, Tong-Hong; Karni, Rotem; Wang, Tzu-Chien V.

    2016-01-01

    The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis. PMID:26919236

  7. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production.

    PubMed

    Chen, Zhi-Yuan; Brown, Robert L; Damann, Kenneth E; Cleveland, Thomas E

    2010-01-01

    Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contamination have been compared, and several resistance-associated proteins have been found, including a pathogenesis-related protein 10 (PR10). In this study, RNA interference (RNAi) gene silencing technology was employed to further investigate the importance of PR10. An RNAi gene silencing vector was constructed and introduced into immature Hi II maize embryos through both bombardment and Agrobacterium infection procedures. PR10 expression was reduced by 65% to more than 99% in transgenic callus lines from bombardment. The RNAi-silenced callus lines also showed increased sensitivity to heat stress treatment. A similar reduction in PR10 transcript levels was observed in seedling leaf and root tissues developed from transgenic kernels. When inoculated with A. flavus, RNAi-silenced mature kernels produced from Agrobacterium-mediated transformation showed a significant increase in fungal colonization and aflatoxin production in 10 and six, respectively, of 11 RNAi lines compared with the non-silenced control. Further proteomic analysis of RNAi-silenced kernels revealed a significant reduction in PR10 production in eight of 11 RNAi lines that showed positive for transformation. A significant negative correlation between PR10 expression at either transcript or protein level and kernel aflatoxin production was observed. The results indicate a major role for PR10 expression in maize aflatoxin resistance. PMID:20078777

  8. Expression of ERα and PR in Various Morphological Patterns of Abnormal Uterine Bleeding-Endometrial causes in Reproductive Age Group

    PubMed Central

    Singh, Pallavi; Chaurasia, Amrita; Dhingra, Vishal; Misra, Vatsala

    2016-01-01

    Introduction Abnormal Uterine Bleeding (AUB) is most common gynaecological problem but its management is not well defined. So FIGO/PALMCOEIN classification was developed to provide clear management options as treatment is different in PALM and AUB-E group. FIGO/PALM-COEIN classification and immunohistochemistry with ERα and PR expression in AUB-E group will be helpful in management of these patients, thus preventing surgical interventions. Aim To study histomorphological classification according to FIGO/PALM-COEIN classification in patients presenting with AUB into PALM and AUB-E group. To study the receptor expression of ERα and PR in AUB-E group. Materials and Methods This cross sectional study was performed in patients presenting with AUB in reproductive age group (15-45 years). Six hundred endometrial specimens were stained with H&E for histolomorphological examination and classified as per FIGO/PALM-COEIN classification of AUB in non-gravid women in reproductive age group. Fifty endometrial biopsies were of pregnancy and pregnancy related complications and were excluded from study. A total of 550 samples were evaluated in present study. IHC for quantification of ERα and PR expression was carried out in AUB-E (100) cases and control group endometrium (20) cases due to technical constraints. Statistical Analysis Unpaired student t-test was performed. p-value ≤ 0.05 was taken as critical level of significance. Results Endometrial (58.19%) (AUB-E) causes were most common cause of AUB. Most common morphology was AUB-E (Proliferative endometrium), AUB-L (Leiomyoma) and AUB-E (Secretory endometrium) respectively. Statistically significant expression of ERα and PR was found in AUB-E endometrium as compared to control group endometrium. In Non secretory/Proliferative endometrium AUB-E group. Proliferative endometrium and hyperplasia without atypia had significant expression of ERα and PR in glands and stroma when compared with proliferative phase control group

  9. Epigenetic changes and alternate promoter usage by human colon cancers for expressing DCLK1-isoforms: Clinical Implications

    PubMed Central

    O’Connell, Malaney R.; Sarkar, Shubhashish; Luthra, Gurinder K.; Okugawa, Yoshinaga; Toiyama, Yuji; Gajjar, Aakash H.; Qiu, Suimin; Goel, Ajay; Singh, Pomila

    2015-01-01

    DCLK1 specifically marks colon/pancreatic cancers in mice, and is expressed by human colon adenocarcinomas (hCRCs). Down-regulation of DCLK1 results in loss of cancer-stem-cells (CSCs), and inhibits spheroidal/xenograft growths from hCRC-cells. The 5′-promoter of DCLK1-gene is reportedly hypermethylated in hCRCs, resulting in loss of expression of DCLK1-transcripts, originating from 5′(α)-promoter (termed DCLK1-L, in here). However, in mouse colon-tumors, 5′-promoter of DCLK1-gene remains unchanged, and DCLK1-L, originating from 5′(α)-promoter, is expressed. We hypothesized that elevated levels of DCLK1-protein in hCRC-cells, may be transcribed/translated from an alternate-promoter. Several in silico and molecular biology approaches were used to test our hypothesis. We report for the first time that majority of hCRCs express short-transcripts of DCLK1 (termed DCLK1-S, in here) from an alternate β-promoter in IntronV of the gene, while normal-colons mainly express DCLK1-L from 5′(α)-promoter. We additionally report an important role of β-catenin and TCF4/LEF binding-sites for activating (α)-promoter, while activated NF-κBp65 (bound to NF-κB-cis-element), activates (β)-promoter in cancer-cells. DCLK1-S expression was examined in a cohort of 92 CRC patients; high-expressors had significantly worse overall-survival compared to low-expressors. Our novel findings’ regarding usage of alternate (β)-promoter by hCRCs, suggests that DCLK1-S may represent an important target for preventing/inhibiting colon-cancers, and for eliminating colon-CSCs. PMID:26447334

  10. Testosterone reduces knee passive range of motion and expression of relaxin receptor isoforms via 5α-dihydrotestosterone and androgen receptor binding.

    PubMed

    Dehghan, Firouzeh; Muniandy, Sekaran; Yusof, Ashril; Salleh, Naguib

    2014-01-01

    Ovarian steroids such as estrogen and progesterone have been reported to influence knee laxity. The effect of testosterone, however, remains unknown. This study investigated the effect of testosterone on the knee range of motion (ROM) and the molecular mechanisms that might involve changes in the expression of relaxin receptor isoforms, Rxfp1 and Rxfp2 in the patella tendon and lateral collateral ligament of the female rat knee. Ovariectomized adult female Wistar rats received three days treatment with peanut oil (control), testosterone (125 and 250 μg/kg) and testosterone (125 and 250 μg/kg) plus flutamide, an androgen receptor blocker or finasteride, a 5α-reductase inhibitor. Duplicate groups received similar treatment however in the presence of relaxin (25 ng/kg). A day after the last drug injection, knee passive ROM was measured by using a digital miniature goniometer. Both tendon and ligament were harvested and then analysed for protein and mRNA expression for Rxfp1 and Rxfp2 respectively. Knee passive ROM, Rxfp1 and Rxfp2 expression were significantly reduced following treatment with testosterone. Flutamide or finasteride administration antagonized the testosterone effect. Concomitant administration of testosterone and relaxin did not result in a significant change in knee ROM as compared to testosterone only treatment; however this was significantly increased following flutamide or finasteride addition. Testosterone effect on knee passive ROM is likely mediated via dihydro-testosterone (DHT), and involves downregulation of Rxfp1 and Rxfp2 expression, which may provide the mechanism underlying testosterone-induced decrease in female knee laxity. PMID:24642882

  11. [Functions of prion protein PrPc].

    PubMed

    Cazaubon, Sylvie; Viegas, Pedro; Couraud, Pierre-Olivier

    2007-01-01

    It is now well established that both normal and pathological (or scrapie) isoforms of prion protein, PrPc and PrPsc respectively, are involved in the development and progression of various forms of neurodegenerative diseases, including scrapie in sheep, bovine spongiform encephalopathy (or "mad cow disease") and Creutzfeldt-Jakob disease in human, collectively known as prion diseases. The protein PrPc is highly expressed in the central nervous system in neurons and glial cells, and also present in non-brain cells, such as immune cells or epithelial and endothelial cells. Identification of the physiological functions of PrPc in these different cell types thus appears crucial for understanding the progression of prion diseases. Recent studies highlighted several major roles for PrPc that may be considered in two major domains : (1) cell survival (protection against oxidative stress and apoptosis) and (2) cell adhesion. In association with cell adhesion, distinct functions of PrPc were observed, depending on cell types : neuronal differentiation, epithelial and endothelial barrier integrity, transendothelial migration of monocytes, T cell activation. These observations suggest that PrPc functions may be particularly relevant to cellular stress, as well as inflammatory or infectious situations. PMID:17875293

  12. Selective expression of the type 3 isoform of ryanodine receptor Ca{sup 2+} release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    SciTech Connect

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo . E-mail: v.sorrentino@unisi.it

    2005-11-11

    The expression pattern of the RyR3 isoform of Ca{sup 2+} release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.

  13. Generation of Mice Expressing Only the Long Form of the Prolactin Receptor Reveals That Both Isoforms of the Receptor Are Required for Normal Ovarian Function1

    PubMed Central

    Le, Jamie A.; Wilson, Heather M.; Shehu, Aurora; Mao, Jifang; Devi, Y. Sangeeta; Halperin, Julia; Aguilar, Tetley; Seibold, Anita; Maizels, Evelyn; Gibori, Geula

    2011-01-01

    lamina of endothelial cells, aberrantly expressed and a discordant organization of endothelial cells in CL. Although luteinization did not occur in vivo, granulosa cells isolated from these mice luteinized in culture. Taken together, these results suggest that a vascularization defect in the CL may be responsible for lack of luteinization, progesterone production, and infertility in mice expressing only PRLR-L. This investigation therefore demonstrates that in contrast to earlier presumptions that PRLR-L alone is able to support normal CL formation and function, both isoforms of the PRL receptor are required in the CL for normal female fertility. PMID:22190699

  14. Delayed Parturition and Altered Myometrial Progesterone Receptor Isoform A Expression in Mice Null for Kruppel-like Factor 9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pre-term and delayed labor conditions are devastating health problems, with currently unknown etiologies. We previously showed that the transcription factor Krüppel-like factor 9 (KLF9) influences the expression and/or transcriptional activity of receptors for estrogen and progesterone in endometria...

  15. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform.

    PubMed

    Koch, H; Hofmann, K; Brose, N

    2000-07-01

    Munc13 proteins constitute a family of three highly homologous molecules (Munc13-1, Munc13-2 and Munc13-3). With the exception of a ubiquitously expressed Munc13-2 splice variant, Munc13 proteins are brain-specific. Munc13-1 has a central priming function in synaptic vesicle exocytosis from glutamatergic synapses. In order to identify Munc13-like proteins that may regulate secretory processes in non-glutamatergic neurons or non-neuronal cells, we developed protein profiles for two Munc13-homology-domains (MHDs). MHDs are present in a wide variety of proteins, some of which have previously been implicated in membrane trafficking reactions. Taking advantage of partial sequences in the human expressed sequence tag (EST) database, we characterized a novel, ubiquitously expressed, rat protein (Munc13-4) that belongs to a subfamily of Munc13-like molecules, in which the typical Munc13-like domain structure is conserved. Munc13-4 is predominantly expressed in lung where it is localized to goblet cells of the bronchial epithelium and to alveolar type II cells, both of which are cell types with secretory function. In the present study we identify a group of novel proteins, some of which may function in a Munc13-like manner to regulate membrane trafficking. The MHD profiles described in the present study are useful tools for the identification of Munc13-like proteins, that would otherwise have remained undetected.

  16. The expression of the truncated isoform of somatostatin receptor subtype 5 associates with aggressiveness in medullary thyroid carcinoma cells.

    PubMed

    Molè, Daniela; Gentilin, Erica; Ibañez-Costa, Alejandro; Gagliano, Teresa; Gahete, Manuel D; Tagliati, Federico; Rossi, Roberta; Pelizzo, Maria Rosa; Pansini, Giancarlo; Luque, Raúl M; Castaño, Justo P; degli Uberti, Ettore; Zatelli, Maria Chiara

    2015-11-01

    The truncated somatostatin receptor variant sst5TMD4 associates with increased invasiveness and aggressiveness in breast cancer. We previously found that sst5 activation may counteract sst2 selective agonist effects in a medullary thyroid carcinoma (MTC) cell line, the TT cells, and that sst5TMD4 is overexpressed in poorly differentiated thyroid cancers. The purpose of this study is to evaluate sst5TMD4 expression in a series of human MTC and to explore the functional role of sst5TMD4 in TT cells. We evaluated sst5TMD4 and sst5 expression in 36 MTC samples. Moreover, we investigated the role of sst5TMD4 in TT cells evaluating cell number, DNA synthesis, free cytosolic calcium concentration ([Ca(2+)]i), calcitonin and vascular endothelial growth factor levels, cell morphology, protein expression, and invasion. We found that in MTC the balance between sst5TMD4 and sst5 expression influences disease stage. sst5TMD4 overexpression in TT cells confers a greater growth capacity, blocks sst2 agonist-induced antiproliferative effects, modifies the cell phenotype, decreases E-cadherin and phosphorylated β-catenin levels, increases vimentin, total β-catenin and phosphorylated GSK3B levels (in keeping with the development of epithelial to mesenchymal transition), and confers a greater invasion capacity. This is the first evidence indicating that sst5TMD4 is expressed in human MTC cells, where it associates with more aggressive behavior, suggesting that sst5TMD4 might play a functionally relevant role.

  17. Regulation of Leishmania (L.) amazonensis protein expression by host T cell dependent responses: differential expression of oligopeptidase B, tryparedoxin peroxidase and HSP70 isoforms in amastigotes isolated from BALB/c and BALB/c nude mice.

    PubMed

    Teixeira, Priscila Camillo; Velasquez, Leonardo Garcia; Lepique, Ana Paula; de Rezende, Eloiza; Bonatto, José Matheus Camargo; Barcinski, Marcello Andre; Cunha-Neto, Edecio; Stolf, Beatriz Simonsen

    2015-02-01

    Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.

  18. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  19. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms.

    PubMed

    Leal, Walter S; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S B; Ueira-Vieira, Carlos

    2013-11-12

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.

  20. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53.

    PubMed

    Ostrakhovitch, E A; Song, Y P; Cherian, M G

    2016-05-01

    Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.

  1. Intravenous Glial Growth Factor 2 (GGF2) Isoform of Neuregulin-1β Improves Left Ventricular Function, Gene and Protein Expression in Rats after Myocardial Infarction

    PubMed Central

    Murphy, Abigail; Smith, Holly M.; Galindo, Cristi L.; Pentassuglia, Laura; Peng, Xuyang; Lenneman, Carrie G.; Odiete, Oghenerukevwe; Friedman, David B.; Kronenberg, Marvin W.; Zheng, Siyuen; Zhao, Zhongming; Song, Yanna; Harrell, Frank E.; Srinivas, Maya; Ganguly, Anindita; Iaci, Jennifer; Parry, Tom J.; Caggiano, Anthony O.; Sawyer, Douglas B.

    2013-01-01

    Aims Recombinant Neuregulin (NRG)-1β has multiple beneficial effects on cardiac myocytes in culture, and has potential as a clinical therapy for heart failure (HF). A number of factors may influence the effect of NRG-1β on cardiac function via ErbB receptor coupling and expression. We examined the effect of the NRG-1β isoform, glial growth factor 2 (GGF2), in rats with myocardial infarction (MI) and determined the impact of high-fat diet as well as chronicity of disease on GGF2 induced improvement in left ventricular systolic function. Potential mechanisms for GGF2 effects on the remote myocardium were explored using microarray and proteomic analysis. Methods and Results Rats with MI were randomized to receive vehicle, 0.625 mg/kg, or 3.25 mg/kg GGF2 in the presence and absence of high-fat feeding beginning at day 7 post-MI and continuing for 4 weeks. Residual left ventricular (LV) function was improved in both of the GGF2 treatment groups compared with the vehicle treated MI group at 4 weeks of treatment as assessed by echocardiography. High-fat diet did not prevent the effects of high dose GGF2. In experiments where treatment was delayed until 8 weeks after MI, high but not low dose GGF2 treatment was associated with improved systolic function. mRNA and protein expression analysis of remote left ventricular tissue revealed a number of changes in myocardial gene and protein expression altered by MI that were normalized by GGF2 treatment, many of which are involved in energy production. Conclusions This study demonstrates that in rats with MI induced systolic dysfunction, GGF2 treatment improves cardiac function. There are differences in sensitivity of the myocardium to GGF2 effects when administered early vs. late post-MI that may be important to consider in the development of GGF2 in humans. PMID:23437060

  2. TGF-ß isoforms in cancer: Immunohistochemical expression and Smad-pathway-activity-analysis in thirteen major tumor types with a critical appraisal of antibody specificity and immunohistochemistry assay validity.

    PubMed

    Riemenschneider, Markus J; Hirblinger, Maria; Vollmann-Zwerenz, Arabel; Hau, Peter; Proescholdt, Martin A; Jaschinski, Frank; Rothhammer-Hampl, Tanja; Wosikowski, Katja; Janicot, Michel; Leo, Eugen

    2015-09-29

    The literature on TGF-ß in cancer including data on the expression or activation of TGF-ß pathway components in specific tumors types is steadily growing. However, no systematic and uniform analysis exists reporting expression levels of the main TGF-ß pathway components across the most frequent tumor types. We used a standardized immunohistochemical assay investigating TGF-ß isoform expression and pathway activation across 13 different tumor types and corresponding non-neoplastic tissues. The study was performed on tissue microarrays allowing for the parallel analysis of a total of 1638 human tumor samples. TGF-ß1, TGF-ß2 and p-Smad2/3 were substantially expressed in multiple cancers widening the options for TGF-ß isoform directed therapies. Of note, TGF-ß antigens appear to be expressed in an individual manner pointing towards a need for patient preselection for TGF-β isoform specific treatment. Yet, a thorough investigation of antibody specificity and assay validity revealed that immunohistochemistry did not correlate with other detection methods on mRNA or protein level in all instances. As such, with the currently available means (i.e. antibodies tested) a stratification of patients within clinical trials for TGF-ß directed antisense therapies based upon TGF-β immunohistochemistry alone has to be interpreted with caution and should be carefully evaluated in combination with other parameters.

  3. Effects of quercetin on intracavernous pressure and expression of nitrogen synthase isoforms in arterial erectile dysfunction rat model

    PubMed Central

    Zhang, Yueyang; Huang, Changting; Liu, Shaoming; Bai, Jianqi; Fan, Xiaojing; Guo, Jun; Jia, Yingyu; Zhang, Zhijie; Chen, Xiaojun; Jia, Yusen; Zhang, Ping; Wang, Bin; Zhang, Xiuju

    2015-01-01

    Object: Oxidative stress involved in the regulation of arterial erectile dysfunction (A-ED). Previously report have indicated that quercetin have an antioxidant effect. In the current study, we have established the rats’ model for study the therapeutic effect of quercetin on A-ED and further investigated the molecular mechanism of action. Methods: Wistar rats were divided into sham group, A-ED group, A-ED group with low dose of quercetin, and A-ED group with high dose of quercetin. Intracavernous pressure (ICP) and mean arterial pressure (MBp) are two important indicators used for evaluation the A-ED. The changes of ICP and MBp were determined by cavernous nerve electrostimulation after treatment of quercetin at indicated doses. The expression of nitric oxide synthase (NOS) subtypes was detected by RT-PCR and Western blotting. Results: Our results indicated that ICP was significantly reduced in A-ED rats model compared with sham group, and was significantly increased after quercetin treatment (P < 0.01), while no significant effect on the MBp. The data also showed that sGC inhibitor ODQ and NOS inhibitor LNNA can significantly inhibited the ICP which induced by quercetin. These results suggest that NO-cGMP signaling pathway plays a crucial role in A-ED. Then, we found that the mRNA and protein levels of eNOS were significantly reduced in A-ED group compared with sham group. After treated with quercetin may cause the eNOS RNA and protein were significantly up-regulated (P < 0.01), showing a dose-dependent effect. iNOS expression have a certain degree of increased after quercetin treatment. nNOS expression was not significantly increased before and after treated with quercetin. In a word, quercetin can improved the A-ED by up-regulated ICP, which related to up-regulation of NO-cGMP signaling pathway. Conclusion: Preliminary results of this study suggested that quercetin protected expression and function of eNOS in cavernous endothelial cells, and restored part of

  4. Phase 1/2 open-label dose-escalation study of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with painful diabetic peripheral neuropathy.

    PubMed

    Ajroud-Driss, Senda; Christiansen, Mark; Allen, Jeffrey A; Kessler, John A

    2013-06-01

    This study aimed to evaluate the safety and preliminary efficacy of intramuscular injections of plasmid DNA (VM202) expressing two isoforms of hepatocyte growth factor (HGF) in subjects with painful diabetic peripheral neuropathy (PDPN). Twelve patients in three cohorts (4, 8, and 16 mg) received two sets of VM202 injections separated by two weeks. Safety and tolerability were evaluated and the visual analog scale (VAS), the short form McGill questionnaire (SF-MPQ), and the brief pain inventory for patients with diabetic peripheral neuropathy (BPI-DPN) measured pain level throughout 12 months after treatment. No serious adverse events (AEs) were observed. The mean VAS was reduced from baseline by 47.2% (P = 0.002) at 6 months and by 44.1% (P = 0.005) at 12 months after treatment. The VAS scores for the 4, 8, and 16 mg dose cohorts at 6 months follow-up decreased in a dose-responsive manner, by 21% (P = 0.971), 53% (P = 0.014), and 62% (P = 0.001), respectively. The results with the BPI-DPN and SF-MPQ showed patterns similar to the VAS scores. In conclusion, VM202 treatment appeared to be safe, well tolerated, and sufficient to provide long term symptomatic relief and improvement in the quality of life in patients with PDPN. PMID:23609019

  5. Phase 1/2 Open-label Dose-escalation Study of Plasmid DNA Expressing Two Isoforms of Hepatocyte Growth Factor in Patients With Painful Diabetic Peripheral Neuropathy

    PubMed Central

    Ajroud-Driss, Senda; Christiansen, Mark; Allen, Jeffrey A; Kessler, John A

    2013-01-01

    This study aimed to evaluate the safety and preliminary efficacy of intramuscular injections of plasmid DNA (VM202) expressing two isoforms of hepatocyte growth factor (HGF) in subjects with painful diabetic peripheral neuropathy (PDPN). Twelve patients in three cohorts (4, 8, and 16 mg) received two sets of VM202 injections separated by two weeks. Safety and tolerability were evaluated and the visual analog scale (VAS), the short form McGill questionnaire (SF-MPQ), and the brief pain inventory for patients with diabetic peripheral neuropathy (BPI-DPN) measured pain level throughout 12 months after treatment. No serious adverse events (AEs) were observed. The mean VAS was reduced from baseline by 47.2% (P = 0.002) at 6 months and by 44.1% (P = 0.005) at 12 months after treatment. The VAS scores for the 4, 8, and 16 mg dose cohorts at 6 months follow-up decreased in a dose–responsive manner, by 21% (P = 0.971), 53% (P = 0.014), and 62% (P = 0.001), respectively. The results with the BPI-DPN and SF-MPQ showed patterns similar to the VAS scores. In conclusion, VM202 treatment appeared to be safe, well tolerated, and sufficient to provide long term symptomatic relief and improvement in the quality of life in patients with PDPN. PMID:23609019

  6. Recombinant expression and functional analysis of an isoform of anti-lipopolysaccharide factors (FcALF5) from Chinese shrimp Fenneropenaeus chinensis.

    PubMed

    Yang, Hui; Li, Shihao; Li, Fuhua; Lv, Xinjia; Xiang, Jianhai

    2015-11-01

    Antimicrobial peptides (AMPs) have a great potential to be used as a substitute for antibiotics since AMPs don't lead to bacteria's drug resistance. Anti-lipopolysaccharide factors (ALFs) are one type of AMPs and exist in crustaceans. In the present study, we produced a recombinant protein (rFcALF5) of an ALF isoform (FcALF5) from Chinese shrimp Fenneropenaeus chinensis through a prokaryotic expression system. The rFcALF5 exhibited varied antibacterial activities against different bacteria. Besides its antibacterial activities, it could also inhibit the infection of white spot syndrome virus (WSSV) to shrimp after pre-incubation with this virus. In order to learn the antiviral mechanism on how rFcALF5 influences WSSV infection, the interaction between the total proteins of WSSV and rFcALF5 was analyzed and the data showed that rFcALF5 had direct interaction with the envelope protein VP24 of WSSV. The LPS binding domain (LBD) of FcALF5 also showed direct interaction with VP24 of WSSV. Therefore we inferred that the antiviral activity of FcALF5 might be achieved through the binding of its LBD to VP24 of WSSV. These findings provided more information to develop new strategies for the control of shrimp disease in aquaculture. PMID:26123888

  7. Molecular cloning, recombinant expression, and antimicrobial activity of EC-hepcidin3, a new four-cysteine hepcidin isoform from Epinephelus coioides.

    PubMed

    Qu, HaiDong; Chen, Bei; Peng, Hui; Wang, KeJian

    2013-01-01

    Hepcidin, a cysteine-rich antimicrobial peptide, is widespread in fish and shows multiple activities, including antimicrobial, antivirus, and antitumor. Here, a new four-cysteine hepcidin isoform gene, EC-hepcidin3, was cloned from the marine-cultured orange-spotted grouper (Epinephelus coioides). The complete cDNA sequence consisted of 603 bases with an open reading frame (ORF) of 270 bases. The genomic DNA sequence was composed of two introns and three exons, and its 312-bp upstream region had multiple putative transcription factor binding sites. Soluble recombinant protein EC-proHep3 containing a His-tag at the C-terminus was obtained from expression plasmid pET-28a/EC-proHep3 in Escherichia coli Rosetta. It was purified by immobilized metal affinity chromatography (IMAC), and it showed antibacterial activity in vitro. Kinetic studies indicated that recombinant EC-proHep3 has strong, rapid activity against Staphylococcus aureus and Pseudomonas stutzeri. The results indicate that EC-hepcidin3 might be an effective component in the innate immune system of groupers. PMID:23291752

  8. A high-frequency polymorphism in exon 6 of the CD45 tyrosine phosphatase gene (PTPRC) resulting in altered isoform expression

    PubMed Central

    Stanton, Tara; Boxall, Sally; Hirai, Kouzo; Dawes, Ritu; Tonks, Susan; Yasui, Tomoyo; Kanaoka, Yasushi; Yuldasheva, Nadira; Ishiko, Osamu; Bodmer, Walter; Beverley, Peter C. L.; Tchilian, Elma Z.

    2003-01-01

    CD45 (leukocyte common) antigen is a hemopoietic cell-specific tyrosine phosphatase essential for antigen receptor-mediated signaling in lymphocytes. The molecule undergoes complex alternative splicing in the extracellular domain, and different patterns of CD45 splicing are associated with distinct functions. Lack of CD45 leads to severe combined immunodeficiency, and alterations of CD45 splicing, because of a polymorphism in exon 4, have been associated with altered immune function. Here we describe a polymorphism in exon 6 (A138G) of the gene encoding CD45 that interferes with alternative splicing. The polymorphism results in an amino acid substitution of Thr-47 to Ala in exon 6, a potential O- and N-linked glycosylation site. This exon 6 A138G variant is present at a frequency of 23.7% in the Japanese population but is absent in Caucasoids. Peripheral blood T cells from individuals carrying the A138G variant show a significant decrease in the proportion of cells expressing the A, B, and C CD45 isoforms and a high frequency of CD45R0+ cells. These phenotypic alterations in the A138G carriers may lead to changes in ligand binding, homodimerization of CD45, and altered immune responses, suggesting the involvement of natural selection in controlling the A138G carrier frequency. PMID:12716971

  9. Cloning, characterization and gene expression of a metallothionein isoform in the edible cockle Cerastoderma edule after cadmium or mercury exposure.

    PubMed

    Paul-Pont, Ika; Gonzalez, Patrice; Montero, Natalia; de Montaudouin, Xavier; Baudrimont, Magalie

    2012-01-01

    Metallothionein (MT) genes encode crucial metal-binding proteins ubiquitously expressed in living organisms and which play important roles in homeostasis of essential metals and detoxification processes. Here, the molecular organization of the first metallothionein gene of the edible cockle Cerastoderma edule and its expression after cadmium (Cd) or mercury (Hg) exposures were determined. The resulting sequence (Cemt1) exhibits unusual features. The full length cDNA encodes a protein of 73 amino acids with nine classical Cys-X((1-3))-Cys motifs, but also one Cys-Cys not generally found in molluscan MT. Moreover, characterization of the molecular organization of the Cemt1 gene revealed two different alleles (A1 and A2) with length differences due to large deletion events in their intronic sequences involving direct Short Interspersed repeated Elements (SINE), while their exonic sequences were identical. To our knowledge, such large excision mechanisms have never before been reported in a bivalve gene sequence. After 10 days of Cd exposure at environmentally relevant doses, quantitative real-time PCR revealed a strong induction of Cemt1 in gills of C. edule. Surprisingly, neither induction of the Cemt1 gene nor of MT protein was shown after Hg exposure, despite the fact that this organism is able to bioaccumulate a high amount of this trace metal which is theoretically one of the most powerful inducers of MT biosynthesis.

  10. Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis.

    PubMed

    Forés, Oriol; Arró, Montserrat; Pahissa, Albert; Ferrero, Sergi; Germann, Melody; Stukey, Joseph; McDonough, Virginia; Nickels, Joseph T; Campos, Narciso; Ferrer, Albert

    2006-07-01

    Arv1p is involved in the regulation of cellular lipid homeostasis in the yeast Saccharomyces cerevisiae. Here, we report the characterization of the two Arabidopsis thaliana ARV genes and the encoded proteins, AtArv1p and AtArv2p. The functional identity of AtArv1p and AtArv2p was demonstrated by complementation of the thermosensitive phenotype of the arv1Delta yeast mutant strain YJN1756. Both A. thaliana proteins contain the bipartite Arv1 homology domain (AHD), which consists of an NH(2)-terminal cysteine-rich subdomain with a putative zinc-binding motif followed by a C-terminal subdomain of 33 amino acids. Removal of the cysteine-rich subdomain has no effect on Arvp activity, whereas the presence of the C-terminal subdomain of the AHD is critical for Arvp function. Localization experiments of AtArv1p and AtArv2p tagged with green fluorescent protein (GFP) and expressed in onion epidermal cells demonstrated that both proteins are exclusively targeted to the endoplasmic reticulum. Analysis of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants carrying chimeric ARV1::GUS and ARV2::GUS genes showed that ARV gene promoters direct largely overlapping patterns of expression that are restricted to tissues in which cells are actively dividing or expanding. The results of this study support the notion that plants, yeast and mammals share common molecular mechanisms regulating intracellular lipid homeostasis.

  11. Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene.

    PubMed Central

    Johnston, Lee Ann; Erdogan, Suat; Cheung, York Fong; Sullivan, Michael; Barber, Rachael; Lynch, Martin J; Baillie, George S; Van Heeke, Gino; Adams, David R; Huston, Elaine; Houslay, Miles D

    2004-01-01

    PDE4A7 is an isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene that fails to hydrolyse cAMP and whose transcripts are widely expressed. Removal of either the N- or C-terminal unique portions of PDE4A7 did not reconstitute catalytic activity, showing that they did not exert a chronic inhibitory effect. A chimera (Hyb2), formed by swapping the unique N-terminal portion of PDE4A7 with that of the active PDE4A4C form, was not catalytically active. However, one formed (Hyb1) by swapping the unique C-terminal portion of PDE4A7 with that common to all active PDE4 isoforms was catalytically active. Compared with the active PDE4A4B isoform, Hyb1 exhibited a similar K(m) value for cAMP and IC50 value for rolipram inhibition, but was less sensitive to inhibition by Ro-20-1724 and denbufylline, and considerably more sensitive to thermal denaturation. The unique C-terminal region of PDE4A7 was unable to support an active catalytic unit, whereas its unique N-terminal region can. The N-terminal portion of the PDE4 catalytic unit is essential for catalytic activity and can be supplied by either highly conserved sequence found in active PDE4 isoforms from all four PDE4 subfamilies or the unique N-terminal portion of PDE4A7. A discrete portion of the conserved C-terminal region in active PDE4A isoforms underpins their aberrant migration on SDS/PAGE. Unlike active PDE4A isoforms, PDE4A7 is exclusively localized to the P1 particulate fraction in cells. A region located within the C-terminal portion of active PDE4 isoforms prevents such exclusive targeting. Three functional regions in PDE4A isoforms are identified, which influence catalytic activity, subcellular targeting and conformational status. PMID:15025561

  12. Expression of the calcium-independent cytokine-inducible (iNOS) isoform of nitric oxide synthase in rat placenta.

    PubMed Central

    Casado, M; D-iaz-Guerra, M J; Rodrigo, J; Fernández, A P; Boscá, L; Martín-Sanz, P

    1997-01-01

    The presence of the calcium-independent cytokine-inducible nitric oxide synthase (iNOS) has been investigated in rat placenta from day 19 of gestation till delivery. iNOS has been detected at the mRNA, enzyme activity and protein levels in complete placenta. Immunocytochemical detection of iNOS was heterogeneously distributed in control placenta. Intraperitoneal injection of pregnant rats at 21 days of gestation with lipopolysaccharide (LPS) increased the iNOS immunoreactivity in the decidua basalis of the placenta, and, when the mRNA levels and enzyme activity were measured in total tissue, a moderate increase (approx. 160%) was observed. A constitutive nuclear factor kappaB activity was observed in placenta from both control and LPS-treated animals. These results indicate constitutive expression of iNOS in rat placenta. PMID:9164857

  13. The effect of PrP(Sc) accumulation on inflammatory gene expression within sheep peripheral lymphoid tissue.

    PubMed

    Gossner, Anton G; Hopkins, John

    2015-12-31

    Accumulation of the misfolded prion protein, PrP(Sc) in the central nervous system (CNS) is strongly linked to progressive neurodegenerative disease. For many transmissible spongiform encephalopathies (TSEs), peripheral lymphoid tissue is an important site of PrP(Sc) amplification but without gross immunological consequence. Susceptible VRQ homozygous New Zealand Cheviot sheep were infected with SSBP/1 scrapie by inoculation in the drainage area of the prescapular lymph nodes. The earliest time that PrP(Sc) was consistently detected by immunohistology in these nodes was D50 post infection. This transcriptomic study of lymph node taken before (D10) and after (D50) the detection of PrP(Sc), aimed to identify the genes and physiological pathways affected by disease progression within the nodes as assessed by PrP(Sc) detection. Affymetrix Ovine Gene arrays identified 75 and 80 genes as differentially-expressed at D10 and D50, respectively, in comparison with control sheep inoculated with uninfected brain homogenate. Approximately 70% of these were repressed at each time point. RT-qPCR analysis of seven genes showed statistically significant correlation with the array data, although the results for IL1RN and TGIF were different between the two technologies. The ingenuity pathway analysis (IPA) and general low level of repression of gene expression in lymphoid tissue, including many inflammatory genes, contrasts with the pro-inflammatory and pro-apoptotic events that occur within the CNS at equivalent stages of disease progression as assessed by PrP(Sc) accumulation.

  14. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus

    PubMed Central

    Huante-Mendoza, Alejandro; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J.; Finlay, B. Brett; Baizabal-Aguirre, Víctor M.

    2015-01-01

    Glycogen synthase kinase 3 (GSK3) is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN), one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC) regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65) at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor). Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus. PMID:26200352

  15. Impairment and Differential Expression of PR3 and MPO on Peripheral Myelomonocytic Cells with Endothelial Properties in Granulomatosis with Polyangiitis

    PubMed Central

    Patschan, Susann; Patschan, Daniel; Henze, Elvira; Blaschke, Sabine; Wessels, Johannes T.; Müller, Gerhard Anton

    2012-01-01

    Background. Granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are autoimmune-mediated diseases characterized by vasculitic inflammation of respiratory tract and kidneys. Clinical observations indicated a strong association between disease activity and serum levels of certain types of autoantibodies (antineutrophil cytoplasm antibodies with cytoplasmic [cANCA in GPA] or perinuclear [pAN CA in MPA] immunofluorescence). Pathologically, both diseases are characterized by severe microvascular endothelial cell damage. Early endothelial outgrowth cells (eEOCs) have been shown to be critically involved in neovascularization under both physiological and pathological condition. Objectives. The principal aims of our study were (i) to analyze the regenerative activity of the eEOC system and (ii) to determine mPR3 and MPO expression in myelo monocytic cells with endothelial characteristics in GPA and MPA patients. Methods. In 27 GPA and 10 MPA patients, regenerative activity blood-derived eEOCs were analyzed using a culture-forming assay. Flk-1+, CD133+/Flk-1+, mPR3+, and Flk-1+/mPR3+ myelomonocytic cells were quantified by FACS analysis. Serum levels of Angiopoietin-1 and TNF-α were measured by ELISA. Results. We found reduced eEOC regeneration, accompanied by lower serum levels of Angiopoietin-1 in GPA patients as compared to healthy controls. In addition, the total numbers of Flk-1+ myelomonocytic cells in the peripheral circulation were decreased. Membrane PR3 expression was significantly higher in total as well as in Flk-1+ myelomonocytic cells. Expression of MPO was not different between the groups. Conclusions. These data suggest impairment of the eEOC system and a possible role for PR3 in this process in patients suffering from GPA. PMID:22792461

  16. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao.

    PubMed

    Teixeira, Paulo J P L; Thomazella, Daniela P T; Vidal, Ramon O; do Prado, Paula F V; Reis, Osvaldo; Baroni, Renata M; Franco, Sulamita F; Mieczkowski, Piotr; Pereira, Gonçalo A G; Mondego, Jorge M C

    2012-01-01

    The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and have been characterized as markers of induced defense against pathogens. This work presents the characterization of eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches' broom disease in cacao. We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants.

  17. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    SciTech Connect

    Pestov, Nikolay B.; Dmitriev, Ruslan I.; Kostina, Maria B.; Korneenko, Tatyana V.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  18. Expression and localization of P1 promoter-driven hepatocyte nuclear factor-4α (HNF4α) isoforms in human and rats

    PubMed Central

    Jiang, Shuying; Tanaka, Toshiya; Iwanari, Hiroko; Hotta, Hiromitsu; Yamashita, Hisahiko; Kumakura, Junko; Watanabe, Yuichiro; Uchiyama, Yasutoshi; Aburatani, Hiroyuki; Hamakubo, Takao; Kodama, Tatsuhiko; Naito, Makoto

    2003-01-01

    Background Hepatocyte nuclear factor-4α (HNF4α; NR2A1) is an orphan member of the nuclear receptor superfamily involved in various processes that could influence endoderm development, glucose and lipid metabolism. A loss-of-function mutation in human HNF4α causes one form of diabetes mellitus called maturity-onset diabetes of the young type 1 (MODY1) which is characterized in part by a diminished insulin secretory response to glucose. The expression of HNF4α in a variety of tissues has been examined predominantly at the mRNA level, and there is little information regarding the cellular localization of the endogenous HNF4α protein, due, in part, to the limited availability of human HNF4α-specific antibodies. Results Monoclonal antibodies have been produced using baculovirus particles displaying gp64-HNF4α fusion proteins as the immunizing agent. The mouse anti-human HNF4α monoclonal antibody (K9218) generated against human HNF4α1/α2/α3 amino acids 3–49 was shown to recognize not only the transfected and expressed P1 promoter-driven HNF4α proteins, but also endogenous proteins. Western blot analysis with whole cell extracts from Hep G2, Huh7 and Caco-2 showed the expression of HNF4α protein, but HEK293 showed no expression of HNF4α protein. Nuclear-specific localization of the HNF4α protein was observed in the hepatocytes of liver cells, proximal tubular epithelial cells of kidney, and mucosal epithelial cells of small intestine and colon, but no HNF4α protein was detected in the stomach, pancreas, glomerulus, and distal and collecting tubular epithelial cells of kidney. The same tissue distribution of HNF4α protein was observed in humans and rats. Electron microscopic immunohistochemistry showed a chromatin-like localization of HNF4α in the liver and kidney. As in the immunohistochemical investigation using K9218, HNF4α mRNA was found to be localized primarily to liver, kidney, small intestine and colon by RT-PCR and GeneChip analysis

  19. Transgenic expression of medicago truncatula PR10 and PR5 promoters in alfalfa shows pathogen-induced up-regulation of transgene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of alfalfa to introduce novel traits requires promoters for controlling gene expression. Promoters that are constitutively activated for expression of genes that enhance disease resistance pose a great energy load on the plant and exert a strong selective pressure on the pathoge...

  20. CD44 standard and variant isoform expression in human epidermal skin tumors is not correlated with tumor aggressiveness but down-regulated during proliferation and tumor de-differentiation.

    PubMed

    Seelentag, W K; Günthert, U; Saremaslani, P; Futo, E; Pfaltz, M; Heitz, P U; Roth, J

    1996-06-21

    CD44 isoforms have been reported to be involved in tumor invasion and metastasis formation. Normal human skin expresses high levels of CD44 isoforms, but little is known about their expression in epidermal skin tumors. Expression of CD44 standard (CD44s) and variant exon (CD44v3, -v4, -v5, -v6, -v9)-encoded gene products has been studied in 74 benign, semi-malignant and malignant human epithelial skin tumors using a panel of well-characterized, variant exon-specific monoclonal antibodies (MAbs). Sensitivity and resolution of the immunohistochemical staining in paraffin sections was substantially improved by using microwave-based antigen retrieval and an optimized streptavidin-biotin-peroxidase technique. Immunostaining was evaluated semi-quantitatively and correlated with tumor type and degree of histological differentiation by non-parametric statistical tests. Furthermore, the relationship between CD44 expression and cellular proliferation rate as defined by the Ki-67 antigen was analyzed in basal cell carcinomas. We found a significant correlation between tumor type and CD44 isoform expression. Basal cell carcinomas exhibited the weakest staining and keratoacanthomas the strongest. Squamous cell carcinomas ranged in between, with a tendency to down-regulate CD44 expression upon de-differentiation. In basal cell carcinomas, an inverse relationship between CD44 expression and proliferation rate was directly demonstrated at the cellular level using double immunolabelling. Our data indicate that qualitative and quantitative changes in CD44 splicevariant expression in human skin tumors do not correlate with invasive and metastatic potential but are rather related to the degree of tumor differentiation. PMID:8682591

  1. Expression of autocrine prolactin and the short isoform of prolactin receptor are associated with inflammatory response and apoptosis in monocytes stimulated with Mycobacterium bovis proteins.

    PubMed

    López-Rincón, Gonzalo; Mancilla, Raúl; Pereira-Suárez, Ana L; Martínez-Neri, Priscila A; Ochoa-Zarzosa, Alejandra; Muñoz-Valle, José Francisco; Estrada-Chávez, Ciro

    2015-06-01

    Increased levels of prolactin (PRL) have recently been associated with carcinogenesis and the exacerbation of autoimmune diseases, and might be involved in the progression of tuberculosis (TB). To investigate the relationship between PRL and prolactin receptor (PRLr) expression with inflammatory response and apoptosis in monocytes, we used THP-1 cells stimulated with antigens of the Mycobacterium bovis AN5 strain culture filtrate protein (CFP-M. bovis). Western blot (WB), real-time Polymerase chain reaction (PCR), and immunocytochemistry were performed to identify both PRL and PRLr molecules. PRL bioactivity and proinflammatory cytokine detection were assessed. The results showed that PRL and PRLr messenger RNA (mRNA) were synthesized in THP-1 monocytes induced with CFP-M. bovis at peaks of 176- and 404-fold, respectively. PRL forms of 60 and 80kDa and PRLr isoforms of 40, 50, and 65kDa were also identified as time-dependent, while 60-kDa PRL, as well as 40-, and 50-kDa PRLr, were found as soluble forms in culture media and later in the nucleus of THP-1 monocytes. PRL of 60kDa released by monocytes exhibited bioactivity in Nb2 cells, and both synthesized PRL and synthesized PRLr were related with nitrite and proinflammatory cytokine levels proapoptotic activity in CFP-M. bovis-induced monocytes. Our results suggest the overexpression of a full-autocrine loop of PRL and PRLr in monocytes that enhances the inflammatory response and apoptosis after priming with M. bovis antigens. PMID:25797370

  2. Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase.

    PubMed

    Romanovsky, D; Mrak, R E; Dobretsov, M

    2015-12-01

    Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na(+), K(+)-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26 ± 4% of myelinated fibers of tibial nerve and 17 ± 2% of ganglion neuronal profiles were α3NKA-positive (n = 8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable. PMID:26386295

  3. Expression of autocrine prolactin and the short isoform of prolactin receptor are associated with inflammatory response and apoptosis in monocytes stimulated with Mycobacterium bovis proteins.

    PubMed

    López-Rincón, Gonzalo; Mancilla, Raúl; Pereira-Suárez, Ana L; Martínez-Neri, Priscila A; Ochoa-Zarzosa, Alejandra; Muñoz-Valle, José Francisco; Estrada-Chávez, Ciro

    2015-06-01

    Increased levels of prolactin (PRL) have recently been associated with carcinogenesis and the exacerbation of autoimmune diseases, and might be involved in the progression of tuberculosis (TB). To investigate the relationship between PRL and prolactin receptor (PRLr) expression with inflammatory response and apoptosis in monocytes, we used THP-1 cells stimulated with antigens of the Mycobacterium bovis AN5 strain culture filtrate protein (CFP-M. bovis). Western blot (WB), real-time Polymerase chain reaction (PCR), and immunocytochemistry were performed to identify both PRL and PRLr molecules. PRL bioactivity and proinflammatory cytokine detection were assessed. The results showed that PRL and PRLr messenger RNA (mRNA) were synthesized in THP-1 monocytes induced with CFP-M. bovis at peaks of 176- and 404-fold, respectively. PRL forms of 60 and 80kDa and PRLr isoforms of 40, 50, and 65kDa were also identified as time-dependent, while 60-kDa PRL, as well as 40-, and 50-kDa PRLr, were found as soluble forms in culture media and later in the nucleus of THP-1 monocytes. PRL of 60kDa released by monocytes exhibited bioactivity in Nb2 cells, and both synthesized PRL and synthesized PRLr were related with nitrite and proinflammatory cytokine levels proapoptotic activity in CFP-M. bovis-induced monocytes. Our results suggest the overexpression of a full-autocrine loop of PRL and PRLr in monocytes that enhances the inflammatory response and apoptosis after priming with M. bovis antigens.

  4. Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. The first intracellular domain modulates ligand binding and signal transduction.

    PubMed Central

    Gorn, A H; Rudolph, S M; Flannery, M R; Morton, C C; Weremowicz, S; Wang, T Z; Krane, S M; Goldring, S R

    1995-01-01

    Two distinct calcitonin (CT) receptor (CTR)-encoding cDNAs (designated GC-2 and GC-10) were cloned and characterized from giant cell tumor of bone (GCT). Both GC-2 and GC-10 differ structurally from the human ovarian cell CTR (o-hCTR) that we cloned previously, but differ from each other only by the presence (GC-10) or absence (GC-2) of a predicted 16-amino acid insert in the putative first intracellular domain. Expression of all three CTR isoforms in COS cells demonstrated that GC-2 has a lower binding affinity for salmon (s) CT (Kd approximately 15 nM) than GC-10 or o-hCTR (Kd approximately 1.5 nM). Maximal stimulatory concentrations of CT resulted in a mean accumulation of cAMP in GC-2 transfected cells that was greater than eight times higher than in cells transfected with GC-10 after normalizing for the number of receptor-expressing cells. The marked difference in maximal cAMP response was also apparent after normalizing for receptor number. GC-2 also demonstrated a more potent ligand-mediated cAMP response compared with GC-10 for both human (h) and sCT (the EC50 values for GC-2 were approximately 0.2 nM for sCT and approximately 2 nM for hCT; EC50 values for GC-10 were approximately 6 nM for sCT and approximately 25 nM for hCT). Reverse transcriptase PCR of GCT RNA indicated that GC-2 transcripts are more abundant than those encoding for GC-10. In situ hybridization on GCT tissue sections demonstrated CTR mRNA expression in osteoclast-like cells. We localized the human CTR gene to chromosome 7 in band q22. The distinct functional characteristics of GC-2 and GC-10, which differ in structure only in the first intracellular domain, indicate that the first intracellular domain of the CTR plays a previously unidentified role in modulating ligand binding and signal transduction via the G protein/adenylate cyclase system. Images PMID:7769107

  5. Expression of 15-Hydroxyprostaglandin Dehydrogenase in Human Chorion Is Associated with Peroxisome Proliferator-Activated Receptor Isoform Expression in Term Labor.

    PubMed

    He, Ping; Li, Yuan; Ding, Xiaoying; Sun, Qianqian; Huang, Ying; Gu, Hang; Ni, Xin

    2015-07-01

    Chorionic NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH) plays a pivotal role in controlling the amount of prostaglandins in the uterus. Peroxisome proliferator-activated receptors (PPARs) are implicated to be involved in parturition. In this study, we investigated whether PPARs are involved in control of PGDH expression in chorion. The chorionic tissues were collected from the following groups of the women with singleton pregnancy: term no labor (TNL), term labor (TL) and preterm labor (PTL). Chorionic trophoblasts were isolated and cultured in vitro. Immunocytochemistry analysis showed that PPARα, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PGDH, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PPARα, PPARβ, and PPARγ were reduced in TL tissues compared to that of TNL group. PPARα, PPARβ, and PPARγ expression correlated to PGDH in TNL tissues, whereas only PPARγ expression correlated to PGDH in TL chorion tissues. PGDH expression was decreased in PTL tissues compared with TL group, whereas the expression of PPARs was not significantly different between TL and PTL groups. The agonists of three PPARs dose-dependently stimulated PGDH activity, mRNA, and protein expression in cultured chorionic cells. PPARs did not affect the stability of PGDH mRNA but stimulated the transcriptional activity of HPGD gene. Our results suggest that PPARs play pivotal roles in maintenance of PGDH expression in chorion during human pregnancy.

  6. Expression of 15-Hydroxyprostaglandin Dehydrogenase in Human Chorion Is Associated with Peroxisome Proliferator-Activated Receptor Isoform Expression in Term Labor.

    PubMed

    He, Ping; Li, Yuan; Ding, Xiaoying; Sun, Qianqian; Huang, Ying; Gu, Hang; Ni, Xin

    2015-07-01

    Chorionic NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH) plays a pivotal role in controlling the amount of prostaglandins in the uterus. Peroxisome proliferator-activated receptors (PPARs) are implicated to be involved in parturition. In this study, we investigated whether PPARs are involved in control of PGDH expression in chorion. The chorionic tissues were collected from the following groups of the women with singleton pregnancy: term no labor (TNL), term labor (TL) and preterm labor (PTL). Chorionic trophoblasts were isolated and cultured in vitro. Immunocytochemistry analysis showed that PPARα, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PGDH, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PPARα, PPARβ, and PPARγ were reduced in TL tissues compared to that of TNL group. PPARα, PPARβ, and PPARγ expression correlated to PGDH in TNL tissues, whereas only PPARγ expression correlated to PGDH in TL chorion tissues. PGDH expression was decreased in PTL tissues compared with TL group, whereas the expression of PPARs was not significantly different between TL and PTL groups. The agonists of three PPARs dose-dependently stimulated PGDH activity, mRNA, and protein expression in cultured chorionic cells. PPARs did not affect the stability of PGDH mRNA but stimulated the transcriptional activity of HPGD gene. Our results suggest that PPARs play pivotal roles in maintenance of PGDH expression in chorion during human pregnancy. PMID:26093984

  7. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    NASA Astrophysics Data System (ADS)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  8. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines.

    PubMed

    Yousaf, N; Low, W Y; Onipinla, A; Mein, C; Caulfield, M; Munroe, P B; Chernajovsky, Y

    2015-05-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme.

  9. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines

    PubMed Central

    Yousaf, N; Low, W Y; Onipinla, A; Mein, C; Caulfield, M; Munroe, P B; Chernajovsky, Y

    2015-01-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme. PMID:25545008

  10. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms

    PubMed Central

    Tachibana, Keisuke; Kobayashi, Yumi; Tanaka, Toshiya; Tagami, Masayuki; Sugiyama, Akira; Katayama, Tatsuya; Ueda, Chihiro; Yamasaki, Daisuke; Ishimoto, Kenji; Sumitomo, Mikako; Uchiyama, Yasutoshi; Kohro, Takahide; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko; Doi, Takefumi

    2005-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. To identify human PPARs-responsive genes, we established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR and investigated the gene expression profiles of these cells. Results The expression of each introduced PPAR gene was investigated using the various concentrations of doxycycline in the culture media. We found that the expression of each PPAR subtype was tightly controlled by the concentration of doxycycline in these established cell lines. DNA microarray analyses using these cell lines were performed with or without adding each subtype ligand and provided much important information on the PPAR target genes involved in lipid metabolism, transport, storage and other activities. Interestingly, it was noted that while ligand-activated PPARδ induced target gene expression, unliganded PPARδ repressed these genes. The real-time RT-PCR was used to verify the altered expression of selected genes by PPARs and we found that these genes were induced to express in the same pattern as detected in the microarray analyses. Furthermore, we analysed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs. From the detailed analyses by reporter assays, the EMSAs, and ChIP assays, we determined the functional PPRE of the human adrp gene. Conclusion The results suggest that these cell lines are important tools used to identify the human PPARs-responsive genes. PMID:16197558

  11. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform.

    PubMed

    Tian, Xiao; Azpurua, Jorge; Ke, Zhonghe; Augereau, Adeline; Zhang, Zhengdong D; Vijg, Jan; Gladyshev, Vadim N; Gorbunova, Vera; Seluanov, Andrei

    2015-01-27

    The naked mole rat (Heterocephalus glaber) is a long-lived and tumor-resistant rodent. Tumor resistance in the naked mole rat is mediated by the extracellular matrix component hyaluronan of very high molecular weight (HMW-HA). HMW-HA triggers hypersensitivity of naked mole rat cells to contact inhibition, which is associated with induction of the INK4 (inhibitors of cyclin dependent kinase 4) locus leading to cell-cycle arrest. The INK4a/b locus is among the most frequently mutated in human cancer. This locus encodes three distinct tumor suppressors: p15(INK4b), p16(INK4a), and ARF (alternate reading frame). Although p15(INK4b) has its own ORF, p16(INK4a) and ARF share common second and third exons with alternative reading frames. Here, we show that, in the naked mole rat, the INK4a/b locus encodes an additional product that consists of p15(INK4b) exon 1 joined to p16(INK4a) exons 2 and 3. We have named this isoform pALT(INK4a/b) (for alternative splicing). We show that pALT(INK4a/b) is present in both cultured cells and naked mole rat tissues but is absent in human and mouse cells. Additionally, we demonstrate that pALT(INK4a/b) expression is induced during early contact inhibition and upon a variety of stresses such as UV, gamma irradiation-induced senescence, loss of substrate attachment, and expression of oncogenes. When overexpressed in naked mole rat or human cells, pALT(INK4a/b) has stronger ability to induce cell-cycle arrest than either p15(INK4b) or p16(INK4a). We hypothesize that the presence of the fourth product, pALT(INK4a/b) of the INK4a/b locus in the naked mole rat, contributes to the increased resistance to tumorigenesis of this species.

  12. IgA cold agglutinins recognize Pr and Sa antigens expressed on glycophorins.

    PubMed

    Roelcke, D; Hack, H; Kreft, H; MacDonald, B; Pereira, A; Habibi, B

    1993-06-01

    Three cases of IgA kappa cold agglutinins (CAs) were studied. One had anti-Pr1 specificity, one had anti-Pra, and one had anti-Sa. The CAs recognize O-glycans of glycophorins. The findings supplement previous data on anti-Pr1 specificities of four IgA kappa CAs. Because all IgA kappa CAs described recognize O-glycans of glycophorins, a close association between the CA IgA isotype and specificities for O-glycans becomes apparent. It is unlikely, however, that the striking association reflects interrelations between IgA CA structure and specificity, because anti-Sa specificity and all anti-Pr subspecificities were originally defined with IgM CAs.

  13. A Point Mutation in DNA Polymerase β (POLB) Gene Is Associated with Increased Progesterone Receptor (PR) Expression and Intraperitoneal Metastasis in Gastric Cancer

    PubMed Central

    Tan, Xiaohui; Wu, Xiaoling; Ren, Shuyang; Wang, Hongyi; Li, Zhongwu; Alshenawy, Weaam; Li, Wenmei; Cui, Jiantao; Luo, Guangbin; Siegel, Robert S.; Fu, Sidney W.; Lu, Youyong

    2016-01-01

    Increased expression of progesterone receptor (PR) has been reported in gastric cancer (GC). We have previously identified a functional T889C point mutation in DNA polymerase beta (POLB), a DNA repair gene in GC. To provide a detailed analysis of molecular changes associated with the mutation, human cDNA microarrays focusing on 18 signal transduction pathways were used to analyze differential gene expression profiles between GC tissues with T889C mutant in POLB gene and those with wild type. Among the differentially expressed genes, notably, PR was one of the significantly up-regulated genes in T889C mutant POLB tissues, which were subsequently confirmed in POLB gene transfected AGS cell line. Interestingly, patients with T889C mutation and PR positivity were associated with higher incidence of intraperitoneal metastasis (IM). In vitro studies indicate that PR expression was upregulated in AGS cell line when transfected with T889C mutant expression vector. Cotransfection of T889C mutant allele and PR gene induced cell migration in the cell line. These data demonstrated that T889C mutation-associated PR overexpression results in increased IM. Therefore, T889C mutation-associated PR overexpression may serve as a biomarker for an adverse prognosis for human GC. PMID:27471563

  14. Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis.

    PubMed

    Buch, Franziska; Pauchet, Yannick; Rott, Matthias; Mithöfer, Axel

    2014-04-01

    Carnivorous plants capture and digest prey to obtain additional nutrients. Therefore, different trapping mechanisms were developed in different species. Plants of the genus Nepenthes possess pitfall-traps filled with a digestive fluid, which is secreted by the plants themselves. This pitcher fluid is composed of various enzymes to digest the captured prey. Besides hydrolytic enzymes, defense-related proteins have been identified in the fluid. The present study describes the identification and heterologous expression of a pathogenesis-related protein, NmPR-1, from pitchers of Nepenthes mirabilis with features that are unusual for PR-1 proteins. In particular, it was proven to be highly glycosylated and, furthermore, it exhibited antibacterial instead of antifungal activities. These properties are probably due to the specific environment of the pitcher fluid.

  15. Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis.

    PubMed

    Buch, Franziska; Pauchet, Yannick; Rott, Matthias; Mithöfer, Axel

    2014-04-01

    Carnivorous plants capture and digest prey to obtain additional nutrients. Therefore, different trapping mechanisms were developed in different species. Plants of the genus Nepenthes possess pitfall-traps filled with a digestive fluid, which is secreted by the plants themselves. This pitcher fluid is composed of various enzymes to digest the captured prey. Besides hydrolytic enzymes, defense-related proteins have been identified in the fluid. The present study describes the identification and heterologous expression of a pathogenesis-related protein, NmPR-1, from pitchers of Nepenthes mirabilis with features that are unusual for PR-1 proteins. In particular, it was proven to be highly glycosylated and, furthermore, it exhibited antibacterial instead of antifungal activities. These properties are probably due to the specific environment of the pitcher fluid. PMID:24534104

  16. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    PubMed

    Khan, Junaid A; Bellance, Catherine; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2012-01-01

    Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  17. The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress

    PubMed Central

    Lee, Areum; Lee, Sang Sook; Jung, Won Yong; Park, Hyun Ji; Lim, Bo Ra; Kim, Hyun-Soon; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1. PMID:27447607

  18. The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress.

    PubMed

    Lee, Areum; Lee, Sang Sook; Jung, Won Yong; Park, Hyun Ji; Lim, Bo Ra; Kim, Hyun-Soon; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1. PMID:27447607

  19. Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity.

    PubMed

    Radovanovic, Natasa; Thambugala, Dinushika; Duguid, Scott; Loewen, Evelyn; Cloutier, Sylvie

    2014-07-01

    With 45 % or more oil content that contains more than 55 % alpha linolenic (LIN) acid, linseed (Linum usitatissimum L.) is one of the richest plant sources of this essential fatty acid. Fatty acid desaturases 2 (FAD2) and 3 (FAD3) are the main enzymes responsible for the Δ12 and Δ15 desaturation in planta. In linseed, the oilseed morphotype of flax, two paralogous copies, and several alleles exist for each gene. Here, we cloned three alleles of FAD2A, four of FAD2B, six of FAD3A, and seven of FAD3B into a pYES vector and transformed all 20 constructs and an empty construct in yeast. The transformants were induced in the presence of oleic (OLE) acid substrate for FAD2 constructs and linoleic (LIO) acid for FAD3. Conversion rates of OLE acid into LIO acid and LIO acid into LIN acid were measured by gas chromatography. Conversion rate of FAD2 exceeded that of FAD3 enzymes with FAD2B having a conversion rate approximately 10 % higher than FAD2A. All FAD2 isoforms were active, but significant differences existed between isoforms of both FAD2 enzymes. Two FAD3A and three FAD3B isoforms were not functional. Some nonfunctional enzymes resulted from the presence of nonsense mutations causing premature stop codons, but FAD3B-C and FAD3B-F seem to be associated with single amino acid changes. The activity of FAD3A-C was more than fivefold greater than the most common isoform FAD3A-A, while FAD3A-F was fourfold greater. Such isoforms could be incorporated into breeding lines to possibly further increase the proportion of LIN acid in linseed.

  20. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms.

    PubMed Central

    Woodman, A. C.; Sugiyama, M.; Yoshida, K.; Sugino, T.; Borgya, A.; Goodison, S.; Matsumura, Y.; Tarin, D.

    1996-01-01

    Many studies have now demonstrated disorganized overexpression of the CD44 gene in various types of human malignant tumors, and this abnormality has emerged as an interesting candidate marker for early cancer diagnosis. The purpose of this work was to analyze and compare the patterns of transcription and translation of this gene in human breast (ZR75-1; MDAMB-435 clone 4A4) and colon (HT29) tumor cell lines and in tumors of the breast, bladder, and colon, with the aim of identifying the most suitable analyte for diagnostic purposes. Transcription was studied by reverse transcription-polymerase chain reaction using CD44-specific primers and probes complementary to exons in the standard (exons 3 to 5 and 16 to 18) and variably expressed regions of this gene (exons 7, 8, 10, 11, and 15). Translation was investigated by Western blot analysis and immunohistochemistry using monoclonal antibodies specific to the standard form of CD44 and to the products of the same variant exons. Southern blot hybridization analysis of the reverse transcription-polymerase chain reaction products showed a large number of CD44 transcripts in tumor cells. Direct comparison of these Southern blots with Western blots on matched tumor-cell-line extracts indicated that most of the diverse mRNA isoforms did not detectably translate into proteins. However, immunohistochemistry of normal and malignant breast (n = 17 and 23, respectively), bladder (n = 5 and 19), and colon (n = 19 and 19) tissue specimens showed increased staining of CD44 standard and CD44 variant proteins in the carcinoma cells. Combination of this information with the data from reverse transcription-polymerase chain reaction and Western blot analysis indicates that the overexpression at the protein level involves only a minority of the aberrant RNA transcripts. We conclude that the development of methods for the accurate quantitation of over-abundant CD44 RNA species in clinical samples offers the most promising approach to

  1. Effect of Monochromatic Light on Expression of Estrogen Receptor (ER) and Progesterone Receptor (PR) in Ovarian Follicles of Chicken.

    PubMed

    Liu, Lingbin; Li, Diyan; Gilbert, Elizabeth R; Xiao, Qihai; Zhao, Xiaoling; Wang, Yan; Yin, Huadong; Zhu, Qing

    2015-01-01

    Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400-760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and green

  2. Effect of Monochromatic Light on Expression of Estrogen Receptor (ER) and Progesterone Receptor (PR) in Ovarian Follicles of Chicken

    PubMed Central

    Gilbert, Elizabeth R.; Xiao, Qihai; Zhao, Xiaoling; Wang, Yan; Yin, Huadong; Zhu, Qing

    2015-01-01

    Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400–760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and

  3. Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms

    PubMed Central

    Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke

    2015-01-01

    The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms. PMID:26090994

  4. Silencing of PrP C (prion protein) expression does not affect Brucella melitensis infection in human derived microglia cells.

    PubMed

    Erdogan, Suat; Duzguner, Vesile; Kucukgul, Altug; Aslantas, Ozkan

    2013-10-01

    Cellular prion proteins (PrP(C)) are mainly expressed in the central nervous system where they have antioxidant effects and a role in the endocytosis of bacteria within cells. These proteins also have some crucial biological functions including roles in neurotransmission, signal transduction and programmed cell death. However, the role of prion proteins in neuronal Brucella infection, specifically in the interaction of the pathogen and the host cell is controversial. In the present study, the silencing of PrP(C) mRNA by small interfering RNA (siRNA) transfection was investigated in human microglia cells infected with Brucella melitensis. More than 70% of prion proteins were down-regulated in microglia by siRNA transfection and this caused a slight decrease in the cellular viability of the control cells. Silencing of PrP(C) suppressed the antioxidant systems, though it led to an up-regulation of pro-inflammatory cytokines such as IL-12 and TNF-α as demonstrated by qRT-PCR analysis. B. melitensis infection of prion protein-silenced cells led to increase host viability, but had no effect on bacterial phagocytosis. According to the present study, there is no significant effect of prion proteins on phagocytosis and intracellular killing of B. melitensis in microglia cells.

  5. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    SciTech Connect

    Ivanov, Sergey V.; Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I.

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  6. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function[S

    PubMed Central

    Berisha, Stela Z.; Brubaker, Greg; Kasumov, Takhar; Hung, Kimberly T.; DiBello, Patricia M.; Huang, Ying; Li, Ling; Willard, Belinda; Pollard, Katherine A.; Nagy, Laura E.; Hazen, Stanley L.; Smith, Jonathan D.

    2015-01-01

    HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice. PMID:25561462

  7. Divergent behavior of cyclin E and its low molecular weight isoforms to progesterone-induced growth inhibition in MCF-7 cells

    PubMed Central

    Montazeri, Hamed; Bouzari, Saeid; Azadmanesh, Kayhan; Ostad, Seyed Nasser; Ghahremani, Mohammad Hossein

    2015-01-01

    Background: Progesterone is a steroid hormone that modulates proliferation and differentiation in a cell phase and tissue-specific manner. Its function in breast cancer cells is of great significance since it can predict susceptibility of tumor cells to inhibitory effects of progesterone as adjuvant therapy. Materials and Methods: Stable clones overexpressing cyclin E (EL) and its low molecular weight isoforms (LMW-Es) were generated and treated with various concentrations of progesterone. Cell proliferation was assessed 24 and 48 h after the treatment. Changes in progesterone receptor (PR) expression were measured by real-time polymerase chain reaction. Results: Here we demonstrated that overexpression of EL and LMW-Es have divergent effects with regard to progesterone response. We found that progesterone could significantly decrease the growth rate of EL-expressing cells in the second cell cycle after treatment; however, progesterone was ineffective to arrest growth of LMW-Es expressing cells. PR expression level was at control level in EL-expressing cells but was downregulatedin LMW-Esexpressing clones. Conclusion: These results were in line with progesterone response of studied cells. The drop in PR expression together with altered distribution of p21 and p27 can explain different effects of cyclin E isoforms expression on progesterone responsivity. These data bring cyclin E status of cancer cells as a marker for predicting the efficacy of progesterone treatment. PMID:25625122

  8. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope.

    PubMed

    Kovalevskaya, G; Birken, S; Kakuma, T; Ozaki, N; Sauer, M; Lindheim, S; Cohen, M; Kelly, A; Schlatterer, J; O'Connor, J F

    2002-03-01

    Human chorionic gonadotropin (hCG) glycoforms change as pregnancy progresses. We have developed an antibody (B152) which can measure a hyperglycosylated early pregnancy isoform of hCG. This putative hyperglycosylated form of hCG arises very early in pregnancies and is rapidly replaced by an isoform that predominates for the remainder of the pregnancy. The profiles of these hCG glycoforms are measured as a ratio of values of two immunometric assays. The profiles of these ratios differ between pregnancies which persist and those which will experience early failure. In this report, daily urine hCG isoform ratios from donor eggs (no exogenous hCG pretreatment), in vitro fertilization pregnancies were profiled and analyzed from the first day following embryo transfer (ET). Significant differences were found between continuing pregnancy and pregnancy loss throughout days 5-20 post-ET. When hCG isoform ratios were analyzed from the first day of detectable hCG, pregnancy loss could be predicted in the case of a single fetus both during the 5- to 10-day time segment (P=0.018) and the 10- to 15-day time segment (P=0.045). When single and multiple fetus pregnancies were analyzed together significance was approached in the 10- to 15-day time period (P=0.058). In a second population of pregnant women who conceived naturally, in whom urine samples were collected at approximately weekly intervals to either term birth or clinical spontaneous abortion, the ratio could discriminate between miscarriages and normal term pregnancies (P=0.043). In later pregnancy, the ratio of hCG isoforms declined more rapidly in miscarriages than in term pregnancy. Antibody B152 was produced using a choriocarcinoma-derived hCG (C5), which was hyperglycosylated at both N- and O-linked sites and was 100% nicked at position beta(47-48). Western blot analyses supported the assay results showing that early pregnancy urine does not contain nicked C5-like hCG. Also, the early pregnancy hCG appeared to be the

  9. Bovine PrP expression levels in transgenic mice influence transmission characteristics of atypical bovine spongiform encephalopathy.

    PubMed

    Wilson, Rona; Hart, Patricia; Piccardo, Pedro; Hunter, Nora; Casalone, Cristina; Baron, Thierry; Barron, Rona M

    2012-05-01

    Until recently, transmissible spongiform encephalopathy (TSE) disease in cattle was thought to be caused by a single agent strain, bovine spongiform encephalopathy (BSE) (classical BSE or BSE-C). However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. These atypical BSE isolates have been previously transmitted to a range of transgenic mouse models overexpressing PrP from different species at different levels, on a variety of genetic backgrounds. To control for genetic background and expression level in the analysis of these isolates, we performed here a comprehensive comparison of the neuropathological and molecular properties of all three BSE agents (BASE, BSE-C and BSE-H) upon transmission into the same gene-targeted transgenic mouse line expressing the bovine prion protein (Bov6) and a wild-type control of the same genetic background. Significantly, upon challenge with these BSE agents, we found that BASE did not produce shorter survival times in these mice compared with BSE-C, contrary to previous studies using overexpressing bovine transgenic mice. Amyloid plaques were only present in mice challenged with atypical BSE and neuropathological features, including intensity of PrP deposition in the brain and severity of vacuolar degeneration were less pronounced in BASE compared with BSE-C-challenged mice.

  10. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  11. [PHF10 isoforms are phosphorylated in the PBAF mammalian chromatin remodeling complex].

    PubMed

    Brechalov, A V; Valieva, M E; Georgieva, S G; Soshnikova, N V

    2016-01-01

    Chromatin remodeling complex PBAF(SWI/SNF) alters the structure of chromatin and controls gene expression. PHF10 is a specific subunit of PBAF complex and is expressed as four isoforms in mammalian cells. We demonstrated that all isoforms are expressed in various human cell types of different histological origins. All four isoforms are extensively phosphorylated and their phosphorylation level is depended on the cell type. Phosphorylation of PHF10 isoforms occurs while they are incorporated as a subunit of the PBAF complex, and therefore phosphorylation of PHF10 isoforms may play an essential role in regulation of PBAF complex's function and mechanism of action. PMID:27239853

  12. ApoE isoform-dependent changes in hippocampal synaptic function.

    PubMed

    Korwek, Kimberly M; Trotter, Justin H; Ladu, Mary Jo; Sullivan, Patrick M; Weeber, Edwin J

    2009-05-27

    The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR) mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP) is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.

  13. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  14. Trehalose metabolism in the blue crab Callinectes sapidus: isolation of multiple structural cDNA isoforms of trehalose-6-phosphate synthase and their expression in muscles.

    PubMed

    Shi, Q; Chung, J Sook

    2014-02-15

    Adult blue crab Callinectes sapidus exhibit behavioral and ecological dimorphisms: females migrating from the low salinity water to the high salinity area vs. males remaining in the same areas. The flesh basal muscle of the swimming paddle shows a dimorphic color pattern in that levator (Lev) and depressor (Dep) of females tend to be much darker than those of males, while both genders have the same light colored remoter (Rem) and promoter (Pro). The full-length cDNA sequence of four structural isoforms of trehalose-6-phosphate synthase (TPS) is isolated from chela muscles of an adult female, C. sapidus. Two isoforms of the C. sapidus TPS encode functional domains of TPS and trehalose-6-phosphorylase (TPP) in tandem as a fused gene product of Escherichia coli Ost A and Ost B. The other two isoforms contain only a single TPS domain. In both males and females, the darker (Lev+Dep) muscles exhibit greater amounts of trehalose, TPS and trehalase activities than the light colored (Rem+Pro). The fact that adult females show higher levels of trehalase activity in the basal muscles and of glucose in Lev+Dep than those of adult males suggests that there may be a metabolic dimorphism. Moreover, the involvement of trehalose in energy metabolism that was examined under the condition of strenuous swimming activity mimicked in adult females demonstrates the intrinsic trehalose metabolism in Lev+Dep, which subsequently results in hemolymphatic hyperglycemia and hyperlactemia. Our data support that trehalose serves as an additional carbohydrate source of hemolymphatic hyperglycemia in this species. Behavioral and ecological dimorphisms of C. sapidus adults may be supported by a functional dimorphism in energy metabolism.

  15. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis

    PubMed Central

    Leão, Mariele Porto Carneiro; Tiago, Patricia Vieira; Andreote, Fernando Dini; de Araújo, Welington Luiz; de Oliveira, Neiva Tinti

    2015-01-01

    The entomopathogenic fungi of the genus Metarhizium have several subtilisin-like proteases that are involved in pathogenesis and these have been used to investigate genes that are differentially expressed in response to different growth conditions. The identification and characterization of these proteases can provide insight into how the fungus is capable of infecting a wide variety of insects and adapt to different substrates. In addition, the pr1A gene has been used for the genetic improvement of strains used in pest control. In this study we used quantitative RT-PCR to assess the relative expression levels of the pr1A gene in M. anisopliae and M. acridum during growth in different culture conditions and during infection of the sugar cane borer, Diatraea saccharalis Fabricius. We also carried out a pathogenicity test to assess the virulence of both species against D. saccharalis and correlated the results with the pattern of pr1A gene expression. This analysis revealed that, in both species, the pr1A gene was differentially expressed under the growth conditions studied and during the pathogenic process. M. anisopliae showed higher expression of pr1A in all conditions examined, when compared to M. acridum. Furthermore, M. anisopliae showed a greater potential to control D. saccharalis. Taken together, our results suggest that these species have developed different strategies to adapt to different growing conditions. PMID:25983629

  16. Arabidopsis LBP/BPI related-1 and -2 bind to LPS directly and regulate PR1 expression

    PubMed Central

    Iizasa, Sayaka; Iizasa, Ei’ichi; Matsuzaki, Sawako; Tanaka, Hiroyuki; Kodama, Yutaka; Watanabe, Keiichi; Nagano, Yukio

    2016-01-01

    Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria and acts as a pathogen-associated molecular pattern that triggers immune responses in both plants and animals. LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI), which bind to LPS and play important roles in immunity of mammals, have been well studied. However, the molecule contributing to LPS binding in plants is mostly unknown. The Arabidopsis genome carries two genes encoding LBP/BPI-related proteins which we designated as AtLBP/BPI related-1 (AtLBR-1) and AtLBP/BPI related-2 (AtLBR-2). We found that their N-terminal domains were co-purified with cell wall-derived LPS when expressed in E. coli. Since this finding implied the direct binding of AtLBRs to LPS, we also confirmed binding by using LPS-free AtLBRs and purified LPS. AtLBRs directly bind to both rough and smooth types of LPS. We also demonstrated that LPS-treated atlbr mutant Arabidopsis exhibit a significant delay of induction of defence-related gene pathogenesis-related 1 (PR1) but no other PR genes. Furthermore, LPS-treated atlbr mutants showed defects in reactive oxygen species (ROS) generation. These results demonstrate that, as well as LBP and BPI of mammals, AtLBRs also play an important role in the LPS-induced immune response of plants. PMID:27273538

  17. Expression and purification of the soluble isoform of human receptor for advanced glycation end products (sRAGE) from Pichia pastoris.

    PubMed

    Ostendorp, Thorsten; Weibel, Mirjam; Leclerc, Estelle; Kleinert, Peter; Kroneck, Peter M H; Heizmann, Claus W; Fritz, Günter

    2006-08-18

    RAGE is a multi-ligand receptor involved in various human diseases including diabetes, cancer or Alzheimer's disease. Engagement of RAGE by its ligands triggers activation of key cellular signalling pathways such as the MAP kinase and NF-kappaB pathways. Whereas the main isoform of RAGE is a transmembrane receptor with both extra- and intracellular domains, a secreted soluble isoform (sRAGE), corresponding to the extracellular part only, has the ability to block RAGE signalling and suppress cellular activation. Administration of sRAGE to animal models of cancer or multiple sclerosis blocked successfully tumour growth and the course of the autoimmune disease. These findings demonstrate that sRAGE may have a potential as therapeutic. We present here a fast and simple purification protocol of sRAGE from the yeast Pichia pastoris. The identity of the protein was confirmed by mass spectrometry and Western blot. The protein was N-glycosylated and 95-98% pure as judged by SDS-PAGE. PMID:16806067

  18. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations.

    PubMed

    Ince, Ibrahim; Knibbe, Catherijne A J; Danhof, Meindert; de Wildt, Saskia N

    2013-05-01

    The aim of this review is to discuss our current understanding of the developmental changes of the drug-metabolizing enzyme cytochrome P450 (CYP) 3A and its impact on drug therapy. In the last 10 years, several methods have been used to study the ontogeny of specific CYP3A isoforms in vitro and in vivo. Although most studies confirm previous findings that CYP3A4/5 activity is low at birth and reaches adult values in the first years of life, there are still important gaps in our knowledge of the exact developmental patterns of individual CYP3A isoforms, especially in this age range. Moreover, most in vivo clinical studies have also failed to cover the whole pediatric age range. To date, this information gap still hampers the design of age-specific dosing guidelines of CYP3A substrate drugs, especially in neonates and infants. Innovative study methods, including opportunistic sampling and sensitive analytical assays used in combination with physiologically based pharmacokinetics, and population pharmacokinetic model concepts may help to improve our understanding of the ontogeny of CYP3A and aid the application of this knowledge in clinical practice.

  19. Focal cerebral ischaemia induces a decrease in activity and a shift in ouabain affinity of Na+, K+-ATPase isoforms without modifications in mRNA and protein expression.

    PubMed

    Jamme, I; Barbey, O; Trouvé, P; Charlemagne, D; Maixent, J M; MacKenzie, E T; Pellerin, L; Nouvelot, A

    1999-02-20

    In a mouse model of focal cerebral ischaemia, we observed after 1 h of ischaemia, that the total Na+, K+-ATPase activity was decreased by 39.4%, and then did not vary significantly up to 6 h post-occlusion. In the sham group, the dose-response curves for ouabain disclosed three inhibitory sites of low (LA), high (HA) and very high (VHA) affinity. In ischaemic animals, we detected the presence of only two inhibitory sites for ouabain. After 1 h of permanent occlusion, the first site exhibited a low affinity while the second site presented an affinity intermediate between those of HA and VHA sites, which evolved after 3 h and 6 h of occlusion towards that of the VHA site. The presence of only two ouabain sites for Na+, K+-ATPase after ischaemia could result from a change in ouabain affinity of both HA and VHA sites (alpha2 and alpha3 isoforms, respectively) to form a unique component. Irrespective of the duration of ischaemia, the smaller activity of this second site accounted entirely for the loss in total activity. Surprisingly, no modifications in protein and mRNA expression of any alpha or beta isoforms of the enzyme were observed, thus suggesting that ischaemia could induce intrinsic modifications of the Na+, K+-ATPase. PMID:10082868

  20. T cell receptor complexes containing Fc epsilon RI gamma homodimers in lieu of CD3 zeta and CD3 eta components: a novel isoform expressed on large granular lymphocytes

    PubMed Central

    1992-01-01

    CD3 zeta and CD3 eta form disulfide-linked homo- or heterodimers important in targeting partially assembled Ti alpha-beta/CD3 gamma delta epsilon T cell receptor (TCR) complexes to the cell surface and transducing stimulatory signals after antigen recognition. Here we identify a new TCR isoform expressed on splenic CD2+, CD3/Ti alpha- beta+, CD4-, CD8-, CD16+, NK1.1+ mouse large granular lymphocytes (LGL), which are devoid of CD3 zeta and CD3 eta proteins. The TCRs of this subset contain homodimers of the gamma subunit of the high affinity receptor for IgE (Fc epsilon RI gamma) in lieu of CD3 zeta and/or CD3 eta proteins. The LGL display natural killer-like activity and are cytotoxic for B cell hybridomas producing anti-CD3 epsilon and anti-CD16 monoclonal antibodies, demonstrating the signaling capacity of both TCR and CD16 in this cell type. These findings provide evidence for an additional level of complexity of TCR signal transduction isoforms in naturally occurring T cell subsets. PMID:1530959

  1. The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression.

    PubMed

    Zhang, Yiguo; Li, Shaojun; Xiang, Yuancai; Qiu, Lu; Zhao, Huakan; Hayes, John D

    2015-01-01

    Upon translation, the N-terminal homology box 1 (NHB1) signal anchor sequence of Nrf1 integrates it within the endoplasmic reticulum (ER) whilst its transactivation domains [TADs, including acidic domain 1 (AD1), the flanking Asn/Ser/Thr-rich (NST) domain and AD2] are transiently translocated into the ER lumen, whereupon the NST domain is glycosylated to yield an inactive 120-kDa glycoprotein. Subsequently, these TADs are retrotranslocated into extra-luminal subcellular compartments, where Nrf1 is deglycosylated to yield an active 95-kDa isoform. Herein, we report that AD1 and AD2 are required for the stability of the 120-kDa Nrf1 glycoprotein, but not that of the non-glycosylated/de-glycosylated 95-kDa isoform. Degrons within AD1 do not promote proteolytic degradation of the 120-kDa Nrf1 glycoprotein. However, repositioning of AD2-adjoining degrons (i.e. DSGLS-containing SDS1 and PEST2 sequences) into the cyto/nucleoplasm enables selective topovectorial processing of Nrf1 by the proteasome and/or calpains to generate a cleaved active 85-kDa Nrf1 or a dominant-negative 36-kDa Nrf1γ. Production of Nrf1γ is abolished by removal of SDS1 or PEST2 degrons, whereas production of the cleaved 85-kDa Nrf1 is blocked by deletion of the ER luminal-anchoring NHB2 sequence (aa 81-106). Importantly, Nrf1 activity is positively and/or negatively regulated by distinct doses of proteasome and calpain inhibitors. PMID:26268886

  2. The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression

    PubMed Central

    Zhang, Yiguo; Li, Shaojun; Xiang, Yuancai; Qiu, Lu; Zhao, Huakan; Hayes, John D.

    2015-01-01

    Upon translation, the N-terminal homology box 1 (NHB1) signal anchor sequence of Nrf1 integrates it within the endoplasmic reticulum (ER) whilst its transactivation domains [TADs, including acidic domain 1 (AD1), the flanking Asn/Ser/Thr-rich (NST) domain and AD2] are transiently translocated into the ER lumen, whereupon the NST domain is glycosylated to yield an inactive 120-kDa glycoprotein. Subsequently, these TADs are retrotranslocated into extra-luminal subcellular compartments, where Nrf1 is deglycosylated to yield an active 95-kDa isoform. Herein, we report that AD1 and AD2 are required for the stability of the 120-kDa Nrf1 glycoprotein, but not that of the non-glycosylated/de-glycosylated 95-kDa isoform. Degrons within AD1 do not promote proteolytic degradation of the 120-kDa Nrf1 glycoprotein. However, repositioning of AD2-adjoining degrons (i.e. DSGLS-containing SDS1 and PEST2 sequences) into the cyto/nucleoplasm enables selective topovectorial processing of Nrf1 by the proteasome and/or calpains to generate a cleaved active 85-kDa Nrf1 or a dominant-negative 36-kDa Nrf1γ. Production of Nrf1γ is abolished by removal of SDS1 or PEST2 degrons, whereas production of the cleaved 85-kDa Nrf1 is blocked by deletion of the ER luminal-anchoring NHB2 sequence (aa 81–106). Importantly, Nrf1 activity is positively and/or negatively regulated by distinct doses of proteasome and calpain inhibitors. PMID:26268886

  3. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes

    PubMed Central

    Sasamoto, Yuzuru; Hayashi, Ryuhei; Park, Sung-Joon; Saito-Adachi, Mihoko; Suzuki, Yutaka; Kawasaki, Satoshi; Quantock, Andrew J.; Nakai, Kenta; Tsujikawa, Motokazu; Nishida, Kohji

    2016-01-01

    PAX6 is the key transcription factor involved in eye development in humans, but the differential functions of the two PAX6 isoforms, isoform-a and isoform-b, are largely unknown. To reveal their function in the corneal epithelium, PAX6 isoforms, along with reprogramming factors, were transduced into human non-ocular epithelial cells. Herein, we show that the two PAX6 isoforms differentially and cooperatively regulate the expression of genes specific to the structure and functions of the corneal epithelium, particularly keratin 3 (KRT3) and keratin 12 (KRT12). PAX6 isoform-a induced KRT3 expression by targeting its upstream region. KLF4 enhanced this induction. A combination of PAX6 isoform-b, KLF4, and OCT4 induced KRT12 expression. These new findings will contribute to furthering the understanding of the molecular basis of the corneal epithelium specific phenotype. PMID:26899008

  4. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes.

    PubMed

    Esser, V; Brown, N F; Cowan, A T; Foster, D W; McGarry, J D

    1996-03-22

    We set out to determine if the cDNA encoding a carnitine palmitoyltransferase (CPT)-like protein recently isolated from rat brown adipose tissue (BAT) by Yamazaki et al. (Yamazaki, N., Shinohara, Y., Shima, A., and Terada, H. (1995) FEBS Lett. 363, 41-45) actually encodes the muscle isoform of mitochondrial CPT I (M-CPT I). To this end, a cDNA essentially identical to the original BAT clone was isolated from a rat heart library. When expressed in COS cells, the novel cDNA and our previously described cDNA for rat liver CPT I (L-CPT I) gave rise to products with the same kinetic characteristics (sensitivity to malonyl-CoA and Km for carnitine) as CPT I in skeletal muscle and liver mitochondria, respectively. When labeled with [3H]etomoxir, recombinant L-CPT I and putative M-CPT I, although having approximately the same predicated masses (88.2 kDa), migrated differently on SDS gels, as did CPT I from liver and muscle mitochondria. The same was true for the products of in vitro transcription and translation of the L-CPT I and putative M-CPT I cDNAs. We conclude that the BAT cDNA does in fact encode M-CPT I. Northern blots using L- and M-CPT I cDNA probes revealed the presence of L-CPT I mRNA in liver and heart and its absence from skeletal muscle and BAT. M-CPT I mRNA, which was absent from liver, was readily detected in skeletal muscle and was particularly strong in heart and BAT. Whereas the signal for L-CPT I was more abundant than that for M-CPT I in RNA isolated from whole epididymal fat pad, this was reversed in purified adipocytes from this source. These findings, coupled with the kinetic properties and migration profiles on SDS gels of CPT I in brown and white adipocytes, indicate that the muscle form of the enzyme is the dominant, if not exclusive, species in both cell types.

  5. Survivin isoform Delta Ex3 regulates tumor spheroid formation.

    PubMed

    Espinosa, Magali; Ceballos-Cancino, Gisela; Callaghan, Richard; Maldonado, Vilma; Patiño, Nelly; Ruíz, Víctor; Meléndez-Zajgla, Jorge

    2012-05-01

    Survivin is an important member of the Inhibitor of Apoptosis Proteins (IAPs) family and has essential roles in apoptosis and cell cycle progression. This gene is commonly upregulated in human cancer and provides an exciting diagnostic and therapeutic target. Survivin is expressed as several isoforms that are generated by alternative splicing, and some of these present antagonistic activities. Currently, information regarding the regulation of these isoforms is lacking. In this study, we sought to analyze survivin Delta Ex3 expression in a three-dimensional model of avascular tumors and its overexpression effects in processes such as proliferation, clonogenicity and apoptosis. We found a positive correlation between spheroid growth and survivin Delta Ex3 expression during the exponential phase. We demonstrated that this isoform not only decreased apoptosis but also inhibited tumor spheroid formation by decreasing proliferation and clonogenic survival. These results point toward a dual and antagonistic effect of this spliced survivin isoform in cancer development.

  6. Tunable protein synthesis by transcript isoforms in human cells

    PubMed Central

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-01

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5′ and 3′ untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5′ untranslated regions exert robust translational control between cell lines, while 3′ untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels. DOI: http://dx.doi.org/10.7554/eLife.10921.001 PMID:26735365

  7. cDNA cloning, expression, and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus.

    PubMed

    Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin

    2003-12-19

    SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16. PMID:14680830

  8. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms.

    PubMed

    Thakur, Bhupesh Kumar; Dasgupta, Nirmalya; Ta, Atri; Das, Santasabuj

    2016-07-01

    Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.

  9. Parvalbumin isoforms in zebrafish.

    PubMed

    Friedberg, Felix

    2005-09-01

    By using an analysis of existing genomic information it is concluded that in zebrafish nine genes encode parvalbumin (PV). These genes possess introns that differ in size and show nucleotide variability but they contain the same number of exons, and for each corresponding exon, the number of nucleotides therein are identical in all the paralogs. This rule also applies to the multiple PV genes of other species e.g. mammals. Each of these genes displays, however, characteristic 5' and 3' UTRs which appear highly conserved between closely related species (so that orthologs among these species can be readily identified) but which show larger numbers of mutations between species that are more distant in evolution. A tree is presented which suggests that the traditional classification of PVs as alpha or beta (based mainly on charge of the protein molecule) is not sustainable. Numbers 1-9 are assigned to the various isoforms to facilitate their identification in future studies. A bifurcation of isoforms into 1 and 4; 2 and 3; 6 and 7; 8 and 9 appears to have occurred simultaneously in more recent time, i.e. perhaps approximately 60 mys ago when primates and rodents branched. PMID:16172917

  10. Progesterone Receptor-A and -B Have Opposite Effects on Proinflammatory Gene Expression in Human Myometrial Cells: Implications for Progesterone Actions in Human Pregnancy and Parturition

    PubMed Central

    Tan, Huiqing; Yi, Lijuan; Rote, Neal S.; Hurd, William W.

    2012-01-01

    Context: Progesterone promotes uterine relaxation during pregnancy and its withdrawal induces labor. Progesterone withdrawal in human parturition is mediated in part by changes in the relative levels of the nuclear progesterone receptor isoforms, PR-A and PR-B, in myometrial cells. Parturition also involves myometrial inflammation; however, the functional link between nuclear PR-mediated progesterone actions and inflammation in human myometrial cells is unclear. Objective: Our objective was to determine how PR-A and PR-B regulate progesterone action in human myometrial cells and specifically the expression of genes encoding contraction-associated proteins and proinflammatory mediators. Design: Effects of PR-A and PR-B on the capacity for progesterone to modulate gene expression was determined using an immortalized human myometrial cell line stably transfected with inducible PR-A and PR-B expression transgenes and conditioned to express various PR-A and PR-B levels. Gene expression was assessed by genome wide transcriptome analysis, quantitative RT-PCR and immunoblotting. Results: PR-A and PR-B were each transcriptionally active in response to progesterone and affected the expression of distinct gene cohorts. The capacity for progesterone to affect gene expression was dependent on the PR-A to PR-B ratio. This was especially apparent for the expression of proinflammatory genes. Progesterone decreased proinflammatory gene expression when the PR-A to PR-B ratio favored PR-B and increased proinflammatory gene expression when the ratio favored PR-A. Progesterone via PR-B increased expression of inhibitor-κBα, a repressor of the nuclear factor-κB transcription factor, and inhibited basal and lipopolysaccharide-induced proinflammatory gene expression. Both of those PR-B-mediated effects were inhibited by PR-A. Conclusions: Our data suggest that during most of human pregnancy, when myometrial cells are PR-B dominant, progesterone promotes myometrial quiescence through PR

  11. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression.

    PubMed Central

    Rogers, E E; Ausubel, F M

    1997-01-01

    To identify plant defense responses that limit pathogen attack, Arabidopsis eds mutants that exhibit enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 were previously identified. In this study, we show that each of four eds mutants (eds5-1, eds6-1, eds7-1, and eds9-1) has a distinguishable phenotype with respect to the degree of susceptibility to a panel of bacterial phytopathogens and the ability to activate pathogenesis-related PR-1 gene expression after pathogen attack. None of the four eds mutants exhibited observable defects in mounting a hypersensitive response. Although all four eds mutants were also capable of mounting a systemic acquired resistance response, enhanced growth of P. s. maculicola ES4326 was still apparent in the secondarily infected leaves of three of the eds mutants. These data indicate that eds genes define a diverse set of previously unknown defense responses that affect resistance to virulent pathogens. PMID:9090877

  12. Detection of VEGF-Axxxb Isoforms in Human Tissues

    PubMed Central

    Bates, David O.; Mavrou, Athina; Qiu, Yan; Carter, James G.; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V.; Millar, Ann B.; Salmon, Andrew H. J.; Oltean, Sebastian; Harper, Steven J.

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls. PMID:23935865

  13. Multiple isoform recovery (MIR)-PCR: a simple method for the isolation of related mRNA isoforms.

    PubMed Central

    Fagotti, A; Gabbiani, G; Pascolini, R; Neuville, P

    1998-01-01

    We present a rapid and efficient method for the detection of related transcripts with different expression levels. This approach combines the rapid amplification of cDNA ends (RACE) method with a cDNA subtractive technique. The strategy is based on successive subtractions of prevalent isoforms resulting in enrichment of less expressed transcripts. For each subtraction, a biotinylated primer specific for the prevalent isoform is hybridized on the total cDNA and the hybrid is retained on a streptavidin affinity column. The unbound cDNA serves as a template for subsequent isoform identification. To illustrate its application we describe the isolation of three new actin cDNA isoforms in the freshwater planarian Dugesia (S) polychroa. PMID:9518500

  14. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

    PubMed

    Moda, Fabio; Vimercati, Chiara; Campagnani, Ilaria; Ruggerone, Margherita; Giaccone, Giorgio; Morbin, Michela; Zentilin, Lorena; Giacca, Mauro; Zucca, Ileana; Legname, Giuseppe; Tagliavini, Fabrizio

    2012-01-01

    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

  15. CDC2 mediates progestin initiated endometrial stromal cell proliferation: a PR signaling to gene expression independently of its binding to chromatin.

    PubMed

    Vallejo, Griselda; La Greca, Alejandro D; Tarifa-Reischle, Inti C; Mestre-Citrinovitz, Ana C; Ballaré, Cecilia; Beato, Miguel; Saragüeta, Patricia

    2014-01-01

    Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR-mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding. ChIP experiments show that progestin promoted the interaction of USF1 with the proximal promoter of the Cdc2 gene. Usf1 knockdown abolished Cdc2 progestin-dependent transcriptional regulation and cell proliferation, which also blocked Cdc2 knockdown. We conclude that progestin-induced proliferation of endometrial stromal cells is mediated by ERK1-2 and AKT dependent early regulation of USF1, which directly induces Cdc2. To our knowledge, this is the first description of early target genes of progestin-activated classical PR via crosstalk with protein kinases and independently of hormone receptor binding to the genomic targets. PMID:24859236

  16. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  17. Lysyl oxidase isoforms in gastric cancer.

    PubMed

    Añazco, Carolina; Delgado-López, Fernando; Araya, Paulina; González, Ileana; Morales, Erik; Pérez-Castro, Ramón; Romero, Jacqueline; Rojas, Armando

    2016-09-01

    Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention. PMID:27564724

  18. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed Central

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-01-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  19. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  20. Gene expression levels of Casein kinase 1 (CK1) isoforms are correlated to adiponectin levels in adipose tissue of morbid obese patients and site-specific phosphorylation mediated by CK1 influences multimerization of adiponectin.

    PubMed

    Xu, Pengfei; Fischer-Posovszky, Pamela; Bischof, Joachim; Radermacher, Peter; Wabitsch, Martin; Henne-Bruns, Doris; Wolf, Anna-Maria; Hillenbrand, Andreas; Knippschild, Uwe

    2015-05-01

    White adipose tissue has now been recognized as an important endocrine organ secreting bioactive molecules termed adipocytokines. In obesity, anti-inflammatory adipocytokines like adiponectin are decreased while pro-inflammatory factors are over-produced. These changes contribute to the development of insulin resistance and obesity-associated diseases. Since members of the casein kinase 1 (CK1) family are involved in the regulation of various signaling pathways we ask here whether they are able to modulate the functions of adiponectin. We show that CK1δ and ε are expressed in adipose tissue and that the expression of CK1 isoforms correlates with that of adiponectin. Furthermore, adiponectin co-immunoprecipitates with CK1δ and CK1ε and is phosphorylated by CK1δ at serine 174 and threonine 235, thereby influencing the formation of adiponectin oligomeric complexes. Furthermore, inhibition of CK1δ in human adipocytes by IC261 leads to an increase in basal and insulin-stimulated glucose uptake. In summary, our data indicate that site-specific phosphorylation of adiponectin, especially at sites targeted by CK1δ in vitro, provides an additional regulatory mechanism for modulating adiponectin complex formation and function. PMID:25724478

  1. Regulation of different human NFAT isoforms by neuronal activity.

    PubMed

    Vihma, Hanna; Luhakooder, Mirjam; Pruunsild, Priit; Timmusk, Tõnis

    2016-05-01

    Nuclear factor of activated T-cells (NFAT) is a family of transcription factors comprising four calcium-regulated members: NFATc1, NFATc2, NFATc3, and NFATc4. Upon activation by the calcium-dependent phosphatase calcineurin (CaN), NFATs translocate from cytosol to the nucleus and regulate their target genes, which in the nervous system are involved in axon growth, synaptic plasticity, and neuronal survival. We have shown previously that there are a number of different splice variants of NFAT genes expressed in the brain. Here, we studied the subcellular localizations and transactivation capacities of alternative human NFAT isoforms in rat primary cortical or hippocampal neurons in response to membrane depolarization and compared the induced transactivation levels in neurons to those obtained from HEK293 cells in response to calcium signaling. We confirm that in neurons the translocation to the nucleus of all NFAT isoforms is reliant on the activity of CaN. However, our results suggest that both the regulation of subcellular localization and transcriptional activity of NFAT proteins in neurons is isoform specific. We show that in primary hippocampal neurons NFATc2 isoforms have very fast translocation kinetics, whereas NFATc4 isoforms translocate relatively slowly to the nucleus. Moreover, we demonstrate that the strongest transcriptional activators in HEK293 cells are NFATc1 and NFATc3, but in neurons NFATc3 and NFATc4 lead to the highest induction, and NFATc2 and NFATc1 display isoform-specific transcription activation capacities. Altogether, our results indicate that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and can differ between cell types. We show that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and differ between cell types. Although nuclear localization of all NFAT isoforms in neurons requires calcineurin, the subcellular distributions, neuronal activity-induced nuclear

  2. Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell lines

    SciTech Connect

    Chaudhary, Amit; Pechan, Tibor; Willett, Kristine L. . E-mail: kwillett@olemiss.edu

    2007-04-15

    Mechanisms of benzo(a)pyrene (BaP)-mediated toxicity and chemopreventative potential of quercetin in prostate cancer are poorly understood. Two-dimensional gel electrophoresis was used to map the differences in protein expression in BaP (1 {mu}M)- and quercetin (5 {mu}M)-treated 22Rv1 human prostate cancer cells. As compared to DMSO, 26 proteins in BaP and 41 proteins in quercetin were found to be differentially expressed ({+-} 2-fold). Western blots confirmed that BaP increased peroxiredoxin (Prx) Prx I and decreased Prx II in 22Rv1 cells. Similar results were found in PrEC normal prostate epithelial cells. Quercetin (up to 10 {mu}M) upregulated Prx II without altering Prx I levels in 22Rv1 cells whereas in PrEC cells, it did not alter the constitutive protein expression of Prx I or II. The lack of quercetin-mediated changes in Prx expression suggests that quercetin does not interfere with H{sub 2}O{sub 2} levels, and thus may have no deleterious effect in normal prostate cells. Quercetin inhibited both BaP-mediated effects on Prx I and II in 22Rv1 cells. In PrEC cells, quercetin inhibited BaP-mediated upregulation of Prx I and had tendency to neutralize BaP-mediated downregulation of Prx II. Quercetin also inhibited BaP-induced concentrations of reactive oxygen species in both 22Rv1 and PrEC cells. These results suggest that Prx I and II may be involved in BaP-mediated toxicity and the potential chemopreventative mechanisms of quercetin.

  3. Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta and pre-implantation blastocyst. All catalyze estrogen synthesis, but the “gonadal” type enzyme is unique in also synthesizing a nonaromat...

  4. Roles of dopamine 2 receptor isoforms and g proteins in ethanol regulated prolactin synthesis and lactotropic cell proliferation.

    PubMed

    Sengupta, Amitabha; Sarkar, Dipak K

    2012-01-01

    Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes.

  5. Roles of Dopamine 2 Receptor Isoforms and G Proteins in Ethanol Regulated Prolactin Synthesis and Lactotropic Cell Proliferation

    PubMed Central

    Sengupta, Amitabha; Sarkar, Dipak K.

    2012-01-01

    Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes. PMID:23029123

  6. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice.

    PubMed

    Mozes, M M; Böttinger, E P; Jacot, T A; Kopp, J B

    1999-02-01

    Renal pathology in mice that are transgenic for the murine albumin enhancer/promoter linked to a full-length porcine transforming growth factor-beta1 (TGF-beta1) gene has been described previously. In these mice, transgene expression is limited to the liver and the plasma level of TGF-beta is increased. The earliest renal pathologic change is glomerulosclerosis, at 3 wk of age, and this is followed by tubulointerstitial fibrosis. In this study, it was hypothesized that circulating TGF-beta1 increases renal extracellular matrix accumulation and activates local TGF-beta gene expression. Immunostaining at 5 wk revealed increased amounts of collagen I and III within the mesangium, glomerular capillary loops, and interstitium, while the amount of collagen IV was normal. Similarly, Northern analysis showed increased expression of mRNA encoding collagen I and III, as well as biglycan and decorin, while the expression of collagen IV was unchanged. These changes began as early as 1 wk of age, a time before the appearance of glomerulosclerosis. To evaluate matrix degradation, collagenase IV activity was evaluated by gelatin zymography and an increase in matrix metalloproteinase-2 was found. Finally, the production of tissue inhibitors of metalloproteinase was evaluated. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was increased 18-fold, while TIMP-2 and TIMP-3 were unchanged. In 2-wk-old transgenic kidney, local expression of TGF-beta1, beta2, and beta3 protein was similar to wild-type mice. In 5-wk-old transgenic mice, TGF-beta1 and beta2 protein was present in increased amounts within glomeruli, and renal TGF-beta1 mRNA was increased threefold. It is concluded that elevated levels of circulating TGF-beta1 may act on the kidney to increase matrix protein production and decrease matrix remodeling. Only after glomerulosclerosis is established does local glomerular overproduction of TGF-beta become manifest.

  7. Neuronal Profilin Isoforms Are Addressed by Different Signalling Pathways

    PubMed Central

    Michaelsen-Preusse, Kristin; Dresbach, Thomas; Schoenenberger, Cora-Ann; Korte, Martin; Jockusch, Brigitte M.; Rothkegel, Martin

    2012-01-01

    Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei. PMID:22470532

  8. Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and miRNA expression profiling

    NASA Astrophysics Data System (ADS)

    Dai, Xiaofeng; Chen, Ana; Bai, Zhonghu

    2014-10-01

    Exploring the molecular difference among breast cancer subtypes is of crucial importance in understanding its heterogeneity and seeking its effective clinical treatment. For this, several layers of information including immunohistochemical markers and a variety of high-throughput genomics approaches have been intensively used. Here we have explored the intrinsic differences among breast cancer subgroups defined by immunohistochemical expression (IHC) of hormone receptors ER and PR as well as human epidermal growth factor receptor 2 (HER2) using the mRNA and miRNA expression profiles of 115 tumors. A core basal group was further defined by epidermal growth factor receptor and cytokeratin 5/6 IHC expression and compared to triple negative group. A set of differentially expressed genes including 1015 mRNAs and 69 miRNAs was found to distinguish tumor subtypes whose generality was demonstrated using two independent data sets. The network was explored for each subtype and biomass synthesis signaling was found to play an important role in the core basal subgroup. This study contributes to elucidating the intrinsic relations among breast cancer subgroups defined by ER, PR and HER2 expression via integrating mRNA and miRNA expression. The results can avail functional studies of breast cancer with translational potential for clinical use.

  9. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus.

    PubMed

    Chen, Pucheng; Liu, Jinxiong; Jiang, Yongping; Zhao, Yuhui; Li, Qimeng; Wu, Li; He, Xijun; Chen, Hualan

    2014-09-15

    A newly emerged tembusu virus that causes egg-drop has been affecting ducks in China since 2010. Currently, no vaccine is available for this disease. A live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine has been used routinely to control lethal DEV in ducks since the 1960s. Here, we constructed two recombinant DEVs by transfecting overlapping fosmid DNAs. One virus, rDEV-TE, expresses the truncated form of the envelope glycoprotein (TE) of duck tembusu virus (DTMUV), and the other virus, rDEV-PrM/TE, expresses both the TE and pre-membrane proteins (PrM). Animal study demonstrated that both recombinant viruses induced measurable anti-DTMUV neutralizing antibodies in ducks. After two doses of recombinant virus, rDEV-PrM/TE completely protected ducks from DTMUV challenge, whereas rDEV-TE only conferred partial protection. These results demonstrate that recombinant DEV expressing the TE and pre-membrane proteins is protective and can serve as a potential candidate vaccine to prevent DTMUV infection in ducks. PMID:25087676

  10. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus.

    PubMed

    Chen, Pucheng; Liu, Jinxiong; Jiang, Yongping; Zhao, Yuhui; Li, Qimeng; Wu, Li; He, Xijun; Chen, Hualan

    2014-09-15

    A newly emerged tembusu virus that causes egg-drop has been affecting ducks in China since 2010. Currently, no vaccine is available for this disease. A live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine has been used routinely to control lethal DEV in ducks since the 1960s. Here, we constructed two recombinant DEVs by transfecting overlapping fosmid DNAs. One virus, rDEV-TE, expresses the truncated form of the envelope glycoprotein (TE) of duck tembusu virus (DTMUV), and the other virus, rDEV-PrM/TE, expresses both the TE and pre-membrane proteins (PrM). Animal study demonstrated that both recombinant viruses induced measurable anti-DTMUV neutralizing antibodies in ducks. After two doses of recombinant virus, rDEV-PrM/TE completely protected ducks from DTMUV challenge, whereas rDEV-TE only conferred partial protection. These results demonstrate that recombinant DEV expressing the TE and pre-membrane proteins is protective and can serve as a potential candidate vaccine to prevent DTMUV infection in ducks.

  11. Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes.

    PubMed

    Oldenburg, Anja R; Delbarre, Erwan; Thiede, Bernd; Vigouroux, Corinne; Collas, Philippe

    2014-03-01

    The nuclear lamina is implicated in the regulation of various nuclear functions. Several laminopathy-causing mutations in the LMNA gene, notably the p.R482W substitution linked to familial partial lipodystrophy type 2 (FPLD2), are clustered in the immunoglobulin fold of lamin A. We report a functional association between lamin A and fragile X-related protein 1 (FXR1P), a protein of the fragile X-related family involved in fragile X syndrome. Searching for proteins differentially interacting with the immunoglobulin fold of wild-type and R482W mutant lamin A, we identify FXR1P as a novel component of the lamin A protein network. The p.R482W mutation abrogates interaction of FXR1P with lamin A. Fibroblasts from FPLD2 patients display elevated levels of FXR1P and delocalized FXR1P. In human adipocyte progenitors, deregulation of lamin A expression leads to FXR1P up-regulation, impairment of adipogenic differentiation and induction of myogenin expression. FXR1P overexpression also stimulates a myogenic gene expression program in these cells. Our results demonstrate a cross-talk between proteins hitherto implicated in two distinct mesodermal pathologies. We propose a model where the FPLD2 lamin A p.R482W mutation elicits, through up-regulation of FXR1P, a remodeling of an adipogenic differentiation program into a myogenic program.

  12. Biotin carboxyl carrier protein isoforms in Brassicaceae oilseeds.

    PubMed

    Thelen, J J; Mekhedov, S; Ohlrogge, J B

    2000-12-01

    De novo fatty acid biosynthesis occurs predominantly in plastids. The committed step for this pathway is the production of malonyl-CoA catalysed by acetyl-CoA carboxylase (ACCase). In most plants, plastidial ACCase is a multisubunit complex minimally comprised of four polypeptides, which catalyse two reactions. In the simple oilseed plant, Arabidopsis thaliana, two cDNAs encoding biotin carboxyl carrier protein (BCCP) isoforms have been identified. The remaining three subunits of ACCase appear to be single gene members in A. thaliana [Mekhedov, Martinez de Ilarduya and Ohlrogge (2000) Plant Physiol. 122, 389-401]. Transcript and protein analyses indicate that BCCP isoform 1 is constitutively expressed while isoform 2 is predominantly expressed in developing seeds. The apparent masses of constitutive and seed-enriched BCCP isoforms agree with the apparent masses of recombinantly expressed isoforms 1 and 2, respectively. In a related oilseed, Brassica napus, multiple putative BCCP polypeptides were also observed in developing seeds. The presence of a divergent class of BCCP genes in A. thaliana and B. napus, coincident with appropriately sized biotin-containing proteins expressed specifically in developing seeds, suggests that these BCCPs play an evolutionarily conserved role in oil deposition.

  13. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior

    PubMed Central

    Yamamoto, Hideki; Rundqvist, Helene; Branco, Cristina; Johnson, Randall S.

    2016-01-01

    Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in

  14. Evolutionary, environmental and tissue controls on the occurrence of multiple isoforms of acyl carrier protein

    SciTech Connect

    Battey, J.F.; Ohlrogge, J.B. )

    1989-04-01

    Previous research has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP). We have examined the development of this trait in evolutionarily diverse species. Isoforms were resolved by Western blotting and native PAGE of {sup 3}H-palmitate labelled ACP's. Multiple isoforms of ACP were observed in primitive vascular plants including gymnosperms, ferns and Psilotum and the nonvascular liverworts and mosses. Therefore, the development of ACP isoforms occurred early in evolution. However, unicellular algae and bacteria such as Chlamydomonas, Dunaliella, Synechocystis and Agmnellum have only a single electrophoretic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants. We have also examined light and tissue control over the expression of ACP isoforms. The expression of multiple forms of ACP in leaf of Spinacia and Avena is altered very little by light. Rather, the different patterns of ACP isoforms are primarily dependant on tissue source.

  15. Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase.

    PubMed

    Heiss, S; Schäfer, H J; Haag-Kerwer, A; Rausch, T

    1999-03-01

    The heavy-metal accumulator Brassica juncea L. is a high-biomass crop able to extract heavy-metal ions from the soil, a substantial part being translocated from root to shoot. Previous work has shown that Cd accumulation is accompanied by massive formation of phytochelatins (PCs). Rapid de novo synthesis of PCs in roots and leaves requires an increased synthesis of the tripeptide glutathione (GSH), which in turn depends on increased sulfur assimilation. Therefore. we have cloned cDNAs for three enzymes involved in sulfur assimilation, i.e. a putative low-affinity sulfate transporter (LAST) and two isoforms each for ATP sulfurylase (ATPS) and APS reductase (APSR). As degradation of glucosinolates might provide an additional sulfur source under stress, we also cloned a myrosinase (MYR). RNA blot analysis of transcript amounts indicated that upon Cd exposure (25 microM) the expression of ATPS and APSR in roots and leaves of 6-week-old Brassica juncea plants was strongly increased, whereas the expression of MYR was unaffected. LAST transcripts were significantly reduced in the root but remained unchanged in the leaves. Concomitant with Cd induction of ATPS and APSR mRNAs, cysteine concentrations in roots and leaves increased by 81% and 25%, respectively, whereas GSH concentrations decreased in roots and leaves by 39% and 48%, respectively. In agreement with our previous report on Cd induction of gamma-glutamylcysteine synthetase in B. juncea, the results indicate coordinate changes of expression for several sulfur assimilation enzymes in response to an increased demand for cysteine during PC synthesis. PMID:10350097

  16. PrPs: Proteins with a purpose

    PubMed Central

    Sempou, Emily

    2009-01-01

    The best-known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Neurodegeneration in prion disease is often seen as a consequence of abnormal PrP function yet, amazingly little is known about the normal, physiological role of PrP. In particular, the absence of obvious phenotypes in PrP knockout mice has prevented scientists from answering this important question. Using knockdown approaches, we previously produced clear PrP loss-of-function phenotypes in zebrafish embryos. Analysis of these phenotypes revealed that PrP can modulate E-cadherin-based cell-cell adhesion, thereby controlling essential morphogenetic cell movements in the early gastrula. Our data also showed that PrP itself can elicit homophilic cell-cell adhesion and trigger intracellular signaling via Src-related kinases. Importantly, these molecular functions of PrP are conserved from fish to mammals. Here we discuss the use of the zebrafish in prion biology and how it may advance our understanding of the roles of PrP in health and disease. PMID:19786844

  17. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  18. Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; More, Prashant; Patel, Khantika; Jana, Kalyanashis; Agarwal, Pradeep K

    2016-01-01

    Plants in ecosystems are simultaneously exposed to abiotic and biotic stresses, which restrict plant growth and development. The complex responses to these stresses are largely regulated by plant hormones, which in turn, orchestrate the different biochemical and molecular pathways to maneuver stress tolerance. The PR-10 protein family is reported to be involved in defense regulation, stress response and plant growth and development. The JcPR-10a overexpression resulted in increased number of shoot buds in tobacco (Nicotiana tabacum), which could be due to high cytokinin to auxin ratio in the transgenics. The docking analysis shows the binding of three BAP molecules at the active sites of JcPR-10a protein. JcPR-10a transgenics showed enhanced salt tolerance, as was evident by increased germination rate, shoot and root length, relative water content, proline, soluble sugar and amino acid content under salinity. Interestingly, the transgenics also showed enhanced endogenous cytokinin level as compared to WT, which, further increased with salinity. Exposure of gradual salinity resulted in increased stomatal conductance, water use efficiency, photosynthesis rate and reduced transpiration rate. Furthermore, the transgenics also showed enhanced resistance against Macrophomina fungus. Thus, JcPR-10a might be working in co-ordination with cytokinin signaling in mitigating the stress induced damage by regulating different stress signaling pathways, leading to enhanced stress tolerance. PMID:26973666

  19. Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene

    PubMed Central

    Agarwal, Parinita; Dabi, Mitali; More, Prashant; Patel, Khantika; Jana, Kalyanashis; Agarwal, Pradeep K.

    2016-01-01

    Plants in ecosystems are simultaneously exposed to abiotic and biotic stresses, which restrict plant growth and development. The complex responses to these stresses are largely regulated by plant hormones, which in turn, orchestrate the different biochemical and molecular pathways to maneuver stress tolerance. The PR-10 protein family is reported to be involved in defense regulation, stress response and plant growth and development. The JcPR-10a overexpression resulted in increased number of shoot buds in tobacco (Nicotiana tabacum), which could be due to high cytokinin to auxin ratio in the transgenics. The docking analysis shows the binding of three BAP molecules at the active sites of JcPR-10a protein. JcPR-10a transgenics showed enhanced salt tolerance, as was evident by increased germination rate, shoot and root length, relative water content, proline, soluble sugar and amino acid content under salinity. Interestingly, the transgenics also showed enhanced endogenous cytokinin level as compared to WT, which, further increased with salinity. Exposure of gradual salinity resulted in increased stomatal conductance, water use efficiency, photosynthesis rate and reduced transpiration rate. Furthermore, the transgenics also showed enhanced resistance against Macrophomina fungus. Thus, JcPR-10a might be working in co-ordination with cytokinin signaling in mitigating the stress induced damage by regulating different stress signaling pathways, leading to enhanced stress tolerance. PMID:26973666

  20. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform.

    PubMed

    Miner, J H; Patton, B L; Lentz, S I; Gilbert, D J; Snider, W D; Jenkins, N A; Copeland, N G; Sanes, J R

    1997-05-01

    Laminin trimers composed of alpha, beta, and gamma chains are major components of basal laminae (BLs) throughout the body. To date, three alpha chains (alpha1-3) have been shown to assemble into at least seven heterotrimers (called laminins 1-7). Genes encoding two additional alpha chains (alpha4 and alpha5) have been cloned, but little is known about their expression, and their protein products have not been identified. Here we generated antisera to recombinant alpha4 and alpha5 and used them to identify authentic proteins in tissue extracts. Immunoprecipitation and immunoblotting showed that alpha4 and alpha5 assemble into four novel laminin heterotrimers (laminins 8-11: alpha4beta1gamma1, alpha4beta2gamma1, alpha5beta1gamma1, and alpha5beta2gamma1, respectively). Using a panel of nucleotide and antibody probes, we surveyed the expression of alpha1-5 in murine tissues. All five chains were expressed in both embryos and adults, but each was distributed in a distinct pattern at both RNA and protein levels. Overall, alpha4 and alpha5 exhibited the broadest patterns of expression, while expression of alpha1 was the most restricted. Immunohistochemical analysis of kidney, lung, and heart showed that the alpha chains were confined to extracellular matrix and, with few exceptions, to BLs. All developing and adult BLs examined contained at least one alpha chain, all alpha chains were present in multiple BLs, and some BLs contained two or three alpha chains. Detailed analysis of developing kidney revealed that some individual BLs, including those of the tubule and glomerulus, changed in laminin chain composition as they matured, expressing up to three different alpha chains and two different beta chains in an elaborate and dynamic progression. Interspecific backcross mapping of the five alpha chain genes revealed that they are distributed on four mouse chromosomes. Finally, we identified a novel full-length alpha3 isoform encoded by the Lama3 gene, which was previously

  1. Changes in Knee Laxity and Relaxin Receptor Isoforms Expression (RXFP1/RXFP2) in the Knee throughout Estrous Cycle Phases in Rodents.

    PubMed

    Dehghan, Firouzeh; Soori, Rahman; Dehghan, Parvin; Gholami, Khadijeh; Muniandy, Sekaran; Azarbayjani, Mohammad Ali; Yusof, Ashril

    2016-01-01

    The changes in knee laxity and relaxin receptor expression at different phases of rodent estrous cycle are not known. Here, changes in the parameter were investigated in rats at different phases of the estrous cycle. Estrous cycle phases of intact female rats were determined by cytological examination of the vaginal smear. Following phase identification, blood was collected for serum hormone analyses. Knee passive range of motion (ROM) was determined by using a digital miniature goniometer. The animals were then sacrificed and patellar tendon, collateral ligaments and hamstring muscles were harvested for relaxin/insulin-like family peptide receptor 1 and 2 (RXFP1/RXFP2) analyses. Knee passive ROM was the highest at proestrus followed by diestrus and the lowest at estrus. Estrogen level was the highest at proestrus while progesterone and relaxin levels were the highest at diestrus. A strong correlation was observed between relaxin and progesterone levels. At proestrus, expression of RXFP1 and RXFP2 proteins and mRNAs were the highest at proestrus followed by diestrus and estrus. The finding shows that higher level of progesterone and relaxin in diestrus might be responsible for higher laxity of knee joint in rats. PMID:27513858

  2. Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue.

    PubMed

    Hu, Yaohua; Robichaux, William G; Mei, Fang C; Kim, Eun Ran; Wang, Hui; Tong, Qingchun; Jin, Jianping; Xu, Mingxuan; Chen, Ju; Cheng, Xiaodong

    2016-10-01

    Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT.

  3. Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue.

    PubMed

    Hu, Yaohua; Robichaux, William G; Mei, Fang C; Kim, Eun Ran; Wang, Hui; Tong, Qingchun; Jin, Jianping; Xu, Mingxuan; Chen, Ju; Cheng, Xiaodong

    2016-10-01

    Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT. PMID:27381457

  4. Changes in Knee Laxity and Relaxin Receptor Isoforms Expression (RXFP1/RXFP2) in the Knee throughout Estrous Cycle Phases in Rodents

    PubMed Central

    Dehghan, Firouzeh; Soori, Rahman; Dehghan, Parvin; Gholami, Khadijeh; Muniandy, Sekaran; Azarbayjani, Mohammad Ali; Yusof, Ashril

    2016-01-01

    The changes in knee laxity and relaxin receptor expression at different phases of rodent estrous cycle are not known. Here, changes in the parameter were investigated in rats at different phases of the estrous cycle. Estrous cycle phases of intact female rats were determined by cytological examination of the vaginal smear. Following phase identification, blood was collected for serum hormone analyses. Knee passive range of motion (ROM) was determined by using a digital miniature goniometer. The animals were then sacrificed and patellar tendon, collateral ligaments and hamstring muscles were harvested for relaxin/insulin-like family peptide receptor 1 and 2 (RXFP1/RXFP2) analyses. Knee passive ROM was the highest at proestrus followed by diestrus and the lowest at estrus. Estrogen level was the highest at proestrus while progesterone and relaxin levels were the highest at diestrus. A strong correlation was observed between relaxin and progesterone levels. At proestrus, expression of RXFP1 and RXFP2 proteins and mRNAs were the highest at proestrus followed by diestrus and estrus. The finding shows that higher level of progesterone and relaxin in diestrus might be responsible for higher laxity of knee joint in rats. PMID:27513858

  5. Frac-seq reveals isoform-specific recruitment to polyribosomes.

    PubMed

    Sterne-Weiler, Timothy; Martinez-Nunez, Rocio Teresa; Howard, Jonathan M; Cvitovik, Ivan; Katzman, Sol; Tariq, Muhammad A; Pourmand, Nader; Sanford, Jeremy R

    2013-10-01

    Pre-mRNA splicing is required for the accurate expression of virtually all human protein coding genes. However, splicing also plays important roles in coordinating subsequent steps of pre-mRNA processing such as polyadenylation and mRNA export. Here, we test the hypothesis that nuclear pre-mRNA processing influences the polyribosome association of alternative mRNA isoforms. By comparing isoform ratios in cytoplasmic and polyribosomal extracts, we determined that the alternative products of ∼30% (597/1954) of mRNA processing events are differentially partitioned between these subcellular fractions. Many of the events exhibiting isoform-specific polyribosome association are highly conserved across mammalian genomes, underscoring their possible biological importance. We find that differences in polyribosome association may be explained, at least in part by the observation that alternative splicing alters the cis-regulatory landscape of mRNAs isoforms. For example, inclusion or exclusion of upstream open reading frames (uORFs) in the 5'UTR as well as Alu-elements and microRNA target sites in the 3'UTR have a strong influence on polyribosome association of alternative mRNA isoforms. Taken together, our data demonstrate for the first time the potential link between alternative splicing and translational control of the resultant mRNA isoforms.

  6. Frac-seq reveals isoform-specific recruitment to polyribosomes

    PubMed Central

    Sterne-Weiler, Timothy; Martinez-Nunez, Rocio Teresa; Howard, Jonathan M.; Cvitovik, Ivan; Katzman, Sol; Tariq, Muhammad A.; Pourmand, Nader; Sanford, Jeremy R.

    2013-01-01

    Pre-mRNA splicing is required for the accurate expression of virtually all human protein coding genes. However, splicing also plays important roles in coordinating subsequent steps of pre-mRNA processing such as polyadenylation and mRNA export. Here, we test the hypothesis that nuclear pre-mRNA processing influences the polyribosome association of alternative mRNA isoforms. By comparing isoform ratios in cytoplasmic and polyribosomal extracts, we determined that the alternative products of ∼30% (597/1954) of mRNA processing events are differentially partitioned between these subcellular fractions. Many of the events exhibiting isoform-specific polyribosome association are highly conserved across mammalian genomes, underscoring their possible biological importance. We find that differences in polyribosome association may be explained, at least in part by the observation that alternative splicing alters the cis-regulatory landscape of mRNAs isoforms. For example, inclusion or exclusion of upstream open reading frames (uORFs) in the 5′UTR as well as Alu-elements and microRNA target sites in the 3′UTR have a strong influence on polyribosome association of alternative mRNA isoforms. Taken together, our data demonstrate for the first time the potential link between alternative splicing and translational control of the resultant mRNA isoforms. PMID:23783272

  7. PTBP1 induces ADAR1 p110 isoform expression through IRES-like dependent translation control and influences cell proliferation in gliomas.

    PubMed

    Yang, Bin; Hu, Peishan; Lin, Xihua; Han, Wei; Zhu, Liyuan; Tan, Xiaochao; Ye, Fei; Wang, Guanzhou; Wu, Fan; Yin, Bin; Bao, Zhaoshi; Jiang, Tao; Yuan, Jiangang; Qiang, Boqin; Peng, Xiaozhong

    2015-11-01

    Internal ribosomal entry site (IRES)-mediated translation initiation is constitutively activated during stress conditions such as tumorigenesis and hypoxia. The RNA editing enzyme ADAR1 plays an important role in physiology and pathology. Initially, we found that the ADAR1 p150 or p110 transcript levels were decreased in glioma cells compared with normal astrocyte cells. In contrast, protein levels of ADAR1 p110 were significantly upregulated in glioma tissues and cells. This expression pattern indicated translationally controlled regulation. We identified an 885-nt sequence that was located between AUG1 and AUG2 within the ADAR1 mRNA that exhibited IRES-like activity. Furthermore, we confirmed that the translational mode of ADAR1 p110 was mediated by PTBP1 in glioma cells. The protein levels of PTBP1 and ADAR1 were cooperatively expressed in glioma tissues and cells. Knocking down ADAR1 p110 significantly decreased cell proliferation in three types of glioma cells (T98G, U87MG and A172). The removal of a minimal IRES-like sequence in a p150-overexpression construct could effectively abolish p110 induction and resulted in the slight suppression of cell proliferation compared with ADAR1-p150 overexpression in siPTBP1-treated T98G cells. In summary, our study revealed a mechanism whereby ADAR1 p110 can be activated by PTBP1 through an IRES-like element in glioma cells, and ADAR1 is essential for the maintenance of gliomagenesis. PMID:26047657

  8. Molecular identification of the dominant-negative, splicing isoform of the two-pore domain K(+) channel K(2P)5.1 in lymphoid cells and enhancement of its expression by splicing inhibition.

    PubMed

    Endo, Kyoko; Kurokawa, Natsumi; Kito, Hiroaki; Nakakura, Sawa; Fujii, Masanori; Ohya, Susumu

    2015-12-01

    The two-pore domain background K(+) channel K2P5.1 is expected as a possible therapeutic target for autoimmune and inflammatory disorders and cancers because it plays an important role in maintaining the resting membrane potential and regulation of Ca(2+) signaling in T lymphocytes and cancer cells. However, the lack of selective K2P5.1 blockers has led to difficulties conducting experimental studies on this K(+) channel. We identified a novel splicing isoform of K2P5.1, K2P5.1B from the mammalian spleen, which lacked the N-terminus of full-length K2P5.1A. A co-immunoprecipitation assay using mice spleen lysates revealed an interaction between K2P5.1A and K2P5.1B in the cytoplasmic C-terminal domain. In a heterologous HEK293 expression system, K2P5.1B inhibited the trafficking of K2P5.1A to the plasma membrane. The alkaline pHe-induced hyperpolarizing response was significantly suppressed in K2P5.1B-transfected human leukemia K562 cells. Enhancement in cell proliferation by the overexpression of K2P5.1A in K562 was significantly prevented by the transfection of K2P5.1B. The spliceosome inhibitor pladienolide B significantly enhanced the relative expression of K2P5.1B in K562, resulting in decreases in the activity of K2P5.1A. K2P5.1B suppresses the function of the K2P5.1 K(+) channel in a dominant-negative manner, suggesting that the mRNA splicing mechanisms underlying the transcriptional regulation of K2P5.1B may be a new therapeutic strategy for autoimmune and inflammatory disorders and cancers. PMID:26475531

  9. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation

    PubMed Central

    Zoch, Ansgar; Mayerl, Steffen; Schulz, Alexander; Greither, Thomas; Frappart, Lucien; Rübsam, Juliane; Heuer, Heike; Giovannini, Marco; Morrison, Helen

    2015-01-01

    The tumour suppressor Merlin, encoded by the gene NF2, is frequently mutated in the autosomal dominant disorder neurofibromatosis type II, characterised primarily by the development of schwannoma and other glial cell tumours. However, NF2 is expressed in virtually all analysed human and rodent organs, and its deletion in mice causes early embryonic lethality. Additionally, NF2 encodes for two major isoforms of Merlin of unknown functionality. Specifically, the tumour suppressor potential of isoform 2 remains controversial. In this study, we used Nf2 isoform-specific knockout mouse models to analyse the function of each isoform during development and organ homeostasis. We found that both isoforms carry full tumour suppressor functionality and can completely compensate the loss of the other isoform during development and in most adult organs. Surprisingly, we discovered that spermatogenesis is strictly dependent on the presence of both isoforms. While the testis primarily expresses isoform 1, we noticed an enrichment of isoform 2 in spermatogonial stem cells. Deletion of either isoform was found to cause decreased sperm quality as observed by maturation defects and head/midpiece abnormalities. These defects led to impaired sperm functionality as assessed by decreased sperm capacitation. Thus, we describe spermatogenesis as a new Nf2-dependent process. Additionally, we provide for the first time in vivo evidence for equal tumour suppressor potentials of Merlin isoform 1 and isoform 2. PMID:26258444

  10. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitates expression of diverse tissue-specific isoforms

    SciTech Connect

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Narla, Mohandas; Gascard, Philippe D.; Conboy, John G.

    2004-07-15

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140kb-240kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains, interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity: alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.

  11. Expression of CD44 isoforms and beta 1,6-branched oligosaccharides in human malignant melanoma is correlated with tumor progression but not with metastatic potential.

    PubMed

    Seelentag, W K; Böni, R; Günthert, U; Futo, E; Burg, G; Heitz, P U; Roth, J

    1997-04-01

    CD44, a family of closely related glycoproteins generated by alternative splicing, as well as the increased beta 1,6-branching of Asn-linked oligosaccharides (beta 1,6-branches), have been implicated in tumor progression and metastasis. We have investigated the expression of CD44 standard (CD44s), various CD44 splice variants (CD44v3, -v4, -v5, -v6 and -v9), and of beta 1,6-branches in a total of 37 paraffin-embedded human primary melanomas and metastases. Out of the 28 studied primary melanomas, 27 were positive for CD44s, 21 for CD44v5 (cytoplasmic staining) and 26 for beta 1,6 branches. Furthermore, superficial spreading melanomas showed a significant (p = 0.004) stronger staining for CD44s than the thick (> 1.5 mm) nodular melanomas, whereas no significant difference was found with regard to staining for CD44v5 and beta 1,6-branches. Eight of the 9 studied melanoma metastases were positive for CD44s, 6 for CD44v5 (cytoplasmic staining) and 7 for beta 1,6-branches. No CD44v3, -v4, -v6 and -v9 could be detected in any of the tumors. On average, metastases as compared to primary tumors, exhibited a significant (p = 0.002) weaker staining for CD44s. However, metastasizing melanomas could not be distinguished from non-metastasizing ones based on CD44 immunostaining. PMID:9138110

  12. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    SciTech Connect

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  13. Differential Roles of PML Isoforms

    PubMed Central

    Nisole, Sébastien; Maroui, Mohamed Ali; Mascle, Xavier H.; Aubry, Muriel; Chelbi-Alix, Mounira K.

    2013-01-01

    The tumor suppressor promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL). Treatment of APL patients with arsenic trioxide (As2O3) reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed. PMID:23734343

  14. Insulin Receptor Isoform Variations in Prostate Cancer Cells

    PubMed Central

    Perks, Claire M.; Zielinska, H. A.; Wang, Jing; Jarrett, Caroline; Frankow, A.; Ladomery, Michael R.; Bahl, Amit; Rhodes, Anthony; Oxley, Jon; Holly, Jeff M. P.

    2016-01-01

    Men who develop prostate cancer (PCa) increasingly have one of the co-morbidities associated with a Western lifestyle that are characterized by hyperinsulinemia, hyperglycemia and increased expression of insulin-like growth factors-I (IGF-I) and IGF-II. Each have been associated with poor prognosis and more aggressive cancers that exhibit increased metabolism and increased glucose uptake. The insulin receptor (IR) has two splice isoforms IR-A and IR-B: IR-A has a higher affinity for IGF-II comparable to that for insulin, whereas the IR-B isoform predominantly just binds to insulin. In this study, we assessed alterations in the IR-A and IR-B isoform ratio and associated changes in cell proliferation and migration of PCa cell lines following exposure to altered concentrations of glucose and treatment with IGF-II and insulin. We observed that where IR-B predominated insulin had a greater effect on migration than IGF-II and IGF-II was more effective when IR-A was the main isoform. With regard to proliferation IGF-II was more effective than insulin regardless of which isoform was dominant. We assessed the abundance of the IR isoforms both in vivo and in vitro and observed that the majority of the tissue samples and cell lines expressed more IR-A than IR-B. Alterations in the isoforms in response to changes in their hormonal milieu could have a profound impact on how malignant cells behave and play a role in promoting carcinogenesis. A greater understanding of the mechanisms underlying changes in alternative splicing of the IR may provide additional targets for future cancer therapies. PMID:27733843

  15. PK-sensitive PrPSc is infectious and shares basic structural features with PK-resistant PrPSc

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the main characteristics of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrPSc following Western blot or ELISA. More recently, researchers determ...

  16. SURVIV for survival analysis of mRNA isoform variation

    PubMed Central

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  17. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    SciTech Connect

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-03-10

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and {beta}-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms.

  18. A unique amyloidogenic apolipoprotein serum amyloid A (apoSAA) isoform expressed by the amyloid resistant CE/J mouse strain exhibits higher affinity for macrophages than apoSAA1 and apoSAA2 expressed by amyloid susceptible CBA/J mice.

    PubMed

    Liang, J; Elliott-Bryant, R; Hajri, T; Sipe, J D; Cathcart, E S

    1998-10-01

    CBA/J and other inbred strains of mice that express the amyloidogenic apolipoprotein serum amyloid A (apoSAA) apoSAA2, together with apoSAA1, are susceptible to amyloid A (AA) amyloidosis, whereas CE/J mice that express a single unique isoform, apoSAACEJ, are resistant. Studies indicate that CBA/JxCE/J hybrid mice that express apoSAA2 in the presence of apoSAACEJ are protected from amyloidogenesis. To define a mechanism by which expression of apoSAACEJ may protect from AA formation in the presence of apoSAA2, binding of recombinant apoSAA (r-apoSAA) isoforms, validated by N-terminal sequencing, to a murine macrophage cell line was investigated. Maximal specific binding occurred after incubation of radiolabeled apoSAA with IC-21 macrophages (1x105 cells/ml) for 30 min at 4 degreesC. The binding of 125I-r-apoSAA1, 125I-r-apoSAA2 and 125I-r-apoSAACEJ was specific and saturable, with an affinity (Kd) of about 2.8, 3.2 and 1.3 nM, respectively, and approximately 2-4x106 sites per cell. Competitive binding experiments indicate apoSAACEJ binds with higher affinity to macrophages than does either apoSAA1 or apoSAA2. We suggest that greater cellular affinity of apoSAACEJ compared to apoSAA2 may contribute to protection from AA amyloid in certain CBA/JxCE/J hybrid mice by interfering with interaction of apoSAA2 by macrophages and hence either membrane associated or intracellular degradation. PMID:9767146

  19. Revisiting the Identification of Canonical Splice Isoforms through Integration of Functional Genomics and Proteomics Evidence

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Omenn, Gilbert S.; Guan, Yuanfang

    2014-01-01

    Canonical isoforms in different databases have been defined as the most prevalent, most conserved, most expressed, longest, or the one with the clearest description of domains or post-translational modifications. In this article, we revisit these definitions of canonical isoforms based on functional genomics and proteomics evidence, focusing on mouse data. We report a novel functional relationship network-based approach for identifying the Highest Connected Isoforms (HCIs). We show that 46% of these HCIs are not the longest transcripts. In addition, this approach revealed many genes that have more than one highly connected isoforms. Averaged across 175 RNA-seq datasets covering diverse tissues and conditions, 65% of the HCIs show higher expression levels than non-highest connected isoforms (NCIs) at the transcript level. At the protein level, these HCIs highly overlap with the expressed splice variants, based on proteomic data from eight different normal tissues. These results suggest that a more confident definition of canonical isoforms can be made through integration of multiple lines of evidence, including highest connected isoforms defined by biological processes and pathways, expression prevalence at the transcript level, and relative or absolute abundance at the protein level. This integrative proteogenomics approach can successfully identify principal isoforms that are responsible for the canonical functions of genes. PMID:25265570

  20. Significantly greater expression of ER, PR, and ECAD in advanced-stage low-grade ovarian serous carcinoma as revealed by immunohistochemical analysis.

    PubMed

    Wong, Kwong-Kwok; Lu, Karen H; Malpica, Anais; Bodurka, Diane C; Shvartsman, Hyun S; Schmandt, Rosemarie E; Thornton, Angela D; Deavers, Michael T; Silva, Elvio G; Gershenson, David M

    2007-10-01

    A 2-tier system that classifies ovarian serous carcinoma (OSC) as low grade or high grade is gaining acceptance. Women with low-grade OSC generally have higher 5-year survival rates than do women with high-grade OSC. We examined the expression of various markers to further understand the molecular differences between low-grade and high-grade OSCs: the potential therapeutic targets or prognostic markers Her-2/neu, estrogen receptor, and progesterone receptor (PR); the metastasis-associated markers cyclin D1 (BCL1), E-cadherin, matrix metalloproteinase (MMP) 2, and MMP-9; and the cell proliferation-associated markers BCL1, Ki-67 antigen (Ki-67), and p53. For this immunohistochemical analysis, we used paraffin-embedded specimens from 47 patients with advanced-stage low-grade OSC and from 49 patients with advanced-stage high-grade OSC. Our results showed that low-grade tumors expressed significantly higher levels of estrogen receptor, PR, and E-cadherin than did high-grade tumors, suggesting the involvement of gonadal steroid hormones, especially in the pathogenesis of low-grade OSC; the PR positivity was also observed in the stromal component of these low-grade tumors. On the other hand, high-grade tumors trended toward increased expression of MMP-9, BCL1, p53, and Ki-67, and robust MMP-9 positivity was observed in the stromal component of these high-grade tumors. These differences may lead to the development of different therapeutic strategies for women with either the low-grade or the high-grade form of OSC.

  1. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    SciTech Connect

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    establish a link between hormonal response, proliferation, modulation of MMP activity and maintenance of basement membrane integrity that depend on a balance in the expression levels of PR-A and PR-B isoforms. Notably, concomitant increased proliferation, due to inhibition of TGF{beta}1 activation, and loss of basement membrane integrity, via increased MMP-2 activity, appear to be prerequisites for the PR-A hyperplastic phenotype.

  2. Role of Lifeguard β-isoform in the development of breast cancer

    PubMed Central

    DASTAGIR, NADJIB; LAZARIDIS, ANDREA; DASTAGIR, KHALED; REIMERS, KERSTIN; VOGT, PETER M.; BUCAN, VESNA

    2014-01-01

    In the last century there has been great progress in the treatment of breast cancer by improving drug and radiation therapy as well as surgical techniques. Despite this development, breast cancer remains a major cause of death among women in Europe and the US. The cause of breast cancer at the cellular level is still not fully understood. In the present study, we investigated the expression of the Lifeguard β-isoform in breast cancer tissues. In contrast to Lifeguard, the β-isoform has one transmembrane domain less, which is the last of seven (99 bp), and due to this we suspect that the Lifeguard β-isoform exhibits a different function. We determined the expression and function of the β-isoform of Lifeguard in breast cancer cell lines (MCF-7 and MDA-MB-231), a human breast epithelial cell line (MCF10A) and in breast tumour tissue sections. Western blotting, PCR arrays and immunofluorescence were used to investigate the expression of Lifeguard and its β-isoform. Moreover, we investigated the ability of Lifeguard β-isoform expression to inhibit apoptosis induced by Fas. Our results indicated that Lifeguard β-isoform is strongly expressed in breast tumour tissues. More notably, we demonstrated that Fas sensitivity was reduced in the MCF10A breast cells expressing the Lifeguard β-isoform. Taken together, our findings indicate the role of the Lifeguard β-isoform as an anti-apoptotic protein and provide further evidence of the potential of the Lifeguard β-isoform as a target for the development of novel therapeutic strategies. PMID:25069766

  3. Role of lifeguard β-isoform in the development of breast cancer.

    PubMed

    Dastagir, Nadjib; Lazaridis, Andrea; Dastagir, Khaled; Reimers, Kerstin; Vogt, Peter M; Bucan, Vesna

    2014-10-01

    In the last century there has been great progress in the treatment of breast cancer by improving drug and radiation therapy as well as surgical techniques. Despite this development, breast cancer remains a major cause of death among women in Europe and the US. The cause of breast cancer at the cellular level is still not fully understood. In the present study, we investigated the expression of the Lifeguard β-isoform in breast cancer tissues. In contrast to Lifeguard, the β‑isoform has one transmembrane domain less, which is the last of seven (99 bp), and due to this we suspect that the Lifeguard β-isoform exhibits a different function. We determined the expression and function of the β-isoform of Lifeguard in breast cancer cell lines (MCF-7 and MDA-MB-231), a human breast epithelial cell line (MCF10A) and in breast tumour tissue sections. Western blotting, PCR arrays and immunofluorescence were used to investigate the expression of Lifeguard and its β-isoform. Moreover, we investigated the ability of Lifeguard β-isoform expression to inhibit apoptosis induced by Fas. Our results indicated that Lifeguard β-isoform is strongly expressed in breast tumour tissues. More notably, we demonstrated that Fas sensitivity was reduced in the MCF10A breast cells expressing the Lifeguard β-isoform. Taken together, our findings indicate the role of the Lifeguard β-isoform as an anti‑apoptotic protein and provide further evidence of the potential of the Lifeguard β-isoform as a target for the development of novel therapeutic strategies.

  4. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    SciTech Connect

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera; Hofmann, Wilma A.

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been ident