Sample records for practical computational tool

  1. Primary care physicians' perspectives on computer-based health risk assessment tools for chronic diseases: a mixed methods study.

    PubMed

    Voruganti, Teja R; O'Brien, Mary Ann; Straus, Sharon E; McLaughlin, John R; Grunfeld, Eva

    2015-09-24

    Health risk assessment tools compute an individual's risk of developing a disease. Routine use of such tools by primary care physicians (PCPs) is potentially useful in chronic disease prevention. We sought physicians' awareness and perceptions of the usefulness, usability and feasibility of performing assessments with computer-based risk assessment tools in primary care settings. Focus groups and usability testing with a computer-based risk assessment tool were conducted with PCPs from both university-affiliated and community-based practices. Analysis was derived from grounded theory methodology. PCPs (n = 30) were aware of several risk assessment tools although only select tools were used routinely. The decision to use a tool depended on how use impacted practice workflow and whether the tool had credibility. Participants felt that embedding tools in the electronic medical records (EMRs) system might allow for health information from the medical record to auto-populate into the tool. User comprehension of risk could also be improved with computer-based interfaces that present risk in different formats. In this study, PCPs chose to use certain tools more regularly because of usability and credibility. Despite there being differences in the particular tools a clinical practice used, there was general appreciation for the usefulness of tools for different clinical situations. Participants characterised particular features of an ideal tool, feeling strongly that embedding risk assessment tools in the EMR would maximise accessibility and use of the tool for chronic disease management. However, appropriate practice workflow integration and features that facilitate patient understanding at point-of-care are also essential.

  2. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    ERIC Educational Resources Information Center

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  3. DEVELOPMENT AND USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOLS FOR POLLUTION PREVENTION

    EPA Science Inventory

    The use of Computer-Aided Process Engineering (CAPE) and process simulation tools has become established industry practice to predict simulation software, new opportunities are available for the creation of a wide range of ancillary tools that can be used from within multiple sim...

  4. Reading and Computers: Issues for Theory and Practice. Computers and Education Series.

    ERIC Educational Resources Information Center

    Reinking, David, Ed.

    Embodying two themes--that the computer can become an even more exciting instructional tool than it is today, and that the research necessary for developing the potential of this tool is already underway, this book explores the theoretical, research, and instructional issues concerning computers and reading. The titles of the essays and their…

  5. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  6. A Multiple-Sessions Interactive Computer-Based Learning Tool for Ability Cultivation in Circuit Simulation

    ERIC Educational Resources Information Center

    Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.

    2011-01-01

    An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…

  7. A nested virtualization tool for information technology practical education.

    PubMed

    Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R

    2016-01-01

    A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.

  8. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  9. Better informed in clinical practice - a brief overview of dental informatics.

    PubMed

    Reynolds, P A; Harper, J; Dunne, S

    2008-03-22

    Uptake of dental informatics has been hampered by technical and user issues. Innovative systems have been developed, but usability issues have affected many. Advances in technology and artificial intelligence are now producing clinically useful systems, although issues still remain with adapting computer interfaces to the dental practice working environment. A dental electronic health record has become a priority in many countries, including the UK. However, experience shows that any dental electronic health record (EHR) system cannot be subordinate to, or a subset of, a medical record. Such a future dental EHR is likely to incorporate integrated care pathways. Future best dental practice will increasingly depend on computer-based support tools, although disagreement remains about the effectiveness of current support tools. Over the longer term, future dental informatics tools will incorporate dynamic, online evidence-based medicine (EBM) tools, and promise more adaptive, patient-focused and efficient dental care with educational advantages in training.

  10. Co-"Lab"oration: A New Paradigm for Building a Management Information Systems Course

    ERIC Educational Resources Information Center

    Breimer, Eric; Cotler, Jami; Yoder, Robert

    2010-01-01

    We propose a new paradigm for building a Management Information Systems course that focuses on laboratory activities developed collaboratively using Computer-Mediated Communication and Collaboration tools. A highlight of our paradigm is the "practice what you preach" concept where the computer communication tools and collaboration…

  11. Supporting Scientific Modeling Practices in Atmospheric Sciences: Intended and Actual Affordances of a Computer-Based Modeling Tool

    ERIC Educational Resources Information Center

    Wu, Pai-Hsing; Wu, Hsin-Kai; Kuo, Che-Yu; Hsu, Ying-Shao

    2015-01-01

    Computer-based learning tools include design features to enhance learning but learners may not always perceive the existence of these features and use them in desirable ways. There might be a gap between what the tool features are designed to offer (intended affordance) and what they are actually used (actual affordance). This study thus aims at…

  12. Computer-facilitated rapid HIV testing in emergency care settings: provider and patient usability and acceptability.

    PubMed

    Spielberg, Freya; Kurth, Ann E; Severynen, Anneleen; Hsieh, Yu-Hsiang; Moring-Parris, Daniel; Mackenzie, Sara; Rothman, Richard

    2011-06-01

    Providers in emergency care settings (ECSs) often face barriers to expanded HIV testing. We undertook formative research to understand the potential utility of a computer tool, "CARE," to facilitate rapid HIV testing in ECSs. Computer tool usability and acceptability were assessed among 35 adult patients, and provider focus groups were held, in two ECSs in Washington State and Maryland. The computer tool was usable by patients of varying computer literacy. Patients appreciated the tool's privacy and lack of judgment and their ability to reflect on HIV risks and create risk reduction plans. Staff voiced concerns regarding ECS-based HIV testing generally, including resources for follow-up of newly diagnosed people. Computer-delivered HIV testing support was acceptable and usable among low-literacy populations in two ECSs. Such tools may help circumvent some practical barriers associated with routine HIV testing in busy settings though linkages to care will still be needed.

  13. Computer Mathematical Tools: Practical Experience of Learning to Use Them

    ERIC Educational Resources Information Center

    Semenikhina, Elena; Drushlyak, Marina

    2014-01-01

    The article contains general information about the use of specialized mathematics software in the preparation of math teachers. The authors indicate the reasons to study the mathematics software. In particular, they analyze the possibility of presenting basic mathematical courses using mathematical computer tools from both a teacher and a student,…

  14. Practical Tools for Content Development: Pre-Service Teachers' Experiences and Perceptions

    ERIC Educational Resources Information Center

    Yurtseven Avci, Zeynep; Eren, Esra; Seckin Kapucu, Munise

    2016-01-01

    This study adopts phenomenology approach as the research design method to investigate pre-service teachers' experiences and perceptions on using practical tools for content development. The participants are twenty-four pre-service teachers who were taking Computer II course during 2013-2014 spring semester at a public university in Turkey. During…

  15. GenomicTools: a computational platform for developing high-throughput analytics in genomics.

    PubMed

    Tsirigos, Aristotelis; Haiminen, Niina; Bilal, Erhan; Utro, Filippo

    2012-01-15

    Recent advances in sequencing technology have resulted in the dramatic increase of sequencing data, which, in turn, requires efficient management of computational resources, such as computing time, memory requirements as well as prototyping of computational pipelines. We present GenomicTools, a flexible computational platform, comprising both a command-line set of tools and a C++ API, for the analysis and manipulation of high-throughput sequencing data such as DNA-seq, RNA-seq, ChIP-seq and MethylC-seq. GenomicTools implements a variety of mathematical operations between sets of genomic regions thereby enabling the prototyping of computational pipelines that can address a wide spectrum of tasks ranging from pre-processing and quality control to meta-analyses. Additionally, the GenomicTools platform is designed to analyze large datasets of any size by minimizing memory requirements. In practical applications, where comparable, GenomicTools outperforms existing tools in terms of both time and memory usage. The GenomicTools platform (version 2.0.0) was implemented in C++. The source code, documentation, user manual, example datasets and scripts are available online at http://code.google.com/p/ibm-cbc-genomic-tools.

  16. Computer modeling in the practice of acoustical consulting: An evolving variety of uses from marketing and diagnosis through design to eventually research

    NASA Astrophysics Data System (ADS)

    Madaras, Gary S.

    2002-05-01

    The use of computer modeling as a marketing, diagnosis, design, and research tool in the practice of acoustical consulting is discussed. From the time it is obtained, the software can be used as an effective marketing tool. It is not until the software basics are learned and some amount of testing and verification occurs that the software can be used as a tool for diagnosing the acoustics of existing rooms. A greater understanding of the output types and formats as well as experience in interpreting the results is required before the software can be used as an efficient design tool. Lastly, it is only after repetitive use as a design tool that the software can be used as a cost-effective means of conducting research in practice. The discussion is supplemented with specific examples of actual projects provided by various consultants within multiple firms. Focus is placed on the use of CATT-Acoustic software and predicting the room acoustics of large performing arts halls as well as other public assembly spaces.

  17. Social Software and Academic Practice: Postgraduate Students as Co-Designers of Web 2.0 Tools

    ERIC Educational Resources Information Center

    Carmichael, Patrick; Burchmore, Helen

    2010-01-01

    In order to develop potentially transformative Web 2.0 tools in higher education, the complexity of existing academic practices, including current patterns of technology use, must be recognised. This paper describes how a series of participatory design activities allowed postgraduate students in education, social sciences and computer sciences to…

  18. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud

    PubMed Central

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966

  19. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.

    PubMed

    Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew

    2015-01-01

    Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.

  20. Computer Technology in California K-12 Schools: Uses, Best Practices, and Policy Implications.

    ERIC Educational Resources Information Center

    Umbach, Kenneth W.

    Computers and Internet access are becoming increasingly frequent tools and resources in California's K-12 schools. Discussions with teachers and other education personnel and a review of published documents and other sources show the range of uses found in California classrooms, suggest what are the best practices with respect to computer…

  1. Assess/Mitigate Risk through the Use of Computer-Aided Software Engineering (CASE) Tools

    NASA Technical Reports Server (NTRS)

    Aguilar, Michael L.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) was requested to perform an independent assessment of the mitigation of the Constellation Program (CxP) Risk 4421 through the use of computer-aided software engineering (CASE) tools. With the cancellation of the CxP, the assessment goals were modified to capture lessons learned and best practices in the use of CASE tools. The assessment goal was to prepare the next program for the use of these CASE tools. The outcome of the assessment is contained in this document.

  2. Emerging Approach of Natural Language Processing in Opinion Mining: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Natural language processing (NLP) is a subfield of artificial intelligence and computational linguistics. It studies the problems of automated generation and understanding of natural human languages. This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment. We propose some ideas for using the computer as a practical tool for learning foreign language where the most of courseware is generated automatically. We then describe how to build Computer Based Learning tools, discuss its effectiveness, and conclude with some possibilities using on-line resources.

  3. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    PubMed

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  4. Using Business Simulations as Authentic Assessment Tools

    ERIC Educational Resources Information Center

    Neely, Pat; Tucker, Jan

    2012-01-01

    New modalities for assessing student learning exist as a result of advances in computer technology. Conventional measurement practices have been transformed into computer based testing. Although current testing replicates assessment processes used in college classrooms, a greater opportunity exists to use computer technology to create authentic…

  5. The Impact of Machine Translation and Computer-aided Translation on Translators

    NASA Astrophysics Data System (ADS)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  6. A Study To Increase Computer Applications in Social Work Management.

    ERIC Educational Resources Information Center

    Lucero, John A.

    The purpose of this study was to address the use of computers in social work practice and to survey the field for tools, concepts, and trends that could assist social workers in their practice. In addition to a review of the relevant literature, information was requested from the Social Work Service and Ambulatory Care Database Section at Walter…

  7. Use of Tablet Computers to Promote Physical Therapy Students' Engagement in Knowledge Translation During Clinical Experiences.

    PubMed

    Tilson, Julie K; Loeb, Kathryn; Barbosa, Sabrina; Jiang, Fei; Lee, Karin T

    2016-04-01

    Physical therapists strive to integrate research into daily practice. The tablet computer is a potentially transformational tool for accessing information within the clinical practice environment. The purpose of this study was to measure and describe patterns of tablet computer use among physical therapy students during clinical rotation experiences. Doctor of physical therapy students (n = 13 users) tracked their use of tablet computers (iPad), loaded with commercially available apps, during 16 clinical experiences (6-16 weeks in duration). The tablets were used on 70% of 691 clinic days, averaging 1.3 uses per day. Information seeking represented 48% of uses; 33% of those were foreground searches for research articles and syntheses and 66% were for background medical information. Other common uses included patient education (19%), medical record documentation (13%), and professional communication (9%). The most frequently used app was Safari, the preloaded web browser (representing 281 [36.5%] incidents of use). Users accessed 56 total apps to support clinical practice. Physical therapy students successfully integrated use of a tablet computer into their clinical experiences including regular activities of information seeking. Our findings suggest that the tablet computer represents a potentially transformational tool for promoting knowledge translation in the clinical practice environment.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A127).

  8. Computers as Cognitive Tools.

    ERIC Educational Resources Information Center

    Lajoie, Susanne P., Ed.; Derry, Sharon J., Ed.

    This book provides exemplars of the types of computer-based learning environments represented by the theoretical camps within the field and the practical applications of the theories. The contributors discuss a variety of computer applications to learning, ranging from school-related topics such as geometry, algebra, biology, history, physics, and…

  9. An Instructional Feedback Technique for Teaching Project Management Tools Aligned with PMBOK

    ERIC Educational Resources Information Center

    Gonçalves, Rafael Queiroz; von Wangenheim, Christiane Gresse; Hauck, Jean Carlo Rossa; Petri, Giani

    2017-01-01

    The management of contemporary software projects is unfeasible without the support of a Project Management (PM) tool. In order to enable the adoption of PM tools in practice, teaching its usage is important as part of computer education. Aiming at teaching PM tools, several approaches have been proposed, such as the development of educational PM…

  10. Computing organic stereoselectivity - from concepts to quantitative calculations and predictions.

    PubMed

    Peng, Qian; Duarte, Fernanda; Paton, Robert S

    2016-11-07

    Advances in theory and processing power have established computation as a valuable interpretative and predictive tool in the discovery of new asymmetric catalysts. This tutorial review outlines the theory and practice of modeling stereoselective reactions. Recent examples illustrate how an understanding of the fundamental principles and the application of state-of-the-art computational methods may be used to gain mechanistic insight into organic and organometallic reactions. We highlight the emerging potential of this computational tool-box in providing meaningful predictions for the rational design of asymmetric catalysts. We present an accessible account of the field to encourage future synergy between computation and experiment.

  11. Handheld Computer Use in U.S. Family Practice Residency Programs

    PubMed Central

    Criswell, Dan F.; Parchman, Michael L.

    2002-01-01

    Objective: The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. Study Design: In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Measurements: Data and patterns of the use and non-use of handheld computers were identified. Results: Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was $461.58. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Conclusions: Handheld computers are widely used in family practice residency programs in the United States. Although handheld computers were designed as electronic organizers, in family practice residencies they are used as medication reference tools, electronic textbooks, and clinical computational programs and to track activities that were previously associated with desktop database applications. PMID:11751806

  12. Handheld computer use in U.S. family practice residency programs.

    PubMed

    Criswell, Dan F; Parchman, Michael L

    2002-01-01

    The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Data and patterns of the use and non-use of handheld computers were identified. Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was 461.58 dollars. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Handheld computers are widely used in family practice residency programs in the United States. Although handheld computers were designed as electronic organizers, in family practice residencies they are used as medication reference tools, electronic textbooks, and clinical computational programs and to track activities that were previously associated with desktop database applications.

  13. Imagining Instructions: Mental Practice in Highly Cognitive Domains

    ERIC Educational Resources Information Center

    Ginns, Paul

    2005-01-01

    This article reviews recent empirical investigations of imagination or mental practice in highly cognitive, realistic educational domains such as mathematics or learning computer applications. While mental practice has been a standard tool in training schedules devised by sports psychologists for several decades, with its efficacy studied…

  14. Introduction to the Use of Computers in Libraries: A Textbook for the Non-Technical Student.

    ERIC Educational Resources Information Center

    Ogg, Harold C.

    This book outlines computing and information science from the perspective of what librarians and educators need to do with computer technology and how it can help them perform their jobs more efficiently. It provides practical explanations and library applications for non-technical users of desktop computers and other library automation tools.…

  15. Evaluation of a Computer-Based Patient Education and Motivation Tool on Knowledge, Attitudes and Practice towards Influenza Vaccination

    ERIC Educational Resources Information Center

    Joshi, Ashish; Lichenstein, Richard; King, James; Arora, Mohit; Khan, Salwa

    2009-01-01

    The objective of this pilot study was to assess and describe changes in knowledge, attitudes and practice regarding influenza vaccination in an inner city setting using an interactive computer-based educational program. A convenience sample of ninety participants whose children were in the age group of 6 months to 5 years was enrolled in this…

  16. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences

    PubMed Central

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant’s platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses. PMID:26752627

  17. Web 2.0 in Computer-Assisted Language Learning: A Research Synthesis and Implications for Instructional Design and Educational Practice

    ERIC Educational Resources Information Center

    Parmaxi, Antigoni; Zaphiris, Panayiotis

    2017-01-01

    This study explores the research development pertaining to the use of Web 2.0 technologies in the field of Computer-Assisted Language Learning (CALL). Published research manuscripts related to the use of Web 2.0 tools in CALL have been explored, and the following research foci have been determined: (1) Web 2.0 tools that dominate second/foreign…

  18. Expert Systems: Tutors, Tools, and Tutees.

    ERIC Educational Resources Information Center

    Lippert, Renate C.

    1989-01-01

    Discusses the current status, research, and practical implications of artificial intelligence and expert systems in education. Topics discussed include computer-assisted instruction; intelligent computer-assisted instruction; intelligent tutoring systems; instructional strategies involving the creation of knowledge bases; decision aids;…

  19. The Application of Learning Styles to Computer Assisted Instruction in Nursing Education

    DTIC Science & Technology

    1991-01-01

    nursing profession is to integrate computer technology into the learning process at all levels of nursing education . In order to successfully accomplish... learning styles. * Computer technology needs to be integrated into nursing education , research and practice. * * An evaluation tool needs to be...Computer-assisted video instruction Learning Styles and CAI 71 References Aiken, E. (1990). Continuing nursing education in computer technology : A regional

  20. Use of Tablet Computers to Promote Physical Therapy Students' Engagement in Knowledge Translation During Clinical Experiences

    PubMed Central

    Loeb, Kathryn; Barbosa, Sabrina; Jiang, Fei; Lee, Karin T.

    2016-01-01

    Background and Purpose: Physical therapists strive to integrate research into daily practice. The tablet computer is a potentially transformational tool for accessing information within the clinical practice environment. The purpose of this study was to measure and describe patterns of tablet computer use among physical therapy students during clinical rotation experiences. Methods: Doctor of physical therapy students (n = 13 users) tracked their use of tablet computers (iPad), loaded with commercially available apps, during 16 clinical experiences (6-16 weeks in duration). Results: The tablets were used on 70% of 691 clinic days, averaging 1.3 uses per day. Information seeking represented 48% of uses; 33% of those were foreground searches for research articles and syntheses and 66% were for background medical information. Other common uses included patient education (19%), medical record documentation (13%), and professional communication (9%). The most frequently used app was Safari, the preloaded web browser (representing 281 [36.5%] incidents of use). Users accessed 56 total apps to support clinical practice. Discussion and Conclusions: Physical therapy students successfully integrated use of a tablet computer into their clinical experiences including regular activities of information seeking. Our findings suggest that the tablet computer represents a potentially transformational tool for promoting knowledge translation in the clinical practice environment. Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A127). PMID:26945431

  1. Construction, Categorization, and Consensus: Student Generated Computational Artifacts as a Context for Disciplinary Reflection

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle Hoda

    2014-01-01

    There are increasing calls to prepare K-12 students to use computational tools and principles when exploring scientific or mathematical phenomena. The purpose of this paper is to explore whether and how constructionist computer-supported collaborative environments can explicitly engage students in this practice. The Categorizer is a…

  2. Computers in Life Science Education. Volume 5, 1988.

    ERIC Educational Resources Information Center

    Computers in Life Science Education, 1988

    1988-01-01

    Designed to serve as a means of communication among life science educators who anticipate or are currently using microcomputers as an educational tool, this volume of newsletters provides background information and practical suggestions on computer use. Over 80 articles are included. Topic areas include: (1) using a personal computer in a plant…

  3. Computer Aided Reading Diagnosis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    Computer technologies are having an ever-increasing influence on educational research and practice in Russia and the United States. In Russia, a number of recent papers have focused on the application of the computer as a teaching tool and on its influence in instructional organization and planning. In the United States, there is a great deal of…

  4. A JAVA-based multimedia tool for clinical practice guidelines.

    PubMed

    Maojo, V; Herrero, C; Valenzuela, F; Crespo, J; Lazaro, P; Pazos, A

    1997-01-01

    We have developed a specific language for the representation of Clinical Practice Guidelines (CPGs) and Windows C++ and platform independent JAVA applications for multimedia presentation and edition of electronically stored CPGs. This approach facilitates translation of guidelines and protocols from paper to computer-based flowchart representations. Users can navigate through the algorithm with a friendly user interface and access related multimedia information within the context of each clinical problem. CPGs can be stored in a computer server and distributed over the World Wide Web, facilitating dissemination, local adaptation, and use as a reference element in medical care. We have chosen the Agency for Health Care and Policy Research's heart failure guideline to demonstrate the capabilities of our tool.

  5. Value of wireless personal digital assistants for practice: perceptions of advanced practice nurses.

    PubMed

    Garrett, Bernard; Klein, Gerri

    2008-08-01

    The aims were to explore advanced practice nurses' perceptions on wireless Personal Digital Assistant technologies, to establish the type and range of tools that would be useful to support their practice and to identify any requirements and limitations that may impact the implementation of wireless Personal Digital Assistants in practice. The wireless Personal Digital Assistant is becoming established as a hand-held computing tool for healthcare professionals. The reflections of advanced practice nurses' about the value of wireless Personal Digital Assistants and its potential to contribute to improved patient care has not been investigated. A qualitative interpretivist design was used to explore advanced practice nurses' perceptions on the value of wireless Personal Digital Assistant technologies to support their practice. The data were collected using survey questionnaires and individual and focus group interviews with nurse practitioners, clinical nurse specialists and information technology managers based in British Columbia, Canada. An open-coding content analysis was performed using qualitative data analysis software. Wireless Personal Digital Assistant's use supports the principles of pervasivity and is a technology rapidly being adopted by advanced practice nurses. Some nurses indicated a reluctance to integrate wireless Personal Digital Assistant technologies into their practices because of the cost and the short technological life cycle of these devices. Many of the barriers which precluded the use of wireless networks within facilities are being removed. Nurses demonstrated a complex understanding of wireless Personal Digital Assistant technologies and gave good rationales for its integration in their practice. Nurses identified improved client care as the major benefit of this technology in practice and the type and range of tools they identified included clinical reference tools such as drug and diagnostic/laboratory reference applications and wireless communications. Nurses in this study support integrating wireless mobile computing technologies into their practice to improve client care.

  6. Developing Tools for Research on School Leadership Development: An Illustrative Case of a Computer Simulation

    ERIC Educational Resources Information Center

    Showanasai, Parinya; Lu, Jiafang; Hallinger, Philip

    2013-01-01

    Purpose: The extant literature on school leadership development is dominated by conceptual analysis, descriptive studies of current practice, critiques of current practice, and prescriptions for better ways to approach practice. Relatively few studies have examined impact of leadership development using experimental methods, among which even fewer…

  7. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  8. Desktop microsimulation: a tool to improve efficiency in the medical office practice.

    PubMed

    Montgomery, James B; Linville, Beth A; Slonim, Anthony D

    2013-01-01

    Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.

  9. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into computational science and engineering codes. Finally, we are partnering with the lead PTP developers at IBM, to ensure we are as effective as possible within the Eclipse community development. We are also conducting training and outreach to our user community, including conference BOF sessions, monthly user calls, and an annual user meeting, so that we can best inform the improvements we make to Eclipse PTP. With these activities we endeavor to encourage use of modern software engineering practices, as enabled through the Eclipse IDE, with computational science and engineering applications. These practices include proper use of source code repositories, tracking and rectifying issues, measuring and monitoring code performance changes against both optimizations as well as ever-changing software stacks and configurations on HPC systems, as well as ultimately encouraging development and maintenance of testing suites -- things that have become commonplace in many software endeavors, but have lagged in the development of science applications. We view that the challenge with the increased complexity of both HPC systems and science applications demands the use of better software engineering methods, preferably enabled by modern tools such as Eclipse PTP, to help the computational science community thrive as we evolve the HPC landscape.

  10. Computer Assisted Chronic Disease Management: Does It Work? A Pilot Study Using Mixed Methods

    PubMed Central

    Jones, Kay M.; Biezen, Ruby; Piterman, Leon

    2013-01-01

    Background. Key factors for the effective chronic disease management (CDM) include the availability of practical and effective computer tools and continuing professional development/education. This study tested the effectiveness of a computer assisted chronic disease management tool, a broadband-based service known as cdmNet in increasing the development of care plans for patients with chronic disease in general practice. Methodology. Mixed methods are the breakthrough series methodology (workshops and plan-do-study-act cycles) and semistructured interviews. Results. Throughout the intervention period a pattern emerged suggesting GPs use of cdmNet initially increased, then plateaued practice nurses' and practice managers' roles expanded as they became more involved in using cdmNet. Seven main messages emerged from the GP interviews. Discussion. The overall use of cdmNet by participating GPs varied from “no change” to “significant change and developing many the GPMPs (general practice management plans) using cdmNet.” The variation may be due to several factors, not the least, allowing GPs adequate time to familiarise themselves with the software and recognising the benefit of the team approach. Conclusion. The breakthrough series methodology facilitated upskilling GPs' management of patients diagnosed with a chronic disease and learning how to use the broadband-based service cdmNet. PMID:24959576

  11. [Promoting directives of the Quality Law of the Spanish National Health System: Computer-interpretable clinical practice guidelines].

    PubMed

    González-Ferrer, Arturo; Valcárcel, María Ángel

    2018-04-01

    The Cohesion and Quality Act of the National Health System promotes the use of new technologies to make it possible for health professionals put the scientific evidence into practice. In order to do this, there are technological tools, known as of computer-interpretable guidelines, which can help achieve this goal from an innovation perspective. They can be adopted using an iterative process, having a great initial potential as an educational tool, of quality and safety of the patient, in the decision making and, optionally, can be integrated with the electronic medical history, once they are rigorously validated. This article presents updates on these tools, reviews international projects, and personal experiences in which they have demonstrated their value, and highlights the advantages, risks, and limitations they present from a clinical point of view. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  13. Practice Evaluation Strategies Among Social Workers: Why an Evidence-Informed Dual-Process Theory Still Matters.

    PubMed

    Davis, Thomas D

    2017-01-01

    Practice evaluation strategies range in style from the formal-analytic tools of single-subject designs, rapid assessment instruments, algorithmic steps in evidence-informed practice, and computer software applications, to the informal-interactive tools of clinical supervision, consultation with colleagues, use of client feedback, and clinical experience. The purpose of this article is to provide practice researchers in social work with an evidence-informed theory that is capable of explaining both how and why social workers use practice evaluation strategies to self-monitor the effectiveness of their interventions in terms of client change. The author delineates the theoretical contours and consequences of what is called dual-process theory. Drawing on evidence-informed advances in the cognitive and social neurosciences, the author identifies among everyday social workers a theoretically stable, informal-interactive tool preference that is a cognitively necessary, sufficient, and stand-alone preference that requires neither the supplementation nor balance of formal-analytic tools. The author's delineation of dual-process theory represents a theoretical contribution in the century-old attempt to understand how and why social workers evaluate their practice the way they do.

  14. Network-Centric Data Mining for Medical Applications

    ERIC Educational Resources Information Center

    Davis, Darcy A.

    2012-01-01

    Faced with unsustainable costs and enormous amounts of under-utilized data, health care needs more efficient practices, research, and tools to harness the benefits of data. These methods create a feedback loop where computational tools guide and facilitate research, leading to improved biological knowledge and clinical standards, which will in…

  15. Computational thinking in life science education.

    PubMed

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  16. Computer Network Security: Best Practices for Alberta School Jurisdictions.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This paper provides a snapshot of the computer network security industry and addresses specific issues related to network security in public education. The following topics are covered: (1) security policy, including reasons for establishing a policy, risk assessment, areas to consider, audit tools; (2) workstations, including physical security,…

  17. Computer-Assisted Learning in Elementary Reading: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Shannon, Lisa Cassidy; Styers, Mary Koenig; Wilkerson, Stephanie Baird; Peery, Elizabeth

    2015-01-01

    This study evaluated the efficacy of Accelerated Reader, a computer-based learning program, at improving student reading. Accelerated Reader is a progress-monitoring, assessment, and practice tool that supports classroom instruction and guides independent reading. Researchers used a randomized controlled trial to evaluate the program with 344…

  18. Intelligent Instruction by Computer: Theory and Practice.

    ERIC Educational Resources Information Center

    Farr, Marshall J., Ed.; Psotka, Joseph, Ed.

    The essays collected in this volume are concerned with the field of computer-based intelligent instruction. The papers are organized into four groups that address the following topics: particular theoretical approaches (3 titles); the development and improvement of tools and environments (3 titles); the power of well-engineered implementations and…

  19. Developing Simulations in Multi-User Virtual Environments to Enhance Healthcare Education

    ERIC Educational Resources Information Center

    Rogers, Luke

    2011-01-01

    Computer-based clinical simulations are a powerful teaching and learning tool because of their ability to expand healthcare students' clinical experience by providing practice-based learning. Despite the benefits of traditional computer-based clinical simulations, there are significant issues that arise when incorporating them into a flexible,…

  20. User-Driven Sampling Strategies in Image Exploitation

    DOE PAGES

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  1. User-driven sampling strategies in image exploitation

    NASA Astrophysics Data System (ADS)

    Harvey, Neal; Porter, Reid

    2013-12-01

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.

  2. Assessing Scientific Practices Using Machine-Learning Methods: How Closely Do They Match Clinical Interview Performance?

    NASA Astrophysics Data System (ADS)

    Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.

    2014-02-01

    The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.

  3. Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice

    NASA Astrophysics Data System (ADS)

    Geyer, Florian

    This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.

  4. Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures.

    PubMed

    Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena

    2018-01-01

    The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.

  5. Challenges in Reproducibility, Replicability, and Comparability of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures

    PubMed Central

    Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena

    2018-01-01

    The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results. PMID:29765315

  6. Teaching Practices in Principles of Economics Courses at Michigan Community Colleges.

    ERIC Educational Resources Information Center

    Utech, Claudia J.; Mosti, Patricia A.

    1995-01-01

    Presents findings from a study of teaching practices in Principles of Economics courses at Michigan's 29 community colleges. Describes course prerequisites; textbooks used; lecture supplements; and the use of experiential learning tools, such as computers and field trips. Presents three recommendations for improving student preparation in…

  7. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  8. On the design of computer-based models for integrated environmental science.

    PubMed

    McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick

    2005-06-01

    The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.

  9. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  10. Development of the Assessment of Burden of COPD tool: an integrated tool to measure the burden of COPD.

    PubMed

    Slok, Annerika H M; in 't Veen, Johannes C C M; Chavannes, Niels H; van der Molen, Thys; Rutten-van Mölken, Maureen P M H; Kerstjens, Huib A M; Salomé, Philippe L; Holverda, Sebastiaan; Dekhuijzen, P N Richard; Schuiten, Denise; Asijee, Guus M; van Schayck, Onno C P

    2014-07-10

    In deciding on the treatment plan for patients with chronic obstructive pulmonary disease (COPD), the burden of COPD as experienced by patients should be the core focus. It is therefore important for daily practice to develop a tool that can both assess the burden of COPD and facilitate communication with patients in clinical practice. This paper describes the development of an integrated tool to assess the burden of COPD in daily practice. A definition of the burden of COPD was formulated by a Dutch expert team. Interviews showed that patients and health-care providers agreed on this definition. We found no existing instruments that fully measured burden of disease according to this definition. However, the Clinical COPD Questionnaire meets most requirements, and was therefore used and adapted. The adapted questionnaire is called the Assessment of Burden of COPD (ABC) scale. In addition, the ABC tool was developed, of which the ABC scale is the core part. The ABC tool is a computer program with an algorithm that visualises outcomes and provides treatment advice. The next step in the development of the tool is to test the validity and effectiveness of both the ABC scale and tool in daily practice.

  11. Development of the Assessment of Burden of COPD tool: an integrated tool to measure the burden of COPD

    PubMed Central

    Slok, Annerika H M; in ’t Veen, Johannes C C M; Chavannes, Niels H; van der Molen, Thys; Rutten-van Mölken, Maureen P M H; Kerstjens, Huib A M; Salomé, Philippe L; Holverda, Sebastiaan; Dekhuijzen, PN Richard; Schuiten, Denise; Asijee, Guus M; van Schayck, Onno C P

    2014-01-01

    In deciding on the treatment plan for patients with chronic obstructive pulmonary disease (COPD), the burden of COPD as experienced by patients should be the core focus. It is therefore important for daily practice to develop a tool that can both assess the burden of COPD and facilitate communication with patients in clinical practice. This paper describes the development of an integrated tool to assess the burden of COPD in daily practice. A definition of the burden of COPD was formulated by a Dutch expert team. Interviews showed that patients and health-care providers agreed on this definition. We found no existing instruments that fully measured burden of disease according to this definition. However, the Clinical COPD Questionnaire meets most requirements, and was therefore used and adapted. The adapted questionnaire is called the Assessment of Burden of COPD (ABC) scale. In addition, the ABC tool was developed, of which the ABC scale is the core part. The ABC tool is a computer program with an algorithm that visualises outcomes and provides treatment advice. The next step in the development of the tool is to test the validity and effectiveness of both the ABC scale and tool in daily practice. PMID:25010353

  12. ULg Spectra: An Interactive Software Tool to Improve Undergraduate Students' Structural Analysis Skills

    ERIC Educational Resources Information Center

    Agnello, Armelinda; Carre, Cyril; Billen, Roland; Leyh, Bernard; De Pauw, Edwin; Damblon, Christian

    2018-01-01

    The analysis of spectroscopic data to solve chemical structures requires practical skills and drills. In this context, we have developed ULg Spectra, a computer-based tool designed to improve the ability of learners to perform complex reasoning. The identification of organic chemical compounds involves gathering and interpreting complementary…

  13. A New Internet Tool for Automatic Evaluation in Control Systems and Programming

    ERIC Educational Resources Information Center

    Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.

    2012-01-01

    In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…

  14. Advanced Tools for Smartphone-Based Experiments: Phyphox

    ERIC Educational Resources Information Center

    Staacks, S.; Hütz, S.; Stampfer, C.; Heinke, H.

    2018-01-01

    The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called…

  15. Extending the Human Mind: Computers in Education. Program and Proceedings of the Annual Summer Computer Conference (6th, Eugene, Oregon, August 6-9, 1987).

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Center for Advanced Technology in Education.

    Presented in this program and proceedings are the following 27 papers describing a variety of educational uses of computers: "Learner Based Tools for Special Populations" (Barbara Allen); "Micros and Mainframes: Practical Administrative Applications at the Building Level" (Jeannine Bertrand and Eric Schiff); "Logo and Logowriter in the Curriculum"…

  16. Applications of complex systems theory in nursing education, research, and practice.

    PubMed

    Clancy, Thomas R; Effken, Judith A; Pesut, Daniel

    2008-01-01

    The clinical and administrative processes in today's healthcare environment are becoming increasingly complex. Multiple providers, new technology, competition, and the growing ubiquity of information all contribute to the notion of health care as a complex system. A complex system (CS) is characterized by a highly connected network of entities (e.g., physical objects, people or groups of people) from which higher order behavior emerges. Research in the transdisciplinary field of CS has focused on the use of computational modeling and simulation as a methodology for analyzing CS behavior. The creation of virtual worlds through computer simulation allows researchers to analyze multiple variables simultaneously and begin to understand behaviors that are common regardless of the discipline. The application of CS principles, mediated through computer simulation, informs nursing practice of the benefits and drawbacks of new procedures, protocols and practices before having to actually implement them. The inclusion of new computational tools and their applications in nursing education is also gaining attention. For example, education in CSs and applied computational applications has been endorsed by The Institute of Medicine, the American Organization of Nurse Executives and the American Association of Colleges of Nursing as essential training of nurse leaders. The purpose of this article is to review current research literature regarding CS science within the context of expert practice and implications for the education of nurse leadership roles. The article focuses on 3 broad areas: CS defined, literature review and exemplars from CS research and applications of CS theory in nursing leadership education. The article also highlights the key role nursing informaticists play in integrating emerging computational tools in the analysis of complex nursing systems.

  17. [Computing in medical practice].

    PubMed

    Wechsler, Rudolf; Anção, Meide S; de Campos, Carlos José Reis; Sigulem, Daniel

    2003-05-01

    Currently, information technology is part of several aspects of our daily life. The objective of this paper is to analyze and discuss the use of information technology in both medical education and/or medical practice. Information was gathered through non-systematic bibliographic review, including articles, official regulations, book chapters and annals. Direct search and search of electronic databanks in Medline and Lilacs databases were also performed. This paper was structured in topics. First, there is a discussion on the electronic medical record. The following aspects are presented: history, functions, costs, benefits, ethical and legal issues, and positive and negative characteristics. Medical decision-support systems are also evaluated in view of the huge amount of information produced every year regarding healthcare. The impact of the Internet on the production and diffusion of knowledge is also analyzed. Telemedicine is assessed, since it presents new challenges to medical practice, and raises important ethical issues such as "virtual medical consultation." Finally, a practical experience of modernization of a pediatric outpatient center by the introduction of computers and telecommunication tools is described. Medical computing offers tools and instruments that support the administrative organization of medical visits, gather, store and process patient's data, generate diagnoses, provide therapeutical advice and access to information in order to improve medical knowledge and to make it available whenever and wherever adequate decision-making is required.

  18. State of the art of sonic boom modeling

    NASA Astrophysics Data System (ADS)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  19. State of the art of sonic boom modeling.

    PubMed

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  20. The challenge of raising ethical awareness: a case-based aiding system for use by computing and ICT students.

    PubMed

    Sherratt, Don; Rogerson, Simon; Ben Fairweather, N

    2005-04-01

    Students, the future Information and Communication Technology (ICT) professionals, are often perceived to have little understanding of the ethical issues associated with the use of ICTs. There is a growing recognition that the moral issues associated with the use of the new technologies should be brought to the attention of students. Furthermore, they should be encouraged to explore and think more deeply about the social and legal consequences of the use of ICTs. This paper describes the development of a tool designed to raise students' awareness of the social impact of ICTs. The tool offers guidance to students undertaking computing and computer-related courses when considering the social, legal and professional implications of the actions of participants in situations of ethical conflict. However, unlike previous work in this field, this tool is not based on an artificial intelligence paradigm. Aspects of the theoretical basis for the design of the tool and the tool's practical development are discussed. Preliminary results from the testing of the tool are also discussed.

  1. Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).

    ERIC Educational Resources Information Center

    Seider, Warren D.

    1988-01-01

    Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)

  2. Tools and Trends in Self-Paced Language Instruction

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2007-01-01

    Ever since the PLATO system of the 1960's, CALL (computer assisted language learning) has had a major focus on providing self-paced, auto-correcting exercises for language learners to practice their skills and improve their knowledge of discrete areas of language learning. The computer has been recognized from the beginning as a patient and…

  3. Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation

    ERIC Educational Resources Information Center

    Sise, Omer; Manura, David J.; Dogan, Mevlut

    2008-01-01

    The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…

  4. Integrating a Music Curriculum into an External Degree Program Using Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Brinkley, Robert C.

    This paper outlines the method and theoretical basis for establishing and implementing an independent study music curriculum. The curriculum combines practical and theoretical paradigms and leads to an external degree. The computer, in direct interaction with the student, is the primary instructional tool, and the teacher is involved in indirect…

  5. Computers in Life Science Education. Volumes 1 through 4, 1984-1987.

    ERIC Educational Resources Information Center

    Modell, Harold, Ed.

    1987-01-01

    Designed to serve as a means of communication among life science educators who anticipate or are currently using microcomputers as an educational tool, these four volumes of newsletters provide background information and practical suggestions on computer use in over 80 articles. Topic areas include: (1) teaching physiology and other life sciences…

  6. Evaluating interactive computer-based scenarios designed for learning medical technology.

    PubMed

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd

    2014-11-01

    The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Role of Computers in Research and Development at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  8. Practical Evaluation of a Mobile Language Learning Tool in Higher Education

    ERIC Educational Resources Information Center

    Kétyi, András

    2015-01-01

    Following on preliminary research (Kétyi, 2013), in this project we looked for a mobile language learning solution, which combines computers and mobile devices. Our main idea was to explore whether by integrating mobile devices in our language teaching practice, our students at the Budapest Business School would gain valuable additional learning…

  9. Scripting for Collaborative Search Computer-Supported Classroom Activities

    ERIC Educational Resources Information Center

    Verdugo, Renato; Barros, Leonardo; Albornoz, Daniela; Nussbaum, Miguel; McFarlane, Angela

    2014-01-01

    Searching online is one of the most powerful resources today's students have for accessing information. Searching in groups is a daily practice across multiple contexts; however, the tools we use for searching online do not enable collaborative practices and traditional search models consider a single user navigating online in solitary. This paper…

  10. Computational assessment of hemodynamics-based diagnostic tools using a database of virtual subjects: Application to three case studies.

    PubMed

    Willemet, Marie; Vennin, Samuel; Alastruey, Jordi

    2016-12-08

    Many physiological indexes and algorithms based on pulse wave analysis have been suggested in order to better assess cardiovascular function. Because these tools are often computed from in-vivo hemodynamic measurements, their validation is time-consuming, challenging, and biased by measurement errors. Recently, a new methodology has been suggested to assess theoretically these computed tools: a database of virtual subjects generated using numerical 1D-0D modeling of arterial hemodynamics. The generated set of simulations encloses a wide selection of healthy cases that could be encountered in a clinical study. We applied this new methodology to three different case studies that demonstrate the potential of our new tool, and illustrated each of them with a clinically relevant example: (i) we assessed the accuracy of indexes estimating pulse wave velocity; (ii) we validated and refined an algorithm that computes central blood pressure; and (iii) we investigated theoretical mechanisms behind the augmentation index. Our database of virtual subjects is a new tool to assist the clinician: it provides insight into the physical mechanisms underlying the correlations observed in clinical practice. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Structural biology computing: Lessons for the biomedical research sciences.

    PubMed

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  12. The use of inexpensive computer-based scanning survey technology to perform medical practice satisfaction surveys.

    PubMed

    Shumaker, L; Fetterolf, D E; Suhrie, J

    1998-01-01

    The recent availability of inexpensive document scanners and optical character recognition technology has created the ability to process surveys in large numbers with a minimum of operator time. Programs, which allow computer entry of such scanned questionnaire results directly into PC based relational databases, have further made it possible to quickly collect and analyze significant amounts of information. We have created an internal capability to easily generate survey data and conduct surveillance across a number of medical practice sites within a managed care/practice management organization. Patient satisfaction surveys, referring physician surveys and a variety of other evidence gathering tools have been deployed.

  13. Using Scaffold Supports to Improve Student Practice and Understanding of an Authentic Inquiry Process in Science

    ERIC Educational Resources Information Center

    Turcotte, Sandrine; Hamel, Christine

    2016-01-01

    This study addressed computer-supported collaborative scientific inquiries in remote networked schools (Quebec, Canada). Three dyads of Grade 5-6 classrooms from remote locations across the province collaborated using the knowledge-building tool Knowledge Forum. Customized scaffold supports embedded in the online tool were used to support student…

  14. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  15. Modeling Criminal Activity in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Brantingham, Patricia; Glässer, Uwe; Jackson, Piper; Vajihollahi, Mona

    Computational and mathematical methods arguably have an enormous potential for serving practical needs in crime analysis and prevention by offering novel tools for crime investigations and experimental platforms for evidence-based policy making. We present a comprehensive formal framework and tool support for mathematical and computational modeling of criminal behavior to facilitate systematic experimental studies of a wide range of criminal activities in urban environments. The focus is on spatial and temporal aspects of different forms of crime, including opportunistic and serial violent crimes. However, the proposed framework provides a basis to push beyond conventional empirical research and engage the use of computational thinking and social simulations in the analysis of terrorism and counter-terrorism.

  16. On Using Intelligent Computer-Assisted Language Learning in Real-Life Foreign Language Teaching and Learning

    ERIC Educational Resources Information Center

    Amaral, Luiz A.; Meurers, Detmar

    2011-01-01

    This paper explores the motivation and prerequisites for successful integration of Intelligent Computer-Assisted Language Learning (ICALL) tools into current foreign language teaching and learning (FLTL) practice. We focus on two aspects, which we argue to be important for effective ICALL system development and use: (i) the relationship between…

  17. Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives through Embodiment in Mathematics Education

    ERIC Educational Resources Information Center

    Sung, Woonhee; Ahn, Junghyun; Black, John B.

    2017-01-01

    A science, technology, engineering, and mathematics-influenced classroom requires learning activities that provide hands-on experiences with technological tools to encourage problem-solving skills (Brophy et al. in "J Eng Educ" 97(3):369-387, 2008; Mataric et al. in "AAAI spring symposium on robots and robot venues: resources for AI…

  18. Computational manufacturing as a bridge between design and production.

    PubMed

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  19. Computational manufacturing as a bridge between design and production

    NASA Astrophysics Data System (ADS)

    Tikhonravov, Alexander V.; Trubetskov, Michael K.

    2005-11-01

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  20. Interactive Multimedia Instruction versus Traditional Training Programmes: Analysis of Their Effectiveness and Perception

    ERIC Educational Resources Information Center

    Shanthy, T. Rajula; Thiagarajan, R.

    2011-01-01

    In this article, the practicability of introduction of computer multimedia as an educational tool was compared with the traditional approach for training sugarcane growers in ratoon management practices in three villages of Tamil Nadu state, India using pre-test, post-test control group experimental design. A CD-ROM was developed as a multimedia…

  1. Continuous-variable quantum computing on encrypted data.

    PubMed

    Marshall, Kevin; Jacobsen, Christian S; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L

    2016-12-14

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  2. Continuous-variable quantum computing on encrypted data

    PubMed Central

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks. PMID:27966528

  3. Continuous-variable quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Jacobsen, Christian S.; Schäfermeier, Clemens; Gehring, Tobias; Weedbrook, Christian; Andersen, Ulrik L.

    2016-12-01

    The ability to perform computations on encrypted data is a powerful tool for protecting a client's privacy, especially in today's era of cloud and distributed computing. In terms of privacy, the best solutions that classical techniques can achieve are unfortunately not unconditionally secure in the sense that they are dependent on a hacker's computational power. Here we theoretically investigate, and experimentally demonstrate with Gaussian displacement and squeezing operations, a quantum solution that achieves the security of a user's privacy using the practical technology of continuous variables. We demonstrate losses of up to 10 km both ways between the client and the server and show that security can still be achieved. Our approach offers a number of practical benefits (from a quantum perspective) that could one day allow the potential widespread adoption of this quantum technology in future cloud-based computing networks.

  4. Navigation within the heart and vessels in clinical practice.

    PubMed

    Beyar, Rafael

    2010-02-01

    The field of interventional cardiology has developed at an unprecedented pace on account of the visual and imaging power provided by constantly improving biomedical technologies. Transcatheter-based technology is now routinely used for coronary revascularization and noncoronary interventions using balloon angioplasty, stents, and many other devices. In the early days of interventional practice, the operating physician had to manually navigate catheters and devices under fluoroscopic imaging and was exposed to radiation, with its comcomitant necessity for wearing heavy lead aprons for protection. Until recently, very little has changed in the way procedures have been carried out in the catheterization laboratory. The technological capacity to remotely manipulate devices, using robotic arms and computational tools, has been developed for surgery and other medical procedures. This has brought to practice the powerful combination of the abilities afforded by imaging, navigational tools, and remote control manipulation. This review covers recent developments in navigational tools for catheter positioning, electromagnetic mapping, magnetic resonance imaging (MRI)-based cardiac electrophysiological interventions, and navigation tools through coronary arteries.

  5. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y; Glascoe, L

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirementsmore » of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.« less

  6. Clinical Consultation Systems: Designing for the Physician as Computer User

    PubMed Central

    Shortliffe, Edward H.

    1981-01-01

    The barriers to successful implementation of consultation systems for physicians have been frequently discussed. Our research has been directed at the development of computer techniques that will heighten the acceptance of high performance decision making tools. We discuss two current projects at Stanford Medical School that address both practical and theoretical issues in the design and construction of clinically useful systems.

  7. APA Summit on Medical Student Education Task Force on Informatics and Technology: Learning about Computers and Applying Computer Technology to Education and Practice

    ERIC Educational Resources Information Center

    Hilty, Donald M.; Hales, Deborah J.; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J.; Luo, John S.; Chan, Carlyle H.; Kennedy, Robert S.; Karlinsky, Harry; Gordon, Daniel B.; Yager, Joel; Yellowlees, Peter M.

    2006-01-01

    Objective: This article provides a brief overview of important issues for educators regarding medical education and technology. Methods: The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings…

  8. Case Studies in Practical Career Guidance, Number 5: Computerized Vocational Information System Willowbrook High School, Villa Park, Illinois.

    ERIC Educational Resources Information Center

    Arutunian, Carol Ann

    The Computerized Vocational Information System (CVIS) at Willowbrook High School in Villa Park, Illinois, uses the computer as a tool to help each student explore a wide range of occupations and educational opportunities with some feedback from his own record of ability, achievement, and interest. Computer-based guidance systems are considered a…

  9. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road.

    PubMed

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible.

  10. Design and Implementation of a Cloud Computing Adoption Decision Tool: Generating a Cloud Road

    PubMed Central

    Bildosola, Iñaki; Río-Belver, Rosa; Cilleruelo, Ernesto; Garechana, Gaizka

    2015-01-01

    Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on “on-demand payment” for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: to ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. PMID:26230400

  11. The challenge of big data in public health: an opportunity for visual analytics.

    PubMed

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data's volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research.

  12. The Challenge of Big Data in Public Health: An Opportunity for Visual Analytics

    PubMed Central

    Ola, Oluwakemi; Sedig, Kamran

    2014-01-01

    Public health (PH) data can generally be characterized as big data. The efficient and effective use of this data determines the extent to which PH stakeholders can sufficiently address societal health concerns as they engage in a variety of work activities. As stakeholders interact with data, they engage in various cognitive activities such as analytical reasoning, decision-making, interpreting, and problem solving. Performing these activities with big data is a challenge for the unaided mind as stakeholders encounter obstacles relating to the data’s volume, variety, velocity, and veracity. Such being the case, computer-based information tools are needed to support PH stakeholders. Unfortunately, while existing computational tools are beneficial in addressing certain work activities, they fall short in supporting cognitive activities that involve working with large, heterogeneous, and complex bodies of data. This paper presents visual analytics (VA) tools, a nascent category of computational tools that integrate data analytics with interactive visualizations, to facilitate the performance of cognitive activities involving big data. Historically, PH has lagged behind other sectors in embracing new computational technology. In this paper, we discuss the role that VA tools can play in addressing the challenges presented by big data. In doing so, we demonstrate the potential benefit of incorporating VA tools into PH practice, in addition to highlighting the need for further systematic and focused research. PMID:24678376

  13. Evaluating a computer aid for assessing stomach symptoms (ECASS): study protocol for a randomised controlled trial.

    PubMed

    Moore, Helen J; Nixon, Catherine; Tariq, Anisah; Emery, Jon; Hamilton, Willie; Hoare, Zoë; Kershenbaum, Anne; Neal, Richard D; Ukoumunne, Obioha C; Usher-Smith, Juliet; Walter, Fiona M; Whyte, Sophie; Rubin, Greg

    2016-04-04

    For most cancers, only a minority of patients have symptoms meeting the National Institute for Health and Clinical Excellence guidance for urgent referral. For gastro-oesophageal cancers, the 'alarm' symptoms of dysphagia and weight loss are reported by only 32 and 8 % of patients, respectively, and their presence correlates with advanced-stage disease. Electronic clinical decision-support tools that integrate with clinical computer systems have been developed for general practice, although uncertainty remains concerning their effectiveness. The objectives of this trial are to optimise the intervention and establish the acceptability of both the intervention and randomisation, confirm the suitability and selection of outcome measures, finalise the design for the phase III definitive trial, and obtain preliminary estimates of the intervention effect. This is a two-arm, multi-centre, cluster-randomised, controlled phase II trial design, which will extend over a 16-month period, across 60 general practices within the North East and North Cumbria and the Eastern Local Clinical Research Network areas. Practices will be randomised to receive either the intervention (the electronic clinical decision-support tool) or to act as a control (usual care). From these practices, we will recruit 3000 adults who meet the trial eligibility criteria and present to their GP with symptoms suggestive of gastro-oesophageal cancer. The main measures are the process data, which include the practitioner outcomes, service outcomes, diagnostic intervals, health economic outcomes, and patient outcomes. One-on-one interviews in a sub-sample of 30 patient-GP dyads will be undertaken to understand the impact of the use or non-use of the electronic clinical decision-support tool in the consultation. A further 10-15 GPs will be interviewed to identify and gain an understanding of the facilitators and constraints influencing implementation of the electronic clinical decision-support tool in practice. We aim to generate new knowledge on the process measures regarding the use of electronic clinical decision-support tools in primary care in general and to inform a subsequent definitive phase III trial. Preliminary data on the impact of the support tool on resource utilisation and health care costs will also be collected. ISRCTN Registry, ISRCTN12595588 .

  14. A computer-based specification methodology

    NASA Technical Reports Server (NTRS)

    Munck, Robert G.

    1986-01-01

    Standard practices for creating and using system specifications are inadequate for large, advanced-technology systems. A need exists to break away from paper documents in favor of documents that are stored in computers and which are read and otherwise used with the help of computers. An SADT-based system, running on the proposed Space Station data management network, could be a powerful tool for doing much of the required technical work of the Station, including creating and operating the network itself.

  15. The efficiency of geophysical adjoint codes generated by automatic differentiation tools

    NASA Astrophysics Data System (ADS)

    Vlasenko, A. V.; Köhl, A.; Stammer, D.

    2016-02-01

    The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the continuous use of AD tools for solving geophysical problems on modern computer architectures.

  16. Legal issues of computer imaging in plastic surgery: a primer.

    PubMed

    Chávez, A E; Dagum, P; Koch, R J; Newman, J P

    1997-11-01

    Although plastic surgeons are increasingly incorporating computer imaging techniques into their practices, many fear the possibility of legally binding themselves to achieve surgical results identical to those reflected in computer images. Computer imaging allows surgeons to manipulate digital photographs of patients to project possible surgical outcomes. Some of the many benefits imaging techniques pose include improving doctor-patient communication, facilitating the education and training of residents, and reducing administrative and storage costs. Despite the many advantages computer imaging systems offer, however, surgeons understandably worry that imaging systems expose them to immense legal liability. The possible exploitation of computer imaging by novice surgeons as a marketing tool, coupled with the lack of consensus regarding the treatment of computer images, adds to the concern of surgeons. A careful analysis of the law, however, reveals that surgeons who use computer imaging carefully and conservatively, and adopt a few simple precautions, substantially reduce their vulnerability to legal claims. In particular, surgeons face possible claims of implied contract, failure to instruct, and malpractice from their use or failure to use computer imaging. Nevertheless, legal and practical obstacles frustrate each of those causes of actions. Moreover, surgeons who incorporate a few simple safeguards into their practice may further reduce their legal susceptibility.

  17. Lawrence Livermore National Laboratory`s Computer Security Short Subjects Videos: Hidden Password, The Incident, Dangerous Games and The Mess; Computer Security Awareness Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.

  18. Re-Tooling the Agency's Engineering Predictive Practices for Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Knight, Norman F., Jr.

    2017-01-01

    Over the past decade, the Agency has placed less emphasis on testing and has increasingly relied on computational methods to assess durability and damage tolerance (D&DT) behavior when evaluating design margins for fracture-critical components. With increased emphasis on computational D&DT methods as the standard practice, it is paramount that capabilities of these methods are understood, the methods are used within their technical limits, and validation by well-designed tests confirms understanding. The D&DT performance of a component is highly dependent on parameters in the neighborhood of the damage. This report discusses D&DT method vulnerabilities.

  19. The probability estimation of the electronic lesson implementation taking into account software reliability

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.

    2017-01-01

    Software tools for educational purposes, such as e-lessons, computer-based testing system, from the point of view of reliability, have a number of features. The main ones among them are the need to ensure a sufficiently high probability of their faultless operation for a specified time, as well as the impossibility of their rapid recovery by the way of replacing it with a similar running program during the classes. The article considers the peculiarities of reliability evaluation of programs in contrast to assessments of hardware reliability. The basic requirements to reliability of software used for carrying out practical and laboratory classes in the form of computer-based training programs are given. The essential requirements applicable to the reliability of software used for conducting the practical and laboratory studies in the form of computer-based teaching programs are also described. The mathematical tool based on Markov chains, which allows to determine the degree of debugging of the training program for use in the educational process by means of applying the graph of the software modules interaction, is presented.

  20. APA Summit on Medical Student Education Task Force on Informatics and Technology: learning about computers and applying computer technology to education and practice.

    PubMed

    Hilty, Donald M; Hales, Deborah J; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J; Luo, John S; Chan, Carlyle H; Kennedy, Robert S; Karlinsky, Harry; Gordon, Daniel B; Yager, Joel; Yellowlees, Peter M

    2006-01-01

    This article provides a brief overview of important issues for educators regarding medical education and technology. The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings were presented to and input was received from the 2005 Summit on Medical Student Education by APA and the American Directors of Medical Student Education in Psychiatry. Knowledge of, skills in, and attitudes toward medical informatics are important to life-long learning and modern medical practice. A needs assessment is a starting place, since student, faculty, institution, and societal factors bear consideration. Technology needs to "fit" into a curriculum in order to facilitate learning and teaching. Learning about computers and applying computer technology to education and clinical care are key steps in computer literacy for physicians.

  1. Practical quality control tools for curves and surfaces

    NASA Technical Reports Server (NTRS)

    Small, Scott G.

    1992-01-01

    Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.

  2. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  3. Practical experience with graphical user interfaces and object-oriented design in the clinical laboratory.

    PubMed

    Wells, I G; Cartwright, R Y; Farnan, L P

    1993-12-15

    The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.

  4. Software and the Scientist: Coding and Citation Practices in Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.

    2017-11-01

    In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.

  5. Recommendations for evaluation of computational methods

    NASA Astrophysics Data System (ADS)

    Jain, Ajay N.; Nicholls, Anthony

    2008-03-01

    The field of computational chemistry, particularly as applied to drug design, has become increasingly important in terms of the practical application of predictive modeling to pharmaceutical research and development. Tools for exploiting protein structures or sets of ligands known to bind particular targets can be used for binding-mode prediction, virtual screening, and prediction of activity. A serious weakness within the field is a lack of standards with respect to quantitative evaluation of methods, data set preparation, and data set sharing. Our goal should be to report new methods or comparative evaluations of methods in a manner that supports decision making for practical applications. Here we propose a modest beginning, with recommendations for requirements on statistical reporting, requirements for data sharing, and best practices for benchmark preparation and usage.

  6. A new approach to the rationale discovery of polymeric biomaterials

    PubMed Central

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  7. TNEEL workshop. Interactive methods for teaching end-of-life care.

    PubMed

    Wilkie, Diana J; Lin, Yu-Chuan; Judge, M Kay M; Shannon, Sarah E; Corless, Inge B; Farber, Stuart J; Brown, Marie-Annette

    2004-01-01

    Nurse educators have identified lack of end-of-life content as a serious deficit in undergraduate nursing education. TNEEL, a new software program with tools for teaching end-of-life topics, was created to help educators overcome this problem. The authors implemented an experiential workshop to help educators learn how to use TNEEL's wide variety of educational tools. Trainers provided information about TNEEL and coached participants (N = 94) as they practiced using laptop computers to increase their familiarity and comfort in using the toolkit. Workshop participants completed pre- and posttest evaluations addressing their opinions and beliefs about using this computer tool. Findings support the workshop as an effective way to facilitate adoption of this innovative educational resource and support the development of a nation-wide training plan for TNEEL with experiential workshops.

  8. A Format for Phylogenetic Placements

    PubMed Central

    Matsen, Frederick A.; Hoffman, Noah G.; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988

  9. A format for phylogenetic placements.

    PubMed

    Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.

  10. Learning to Make Change Happen in Chinese Schools: Adapting a Problem-Based Computer Simulation for Developing School Leaders

    ERIC Educational Resources Information Center

    Hallinger, Philip; Shaobing, Tang; Jiafang, Lu

    2017-01-01

    School leader training has become a critical strategy in educational reform. However, in China, there still exists a big gap in terms of how to transfer leadership knowledge into practice. Thus, tools that can integrate formal knowledge into practice are called for urgently in school leader training. This paper presents the results of a research…

  11. Factors Affecting English as a Foreign Language Teachers' Participation in Online Communities of Practice: The Case of Webheads in Action

    ERIC Educational Resources Information Center

    Bostancioglu, Ali

    2016-01-01

    An online community of practice (OCoP) is a group of people, who are brought together by a shared interest and with the aim of deepening their understanding of an area of knowledge through regular interactions facilitated by computer mediated communication (CMC) tools. An OCoP can potentially provides teachers with those elements of effective…

  12. Internal Flow

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.; Tan, C. S.; Graf, M. B.

    2004-06-01

    Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.

  13. Status and outlook of CFD technology at Mitsubishi Heavy Industries, Nagoya

    NASA Astrophysics Data System (ADS)

    Tanioka, Tadayuki

    1990-09-01

    Computational Fluid Dynamics (CFD) technology has made tremendous progress in the last several years. It has matured to become a practical simulation tool in aircraft industries. In MHI, CFD has become an indispensible tool for aerodynamic design aerospace vehicles. The present status is described of this advanced technology at MHI. Also mentioned are some future advances of the fast growing technology as well as associated hardware requirements.

  14. Rational, computer-enabled peptide drug design: principles, methods, applications and future directions.

    PubMed

    Diller, David J; Swanson, Jon; Bayden, Alexander S; Jarosinski, Mark; Audie, Joseph

    2015-01-01

    Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.

  15. The AgESGUI geospatial simulation system for environmental model application and evaluation

    USDA-ARS?s Scientific Manuscript database

    Practical decision making in spatially-distributed environmental assessment and management is increasingly being based on environmental process-based models linked to geographical information systems (GIS). Furthermore, powerful computers and Internet-accessible assessment tools are providing much g...

  16. Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool

    PubMed Central

    Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry

    2011-01-01

    Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144

  17. Learning to consult with computers.

    PubMed

    Liaw, S T; Marty, J J

    2001-07-01

    To develop and evaluate a strategy to teach skills and issues associated with computers in the consultation. An overview lecture plus a workshop before and a workshop after practice placements, during the 10-week general practice (GP) term in the 5th year of the University of Melbourne medical course. Pre- and post-intervention study using a mix of qualitative and quantitative methods within a strategic evaluation framework. Self-reported attitudes and skills with clinical applications before, during and after the intervention. Most students had significant general computer experience but little in the medical area. They found the workshops relevant, interesting and easy to follow. The role-play approach facilitated students' learning of relevant communication and consulting skills and an appreciation of issues associated with using the information technology tools in simulated clinical situations to augment and complement their consulting skills. The workshops and exposure to GP systems were associated with an increase in the use of clinical software, more realistic expectations of existing clinical and medical record software and an understanding of the barriers to the use of computers in the consultation. The educational intervention assisted students to develop and express an understanding of the importance of consulting and communication skills in teaching and learning about medical informatics tools, hardware and software design, workplace issues and the impact of clinical computer systems on the consultation and patient care.

  18. Collaborative Software Development in Support of Fast Adaptive AeroSpace Tools (FAAST)

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Nielsen, Eric J.; Gnoffo, Peter A.; Park, Michael A.; Wood, William A.

    2003-01-01

    A collaborative software development approach is described. The software product is an adaptation of proven computational capabilities combined with new capabilities to form the Agency's next generation aerothermodynamic and aerodynamic analysis and design tools. To efficiently produce a cohesive, robust, and extensible software suite, the approach uses agile software development techniques; specifically, project retrospectives, the Scrum status meeting format, and a subset of Extreme Programming's coding practices are employed. Examples are provided which demonstrate the substantial benefits derived from employing these practices. Also included is a discussion of issues encountered when porting legacy Fortran 77 code to Fortran 95 and a Fortran 95 coding standard.

  19. [Evaluation of tools for the implementation of clinical practice guidelines on sexually transmitted infections].

    PubMed

    Moreno, Jaime Hernán Rodríguez; Romero Vergara, Antonio José; De Moya, Danilo De Jesús De Alba; Jaramillo Rojas, Hernán Javier; Díaz Rojas, Claudia Milena; Ciapponi, Agustín

    2017-05-25

    Determine the acceptability, perceived usefulness, and adoption of implementation tools and technical assistance provided by the Health Technology Assessment Institute (IETS) in hospitals in two regions of Colombia. Assistance was provided for implementation of clinical practice guidelines (CPGs) in 24 hospitals (17 in Antioquia and seven in Cundinamarca) in areas with high prevalence of sexually transmitted infections, and for use of the implementation tools. Health professionals were given surveys and medical specialists were interviewed. Overall, 86% of respondents are familiar with the GPGs, 86% with the tracer recommendations, 79% with the interactive flow charts, and 82% with the evidence sheets, while 41% never used the implementation tools. Of the respondents who used the tools, 55% did so on their work computer, while 24% used their personal telephone. The most useful tools were the evidence sheets and flow charts (98%) and the tracer recommendations (92%). The least useful were the budgetary impact tools (81%). The implementation tools and technical assistance provided in hospitals in two regions of Colombia are perceived as useful and acceptable, although the degree of implementation is low. The findings of this research will help the different actors, such as the Ministry of Health and Social Protection, the IETS, and the Administrative Department of Science, Technology and Innovation (Colciencias), among others, improve their programs for the implementation of clinical practice guidelines.

  20. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Dalenbring, Mats

    2013-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper.

  1. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.

    PubMed

    Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P

    2011-04-01

    The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

  2. Information Quality Challenges of Patient-Generated Data in Clinical Practice

    PubMed Central

    West, Peter; Van Kleek, Max; Giordano, Richard; Weal, Mark; Shadbolt, Nigel

    2017-01-01

    A characteristic trend of digital health has been the dramatic increase in patient-generated data being presented to clinicians, which follows from the increased ubiquity of self-tracking practices by individuals, driven, in turn, by the proliferation of self-tracking tools and technologies. Such tools not only make self-tracking easier but also potentially more reliable by automating data collection, curation, and storage. While self-tracking practices themselves have been studied extensively in human–computer interaction literature, little work has yet looked at whether these patient-generated data might be able to support clinical processes, such as providing evidence for diagnoses, treatment monitoring, or postprocedure recovery, and how we can define information quality with respect to self-tracked data. In this article, we present the results of a literature review of empirical studies of self-tracking tools, in which we identify how clinicians perceive quality of information from such tools. In the studies, clinicians perceive several characteristics of information quality relating to accuracy and reliability, completeness, context, patient motivation, and representation. We discuss the issues these present in admitting self-tracked data as evidence for clinical decisions. PMID:29209601

  3. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  4. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  5. Reviewing and Viewing.

    ERIC Educational Resources Information Center

    Clements, Douglas H., Ed.; And Others

    1988-01-01

    Presents reviews of three software packages. Includes "Cube Builder: A 3-D Geometry Tool," which allows students to build three-dimensional shapes; "Number Master," a multipurpose practice program for whole number computation; and "Safari Search: Problem Solving and Inference," which focuses on decision making in mathematical analysis. (PK)

  6. Manufacturing Technology Support (MATES). Delivery Order 0002: Business Practices Assessment (BPA) Development

    DTIC Science & Technology

    2008-03-01

    order fulfillment visibility, Kanban deployment, inventory count can be made visually, machines and tool labeling, costs, preventive maintenance...order fulfillment, computer scheduling versus Kanban , pull versus push systems, flow time efficiencies, back room costs of scheduling, MRP costs

  7. Desktop Publishing: A Powerful Tool for Advanced Composition Courses.

    ERIC Educational Resources Information Center

    Sullivan, Patricia

    1988-01-01

    Examines the advantages of using desktop publishing in advanced writing classes. Explains how desktop publishing can spur creativity, call attention to the interaction between words and pictures, encourage the social dimensions of computing and composing, and provide students with practical skills. (MM)

  8. The Analog Computer as a Teaching Tool in Physics

    ERIC Educational Resources Information Center

    Wylen, H. E.; Schwarz, W. M.

    1973-01-01

    Discusses use of two EAI semi-expanded TR-20 units to display solutions to differential equations for harmonic oscillators, quantum-mechanical particles, trajectories, radioactive decay series, and hysteresis curves. Suggests practical applications for both undergraduate physics laboratories and classroom demonstrations. (CC)

  9. Use of Computer Imaging in Rhinoplasty: A Survey of the Practices of Facial Plastic Surgeons.

    PubMed

    Singh, Prabhjyot; Pearlman, Steven

    2017-08-01

    The objective of this study was to quantify the use of computer imaging by facial plastic surgeons. AAFPRS Facial plastic surgeons were surveyed about their use of computer imaging during rhinoplasty consultations. The survey collected information about surgeon demographics, practice settings, practice patterns, and rates of computer imaging (CI) for primary and revision rhinoplasty. For those surgeons who used CI, additional information was also collected, which included who performed the imaging and whether the patient was given the morphed images after the consultation. A total of 238 out of 1200 (19.8%) facial plastic surgeons responded to the survey. Out of those who responded, 195 surgeons (83%) were board certified by the American Board of Facial Plastic and Reconstructive Surgeons (ABFPRS). The majority of respondents (150 surgeons, 63%) used CI during rhinoplasty consultation. Of the surgeons who use CI, 92% performed the image morphing themselves. Approximately two-thirds of surgeons who use CI gave their patient a printout of the morphed images after the consultation. Computer imaging (CI) is a frequently utilized tool for facial plastic surgeons during cosmetic consultations with patients. Based on these results of this study, it can be suggested that the majority of facial plastic surgeons who use CI do so for both primary and revision rhinoplasty. As more sophisticated systems become available, it is possible that utilization of CI modalities will increase. This provides the surgeon with further tools to use at his or her disposal during discussion of aesthetic surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  10. CFD Process Pre- and Post-processing Automation in Support of Space Propulsion

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne M.

    2003-01-01

    The use of Computational Fluid Dynamics or CFD has become standard practice in the design and analysis of the major components used for space propulsion. In an attempt to standardize and improve the CFD process a series of automated tools have been developed. Through the use of these automated tools the application of CFD to the design cycle has been improved and streamlined. This paper presents a series of applications in which deficiencies were identified in the CFD process and corrected through the development of automated tools.

  11. An Investigation of Software Scaffolds Supporting Modeling Practices

    NASA Astrophysics Data System (ADS)

    Fretz, Eric B.; Wu, Hsin-Kai; Zhang, Baohui; Davis, Elizabeth A.; Krajcik, Joseph S.; Soloway, Elliot

    2002-08-01

    Modeling of complex systems and phenomena is of value in science learning and is increasingly emphasised as an important component of science teaching and learning. Modeling engages learners in desired pedagogical activities. These activities include practices such as planning, building, testing, analysing, and critiquing. Designing realistic models is a difficult task. Computer environments allow the creation of dynamic and even more complex models. One way of bringing the design of models within reach is through the use of scaffolds. Scaffolds are intentional assistance provided to learners from a variety of sources, allowing them to complete tasks that would otherwise be out of reach. Currently, our understanding of how scaffolds in software tools assist learners is incomplete. In this paper the scaffolds designed into a dynamic modeling software tool called Model-It are assessed in terms of their ability to support learners' use of modeling practices. Four pairs of middle school students were video-taped as they used the modeling software for three hours, spread over a two week time frame. Detailed analysis of coded videotape transcripts provided evidence of the importance of scaffolds in supporting the use of modeling practices. Learners used a variety of modeling practices, the majority of which occurred in conjunction with scaffolds. The use of three tool scaffolds was assessed as directly as possible, and these scaffolds were seen to support a variety of modeling practices. An argument is made for the continued empirical validation of types and instances of tool scaffolds, and further investigation of the important role of teacher and peer scaffolding in the use of scaffolded tools.

  12. omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling

    PubMed Central

    Phan, John H.; Kothari, Sonal; Wang, May D.

    2016-01-01

    Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/. PMID:27532062

  13. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    NASA Astrophysics Data System (ADS)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  14. Introducing the Computer to Family Practice

    PubMed Central

    Petreman, Mel

    1984-01-01

    The medical profession has been far more reluctant than the general business community to adopt the computer as a useful business tool. The experience of a group of five family physicians who have been using a computer since 1979 demonstrates that it is possible to achieve significant financial benefits, and to reduce the stress and workload of both physicians and office staff. The computerization of medical records, scheduling, and patient billing is discussed in detail. Physicians have controlled the paper load of the modern medical office by pioneering their own medical software system. PMID:21279036

  15. Hybrid computational and experimental approach for the study and optimization of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-05-01

    Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.

  16. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  17. Sharing Research Models: Using Software Engineering Practices for Facilitation

    PubMed Central

    Bryant, Stephanie P.; Solano, Eric; Cantor, Susanna; Cooley, Philip C.; Wagener, Diane K.

    2011-01-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems’ behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations—such as nonintuitive user interface features and data input specifications—may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices— the iterative software development process, object-oriented methodology, and Unified Modeling Language—and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers. PMID:21687780

  18. Current Practice in Software Development for Computational Neuroscience and How to Improve It

    PubMed Central

    Gewaltig, Marc-Oliver; Cannon, Robert

    2014-01-01

    Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers, and scientists to assess the quality of software and whether particular pieces of software are ready for use in research. PMID:24465191

  19. Current practice in software development for computational neuroscience and how to improve it.

    PubMed

    Gewaltig, Marc-Oliver; Cannon, Robert

    2014-01-01

    Almost all research work in computational neuroscience involves software. As researchers try to understand ever more complex systems, there is a continual need for software with new capabilities. Because of the wide range of questions being investigated, new software is often developed rapidly by individuals or small groups. In these cases, it can be hard to demonstrate that the software gives the right results. Software developers are often open about the code they produce and willing to share it, but there is little appreciation among potential users of the great diversity of software development practices and end results, and how this affects the suitability of software tools for use in research projects. To help clarify these issues, we have reviewed a range of software tools and asked how the culture and practice of software development affects their validity and trustworthiness. We identified four key questions that can be used to categorize software projects and correlate them with the type of product that results. The first question addresses what is being produced. The other three concern why, how, and by whom the work is done. The answers to these questions show strong correlations with the nature of the software being produced, and its suitability for particular purposes. Based on our findings, we suggest ways in which current software development practice in computational neuroscience can be improved and propose checklists to help developers, reviewers, and scientists to assess the quality of software and whether particular pieces of software are ready for use in research.

  20. Learning the Lessons of Leadership: Case Method Teaching with Interactive Computer-Based Tools and Film-Based Cases

    DTIC Science & Technology

    2008-03-01

    report describes how the AXL system capitalizes on the best practices of traditional case method instruction and addresses some of the limitations of...system were addressed in the AXL system, producing an innovative technology solution for delivering case method instruction. Several case method best ...approaches for addressing such problems. The report also documents how case method best practices in traditional classroom environments can be translated into

  1. A computational approach to estimate postmortem interval using opacity development of eye for human subjects.

    PubMed

    Cantürk, İsmail; Özyılmaz, Lale

    2018-07-01

    This paper presents an approach to postmortem interval (PMI) estimation, which is a very debated and complicated area of forensic science. Most of the reported methods to determine PMI in the literature are not practical because of the need for skilled persons and significant amounts of time, and give unsatisfactory results. Additionally, the error margin of PMI estimation increases proportionally with elapsed time after death. It is crucial to develop practical PMI estimation methods for forensic science. In this study, a computational system is developed to determine the PMI of human subjects by investigating postmortem opacity development of the eye. Relevant features from the eye images were extracted using image processing techniques to reflect gradual opacity development. The features were then investigated to predict the time after death using machine learning methods. The experimental results prove that the development of opacity can be utilized as a practical computational tool to determine PMI for human subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Using plant canopy temperature to improve irrigated crop management

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  3. Technology Integration Barriers: Urban School Mathematics Teachers Perspectives

    ERIC Educational Resources Information Center

    Wachira, Patrick; Keengwe, Jared

    2011-01-01

    Despite the promise of technology in education, many practicing teachers face several challenges when trying to effectively integrate technology into their classroom instruction. Additionally, while national statistics cite a remarkable improvement in access to computer technology tools in schools, teacher surveys show consistent declines in the…

  4. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  5. Electronic Networks: Crossing Boundaries/Creating Communities.

    ERIC Educational Resources Information Center

    Howard, Tharon, Ed.; Benson, Chris, Ed.; Gooch, Rocky; Goswami, Dixie

    Written by practicing teachers about actual instructional computing projects, this book provides information teachers need to integrate instructional technologies into their classrooms. The book is divided into three parts. Part 1, "New Tools for the Classroom: An Introduction to Networked Learning," includes chapters: (1) "Getting Started in a…

  6. Integrating interactive computational modeling in biology curricula.

    PubMed

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  7. CADMIO: computer aided design for medical information objects.

    PubMed

    Minarelli, D V; Ferri, F; Pisanelli, D M; Ricci, F L; Tittarelli, F

    1995-01-01

    The growth of the computational capability and the tools of graphic software is nowadays available in an integrated manner into the development environments, thus permitting the realization of tool kits capable of handling information that is complex and of different kinds such as the typical medical information. This has given a great impulse to the creation of electronic medical folders joining together with new and stimulating functionality with respect to the usual paper document [1]. In the present work, we propose a tool capable of defining a multimedia electronic medical folder and representing its architecture through a layout that is formed on the basis of the particular data types to be handled. This tool is capable of providing an integrated view of data that, even though they are close in cognitive sense, are often stored and represented apart in the practice. Different approaches to the browsing feature are giving within the system, thus the user can personalize the way of viewing the information stored into the folder or can let the system guide the browsing.

  8. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Weatherbee, J. E.; Taylor, D. S.

    1972-01-01

    A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.

  9. Ten quick tips for machine learning in computational biology.

    PubMed

    Chicco, Davide

    2017-01-01

    Machine learning has become a pivotal tool for many projects in computational biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical researchers often do not have enough experience to run a data mining project effectively, and therefore can follow incorrect practices, that may lead to common mistakes or over-optimistic results. With this review, we present ten quick tips to take advantage of machine learning in any computational biology context, by avoiding some common errors that we observed hundreds of times in multiple bioinformatics projects. We believe our ten suggestions can strongly help any machine learning practitioner to carry on a successful project in computational biology and related sciences.

  10. Computational algorithm to evaluate product disassembly cost index

    NASA Astrophysics Data System (ADS)

    Zeid, Ibrahim; Gupta, Surendra M.

    2002-02-01

    Environmentally conscious manufacturing is an important paradigm in today's engineering practice. Disassembly is a crucial factor in implementing this paradigm. Disassembly allows the reuse and recycling of parts and products that reach their death after their life cycle ends. There are many questions that must be answered before a disassembly decision can be reached. The most important question is economical. The cost of disassembly versus the cost of scrapping a product is always considered. This paper develops a computational tool that allows decision-makers to calculate the disassembly cost of a product. The tool makes it simple to perform 'what if' scenarios fairly quickly. The tool is Web based and has two main parts. The front-end part is a Web page and runs on the client side in a Web browser, while the back-end part is a disassembly engine (servlet) that has disassembly knowledge and costing algorithms and runs on the server side. The tool is based on the client/server model that is pervasively utilized throughout the World Wide Web. An example is used to demonstrate the implementation and capabilities of the tool.

  11. Medical informatics--an Australian perspective.

    PubMed

    Hannan, T

    1991-06-01

    Computers, like the X-ray and stethoscope can be seen as clinical tools, that provide physicians with improved expertise in solving patient management problems. As tools they enable us to extend our clinical information base, and they also provide facilities that improve the delivery of the health care we provide. Automation (computerisation) in the health domain will cause the computer to become a more integral part of health care management and delivery before the start of the next century. To understand how the computer assists those who deliver and manage health care, it is important to be aware of its functional capabilities and how we can use them in medical practice. The rapid technological advances in computers over the last two decades has had both beneficial and counterproductive effects on the implementation of effective computer applications in the delivery of health care. For example, in the 1990s the computer hobbyist is able to make an investment of less than $10,000 on computer hardware that will match or exceed the technological capacities of machines of the 1960s. These rapid technological advances, which have produced a quantum leap in our ability to store and process information, have tended to make us overlook the need for effective computer programmes which will meet the needs of patient care. As the 1990s begin, those delivering health care (eg, physicians, nurses, pharmacists, administrators ...) need to become more involved in directing the effective implementation of computer applications that will provide the tools for improved information management, knowledge processing, and ultimately better patient care.

  12. Mobile medical computing driven by the complexity of neurologic diagnosis.

    PubMed

    Segal, Michael M

    2006-07-01

    Medical computing has been split between palm-sized computers optimized for mobility and desktop computers optimized for capability. This split was due to technology too immature to deliver both mobility and capability in the same computer and the lack of medical software that demanded both mobility and capability. Advances in hardware and software are ushering in an era in which fully capable computers will be available ubiquitously. As a result, medical practice, education and publishing will change. Medical practice will be improved by the use of software that not only assists with diagnosis but can do so at the bedside, where the doctor can act immediately upon suggestions such as useful findings to check. Medical education will shift away from a focus on details of unusual diseases and toward a focus on skills of physical examination and using computerized tools. Medical publishing, in contrast, will shift toward greater detail: it will be increasingly important to quantitate the frequency of findings in diseases and their time course since such information can have a major impact clinically when added to decision support software.

  13. Clinical nursing informatics. Developing tools for knowledge workers.

    PubMed

    Ozbolt, J G; Graves, J R

    1993-06-01

    Current research in clinical nursing informatics is proceeding along three important dimensions: (1) identifying and defining nursing's language and structuring its data; (2) understanding clinical judgment and how computer-based systems can facilitate and not replace it; and (3) discovering how well-designed systems can transform nursing practice. A number of efforts are underway to find and use language that accurately represents nursing and that can be incorporated into computer-based information systems. These efforts add to understanding nursing problems, interventions, and outcomes, and provide the elements for databases from which nursing's costs and effectiveness can be studied. Research on clinical judgment focuses on how nurses (perhaps with different levels of expertise) assess patient needs, set goals, and plan and deliver care, as well as how computer-based systems can be developed to aid these cognitive processes. Finally, investigators are studying not only how computers can help nurses with the mechanics and logistics of processing information but also and more importantly how access to informatics tools changes nursing care.

  14. Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.

    2012-12-01

    The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

  15. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  16. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  17. Electronic Communication across the Curriculum.

    ERIC Educational Resources Information Center

    Reiss, Donna, Ed.; Selfe, Dickie, Ed; Young, Art, Ed.

    This collection of 24 essays explores what happens when proponents of writing across the curriculum (WAC) use the latest computer-mediated tools and techniques--including e-mail, asynchronous learning networks, MOOs, and the World Wide Web--to expand and enrich their teaching practices, especially the teaching of writing. Essays and their authors…

  18. Homology Modeling and Molecular Docking for the Science Curriculum

    ERIC Educational Resources Information Center

    McDougal, Owen M.; Cornia, Nic; Sambasivarao, S. V.; Remm, Andrew; Mallory, Chris; Oxford, Julia Thom; Maupin, C. Mark; Andersen, Tim

    2014-01-01

    DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that allows users to utilize a readily accessible computational tool to explore biomolecules and their interactions. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular…

  19. Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina

    2016-01-01

    This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…

  20. Applying WEPP technologies to western alkaline surface coal mines

    Treesearch

    J. Q. Wu; S. Dun; H. Rhee; X. Liu; W. J. Elliot; T. Golnar; J. R. Frankenberger; D. C. Flanagan; P. W. Conrad; R. L. McNearny

    2011-01-01

    One aspect of planning surface mining operations, regulated by the National Pollutant Discharge Elimination System (NPDES), is estimating potential environmental impacts during mining operations and the reclamation period that follows. Practical computer simulation tools are effective for evaluating site-specific sediment control and reclamation plans for the NPDES....

  1. Randomized Control Trials on the Dynamic Geometry Approach

    ERIC Educational Resources Information Center

    Jiang, Zhonghong; White, Alexander; Rosenwasser, Alana

    2011-01-01

    The project reported here is conducting repeated randomized control trials of an approach to high school geometry that utilizes Dynamic Geometry (DG) software to supplement ordinary instructional practices. It compares effects of that intervention with standard instruction that does not make use of computer drawing/exploration tools. The basic…

  2. An Interactive Diagnosis Approach for Supporting Clinical Nursing Courses

    ERIC Educational Resources Information Center

    Wei, Chun-Wang; Lin, Yi-Chun; Lin, Yen-Ting

    2016-01-01

    Clinical resources in nursing schools are always insufficient for satisfying the practice requirements of each student at the same time during a formal course session. Although several studies have applied information and communication technology to develop computer-based learning tools for addressing this problem, most of these developments lack…

  3. Integrating Blended Teaching and Learning to Enhance Graduate Attributes

    ERIC Educational Resources Information Center

    Hermens, Antoine; Clarke, Elizabeth

    2009-01-01

    Purpose: The purpose of this paper is to explore the role of computer based business simulations in higher education as innovative tools of teaching and learning to enhance students' practical understanding of real business problems. Whether the integration of business simulation technologies will enable significant innovation in teaching and…

  4. Self-learning computers for surgical planning and prediction of postoperative alignment.

    PubMed

    Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J

    2018-02-01

    In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.

  5. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    DOE PAGES

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; ...

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less

  6. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    PubMed Central

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2014-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon 's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research. PMID:26925205

  7. Discovery of the Kalman filter as a practical tool for aerospace and industry

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Schmidt, S. F.

    1985-01-01

    The sequence of events which led the researchers at Ames Research Center to the early discovery of the Kalman filter shortly after its introduction into the literature is recounted. The scientific breakthroughs and reformulations that were necessary to transform Kalman's work into a useful tool for a specific aerospace application are described. The resulting extended Kalman filter, as it is now known, is often still referred to simply as the Kalman filter. As the filter's use gained in popularity in the scientific community, the problems of implementation on small spaceborne and airborne computers led to a square-root formulation of the filter to overcome numerical difficulties associated with computer word length. The work that led to this new formulation is also discussed, including the first airborne computer implementation and flight test. Since then the applications of the extended and square-root formulations of the Kalman filter have grown rapidly throughout the aerospace industry.

  8. Practical Implementation of Multiple Model Adaptive Estimation Using Neyman-Pearson Based Hypothesis Testing and Spectral Estimation Tools

    DTIC Science & Technology

    1996-09-01

    Generalized Likelihood Ratio (GLR) and voting techniques. The third class consisted of multiple hypothesis filter detectors, specifically the MMAE. The...vector version, versus a tensor if we use the matrix version of the power spectral density estimate. Using this notation, we will derive an...as MATLAB , have an intrinsic sample covariance computation available, which makes this method quite easy to implement. In practice, the mean for the

  9. A Computer-Based Nursing Diagnosis Consultant

    PubMed Central

    Evans, Steven

    1984-01-01

    This consultant permits a nurse to enter patient signs and symptoms which are then interpreted by the system in order to relate them to well-established nursing-related dysfunctional patterns. The system attempts to confirm the pattern by soliciting additional patient information from the nurse. This process provides an educational prompt to the nurse, and the suggestions of the system also provide a clinical support tool that can be of practical value. As our testing hones the system and subtlety is added to the weighing of the evidence the nurse provides, it is expected that this tool will be a useful adjunct to computer-based nursing services in support of health care. This Nursing Diagnosis Consultant is yet another element in the COMMES family of consultants for health professionals.

  10. Advanced tools for smartphone-based experiments: phyphox

    NASA Astrophysics Data System (ADS)

    Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C.

    2018-07-01

    The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called ‘phyphox’, which is specifically designed for utilizing experiments in physics teaching. The app is free and designed to offer the same set of features on Android and iOS.

  11. Objective Data Assessment (ODA) Methods as Nutritional Assessment Tools.

    PubMed

    Hamada, Yasuhiro

    2015-01-01

    Nutritional screening and assessment should be a standard of care for all patients because nutritional management plays an important role in clinical practice. However, there is no gold standard for the diagnosis of malnutrition or undernutrition, although a large number of nutritional screening and assessment tools have been developed. Nutritional screening and assessment tools are classified into two categories, namely, subjective global assessment (SGA) and objective data assessment (ODA). SGA assesses nutritional status based on the features of medical history and physical examination. On the other hand, ODA consists of objective data provided from various analyses, such as anthropometry, bioimpedance analysis (BIA), dual-energy X-ray absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI), laboratory tests, and functional tests. This review highlights knowledge on the performance of ODA methods for the assessment of nutritional status in clinical practice. J. Med. Invest. 62: 119-122, August, 2015.

  12. Molgenis-impute: imputation pipeline in a box.

    PubMed

    Kanterakis, Alexandros; Deelen, Patrick; van Dijk, Freerk; Byelas, Heorhiy; Dijkstra, Martijn; Swertz, Morris A

    2015-08-19

    Genotype imputation is an important procedure in current genomic analysis such as genome-wide association studies, meta-analyses and fine mapping. Although high quality tools are available that perform the steps of this process, considerable effort and expertise is required to set up and run a best practice imputation pipeline, particularly for larger genotype datasets, where imputation has to scale out in parallel on computer clusters. Here we present MOLGENIS-impute, an 'imputation in a box' solution that seamlessly and transparently automates the set up and running of all the steps of the imputation process. These steps include genome build liftover (liftovering), genotype phasing with SHAPEIT2, quality control, sample and chromosomal chunking/merging, and imputation with IMPUTE2. MOLGENIS-impute builds on MOLGENIS-compute, a simple pipeline management platform for submission and monitoring of bioinformatics tasks in High Performance Computing (HPC) environments like local/cloud servers, clusters and grids. All the required tools, data and scripts are downloaded and installed in a single step. Researchers with diverse backgrounds and expertise have tested MOLGENIS-impute on different locations and imputed over 30,000 samples so far using the 1,000 Genomes Project and new Genome of the Netherlands data as the imputation reference. The tests have been performed on PBS/SGE clusters, cloud VMs and in a grid HPC environment. MOLGENIS-impute gives priority to the ease of setting up, configuring and running an imputation. It has minimal dependencies and wraps the pipeline in a simple command line interface, without sacrificing flexibility to adapt or limiting the options of underlying imputation tools. It does not require knowledge of a workflow system or programming, and is targeted at researchers who just want to apply best practices in imputation via simple commands. It is built on the MOLGENIS compute workflow framework to enable customization with additional computational steps or it can be included in other bioinformatics pipelines. It is available as open source from: https://github.com/molgenis/molgenis-imputation.

  13. Technology Integration Barriers: Urban School Mathematics Teachers Perspectives

    NASA Astrophysics Data System (ADS)

    Wachira, Patrick; Keengwe, Jared

    2011-02-01

    Despite the promise of technology in education, many practicing teachers face several challenges when trying to effectively integrate technology into their classroom instruction. Additionally, while national statistics cite a remarkable improvement in access to computer technology tools in schools, teacher surveys show consistent declines in the use and integration of computer technology to enhance student learning. This article reports on primary technology integration barriers that mathematics teachers identified when using technology in their classrooms. Suggestions to overcome some of these barriers are also provided.

  14. On the Representation of Turbulent Stresses for Computing Blood Damage

    PubMed Central

    Hund, Samuel J.; Antaki, James F.; Massoudi, Mehrdad

    2011-01-01

    Computational prediction of blood damage has become a crucial tool for evaluating blood-wetted medical devices and pathological hemodynamics. A difficulty arises in predicting blood damage under turbulent flow conditions because the total stress is indeterminate. Common practice uses the Reynolds stress as an estimation of the total stress causing damage to the blood cells. This study investigates the error introduced by making this substitution, and further shows that energy dissipation is a more appropriate metric of blood trauma. PMID:21318093

  15. Intuitive and interpretable visual communication of a complex statistical model of disease progression and risk.

    PubMed

    Jieyi Li; Arandjelovic, Ognjen

    2017-07-01

    Computer science and machine learning in particular are increasingly lauded for their potential to aid medical practice. However, the highly technical nature of the state of the art techniques can be a major obstacle in their usability by health care professionals and thus, their adoption and actual practical benefit. In this paper we describe a software tool which focuses on the visualization of predictions made by a recently developed method which leverages data in the form of large scale electronic records for making diagnostic predictions. Guided by risk predictions, our tool allows the user to explore interactively different diagnostic trajectories, or display cumulative long term prognostics, in an intuitive and easily interpretable manner.

  16. Compressive sensing scalp EEG signals: implementations and practical performance.

    PubMed

    Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-11-01

    Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.

  17. Accessibility, usability, and usefulness of a Web-based clinical decision support tool to enhance provider-patient communication around Self-management TO Prevent (STOP) Stroke.

    PubMed

    Anderson, Jane A; Godwin, Kyler M; Saleem, Jason J; Russell, Scott; Robinson, Joshua J; Kimmel, Barbara

    2014-12-01

    This article reports redesign strategies identified to create a Web-based user-interface for the Self-management TO Prevent (STOP) Stroke Tool. Members of a Stroke Quality Improvement Network (N = 12) viewed a visualization video of a proposed prototype and provided feedback on implementation barriers/facilitators. Stroke-care providers (N = 10) tested the Web-based prototype in think-aloud sessions of simulated clinic visits. Participants' dialogues were coded into themes. Access to comprehensive information and the automated features/systematized processes were the primary accessibility and usability facilitator themes. The need for training, time to complete the tool, and computer-centric care were identified as possible usability barriers. Patient accountability, reminders for best practice, goal-focused care, and communication/counseling themes indicate that the STOP Stroke Tool supports the paradigm of patient-centered care. The STOP Stroke Tool was found to prompt clinicians on secondary stroke-prevention clinical-practice guidelines, facilitate comprehensive documentation of evidence-based care, and support clinicians in providing patient-centered care through the shared decision-making process that occurred while using the action-planning/goal-setting feature of the tool. © The Author(s) 2013.

  18. Practice and Evaluation of Ability Grouping Lecture on Information Literacy Using a Chat Tool

    NASA Astrophysics Data System (ADS)

    Fujinaga, Kiyohisa

    A teaching methodology on information literacy that skilled and inexperienced students learn through different specific contents in a class is proposed. Skilled students collaboratively work using an e-Learning environment while a conventional projector-based lecture on how to use a computer is given for inexperienced students. The methodology had been put into practice for two years. Skilled students were divided into a few groups and members in a group collaboratively made a PowerPoint slide show using a chat tool as the communication media. The slide shows were evaluated by means of questionnaire to the inexperienced students. The results were nearly the same as those of teachers. The practice of the methodology resulted in that the concentration of the skilled students was promoted and the learning attitude of the inexperienced students was improved, compared with the case that the both skilled and inexperienced students learned through the same contents.

  19. Reproducibility in Computational Neuroscience Models and Simulations

    PubMed Central

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  20. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  1. Using software simulators to enhance the learning of digital logic design for the information technology students

    NASA Astrophysics Data System (ADS)

    Alsadoon, Abeer; Prasad, P. W. C.; Beg, Azam

    2017-09-01

    Making the students understand the theoretical concepts of digital logic design concepts is one of the major issues faced by the academics, therefore the teachers have tried different techniques to link the theoretical information to the practical knowledge. Use of software simulations is a technique for learning and practice that can be applied to many different disciplines. Experimentation of different computer hardware components/integrated circuits with the use of the simulators enhances the student learning. The simulators can be rather simplistic or quite complex. This paper reports our evaluation of different simulators available for use in the higher education institutions. We also provide the experience of incorporating some selected tools in teaching introductory courses in computer systems. We justified the effectiveness of incorporating the simulators into the computer system courses by use of student survey and final grade results.

  2. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  3. Genomic cloud computing: legal and ethical points to consider

    PubMed Central

    Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Burton, Paul; Chisholm, Rex; Fortier, Isabel; Goodwin, Pat; Harris, Jennifer; Hveem, Kristian; Kaye, Jane; Kent, Alistair; Knoppers, Bartha Maria; Lindpaintner, Klaus; Little, Julian; Riegman, Peter; Ripatti, Samuli; Stolk, Ronald; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn; Joly, Yann; Kato, Kazuto; Knoppers, Bartha Maria; Rodriguez, Laura Lyman; McPherson, Treasa; Nicolás, Pilar; Ouellette, Francis; Romeo-Casabona, Carlos; Sarin, Rajiv; Wallace, Susan; Wiesner, Georgia; Wilson, Julia; Zeps, Nikolajs; Simkevitz, Howard; De Rienzo, Assunta; Knoppers, Bartha M

    2015-01-01

    The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key ‘points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These ‘points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure. PMID:25248396

  4. Genomic cloud computing: legal and ethical points to consider.

    PubMed

    Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M

    2015-10-01

    The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.

  5. Coordinating Formal and Informal Aspects of Mathematics in a Computer Based Learning Environment

    ERIC Educational Resources Information Center

    Skouras, A. S.

    2006-01-01

    The introduction of educational technology to school classes promises--through the students' active engagement with mathematical concepts--the creation of teaching and learning opportunities in mathematics. However, the way technological tools are used in the teaching practice as a means of human thought and action remains an unsettled matter as…

  6. WorldCat Local and Information Literacy Instruction: An Exploration of Emerging Teaching Practice

    ERIC Educational Resources Information Center

    Grotti, Margaret G.; Sobel, Karen

    2012-01-01

    Since the Online Computer Library Center (OCLC) unveiled its WorldCat Local library catalog discovery layer in 2008, library instructors have debated how to incorporate this tool into their teaching. WorldCat Local's faceted searching brings both educational benefits and unexpected challenges to the classroom. Instructors frequently hold formal…

  7. Experimental Economics for Teaching the Functioning of Electricity Markets

    ERIC Educational Resources Information Center

    Guevara-Cedeno, J. Y.; Palma-Behnke, R.; Uribe, R.

    2012-01-01

    In the field of electricity markets, the development of training tools for engineers has been extremely useful. A novel experimental economics approach based on a computational Web platform of an electricity market is proposed here for the practical teaching of electrical engineering students. The approach is designed to diminish the gap that…

  8. Instructional Designers' Media Selection Practices for Distributed Problem-Based Learning Environments

    ERIC Educational Resources Information Center

    Fells, Stephanie

    2012-01-01

    The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…

  9. A Rating Tool for Sharing Experiences with Serious Games

    ERIC Educational Resources Information Center

    Hendrix, Maurice; Backlund, Per; Vampula, Boris

    2014-01-01

    The potential of Computer Games for non-entertainment purposes, such as education, is well established. A wide variety of games have been developed for the educational market, covering subjects such as mathematics and languages. However, while a growing industry developing educational games exist, the practical uptake in schools is not as high as…

  10. A Case Study in CAD Design Automation

    ERIC Educational Resources Information Center

    Lowe, Andrew G.; Hartman, Nathan W.

    2011-01-01

    Computer-aided design (CAD) software and other product life-cycle management (PLM) tools have become ubiquitous in industry during the past 20 years. Over this time they have continuously evolved, becoming programs with enormous capabilities, but the companies that use them have not evolved their design practices at the same rate. Due to the…

  11. Pedagogic Transformation, Student-Directed Design and Computational Thinking

    ERIC Educational Resources Information Center

    Vallance, Michael; Towndrow, Phillip A.

    2016-01-01

    In a world where technology has become pervasive in our lives, the notion of IT integration in education practice is losing its significance. It is now more appropriate to discuss transforming pedagogy where technology is not considered a tool anymore but part of what we are. To advance this hypothesis, an enterprising, student-directed approach…

  12. The diminiode: A research and development tool for nuclear thermionics

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1972-01-01

    Diminiodes are fixed-or variable-gap cesium diodes with plane miniature emitters and guarded collectors. In addition to smallness, their relative advantages are simplicity, precision, ease of fabrication, interchangeability of parts, cleanliness, full instrumentation, ruggedness, and economy. With diminiodes and computers used in thermionic performance mapping, a thorough electrode screening program becomes practical.

  13. Enseigner l'intonation: L'ordinateur a la rescousse (Teaching Intonation: The Computer to the Rescue).

    ERIC Educational Resources Information Center

    Canto-Knoerr, Helene

    1992-01-01

    A discussion of intonation instruction in second-language teaching looks at the role, objectives, and scope of such instruction; the tools teachers need to accomplish it (background in theory, practical guidelines, a method, appropriate research, and equipment); and the need for and possible design of related software. (MSE)

  14. Corpus Linguistics for Korean Language Learning and Teaching. NFLRC Technical Report No. 26

    ERIC Educational Resources Information Center

    Bley-Vroman, Robert, Ed.; Ko, Hyunsook, Ed.

    2006-01-01

    Dramatic advances in personal computer technology have given language teachers access to vast quantities of machine-readable text, which can be analyzed with a view toward improving the basis of language instruction. Corpus linguistics provides analytic techniques and practical tools for studying language in use. This volume includes both an…

  15. Integrating Digital and STEM Practices

    ERIC Educational Resources Information Center

    White, Tobin; Martin, Lee

    2012-01-01

    As mobile devices become increasingly pervasive among youth, the gap between students with and without access to personal computers at home may soon be replaced by a new digital divide: between one set of informal ways of using those tools that are familiar, personally meaningful, and relevant to their out-of-school lives, and another set of uses…

  16. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    USDA-ARS?s Scientific Manuscript database

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  17. Calibration of the APEX model to simulate management practice effects on runoff, sediment, and phosphorus loss

    USDA-ARS?s Scientific Manuscript database

    Process-based computer models have been proposed as a tool to generate data for phosphorus-index assessment and development. Although models are commonly used to simulate phosphorus (P) loss from agriculture using managements that are different from the calibration data, this use of models has not ...

  18. Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course

    ERIC Educational Resources Information Center

    Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil

    2016-01-01

    A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…

  19. Collaborative Tasks in Web Conferencing: A Case Study on Chinese Online

    ERIC Educational Resources Information Center

    Guo, Sijia; Möllering, Martina

    2017-01-01

    This case study aimed to explore best practice in applying task-based language teaching (TBLT) via a Web-conferencing tool, Blackboard Collaborate, in a beginners' online Chinese course by evaluating the pedagogical values and limitations of the software and the tasks designed. Chapelle's (2001) criteria for computer-assisted language learning…

  20. Federal Technology Catalog 1982: Summaries of practical technology

    NASA Astrophysics Data System (ADS)

    The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.

  1. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  2. Information-seeking behavior changes in community-based teaching practices.

    PubMed

    Byrnes, Jennifer A; Kulick, Tracy A; Schwartz, Diane G

    2004-07-01

    A National Library of Medicine information access grant allowed for a collaborative project to provide computer resources in fourteen clinical practice sites that enabled health care professionals to access medical information via PubMed and the Internet. Health care professionals were taught how to access quality, cost-effective information that was user friendly and would result in improved patient care. Selected sites were located in medically underserved areas and received a computer, a printer, and, during year one, a fax machine. Participants were provided dial-up Internet service or were connected to the affiliated hospital's network. Clinicians were trained in how to search PubMed as a tool for practicing evidence-based medicine and to support clinical decision making. Health care providers were also taught how to find patient-education materials and continuing education programs and how to network with other professionals. Prior to the training, participants completed a questionnaire to assess their computer skills and familiarity with searching the Internet, MEDLINE, and other health-related databases. Responses indicated favorable changes in information-seeking behavior, including an increased frequency in conducting MEDLINE searches and Internet searches for work-related information.

  3. The use of computer assisted technology to enhance student psychiatric nurses learning during a practice placement.

    PubMed

    Denny, Margaret; Higgins, Agnes

    2003-06-01

    Despite the available literature that identifies the value of integrating computer-assisted learning into the curriculum, psychiatric nurse education lags behind in this area of curriculum development. The purpose of this paper is to report on a pilot project involving the use of a computer assisted learning (CAL) interactive multimedia (IMM) package called 'Admissions,' as a self-directed learning tool with two-second year psychiatric nursing students. The students were on a practice placement in an Irish mental health service. The aim of using the multimedia resource was to augment the students' learning during their practice placement and enable them to re-examine the issue of psychosis from a multiplicity of perspectives. This paper provides a brief description of the interactive multimedia package, together with a discussion on the support offered to the students during its use. experiential taxonomy is used as a framework to guide the discussion on the learning and evaluation process used. Feedback from the students suggests that the CAL package is easy to use, informative and promoted independence and self-directed study.

  4. Nurses and computers. An international perspective on nurses' requirements.

    PubMed

    Bond, Carol S

    2007-01-01

    This paper reports the findings from a Florence Nightingale Foundation Travel Scholarship undertaken by the author in the spring of 2006. The aim of the visit was to explore nurses' attitudes towards, and experiences of, using computers in their practice, and the requirements that they have to encourage, promote and support them in using ICT. Nurses were found to be using computers mainly for carrying out administrative tasks, such as updating records, rather than as information tools to support evidence based practice, or patient information needs. Nurses discussed the systems they used, the equipment provided, and their skills, or more often their lack of skills. The need for support was a frequent comment, most nurses feeling that it was essential that help was available at the point of need, and that it was provided by someone, preferably a nurse, who understood the work context. Three groups of nurses were identified. Engagers; Worried Willing and Resisters. The report concludes that pre-registration education has a responsibility to seek to ensure that newly qualified nurses enter practice as engagers.

  5. Building Automatic Grading Tools for Basic of Programming Lab in an Academic Institution

    NASA Astrophysics Data System (ADS)

    Harimurti, Rina; Iwan Nurhidayat, Andi; Asmunin

    2018-04-01

    The skills of computer programming is a core competency that must be mastered by students majoring in computer sciences. The best way to improve this skill is through the practice of writing many programs to solve various problems from simple to complex. It takes hard work and a long time to check and evaluate the results of student labs one by one, especially if the number of students a lot. Based on these constrain, web proposes Automatic Grading Tools (AGT), the application that can evaluate and deeply check the source code in C, C++. The application architecture consists of students, web-based applications, compilers, and operating systems. Automatic Grading Tools (AGT) is implemented MVC Architecture and using open source software, such as laravel framework version 5.4, PostgreSQL 9.6, Bootstrap 3.3.7, and jquery library. Automatic Grading Tools has also been tested for real problems by submitting source code in C/C++ language and then compiling. The test results show that the AGT application has been running well.

  6. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  7. Nutrient Tracking Tool - A user-friendly tool for evaluating the water and air quality and quantity as affected by various agricultural management practices

    NASA Astrophysics Data System (ADS)

    Saleh, A.; Niraula, R.; Gallego, O.; Osei, E.; Kannan, N.

    2017-12-01

    The Nutrient Tracking Tool (NTT) is a user-friendly web-based computer program that estimate nutrient (nitrogen and phosphorus) and sediment losses from fields managed under a variety of cropping patterns and management practices. The NTT includes a user-friendly web-based interface and is linked to the Agricultural Policy Environmental eXtender (APEX) model. It also accesses USDA-NRCS's Web Soil Survey to obtain field, weather, and soil information. NTT provides producers, government officials, and other users with a fast and efficient method of estimating the nutrient, sediment, and atmosphoric gases (N2o, Co2, and NH4) losses, and crop production under different conservation practices regims at the farm-level. The information obtained from NTT can help producers to determine the most cost-effective conservation practice(s) to reduce the nutrient and sediment losses while optimizing the crop production. Also, the recent version of NTT (NTTg3) has been developed for those coutries without access to national databasis, such as soils and wether. The NTTg3 also has been designed as easy to use APEX interface. NTT is currently being evaluated for trading and other programs at Cheaseapea Bay regions and numerous states in US. During this presentation the new capabilities of NTTg3 will be described and demonstrated.

  8. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    PubMed Central

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  9. Analytic and rule-based decision support tool for VDT workstation adjustment and computer accessories arrangement.

    PubMed

    Rurkhamet, Busagarin; Nanthavanij, Suebsak

    2004-12-01

    One important factor that leads to the development of musculoskeletal disorders (MSD) and cumulative trauma disorders (CTD) among visual display terminal (VDT) users is their work posture. While operating a VDT, a user's body posture is strongly influenced by the task, VDT workstation settings, and layout of computer accessories. This paper presents an analytic and rule-based decision support tool called EQ-DeX (an ergonomics and quantitative design expert system) that is developed to provide valid and practical recommendations regarding the adjustment of a VDT workstation and the arrangement of computer accessories. The paper explains the structure and components of EQ-DeX, input data, rules, and adjustment and arrangement algorithms. From input information such as gender, age, body height, task, etc., EQ-DeX uses analytic and rule-based algorithms to estimate quantitative settings of a computer table and a chair, as well as locations of computer accessories such as monitor, document holder, keyboard, and mouse. With the input and output screens that are designed using the concept of usability, the interactions between the user and EQ-DeX are convenient. Examples are also presented to demonstrate the recommendations generated by EQ-DeX.

  10. Tools and techniques for computational reproducibility.

    PubMed

    Piccolo, Stephen R; Frampton, Michael B

    2016-07-11

    When reporting research findings, scientists document the steps they followed so that others can verify and build upon the research. When those steps have been described in sufficient detail that others can retrace the steps and obtain similar results, the research is said to be reproducible. Computers play a vital role in many research disciplines and present both opportunities and challenges for reproducibility. Computers can be programmed to execute analysis tasks, and those programs can be repeated and shared with others. The deterministic nature of most computer programs means that the same analysis tasks, applied to the same data, will often produce the same outputs. However, in practice, computational findings often cannot be reproduced because of complexities in how software is packaged, installed, and executed-and because of limitations associated with how scientists document analysis steps. Many tools and techniques are available to help overcome these challenges; here we describe seven such strategies. With a broad scientific audience in mind, we describe the strengths and limitations of each approach, as well as the circumstances under which each might be applied. No single strategy is sufficient for every scenario; thus we emphasize that it is often useful to combine approaches.

  11. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to represent the relations of people, locations, systems, artifacts, communication and information content.

  12. Computer-based tools for decision support in agroforestry: Current state and future needs

    Treesearch

    E.A. Ellis; G. Bentrup; Michelle M. Schoeneberger

    2004-01-01

    Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts...

  13. Beyond Logging of Fingertip Actions: Analysis of Collaborative Learning Using Multiple Sources of Data

    ERIC Educational Resources Information Center

    Avouris, N.; Fiotakis, G.; Kahrimanis, G.; Margaritis, M.; Komis, V.

    2007-01-01

    In this article, we discuss key requirements for collecting behavioural data concerning technology-supported collaborative learning activities. It is argued that the common practice of analysis of computer generated log files of user interactions with software tools is not enough for building a thorough view of the activity. Instead, more…

  14. Assessment of an Interactive Computer-Based Patient Prenatal Genetic Screening and Testing Education Tool

    ERIC Educational Resources Information Center

    Griffith, Jennifer M.; Sorenson, James R.; Bowling, J. Michael; Jennings-Grant, Tracey

    2005-01-01

    The Enhancing Patient Prenatal Education study tested the feasibility and educational impact of an interactive program for patient prenatal genetic screening and testing education. Patients at two private practices and one public health clinic participated (N = 207). The program collected knowledge and measures of anxiety before and after use of…

  15. Screen Capture Technology: A Digital Window into Students' Writing Processes

    ERIC Educational Resources Information Center

    Seror, Jeremie

    2013-01-01

    Technological innovations and the prevalence of the computer as a means of producing and engaging with texts have dramatically transformed how literacy is defined and developed in modern society. This rise in digital writing practices has led to a growing number of tools and methods that can be used to explore second language (L2) writing…

  16. Design-Based Research and Educational Technology: Rethinking Technology and the Research Agenda

    ERIC Educational Resources Information Center

    Amiel, Tel; Reeves, Thomas C.

    2008-01-01

    The role of educational technologies in improving educational practices and outcomes has been criticized as over-hyped and insignificant. With few exceptions, the state of education has changed less than expected as a result of tools such as computers and the Internet. To a considerable degree, this is due to the minor role educational technology…

  17. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  18. Effectiveness of a Technology-Based Intervention to Teach Evidence-Based Practice: The EBR Tool.

    PubMed

    Long, JoAnn D; Gannaway, Paula; Ford, Cindy; Doumit, Rita; Zeeni, Nadine; Sukkarieh-Haraty, Ola; Milane, Aline; Byers, Beverly; Harrison, LaNell; Hatch, Daniel; Brown, Justin; Proper, Sharlan; White, Patricia; Song, Huaxin

    2016-02-01

    As the world becomes increasingly digital, advances in technology have changed how students access evidence-based information. Research suggests that students overestimate their ability to locate quality online research and lack the skills needed to evaluate the scientific literature. Clinical nurses report relying on personal experience to answer clinical questions rather than searching evidence-based sources. To address the problem, a web-based, evidence-based research (EBR) tool that is usable from a computer, smartphone, or iPad was developed and tested. The purpose of the EBR tool is to guide students through the basic steps needed to locate and critically appraise the online scientific literature while linking users to quality electronic resources to support evidence-based practice (EBP). Testing of the tool took place in a mixed-method, quasi-experimental, and two-population randomized controlled trial (RCT) design in a U.S. and Middle East university. A statistically significant improvement in overall research skills was supported in the quasi-experimental nursing student group and RCT nutrition student group using the EBR tool. A statistically significant proportional difference was supported in the RCT nutrition and PharmD intervention groups in participants' ability to distinguish the credibility of online source materials compared with controls. The majority of participants could correctly apply PICOTS to a case study when using the tool. The data from this preliminary study suggests that the EBR tool enhanced student overall research skills and selected EBP skills while generating data for assessment of learning outcomes. The EBR tool places evidence-based resources at the fingertips of users by addressing some of the most commonly cited barriers to research utilization while exposing users to information and online literacy standards of practice, meeting a growing need within nursing curricula. © 2016 Sigma Theta Tau International.

  19. Real-time functional magnetic imaging-brain-computer interface and virtual reality promising tools for the treatment of pedophilia.

    PubMed

    Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels

    2011-01-01

    This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  1. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  2. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    PubMed

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  3. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem

    PubMed Central

    2012-01-01

    This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956

  4. Computer-aided diagnostic strategy selection.

    PubMed

    Greenes, R A

    1986-03-01

    Determination of the optimal diagnostic work-up strategy for the patient is becoming a major concern for the practicing physician. Overlap of the indications for various diagnostic procedures, differences in their invasiveness or risk, and high costs have made physicians aware of the need to consider the choice of procedure carefully, as well as its relation to management actions available. In this article, the author discusses research approaches that aim toward development of formal decision analytic methods to allow the physician to determine optimal strategy; clinical algorithms or rules as guides to physician decisions; improved measures for characterizing the performance of diagnostic tests; educational tools for increasing the familiarity of physicians with the concepts underlying these measures and analytic procedures; and computer-based aids for facilitating the employment of these resources in actual clinical practice.

  5. Investigating the validity and usability of an interactive computer programme for assessing competence in telephone-based mental health triage.

    PubMed

    Sands, Natisha; Elsom, Stephen; Keppich-Arnold, Sandra; Henderson, Kathryn; King, Peter; Bourke-Finn, Karen; Brunning, Debra

    2016-02-01

    Telephone-based mental health triage services are frontline health-care providers that operate 24/7 to facilitate access to psychiatric assessment and intervention for people requiring assistance with a mental health problem. The mental health triage clinical role is complex, and the populations triage serves are typically high risk; yet to date, no evidence-based methods have been available to assess clinician competence to practice telephone-based mental health triage. The present study reports the findings of a study that investigated the validity and usability of the Mental Health Triage Competency Assessment Tool, an evidence-based, interactive computer programme designed to assist clinicians in developing and assessing competence to practice telephone-based mental health triage. © 2015 Australian College of Mental Health Nurses Inc.

  6. [The Durkheim Test. Remarks on Susan Leigh Star's Boundary Objects].

    PubMed

    Gießmann, Sebastian

    2015-09-01

    The article reconstructs Susan Leigh Star's conceptual work on the notion of 'boundary objects'. It traces the emergence of the concept, beginning with her PhD thesis and its publication as Regions of the Mind in 1989. 'Boundary objects' attempt to represent the distributed, multifold nature of scientific work and its mediations between different 'social worlds'. Being addressed to several 'communities of practice', the term responded to questions from Distributed Artificial Intelligence in Computer Science, Workplace Studies and Computer Supported Cooperative Work (CSCW), and microhistorical approaches inside the growing Science and Technology Studies. Yet the interdisciplinary character and interpretive flexibility of Star’s invention has rarely been noticed as a conceptual tool for media theory. I therefore propose to reconsider Star's 'Durkheim test' for sociotechnical media practices.

  7. Computed tomography-based volumetric tool for standardized measurement of the maxillary sinus

    PubMed Central

    Giacomini, Guilherme; Pavan, Ana Luiza Menegatti; Altemani, João Mauricio Carrasco; Duarte, Sergio Barbosa; Fortaleza, Carlos Magno Castelo Branco; Miranda, José Ricardo de Arruda

    2018-01-01

    Volume measurements of maxillary sinus may be useful to identify diseases affecting paranasal sinuses. However, literature shows a lack of consensus in studies measuring the volume. This may be attributable to different computed tomography data acquisition techniques, segmentation methods, focuses of investigation, among other reasons. Furthermore, methods for volumetrically quantifying the maxillary sinus are commonly manual or semiautomated, which require substantial user expertise and are time-consuming. The purpose of the present study was to develop an automated tool for quantifying the total and air-free volume of the maxillary sinus based on computed tomography images. The quantification tool seeks to standardize maxillary sinus volume measurements, thus allowing better comparisons and determinations of factors that influence maxillary sinus size. The automated tool utilized image processing techniques (watershed, threshold, and morphological operators). The maxillary sinus volume was quantified in 30 patients. To evaluate the accuracy of the automated tool, the results were compared with manual segmentation that was performed by an experienced radiologist using a standard procedure. The mean percent differences between the automated and manual methods were 7.19% ± 5.83% and 6.93% ± 4.29% for total and air-free maxillary sinus volume, respectively. Linear regression and Bland-Altman statistics showed good agreement and low dispersion between both methods. The present automated tool for maxillary sinus volume assessment was rapid, reliable, robust, accurate, and reproducible and may be applied in clinical practice. The tool may be used to standardize measurements of maxillary volume. Such standardization is extremely important for allowing comparisons between studies, providing a better understanding of the role of the maxillary sinus, and determining the factors that influence maxillary sinus size under normal and pathological conditions. PMID:29304130

  8. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  9. Quantitative tools link portfolio management with use of technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.N.; Boulanger, A.; Amaefule, J.

    1998-11-30

    The exploration and production (E and P) business is in the midst of a major transformation from an emphasis on cost-cutting to more diverse portfolio management practices. The industry has found that it is not easy to simultaneously optimize net present value (NPV), return on investment (ROI), and long-term growth. The result has been the adaptation of quantitative business practices that rival their subsurface geological equivalents in sophistication and complexity. The computational tools assess the risk-reward tradeoffs inherent in the upstream linkages between (1) the application of advanced technologies to improve success in exploration and in exploitation (reservoir evaluation, drilling,more » producing, and delivery to market) and (2) the maximization of both short- and long-term profitability. Exploitation is a critical link to the industry`s E and P profitability, as can be seen from the correlation between earnings growth of the international majors and production growth. The paper discusses the use of tools to optimize exploitation.« less

  10. Computational Fluid Dynamic Analysis of Hydrodynamic forces on inundated bridge decks

    NASA Astrophysics Data System (ADS)

    Afzal, Bushra; Guo, Junke; Kerenyi, Kornel

    2010-11-01

    The hydraulic forces experienced by an inundated bridge deck have great importance in the design of bridges. Flood flows or hurricane add significant hydrodynamic loading on bridges, possibly resulting in failure of the bridge superstructures. The objective of the study is to establish validated computational practice to address research needs of the transportation community via computational fluid dynamic simulations. The reduced scale experiments conducted at Turner-Fairbank Highway Research Center establish the foundations of validated computational practices to address the research needs of the transportation community. Three bridge deck prototypes were used: a typical six-girder highway bridge deck, a three-girder deck, and a streamlined deck designed to better withstand the hydraulic forces. Results of the study showed that the streamlined deck significantly reduces drag, lift, and moment coefficient in comparison to the other bridge deck types. The CFD results matched the experimental data in terms of the relationship between inundation ratio and force measured at the bridge. The results of the present research will provide a tool for designing new bridges and retrofitting old ones.

  11. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    PubMed

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  12. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    PubMed

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  13. Measurement of breast volume using body scan technology(computer-aided anthropometry).

    PubMed

    Veitch, Daisy; Burford, Karen; Dench, Phil; Dean, Nicola; Griffin, Philip

    2012-01-01

    Assessment of breast volume is an important tool for preoperative planning in various breast surgeries and other applications, such as bra development. Accurate assessment can improve the consistency and quality of surgery outcomes. This study outlines a non-invasive method to measure breast volume using a whole body 3D laser surface anatomy scanner, the Cyberware WBX. It expands on a previous publication where this method was validated against patients undergoing mastectomy. It specifically outlines and expands the computer-aided anthropometric (CAA) method for extracting breast volumes in a non-invasive way from patients enrolled in a breast reduction study at Flinders Medical Centre, South Australia. This step-by-step description allows others to replicate this work and provides an additional tool to assist them in their own clinical practice and development of designs.

  14. Computers and neurosurgery.

    PubMed

    Shaikhouni, Ammar; Elder, J Bradley

    2012-11-01

    At the turn of the twentieth century, the only computational device used in neurosurgical procedures was the brain of the surgeon. Today, most neurosurgical procedures rely at least in part on the use of a computer to help perform surgeries accurately and safely. The techniques that revolutionized neurosurgery were mostly developed after the 1950s. Just before that era, the transistor was invented in the late 1940s, and the integrated circuit was invented in the late 1950s. During this time, the first automated, programmable computational machines were introduced. The rapid progress in the field of neurosurgery not only occurred hand in hand with the development of modern computers, but one also can state that modern neurosurgery would not exist without computers. The focus of this article is the impact modern computers have had on the practice of neurosurgery. Neuroimaging, neuronavigation, and neuromodulation are examples of tools in the armamentarium of the modern neurosurgeon that owe each step in their evolution to progress made in computer technology. Advances in computer technology central to innovations in these fields are highlighted, with particular attention to neuroimaging. Developments over the last 10 years in areas of sensors and robotics that promise to transform the practice of neurosurgery further are discussed. Potential impacts of advances in computers related to neurosurgery in developing countries and underserved regions are also discussed. As this article illustrates, the computer, with its underlying and related technologies, is central to advances in neurosurgery over the last half century. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. High School Teachers' Problem Solving Activities to Review and Extend Their Mathematical and Didactical Knowledge

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Barrera-Mora, Fernando

    2011-01-01

    The study documents the extent to which high school teachers reflect on their need to revise and extend their mathematical and practicing knowledge. In this context, teachers worked on a set of tasks as a part of an inquiring community that promoted the use of different computational tools in problem solving approaches. Results indicated that the…

  16. DaRT: A CALL System to Help Students Practice and Develop Reasoning Skills in Choosing English Articles.

    ERIC Educational Resources Information Center

    Yoshii, Rika; Milne, Alastair

    1998-01-01

    Describes DaRT, a computer assisted language-learning system for helping English-as-a-Second-Language students master English articles. DaRT uses a diagrammatic reasoning tool to present communicative contexts for exercises in choosing appropriate articles. This paper describes the development of DaRT and DaRT's system components and concludes…

  17. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    ERIC Educational Resources Information Center

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  18. Patentability aspects of computational cancer models

    NASA Astrophysics Data System (ADS)

    Lishchuk, Iryna

    2017-07-01

    Multiscale cancer models, implemented in silico, simulate tumor progression at various spatial and temporal scales. Having the innovative substance and possessing the potential of being applied as decision support tools in clinical practice, patenting and obtaining patent rights in cancer models seems prima facie possible. What legal hurdles the cancer models need to overcome for being patented we inquire from this paper.

  19. A Practical Approach to Protein Crystallography.

    PubMed

    Ilari, Andrea; Savino, Carmelinda

    2017-01-01

    Macromolecular crystallography is a powerful tool for structural biology. The resolution of a protein crystal structure is becoming much easier than in the past, thanks to developments in computing, automation of crystallization techniques and high-flux synchrotron sources to collect diffraction datasets. The aim of this chapter is to provide practical procedures to determine a protein crystal structure, illustrating the new techniques, experimental methods, and software that have made protein crystallography a tool accessible to a larger scientific community.It is impossible to give more than a taste of what the X-ray crystallographic technique entails in one brief chapter and there are different ways to solve a protein structure. Since the number of structures available in the Protein Data Bank (PDB) is becoming ever larger (the protein data bank now contains more than 100,000 entries) and therefore the probability to find a good model to solve the structure is ever increasing, we focus our attention on the Molecular Replacement method. Indeed, whenever applicable, this method allows the resolution of macromolecular structures starting from a single data set and a search model downloaded from the PDB, with the aid only of computer work.

  20. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    PubMed

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  1. Good practices in free-energy calculations.

    PubMed

    Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christophe

    2010-08-19

    As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in a wide range of research areas. Yet, the reliability of these calculations can often be improved significantly if a number of precepts, or good practices, are followed. Although the theory upon which these good practices rely has largely been known for many years, it is often overlooked or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. In this contribution, the current best practices for carrying out free-energy calculations using free energy perturbation and nonequilibrium work methods are discussed, demonstrating that at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. Monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway, and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision.

  2. Practicing evidence based medicine at the bedside: a randomized controlled pilot study in undergraduate medical students assessing the practicality of tablets, smartphones, and computers in clinical life.

    PubMed

    Friederichs, Hendrik; Marschall, Bernhard; Weissenstein, Anne

    2014-12-05

    Practicing evidence-based medicine is an important aspect of providing good medical care. Accessing external information through literature searches on computer-based systems can effectively achieve integration in clinical care. We conducted a pilot study using smartphones, tablets, and stationary computers as search devices at the bedside. The objective was to determine possible differences between the various devices and assess students' internet use habits. In a randomized controlled pilot study, 120 students were divided in three groups. One control group solved clinical problems on a computer and two intervention groups used mobile devices at the bedside. In a questionnaire, students were asked to report their internet use habits as well as their satisfaction with their respective search tool using a 5-point Likert scale. Of 120 surveys, 94 (78.3%) complete data sets were analyzed. The mobility of the tablet (3.90) and the smartphone (4.39) was seen as a significant advantage over the computer (2.38, p < .001). However, for performing an effective literature search at the bedside, the computer (3.22) was rated superior to both tablet computers (2.13) and smartphones (1.68). No significant differences were detected between tablets and smartphones except satisfaction with screen size (tablet 4.10, smartphone 2.00, p < .001). Using a mobile device at the bedside to perform an extensive search is not suitable for students who prefer using computers. However, mobility is regarded as a substantial advantage, and therefore future applications might facilitate quick and simple searches at the bedside.

  3. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  4. New insights into faster computation of uncertainties

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-11-01

    Heavy computation power, lengthy simulations, and an exhaustive number of model runs—often these seem like the only statistical tools that scientists have at their disposal when computing uncertainties associated with predictions, particularly in cases of environmental processes such as groundwater movement. However, calculation of uncertainties need not be as lengthy, a new study shows. Comparing two approaches—the classical Bayesian “credible interval” and a less commonly used regression-based “confidence interval” method—Lu et al. show that for many practical purposes both methods provide similar estimates of uncertainties. The advantage of the regression method is that it demands 10-1000 model runs, whereas the classical Bayesian approach requires 10,000 to millions of model runs.

  5. An application of artificial intelligence to the interpretation of mass spectra.

    NASA Technical Reports Server (NTRS)

    Buchanan, B. G.; Duffield, A. M.; Robertson, A. V.

    1971-01-01

    Description of the DENDRAL (Dendritic Algorithm) project, the objectives of which were to base the computer program on an alogorithm that generates an exhaustive, nonredundant list of all the structural isomers of a given chemical composition, and to devise a computer program that would perform an organic structure determination, given a molecular formula and a mass spectrum. This program is called 'Heuristic DENDRAL' and it operates by using the known structure/spectrum correlations to constrain the DENDRAL isomer generator to produce a single isomer for that composition. The collaboration of chemists and computer scientists has produced a tool of some practical utility from the chemical viewpoint, and an interesting program from the viewpoint of artificial intelligence.

  6. Adaptation of the animal welfare assessment grid (AWAG) for monitoring animal welfare in zoological collections.

    PubMed

    Justice, W S M; O'Brien, M F; Szyszka, O; Shotton, J; Gilmour, J E M; Riordan, P; Wolfensohn, S

    2017-08-05

    Animal welfare monitoring is an essential part of zoo management and a legal requirement in many countries. Historically, a variety of welfare audits have been proposed to assist zoo managers. Unfortunately, there are a number of issues with these assessments, including lack of species information, validated tests and the overall complexity of these audits which make them difficult to implement in practice. The animal welfare assessment grid (AWAG) has previously been proposed as an animal welfare monitoring tool for animals used in research programmes. This computer-based system was successfully adapted for use in a zoo setting with two taxonomic groups: primates and birds. This tool is simple to use and provides continuous monitoring based on cumulative lifetime assessment. It is suggested as an alternative, practical method for welfare monitoring in zoos. British Veterinary Association.

  7. A qualitative study examining the benefits and challenges of incorporating patient-reported outcome substance use and mental health questionnaires into clinical practice to improve outcomes on the HIV care continuum.

    PubMed

    Monroe, Anne K; Jabour, Sarah M; Peña, Sebastian; Keruly, Jeanne C; Moore, Richard D; Chander, Geetanjali; Riekert, Kristin A

    2018-06-07

    Inadequate identification and treatment of substance use (SU) and mental health (MH) disorders hinders retention in HIV care. The objective of this study was to elicit stakeholder input on integration of SU/MH screening using computer-assisted patient-reported outcomes (PROs) into clinical practice. We conducted semi-structured interviews with HIV-positive patients who self-reported SU/MH symptoms on a computer-assisted PROs (n = 19) and HIV primary care providers (n = 11) recruited from an urban academic HIV clinic. Interviews were audio-recorded and transcribed. We iteratively developed codes and organized key themes using editing style analysis. Two themes emerged: (1) Honest Disclosure: Some providers felt PROs might improve SU/MH disclosure; more were concerned that patients would not respond honestly if their provider saw the results. Patients were also divided, stating PROs could help overcome stigma but that it could be harder to disclose SU/MH to a computer versus a live person. (2) Added Value in the Clinical Encounter: Most providers felt PROs would fill a practice gap. Patients had concerns regarding confidentiality but indicated PROs would help providers take better care of them. Both patients and providers indicated that PROs are potentially useful clinical tools to improve detection of SU/MH. However, patients and providers expressed conflicting viewpoints about disclosure of SU/MH using computerized PROs. Future studies implementing PROs screening interventions must assess concerns over confidentiality and honest disclosure of SU/MH to understand the effectiveness of PROs as a clinical tool. More research is also needed on patient-centered integration of the results of PROs in HIV care.

  8. Information-seeking behavior changes in community-based teaching practices*†

    PubMed Central

    Byrnes, Jennifer A.; Kulick, Tracy A.; Schwartz, Diane G.

    2004-01-01

    A National Library of Medicine information access grant allowed for a collaborative project to provide computer resources in fourteen clinical practice sites that enabled health care professionals to access medical information via PubMed and the Internet. Health care professionals were taught how to access quality, cost-effective information that was user friendly and would result in improved patient care. Selected sites were located in medically underserved areas and received a computer, a printer, and, during year one, a fax machine. Participants were provided dial-up Internet service or were connected to the affiliated hospital's network. Clinicians were trained in how to search PubMed as a tool for practicing evidence-based medicine and to support clinical decision making. Health care providers were also taught how to find patient-education materials and continuing education programs and how to network with other professionals. Prior to the training, participants completed a questionnaire to assess their computer skills and familiarity with searching the Internet, MEDLINE, and other health-related databases. Responses indicated favorable changes in information-seeking behavior, including an increased frequency in conducting MEDLINE searches and Internet searches for work-related information. PMID:15243639

  9. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen

    2014-04-10

    Numerical simulation of subaperture tool influence functions (TIF) is widely known as a critical procedure in computer-controlled optical surfacing. However, it may lack practicability in engineering because the emulation TIF (e-TIF) has some discrepancy with the practical TIF (p-TIF), and the removal rate could not be predicted by simulations. Prior to the polishing of a formal workpiece, opticians have to conduct TIF spot experiments on another sample to confirm the p-TIF with a quantitative removal rate, which is difficult and time-consuming for sequential polishing runs with different tools. This work is dedicated to applying these e-TIFs into practical engineering by making improvements from two aspects: (1) modifies the pressure distribution model of a flat-pitch polisher by finite element analysis and least square fitting methods to make the removal shape of e-TIFs closer to p-TIFs (less than 5% relative deviation validated by experiments); (2) predicts the removal rate of e-TIFs by reverse calculating the material removal volume of a pre-polishing run to the formal workpiece (relative deviations of peak and volume removal rate were validated to be less than 5%). This can omit TIF spot experiments for the particular flat-pitch tool employed and promote the direct usage of e-TIFs in the optimization of a dwell time map, which can largely save on cost and increase fabrication efficiency.

  10. The Hematopoietic Expression Viewer: expanding mobile apps as a scientific tool.

    PubMed

    James, Regis A; Rao, Mitchell M; Chen, Edward S; Goodell, Margaret A; Shaw, Chad A

    2012-07-15

    Many important data in current biological science comprise hundreds, thousands or more individual results. These massive data require computational tools to navigate results and effectively interact with the content. Mobile device apps are an increasingly important tool in the everyday lives of scientists and non-scientists alike. These software present individuals with compact and efficient tools to interact with complex data at meetings or other locations remote from their main computing environment. We believe that apps will be important tools for biologists, geneticists and physicians to review content while participating in biomedical research or practicing medicine. We have developed a prototype app for displaying gene expression data using the iOS platform. To present the software engineering requirements, we review the model-view-controller schema for Apple's iOS. We apply this schema to a simple app for querying locally developed microarray gene expression data. The challenge of this application is to balance between storing content locally within the app versus obtaining it dynamically via a network connection. The Hematopoietic Expression Viewer is available at http://www.shawlab.org/he_viewer. The source code for this project and any future information on how to obtain the app can be accessed at http://www.shawlab.org/he_viewer.

  11. Lowering the Barrier to Reproducible Research by Publishing Provenance from Common Analytical Tools

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Slaughter, P.; Walker, L.; Jones, C. S.; Missier, P.; Ludäscher, B.; Cao, Y.; McPhillips, T.; Schildhauer, M.

    2015-12-01

    Scientific provenance describes the authenticity, origin, and processing history of research products and promotes scientific transparency by detailing the steps in computational workflows that produce derived products. These products include papers, findings, input data, software products to perform computations, and derived data and visualizations. The geosciences community values this type of information, and, at least theoretically, strives to base conclusions on computationally replicable findings. In practice, capturing detailed provenance is laborious and thus has been a low priority; beyond a lab notebook describing methods and results, few researchers capture and preserve detailed records of scientific provenance. We have built tools for capturing and publishing provenance that integrate into analytical environments that are in widespread use by geoscientists (R and Matlab). These tools lower the barrier to provenance generation by automating capture of critical information as researchers prepare data for analysis, develop, test, and execute models, and create visualizations. The 'recordr' library in R and the `matlab-dataone` library in Matlab provide shared functions to capture provenance with minimal changes to normal working procedures. Researchers can capture both scripted and interactive sessions, tag and manage these executions as they iterate over analyses, and then prune and publish provenance metadata and derived products to the DataONE federation of archival repositories. Provenance traces conform to the ProvONE model extension of W3C PROV, enabling interoperability across tools and languages. The capture system supports fine-grained versioning of science products and provenance traces. By assigning global identifiers such as DOIs, reseachers can cite the computational processes used to reach findings. And, finally, DataONE has built a web portal to search, browse, and clearly display provenance relationships between input data, the software used to execute analyses and models, and derived data and products that arise from these computations. This provenance is vital to interpretation and understanding of science, and provides an audit trail that researchers can use to understand and replicate computational workflows in the geosciences.

  12. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  13. HGML: a hypertext guideline markup language.

    PubMed Central

    Hagerty, C. G.; Pickens, D.; Kulikowski, C.; Sonnenberg, F.

    2000-01-01

    Existing text-based clinical practice guidelines can be difficult to put into practice. While a growing number of such documents have gained acceptance in the medical community and contain a wealth of valuable information, the time required to digest them is substantial. Yet the expressive power, subtlety and flexibility of natural language pose challenges when designing computer tools that will help in their application. At the same time, formal computer languages typically lack such expressiveness and the effort required to translate existing documents into these languages may be costly. We propose a method based on the mark-up concept for converting text-based clinical guidelines into a machine-operable form. This allows existing guidelines to be manipulated by machine, and viewed in different formats at various levels of detail according to the needs of the practitioner, while preserving their originally published form. PMID:11079898

  14. De-quantisation

    NASA Astrophysics Data System (ADS)

    Gruska, Jozef

    2012-06-01

    One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.

  15. Application of Particle Swarm Optimization in Computer Aided Setup Planning

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen; Abedini, Vahid

    2011-01-01

    New researches are trying to integrate computer aided design (CAD) and computer aided manufacturing (CAM) environments. The role of process planning is to convert the design specification into manufacturing instructions. Setup planning has a basic role in computer aided process planning (CAPP) and significantly affects the overall cost and quality of machined part. This research focuses on the development for automatic generation of setups and finding the best setup plan in feasible condition. In order to computerize the setup planning process, three major steps are performed in the proposed system: a) Extraction of machining data of the part. b) Analyzing and generation of all possible setups c) Optimization to reach the best setup plan based on cost functions. Considering workshop resources such as machine tool, cutter and fixture, all feasible setups could be generated. Then the problem is adopted with technological constraints such as TAD (tool approach direction), tolerance relationship and feature precedence relationship to have a completely real and practical approach. The optimal setup plan is the result of applying the PSO (particle swarm optimization) algorithm into the system using cost functions. A real sample part is illustrated to demonstrate the performance and productivity of the system.

  16. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitra, Neepa

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  17. Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis

    PubMed Central

    2017-01-01

    Recent progress in the synthesis and characterization of metal–organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion. PMID:29392172

  18. The Practical Obstacles of Data Transfer: Why researchers still love scp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Hai Ah; Hill, Jason J; Parete-Koon, Suzanne T

    The importance of computing facilities is heralded every six months with the announcement of the new Top500 list, showcasing the world s fastest supercomputers. Unfortu- nately, with great computing capability does not come great long-term data storage capacity, which often means users must move their data to their local site archive, to remote sites where they may be doing future computation or anal- ysis, or back to their home institution, else face the dreaded data purge that most HPC centers employ to keep utiliza- tion of large parallel filesystems low to manage performance and capacity. At HPC centers, data transfermore » is crucial to the scientific workflow and will increase in importance as computing systems grow in size. The Energy Sciences Net- work (ESnet) recently launched its fifth generation network, a 100 Gbps high-performance, unclassified national network connecting more than 40 DOE research sites to support scientific research and collaboration. Despite the tenfold increase in bandwidth to DOE research sites amenable to multiple data transfer streams and high throughput, in prac- tice, researchers often under-utilize the network and resort to painfully-slow single stream transfer methods such as scp to avoid the complexity of using multiple stream tools such as GridFTP and bbcp, and contend with frustration from the lack of consistency of available tools between sites. In this study we survey and assess the data transfer methods pro- vided at several DOE supported computing facilities, includ- ing both leadership-computing facilities, connected through ESnet. We present observed transfer rates, suggested opti- mizations, and discuss the obstacles the tools must overcome to receive wide-spread adoption over scp.« less

  19. Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T; Williams, Mark L

    2007-01-01

    Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysismore » sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.« less

  20. Building a virtual ligand screening pipeline using free software: a survey.

    PubMed

    Glaab, Enrico

    2016-03-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.

  1. Building a virtual ligand screening pipeline using free software: a survey

    PubMed Central

    2016-01-01

    Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053

  2. [The virtual university in medicine. Context, concepts, specifications, users' manual].

    PubMed

    Duvauferrier, R; Séka, L P; Rolland, Y; Rambeau, M; Le Beux, P; Morcet, N

    1998-09-01

    The widespread use of Web servers, with the emergence of interactive functions and the possibility of credit card payment via Internet, together with the requirement for continuing education and the subsequent need for a computer to link into the health care network have incited the development of a virtual university scheme on Internet. The Virtual University of Radiology is not only a computer-assisted teaching tool with a set of attractive features, but also a powerful engine allowing the organization, distribution and control of medical knowledge available in the www.server. The scheme provides patient access to general information, a secretary's office for enrollment and the Virtual University itself, with its library, image database, a forum for subspecialties and clinical case reports, an evaluation module and various guides and help tools for diagnosis, prescription and indexing. Currently the Virtual University of Radiology offers diagnostic imaging, but can also be used by other specialties and for general practice.

  3. Integrating Puppet and Gitolite to provide a novel solution for scalable system management at the MPPMU Tier2 centre

    NASA Astrophysics Data System (ADS)

    Delle Fratte, C.; Kennedy, J. A.; Kluth, S.; Mazzaferro, L.

    2015-12-01

    In a grid computing infrastructure tasks such as continuous upgrades, services installations and software deployments are part of an admins daily work. In such an environment tools to help with the management, provisioning and monitoring of the deployed systems and services have become crucial. As experiments such as the LHC increase in scale, the computing infrastructure also becomes larger and more complex. Moreover, today's admins increasingly work within teams that share responsibilities and tasks. Such a scaled up situation requires tools that not only simplify the workload on administrators but also enable them to work seamlessly in teams. In this paper will be presented our experience from managing the Max Planck Institute Tier2 using Puppet and Gitolite in a cooperative way to help the system administrator in their daily work. In addition to describing the Puppet-Gitolite system, best practices and customizations will also be shown.

  4. Software in the Classroom: Issues in the Design of Effective Software Tools. Technical Report No. 15.

    ERIC Educational Resources Information Center

    Kurland, D. Midian

    This paper identifies three ways that computers are used in educational contexts. The first and most widespread use is as a tutor, i.e., as a delivery system for programmed instruction and drill-and-practice activities. The second use is as a programming environment to teach programming languages such as BASIC, LOGO, or PASCAL. The third use is as…

  5. Use of handheld computers in clinical practice: a systematic review.

    PubMed

    Mickan, Sharon; Atherton, Helen; Roberts, Nia Wyn; Heneghan, Carl; Tilson, Julie K

    2014-07-06

    Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals' use of handheld computers improve their access to information and support clinical decision making at the point of care? A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study's aim for assessing the impact of handheld computer use. We included seven randomised trials investigating medical or nursing staffs' use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues who did not have access to these tools. For these clinical decisions, the numbers need to test/screen were all less than 11. Healthcare professionals' use of handheld computers may improve their information seeking, adherence to guidelines and clinical decision making. Handheld computers can provide real time access to and analysis of clinical information. The integration of clinical decision support systems within handheld computers offers clinicians the highest level of synthesised evidence at the point of care. Future research is needed to replicate these early results and to identify beneficial clinical outcomes.

  6. Use of handheld computers in clinical practice: a systematic review

    PubMed Central

    2014-01-01

    Background Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals’ use of handheld computers improve their access to information and support clinical decision making at the point of care? Methods A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study’s aim for assessing the impact of handheld computer use. Results We included seven randomised trials investigating medical or nursing staffs’ use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues who did not have access to these tools. For these clinical decisions, the numbers need to test/screen were all less than 11. Conclusion Healthcare professionals’ use of handheld computers may improve their information seeking, adherence to guidelines and clinical decision making. Handheld computers can provide real time access to and analysis of clinical information. The integration of clinical decision support systems within handheld computers offers clinicians the highest level of synthesised evidence at the point of care. Future research is needed to replicate these early results and to identify beneficial clinical outcomes. PMID:24998515

  7. Zero side force volute development

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.

    1995-01-01

    Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.

  8. A Design Tool for Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  9. Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools.

    PubMed

    Wilson, Corey J

    2015-01-01

    Proteins are the most functionally diverse macromolecules observed in nature, participating in a broad array of catalytic, biosensing, transport, scaffolding, and regulatory functions. Fittingly, proteins have become one of the most promising nanobiotechnological tools to date, and through the use of recombinant DNA and other laboratory methods we have produced a vast number of biological therapeutics derived from human genes. Our emerging ability to rationally design proteins (e.g., via computational methods) holds the promise of significantly expanding the number and diversity of protein therapies and has opened the gateway to realizing true and uncompromised personalized medicine. In the last decade computational protein design has been transformed from a set of fundamental strategies to stringently test our understanding of the protein structure-function relationship, to practical tools for developing useful biological processes, nano-devices, and novel therapeutics. As protein design strategies improve (i.e., in terms of accuracy and efficiency) clinicians will be able to leverage individual genetic data and biological metrics to develop and deliver personalized protein therapeutics with minimal delay. © 2014 Wiley Periodicals, Inc.

  10. Presence for design: conveying atmosphere through video collages.

    PubMed

    Keller, I; Stappers, P J

    2001-04-01

    Product designers use imagery for inspiration in their creative design process. To support creativity, designers apply many tools and techniques, which often rely on their ability to be inspired by found and previously made visual material and to experience the atmosphere of the user environment. Computer tools and developments in VR offer perspectives to support this kind of imagery and presence in the design process. But currently these possibilities come at too high a technological overhead and price to be usable in the design practice. This article proposes an expressive and technically lightweight approach using the possibilities of VR and computer tools, by creating a sketchy environment using video collages. Instead of relying on highly realistic or even "hyperreal" graphics, these video collages use lessons learned from theater and cinema to get a sense of atmosphere across. Product designers can use these video collages to reexperience their observations in the environment in which a product is to be used, and to communicate this atmosphere to their colleagues and clients. For user-centered design, video collages can also provide an environmental context for concept testing with prospective user groups.

  11. Computer literacy in nursing education. An overview.

    PubMed

    Newbern, V B

    1985-09-01

    Nursing educators are beginning to realize that computer literacy has become a survival skill for the profession. They understand that literacy must be at a level that assures the ability to manage and control the flood of available information and provides an openness and awareness of future technologic possibilities. The computer has been on college campuses for a number of years, used primarily for record storage and retrieval. However, early on a few nurse educators saw the potential for its use as a practice tool. Out of this foresight came both formal and nonformal educational offerings. The evolution of formal coursework in computer literacy has moved from learning about the computer to learning with the computer. Today the use of the computer is expanding geometrically as microcomputers become common. Graduate students and faculty use them for literature searches and data analysis. Undergraduates are routinely using computer-assisted instruction. Coursework in computer technology is fast becoming a given for nursing students and computer competency a requisite for faculty. However, inculcating computer competency in faculty and student repertoires is not an easy task. There are problems related to motivation, resources, and control. Territorial disputes between schools and colleges must be arbitrated. The interface with practice must be addressed. The paucity of adequate software is a real concern. But the potential is enormous, probably restricted only by human creativity. The possibilities for teaching and learning are profound, especially if geographical constraints can be effaced and scarce resources can be shared at minimal cost. Extremely sophisticated research designs and evaluation methodologies can be used routinely.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    PubMed

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  13. Implementation of the Kids-CAT in clinical settings: a newly developed computer-adaptive test to facilitate the assessment of patient-reported outcomes of children and adolescents in clinical practice in Germany.

    PubMed

    Barthel, D; Fischer, K I; Nolte, S; Otto, C; Meyrose, A-K; Reisinger, S; Dabs, M; Thyen, U; Klein, M; Muehlan, H; Ankermann, T; Walter, O; Rose, M; Ravens-Sieberer, U

    2016-03-01

    To describe the implementation process of a computer-adaptive test (CAT) for measuring health-related quality of life (HRQoL) of children and adolescents in two pediatric clinics in Germany. The study focuses on the feasibility and user experience with the Kids-CAT, particularly the patients' experience with the tool and the pediatricians' experience with the Kids-CAT Report. The Kids-CAT was completed by 312 children and adolescents with asthma, diabetes or rheumatoid arthritis. The test was applied during four clinical visits over a 1-year period. A feedback report with the test results was made available to the pediatricians. To assess both feasibility and acceptability, a multimethod research design was used. To assess the patients' experience with the tool, the children and adolescents completed a questionnaire. To assess the clinicians' experience, two focus groups were conducted with eight pediatricians. The children and adolescents indicated that the Kids-CAT was easy to complete. All pediatricians reported that the Kids-CAT was straightforward and easy to understand and integrate into clinical practice; they also expressed that routine implementation of the tool would be desirable and that the report was a valuable source of information, facilitating the assessment of self-reported HRQoL of their patients. The Kids-CAT was considered an efficient and valuable tool for assessing HRQoL in children and adolescents. The Kids-CAT Report promises to be a useful adjunct to standard clinical care with the potential to improve patient-physician communication, enabling pediatricians to evaluate and monitor their young patients' self-reported HRQoL.

  14. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  15. iTools: a framework for classification, categorization and integration of computational biology resources.

    PubMed

    Dinov, Ivo D; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H V; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D Stott; Toga, Arthur W

    2008-05-28

    The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu.

  16. iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources

    PubMed Central

    Dinov, Ivo D.; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H. V.; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D. Stott; Toga, Arthur W.

    2008-01-01

    The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu. PMID:18509477

  17. Good Practices in Free-energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher

    2013-01-01

    As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.

  18. Practical scheme for error control using feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene

    2004-05-01

    We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.

  19. Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chawlowski, Pawel

    2014-01-01

    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.

  20. Approximating local observables on projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  1. CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation.

    PubMed

    Whiffin, Nicola; Walsh, Roddy; Govind, Risha; Edwards, Matthew; Ahmad, Mian; Zhang, Xiaolei; Tayal, Upasana; Buchan, Rachel; Midwinter, William; Wilk, Alicja E; Najgebauer, Hanna; Francis, Catherine; Wilkinson, Sam; Monk, Thomas; Brett, Laura; O'Regan, Declan P; Prasad, Sanjay K; Morris-Rosendahl, Deborah J; Barton, Paul J R; Edwards, Elizabeth; Ware, James S; Cook, Stuart A

    2018-01-25

    PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher's P = 1.1  ×  10 -18 ), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.GENETICS in MEDICINE advance online publication, 25 January 2018; doi:10.1038/gim.2017.258.

  2. Supercomputers ready for use as discovery machines for neuroscience.

    PubMed

    Helias, Moritz; Kunkel, Susanne; Masumoto, Gen; Igarashi, Jun; Eppler, Jochen Martin; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus

    2012-01-01

    NEST is a widely used tool to simulate biological spiking neural networks. Here we explain the improvements, guided by a mathematical model of memory consumption, that enable us to exploit for the first time the computational power of the K supercomputer for neuroscience. Multi-threaded components for wiring and simulation combine 8 cores per MPI process to achieve excellent scaling. K is capable of simulating networks corresponding to a brain area with 10(8) neurons and 10(12) synapses in the worst case scenario of random connectivity; for larger networks of the brain its hierarchical organization can be exploited to constrain the number of communicating computer nodes. We discuss the limits of the software technology, comparing maximum filling scaling plots for K and the JUGENE BG/P system. The usability of these machines for network simulations has become comparable to running simulations on a single PC. Turn-around times in the range of minutes even for the largest systems enable a quasi interactive working style and render simulations on this scale a practical tool for computational neuroscience.

  3. Numerical methods on some structured matrix algebra problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1996-06-01

    This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less

  4. Supercomputers Ready for Use as Discovery Machines for Neuroscience

    PubMed Central

    Helias, Moritz; Kunkel, Susanne; Masumoto, Gen; Igarashi, Jun; Eppler, Jochen Martin; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus

    2012-01-01

    NEST is a widely used tool to simulate biological spiking neural networks. Here we explain the improvements, guided by a mathematical model of memory consumption, that enable us to exploit for the first time the computational power of the K supercomputer for neuroscience. Multi-threaded components for wiring and simulation combine 8 cores per MPI process to achieve excellent scaling. K is capable of simulating networks corresponding to a brain area with 108 neurons and 1012 synapses in the worst case scenario of random connectivity; for larger networks of the brain its hierarchical organization can be exploited to constrain the number of communicating computer nodes. We discuss the limits of the software technology, comparing maximum filling scaling plots for K and the JUGENE BG/P system. The usability of these machines for network simulations has become comparable to running simulations on a single PC. Turn-around times in the range of minutes even for the largest systems enable a quasi interactive working style and render simulations on this scale a practical tool for computational neuroscience. PMID:23129998

  5. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  6. The Astronomy Workshop: Scientific Notation and Solar System Visualizer

    NASA Astrophysics Data System (ADS)

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2008-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes and by the general public. The philosophy of the site is to foster student interest in astronomy by exploiting their fascination with computers and the internet. We have expanded the "Scientific Notation” tool from simply converting decimal numbers into and out of scientific notation to adding, subtracting, multiplying, and dividing numbers expressed in scientific notation. Students practice these skills and when confident they may complete a quiz. In addition, there are suggestions on how instructors may use the site to encourage students to practice these basic skills. The Solar System Visualizer animates orbits of planets, moons, and rings to scale. Extrasolar planetary systems are also featured. This research was sponsored by NASA EPO grant NNG06GGF99G.

  7. Egas Moniz: 90 Years (1927-2017) from Cerebral Angiography.

    PubMed

    Artico, Marco; Spoletini, Marialuisa; Fumagalli, Lorenzo; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco; Salvati, Maurizio; Frati, Alessandro; Pastore, Francesco Saverio; Taurone, Samanta

    2017-01-01

    In June 2017 we celebrate the 90th anniversary of the pioneer discovery of cerebral angiography, the seminal imaging technique used for visualizing cerebral blood vessels and vascular alterations as well as other intracranial disorders. Egas Moniz (1874-1955) was the first to describe the use of this revolutionary technique which, until 1975 (when computed tomography, CT, scan was introduced in the clinical practice), was the sole diagnostic tool to provide an imaging of cerebral vessels and therefore alterations due to intracranial pathology. Moniz introduced in the clinical practice this fundamental and important diagnostic tool. The present contribution wishes to pay a tribute to the Portuguese neurosurgeon, who was also a distinguished neurologist and statesman. Despite his tremendous contribution in modern brain imaging, Egas Moniz was awarded the Nobel Prize in Physiology or Medicine in 1949 for prefrontal leucotomy, the neurosurgical intervention nowadays unacceptable, but should rather be remembered for his key contribution to modern brain imaging.

  8. Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools).

    PubMed

    Soto, Fabian A; Zheng, Emily; Fonseca, Johnny; Ashby, F Gregory

    2017-01-01

    Determining whether perceptual properties are processed independently is an important goal in perceptual science, and tools to test independence should be widely available to experimental researchers. The best analytical tools to test for perceptual independence are provided by General Recognition Theory (GRT), a multidimensional extension of signal detection theory. Unfortunately, there is currently a lack of software implementing GRT analyses that is ready-to-use by experimental psychologists and neuroscientists with little training in computational modeling. This paper presents grtools , an R package developed with the explicit aim of providing experimentalists with the ability to perform full GRT analyses using only a couple of command lines. We describe the software and provide a practical tutorial on how to perform each of the analyses available in grtools . We also provide advice to researchers on best practices for experimental design and interpretation of results when applying GRT and grtools .

  9. The finite element method in low speed aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1975-01-01

    The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.

  10. Cost-effective use of minicomputers to solve structural problems

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Foster, E. P.

    1978-01-01

    Minicomputers are receiving increased use throughout the aerospace industry. Until recently, their use focused primarily on process control and numerically controlled tooling applications, while their exposure to and the opportunity for structural calculations has been limited. With the increased availability of this computer hardware, the question arises as to the feasibility and practicality of carrying out comprehensive structural analysis on a minicomputer. This paper presents results on the potential for using minicomputers for structural analysis by (1) selecting a comprehensive, finite-element structural analysis system in use on large mainframe computers; (2) implementing the system on a minicomputer; and (3) comparing the performance of the minicomputers with that of a large mainframe computer for the solution to a wide range of finite element structural analysis problems.

  11. Human-Computer Interface Controlled by Horizontal Directional Eye Movements and Voluntary Blinks Using AC EOG Signals

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yusuke; Murata, Hiroaki; Kimura, Haruhiko; Abe, Koji

    As a communication support tool for cases of amyotrophic lateral sclerosis (ALS), researches on eye gaze human-computer interfaces have been active. However, since voluntary and involuntary eye movements cannot be distinguished in the interfaces, their performance is still not sufficient for practical use. This paper presents a high performance human-computer interface system which unites high quality recognitions of horizontal directional eye movements and voluntary blinks. The experimental results have shown that the number of incorrect inputs is decreased by 35.1% in an existing system which equips recognitions of horizontal and vertical directional eye movements in addition to voluntary blinks and character inputs are speeded up by 17.4% from the existing system.

  12. Use of computational fluid dynamics in respiratory medicine.

    PubMed

    Fernández Tena, Ana; Casan Clarà, Pere

    2015-06-01

    Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  13. Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systems

    PubMed Central

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.

    2016-01-01

    Abstract. The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment. PMID:27493982

  14. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery.

    PubMed

    Renkawitz, Tobias; Tingart, Markus; Grifka, Joachim; Sendtner, Ernst; Kalteis, Thomas

    2009-09-01

    This article outlines the scientific basis and a state-of-the-art application of computer-assisted orthopedic surgery in total hip arthroplasty (THA) and provides a future perspective on this technology. Computer-assisted orthopedic surgery in primary THA has the potential to couple 3D simulations with real-time evaluations of surgical performance, which has brought these developments from the research laboratory all the way to clinical use. Nonimage- or imageless-based navigation systems without the need for additional pre- or intra-operative image acquisition have stood the test to significantly reduce the variability in positioning the acetabular component and have shown precise measurement of leg length and offset changes during THA. More recently, computer-assisted orthopedic surgery systems have opened a new frontier for accurate surgical practice in minimally invasive, tissue-preserving THA. The future generation of imageless navigation systems will switch from simple measurement tasks to real navigation tools. These software algorithms will consider the cup and stem as components of a coupled biomechanical system, navigating the orthopedic surgeon to find an optimized complementary component orientation rather than target values intraoperatively, and are expected to have a high impact on clinical practice and postoperative functionality in modern THA.

  15. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics.

    PubMed

    Chabiniok, Radomir; Wang, Vicky Y; Hadjicharalambous, Myrianthi; Asner, Liya; Lee, Jack; Sermesant, Maxime; Kuhl, Ellen; Young, Alistair A; Moireau, Philippe; Nash, Martyn P; Chapelle, Dominique; Nordsletten, David A

    2016-04-06

    With heart and cardiovascular diseases continually challenging healthcare systems worldwide, translating basic research on cardiac (patho)physiology into clinical care is essential. Exacerbating this already extensive challenge is the complexity of the heart, relying on its hierarchical structure and function to maintain cardiovascular flow. Computational modelling has been proposed and actively pursued as a tool for accelerating research and translation. Allowing exploration of the relationships between physics, multiscale mechanisms and function, computational modelling provides a platform for improving our understanding of the heart. Further integration of experimental and clinical data through data assimilation and parameter estimation techniques is bringing computational models closer to use in routine clinical practice. This article reviews developments in computational cardiac modelling and how their integration with medical imaging data is providing new pathways for translational cardiac modelling.

  16. Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D. (Editor)

    2000-01-01

    The proceedings of the Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems cosponsored by the Ohio Aerospace Institute and the NASA Glenn Research Center are the subject of this report. Fan noise was the chosen theme for this workshop with representative problems encompassing four of the six benchmark problem categories. The other two categories were related to jet noise and cavity noise. For the first time in this series of workshops, the computational results for the cavity noise problem were compared to experimental data. All the other problems had exact solutions, which are included in this report. The Workshop included a panel discussion by representatives of industry. The participants gave their views on the status of applying computational aeroacoustics to solve practical industry related problems and what issues need to be addressed to make CAA a robust design tool.

  17. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  18. Numerical ‘health check’ for scientific codes: the CADNA approach

    NASA Astrophysics Data System (ADS)

    Scott, N. S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M.

    2007-04-01

    Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical 'health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.

  19. Computer-aided design of biological circuits using TinkerCell

    PubMed Central

    Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. PMID:21327060

  20. Application of Reduced Order Transonic Aerodynamic Influence Coefficient Matrix for Design Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2009-01-01

    Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.

  1. Quality of anthropometric measurements in Spanish Intensive Care Units (The CAMIES Study).

    PubMed

    García-Martínez, M A; Cherednichenko, T; Hidalgo Encinas, Y; Catalá Espinosa, A I; Arrascaeta Llanes, A; Acosta Escribano, J A

    2017-11-11

    Real body weight and height are essential data to be obtained in all critically ill patients (CIP), due to their influence in the designing of therapies and monitoring. Visual estimation is a very inaccurate practice. No precise descriptions of anthropometric measurements among CIP are available in the clinical practice guides. To describe anthropometric quality in CIP, health professional perception of such quality, and its influencing factors. Computer-assisted telephone or self-interviewing. Doctors and nurses of all Spanish Intensive Care Units (ICU) attending adults. Anthropometric practices were described in detail, along with the proclivity to obtain real measurements, and the influence of professional experience, the number of ICU beds, and the health professional group involved. A total of 481 questionnaires were collected from 176 hospitals (36.8% from physicians). The availability of measuring tools is limited (weight 68.7% - height 76.7%), with no relation to the number of ICU beds (weight P=.343, height P=.61). Visual estimation was the most frequent way of obtaining measurements (weight 65.9% - height 64.8%), even when measuring tools were available. Willingness to take real measurements was very low, especially among physicians, and professional experience was associated to increased rejection (P<.001). Visually estimated measurements exceed real measurements in the routine practice of Spanish ICUs. Measurement tools are not widely available in the ICU, and even when available, their use is not guaranteed. The surveyed population does not view anthropometric measures as being important for clinical practice. An effort should be made by scientific societies to promote reliable anthropometric practice in Spanish ICUs. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  2. Artificial neural networks in biology and chemistry: the evolution of a new analytical tool.

    PubMed

    Cartwright, Hugh M

    2008-01-01

    Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.

  3. Effects of Dental 3D Multimedia System on the Performance of Junior Dental Students in Preclinical Practice: A Report from China

    ERIC Educational Resources Information Center

    Hu, Jian; Yu, Hao; Shao, Jun; Li, Zhiyong; Wang, Jiawei; Wang, Yining

    2009-01-01

    Background: Computer-assisted tools are rarely adopted for dental education in China. In China, 3D digital technology, such as Virtual Reality Systems, are often rejected in the dental field due to prohibitive pricing. There is also a reluctance to move away from traditional patterns of dental education. Objective: The current study is one of a…

  4. Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal

    NASA Astrophysics Data System (ADS)

    Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.

    2012-04-01

    Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and Tools for Hydrological Model Processing and Visualization. SYNASC 2011 - 13 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (in press).

  5. Computer Security Awareness Guide for Department of Energy Laboratories, Government Agencies, and others for use with Lawrence Livermore National Laboratory`s (LLNL): Computer security short subjects videos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talkingmore » about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.« less

  6. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Shaffe, Michael G. (Technical Monitor)

    2001-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and a computer system. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3D space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  7. Multiagent Work Practice Simulation: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten

    2002-01-01

    Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and computer systems. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3d space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).

  8. Evidence of effectiveness of health care professionals using handheld computers: a scoping review of systematic reviews.

    PubMed

    Mickan, Sharon; Tilson, Julie K; Atherton, Helen; Roberts, Nia Wyn; Heneghan, Carl

    2013-10-28

    Handheld computers and mobile devices provide instant access to vast amounts and types of useful information for health care professionals. Their reduced size and increased processing speed has led to rapid adoption in health care. Thus, it is important to identify whether handheld computers are actually effective in clinical practice. A scoping review of systematic reviews was designed to provide a quick overview of the documented evidence of effectiveness for health care professionals using handheld computers in their clinical work. A detailed search, sensitive for systematic reviews was applied for Cochrane, Medline, EMBASE, PsycINFO, Allied and Complementary Medicine Database (AMED), Global Health, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases. All outcomes that demonstrated effectiveness in clinical practice were included. Classroom learning and patient use of handheld computers were excluded. Quality was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A previously published conceptual framework was used as the basis for dual data extraction. Reported outcomes were summarized according to the primary function of the handheld computer. Five systematic reviews met the inclusion and quality criteria. Together, they reviewed 138 unique primary studies. Most reviewed descriptive intervention studies, where physicians, pharmacists, or medical students used personal digital assistants. Effectiveness was demonstrated across four distinct functions of handheld computers: patient documentation, patient care, information seeking, and professional work patterns. Within each of these functions, a range of positive outcomes were reported using both objective and self-report measures. The use of handheld computers improved patient documentation through more complete recording, fewer documentation errors, and increased efficiency. Handheld computers provided easy access to clinical decision support systems and patient management systems, which improved decision making for patient care. Handheld computers saved time and gave earlier access to new information. There were also reports that handheld computers enhanced work patterns and efficiency. This scoping review summarizes the secondary evidence for effectiveness of handheld computers and mhealth. It provides a snapshot of effective use by health care professionals across four key functions. We identified evidence to suggest that handheld computers provide easy and timely access to information and enable accurate and complete documentation. Further, they can give health care professionals instant access to evidence-based decision support and patient management systems to improve clinical decision making. Finally, there is evidence that handheld computers allow health professionals to be more efficient in their work practices. It is anticipated that this evidence will guide clinicians and managers in implementing handheld computers in clinical practice and in designing future research.

  9. X-ray system simulation software tools for radiology and radiography education.

    PubMed

    Kengyelics, Stephen M; Treadgold, Laura A; Davies, Andrew G

    2018-02-01

    To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students. Current approaches to teaching x-ray physics in radiological science lack immediacy when linking theory with practice. This method of delivery allows students to engage with the subject in an experiential learning environment. Copyright © 2017. Published by Elsevier Ltd.

  10. The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1981-01-01

    Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation.

  11. Intelligent tutoring using HyperCLIPS

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Pickering, Brad

    1990-01-01

    HyperCard is a popular hypertext-like system used for building user interfaces to databases and other applications, and CLIPS is a highly portable government-owned expert system shell. We developed HyperCLIPS in order to fill a gap in the U.S. Army's computer-based instruction tool set; it was conceived as a development environment for building adaptive practical exercises for subject-matter problem-solving, though it is not limited to this approach to tutoring. Once HyperCLIPS was developed, we set out to implement a practical exercise prototype using HyperCLIPS in order to demonstrate the following concepts: learning can be facilitated by doing; student performance evaluation can be done in real-time; and the problems in a practical exercise can be adapted to the individual student's knowledge.

  12. Simulation System for Training in Laparoscopic Surgery

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao

    2003-01-01

    A computer-based simulation system creates a visual and haptic virtual environment for training a medical practitioner in laparoscopic surgery. Heretofore, it has been common practice to perform training in partial laparoscopic surgical procedures by use of a laparoscopic training box that encloses a pair of laparoscopic tools, objects to be manipulated by the tools, and an endoscopic video camera. However, the surgical procedures simulated by use of a training box are usually poor imitations of the actual ones. The present computer-based system improves training by presenting a more realistic simulated environment to the trainee. The system includes a computer monitor that displays a real-time image of the affected interior region of the patient, showing laparoscopic instruments interacting with organs and tissues, as would be viewed by use of an endoscopic video camera and displayed to a surgeon during a laparoscopic operation. The system also includes laparoscopic tools that the trainee manipulates while observing the image on the computer monitor (see figure). The instrumentation on the tools consists of (1) position and orientation sensors that provide input data for the simulation and (2) actuators that provide force feedback to simulate the contact forces between the tools and tissues. The simulation software includes components that model the geometries of surgical tools, components that model the geometries and physical behaviors of soft tissues, and components that detect collisions between them. Using the measured positions and orientations of the tools, the software detects whether they are in contact with tissues. In the event of contact, the deformations of the tissues and contact forces are computed by use of the geometric and physical models. The image on the computer screen shows tissues deformed accordingly, while the actuators apply the corresponding forces to the distal ends of the tools. For the purpose of demonstration, the system has been set up to simulate the insertion of a flexible catheter in a bile duct. [As thus configured, the system can also be used to simulate other endoscopic procedures (e.g., bronchoscopy and colonoscopy) that include the insertion of flexible tubes into flexible ducts.] A hybrid approach has been followed in developing the software for real-time simulation of the visual and haptic interactions (1) between forceps and the catheter, (2) between the forceps and the duct, and (3) between the catheter and the duct. The deformations of the duct are simulated by finite-element and modalanalysis procedures, using only the most significant vibration modes of the duct for computing deformations and interaction forces. The catheter is modeled as a set of virtual particles uniformly distributed along the center line of the catheter and connected to each other via linear and torsional springs and damping elements. The interactions between the forceps and the duct as well as the catheter are simulated by use of a ray-based haptic-interaction- simulating technique in which the forceps are modeled as connected line segments.

  13. ITK: enabling reproducible research and open science

    PubMed Central

    McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis

    2014-01-01

    Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46. PMID:24600387

  14. ITK: enabling reproducible research and open science.

    PubMed

    McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis

    2014-01-01

    Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46.

  15. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  16. BioVeL: a virtual laboratory for data analysis and modelling in biodiversity science and ecology.

    PubMed

    Hardisty, Alex R; Bacall, Finn; Beard, Niall; Balcázar-Vargas, Maria-Paula; Balech, Bachir; Barcza, Zoltán; Bourlat, Sarah J; De Giovanni, Renato; de Jong, Yde; De Leo, Francesca; Dobor, Laura; Donvito, Giacinto; Fellows, Donal; Guerra, Antonio Fernandez; Ferreira, Nuno; Fetyukova, Yuliya; Fosso, Bruno; Giddy, Jonathan; Goble, Carole; Güntsch, Anton; Haines, Robert; Ernst, Vera Hernández; Hettling, Hannes; Hidy, Dóra; Horváth, Ferenc; Ittzés, Dóra; Ittzés, Péter; Jones, Andrew; Kottmann, Renzo; Kulawik, Robert; Leidenberger, Sonja; Lyytikäinen-Saarenmaa, Päivi; Mathew, Cherian; Morrison, Norman; Nenadic, Aleksandra; de la Hidalga, Abraham Nieva; Obst, Matthias; Oostermeijer, Gerard; Paymal, Elisabeth; Pesole, Graziano; Pinto, Salvatore; Poigné, Axel; Fernandez, Francisco Quevedo; Santamaria, Monica; Saarenmaa, Hannu; Sipos, Gergely; Sylla, Karl-Heinz; Tähtinen, Marko; Vicario, Saverio; Vos, Rutger Aldo; Williams, Alan R; Yilmaz, Pelin

    2016-10-20

    Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.

  17. Exact posterior computation in non-conjugate Gaussian location-scale parameters models

    NASA Astrophysics Data System (ADS)

    Andrade, J. A. A.; Rathie, P. N.

    2017-12-01

    In Bayesian analysis the class of conjugate models allows to obtain exact posterior distributions, however this class quite restrictive in the sense that it involves only a few distributions. In fact, most of the practical applications involves non-conjugate models, thus approximate methods, such as the MCMC algorithms, are required. Although these methods can deal with quite complex structures, some practical problems can make their applications quite time demanding, for example, when we use heavy-tailed distributions, convergence may be difficult, also the Metropolis-Hastings algorithm can become very slow, in addition to the extra work inevitably required on choosing efficient candidate generator distributions. In this work, we draw attention to the special functions as a tools for Bayesian computation, we propose an alternative method for obtaining the posterior distribution in Gaussian non-conjugate models in an exact form. We use complex integration methods based on the H-function in order to obtain the posterior distribution and some of its posterior quantities in an explicit computable form. Two examples are provided in order to illustrate the theory.

  18. The FuturICT education accelerator

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Buckingham Shum, S.; Willis, A.; Bishop, S.; Zamenopoulos, T.; Swithenby, S.; MacKay, R.; Merali, Y.; Lorincz, A.; Costea, C.; Bourgine, P.; Louçã, J.; Kapenieks, A.; Kelley, P.; Caird, S.; Bromley, J.; Deakin Crick, R.; Goldspink, C.; Collet, P.; Carbone, A.; Helbing, D.

    2012-11-01

    Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year `man-on-the-moon' project is proposed in which FuturICT's unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a `wind tunnel' for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT.

  19. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    PubMed

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  20. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  1. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  2. Troubleshooting secrets you may want to try on your own.

    PubMed

    Walsh, Dennis

    2006-02-01

    I hope you can use one or two tools in this list to solve an issue you may be having right now, or one that comes up in the future. Please, please, please, do not try the more extensive (and potentially more troublesome) options unless you have a lot of experience working on computers or you are 100% certain you do not need any data that is on that computer. I don't like putting that warning in here, because the instructor in me wants you to learn, but not at the expense of losing all of your practice data. Have you tested your backup recently?

  3. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    NASA Astrophysics Data System (ADS)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.

  4. Beyond the Ask and Advise: Implementation of a Computer Tablet Intervention to Enhance Provider Adherence to the 5As for Smoking Cessation.

    PubMed

    Kalkhoran, Sara; Appelle, Nicole A; Napoles, Anna M; Munoz, Ricardo F; Lum, Paula J; Alvarado, Nicholas; Gregorich, Steven E; Satterfield, Jason M

    2016-01-01

    The 5As for smoking cessation is an evidence-based intervention to aid providers in counseling patients to quit smoking. While most providers "ask" patients about their tobacco use patterns and "advise" them to quit, fewer patients report being "assessed" for their interest in quitting, and even fewer report subsequent "assistance" in a quit attempt and having follow-up "arranged". This article describes the design of an implementation study testing a computer tablet intervention to improve provider adherence to the 5As for smoking cessation. Findings will contribute to the existing literature on technology acceptance for addressing addictive behaviors, and how digital tools may facilitate the broader implementation of evidence-based behavioral counseling practices without adversely affecting clinical flow or patient care. This project develops and tests a computer-facilitated 5As (CF-5As) model that administers the 5As intervention to patients with a computer tablet, then prompts providers to reinforce next steps. During the development phase, 5As' content will be programmed onto computer tablets, alpha and beta-testing of the service delivery model will be done, and pre-intervention interview and questionnaire data will be collected from patients, providers, and clinic staff about 5As fidelity and technology adoption. During the program evaluation phase, a randomized controlled trial comparing a group who receives the CF-5As intervention to one that does not will be conducted to assess 5As fidelity. Using the technology acceptance model, a mixed methods study of contextual and human factors influencing both 5As and technology adoption will also be conducted. Technology is increasingly being used in clinical settings. A technological tool that connects patients, providers, and clinic staff to facilitate the promotion of behavioral interventions such as smoking cessation may provide an innovative platform through which to efficiently and effectively implement evidence-based practices. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Avoid problems during distillation column startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloley, A.W.

    1996-07-01

    The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less

  6. On aerodynamic wake analysis and its relation to total aerodynamic drag in a wind tunnel environment

    NASA Astrophysics Data System (ADS)

    Guterres, Rui M.

    The present work was developed with the goal of advancing the state of the art in the application of three-dimensional wake data analysis to the quantification of aerodynamic drag on a body in a low speed wind tunnel environment. Analysis of the existing tools, their strengths and limitations is presented. Improvements to the existing analysis approaches were made. Software tools were developed to integrate the analysis into a practical tool. A comprehensive derivation of the equations needed for drag computations based on three dimensional separated wake data is developed. A set of complete steps ranging from the basic mathematical concept to the applicable engineering equations is presented. An extensive experimental study was conducted. Three representative body types were studied in varying ground effect conditions. A detailed qualitative wake analysis using wake imaging and two and three dimensional flow visualization was performed. Several significant features of the flow were identified and their relation to the total aerodynamic drag established. A comprehensive wake study of this type is shown to be in itself a powerful tool for the analysis of the wake aerodynamics and its relation to body drag. Quantitative wake analysis techniques were developed. Significant post processing and data conditioning tools and precision analysis were developed. The quality of the data is shown to be in direct correlation with the accuracy of the computed aerodynamic drag. Steps are taken to identify the sources of uncertainty. These are quantified when possible and the accuracy of the computed results is seen to significantly improve. When post processing alone does not resolve issues related to precision and accuracy, solutions are proposed. The improved quantitative wake analysis is applied to the wake data obtained. Guidelines are established that will lead to more successful implementation of these tools in future research programs. Close attention is paid to implementation of issues that are of crucial importance for the accuracy of the results and that are not detailed in the literature. The impact of ground effect on the flows in hand is qualitatively and quantitatively studied. Its impact on the accuracy of the computations as well as the wall drag incompatibility with the theoretical model followed are discussed. The newly developed quantitative analysis provides significantly increased accuracy. The aerodynamic drag coefficient is computed within one percent of balance measured value for the best cases.

  7. Technology pedagogy: Six teacher candidates' developing pedagogical models for the use of computers in science instruction

    NASA Astrophysics Data System (ADS)

    Myhre, Oddmund Reidar

    1997-12-01

    This study investigated how teacher candidates' developing pedagogical beliefs and knowledge of technology influenced their perception of such tools in the teaching of subject matter as they complete the initial course work of their professional program. The purpose of the study was to conceptualize more clearly the relationship between prospective teachers' thinking about computer technology and the content of their professional education. A case study methodology was used to investigate changes in six pre-service secondary science teachers' thinking about technology as a pedagogical tool. Two of the teachers had extensive experience with technology upon entering the teacher preparation course-work, whereas the other four were novice computer users. Data included three semi structured interviews and non-participant observations during the technology course-work. Additional data were collected in the form of interviews with university faculty and cooperating teachers. Analysis of these data indicated that prospective candidates entered teacher education viewing technology as a tool that supports a teacher centered classroom. As the candidates explored more student centered approaches to teaching, they found less room for technology in their images of their future practice. The data also indicated that the technology course-work was isolated from the rest of the teacher education program and many of the misconceptions about technology that the candidates brought to their professional preparation were left unchallenged.

  8. Software Carpentry and the Hydrological Sciences

    NASA Astrophysics Data System (ADS)

    Ahmadia, A. J.; Kees, C. E.; Farthing, M. W.

    2013-12-01

    Scientists are spending an increasing amount of time building and using hydrology software. However, most scientists are never taught how to do this efficiently. As a result, many are unaware of tools and practices that would allow them to write more reliable and maintainable code with less effort. As hydrology models increase in capability and enter use by a growing number of scientists and their communities, it is important that the scientific software development practices scale up to meet the challenges posed by increasing software complexity, lengthening software lifecycles, a growing number of stakeholders and contributers, and a broadened developer base that extends from application domains to high performance computing centers. Many of these challenges in complexity, lifecycles, and developer base have been successfully met by the open source community, and there are many lessons to be learned from their experiences and practices. Additionally, there is much wisdom to be found in the results of research studies conducted on software engineering itself. Software Carpentry aims to bridge the gap between the current state of software development and these known best practices for scientific software development, with a focus on hands-on exercises and practical advice based on the following principles: 1. Write programs for people, not computers. 2. Automate repetitive tasks 3. Use the computer to record history 4. Make incremental changes 5. Use version control 6. Don't repeat yourself (or others) 7. Plan for mistakes 8. Optimize software only after it works 9. Document design and purpose, not mechanics 10. Collaborate We discuss how these best practices, arising from solid foundations in research and experience, have been shown to help improve scientist's productivity and the reliability of their software.

  9. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  10. Sustaining an Online, Shared Community Resource for Models, Robust Open source Software Tools and Data for Volcanology - the Vhub Experience

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Valentine, G. A.; Bursik, M. I.; Connor, C.; Connor, L.; Jones, M.; Simakov, N.; Aghakhani, H.; Jones-Ivey, R.; Kosar, T.; Zhang, B.

    2015-12-01

    Over the last 5 years we have created a community collaboratory Vhub.org [Palma et al, J. App. Volc. 3:2 doi:10.1186/2191-5040-3-2] as a place to find volcanology-related resources, and a venue for users to disseminate tools, teaching resources, data, and an online platform to support collaborative efforts. As the community (current active users > 6000 from an estimated community of comparable size) embeds the tools in the collaboratory into educational and research workflows it became imperative to: a) redesign tools into robust, open source reusable software for online and offline usage/enhancement; b) share large datasets with remote collaborators and other users seamlessly with security; c) support complex workflows for uncertainty analysis, validation and verification and data assimilation with large data. The focus on tool development/redevelopment has been twofold - firstly to use best practices in software engineering and new hardware like multi-core and graphic processing units. Secondly we wish to enhance capabilities to support inverse modeling, uncertainty quantification using large ensembles and design of experiments, calibration, validation. Among software engineering practices we practice are open source facilitating community contributions, modularity and reusability. Our initial targets are four popular tools on Vhub - TITAN2D, TEPHRA2, PUFF and LAVA. Use of tools like these requires many observation driven data sets e.g. digital elevation models of topography, satellite imagery, field observations on deposits etc. These data are often maintained in private repositories that are privately shared by "sneaker-net". As a partial solution to this we tested mechanisms using irods software for online sharing of private data with public metadata and access limits. Finally, we adapted use of workflow engines (e.g. Pegasus) to support the complex data and computing workflows needed for usage like uncertainty quantification for hazard analysis using physical models.

  11. Computer Games as Therapy for Persons with Stroke.

    PubMed

    Lauterbach, Sarah A; Foreman, Matt H; Engsberg, Jack R

    2013-02-01

    Stroke affects approximately 800,000 individuals each year, with 65% having residual impairments. Studies have demonstrated that mass practice leads to regaining motor function in affected extremities; however, traditional therapy does not include the repetitions needed for this recovery. Videogames have been shown to be good motivators to complete repetitions. Advances in technology and low-cost hardware bring new opportunities to use computer games during stroke therapy. This study examined the use of the Microsoft (Redmond, WA) Kinect™ and Flexible Action and Articulated Skeleton Toolkit (FAAST) software as a therapy tool to play existing free computer games on the Internet. Three participants attended a 1-hour session where they played two games with upper extremity movements as game controls. Video was taken for analysis of movement repetitions, and questions were answered about participant history and their perceptions of the games. Participants remained engaged through both games; regardless of previous computer use all participants successfully played two games. Five minutes of game play averaged 34 repetitions of the affected extremity. The Intrinsic Motivation Inventory showed a high level of satisfaction in two of the three participants. The Kinect Sensor with the FAAST software has the potential to be an economical tool to be used alongside traditional therapy to increase the number of repetitions completed in a motivating and engaging way for clients.

  12. A Qualitative Evaluation of Clinical Audit in UK Dental Foundation Training.

    PubMed

    Thornley, Peter; Quinn, Alyson

    2017-11-10

    Clinical Audit (CA) has been recognized as a useful tool for tool for improving service delivery, clinical governance, and the education and performance of the dental team. This study develops the discussion by investigating its use as an educational tool within UK Dental Foundation Training (DFT). The aim was to investigate the views of Foundation Dentists (FDs) and Training Programme Directors (TPDs) on the CA module in their FD training schemes, to provide insight and recommendations for those supervising and undertaking CA. A literature review was conducted followed by a qualitative research methodology, using group interviews. The interviews were transcribed and thematically analyzed using NVIVO, a Computer-Assisted Qualitative Data Analysis tool. CA was found to be a useful tool for teaching management and professionalism and can bring some improvement to clinical practice, but TPDs have doubts about the long-term effects on service delivery. The role of the Educational Supervisor (ES) is discussed and recommendations are given for those supervising and conducting CA.

  13. A Qualitative Evaluation of Clinical Audit in UK Dental Foundation Training

    PubMed Central

    Quinn, Alyson

    2017-01-01

    Clinical Audit (CA) has been recognized as a useful tool for tool for improving service delivery, clinical governance, and the education and performance of the dental team. This study develops the discussion by investigating its use as an educational tool within UK Dental Foundation Training (DFT). The aim was to investigate the views of Foundation Dentists (FDs) and Training Programme Directors (TPDs) on the CA module in their FD training schemes, to provide insight and recommendations for those supervising and undertaking CA. A literature review was conducted followed by a qualitative research methodology, using group interviews. The interviews were transcribed and thematically analyzed using NVIVO, a Computer-Assisted Qualitative Data Analysis tool. CA was found to be a useful tool for teaching management and professionalism and can bring some improvement to clinical practice, but TPDs have doubts about the long-term effects on service delivery. The role of the Educational Supervisor (ES) is discussed and recommendations are given for those supervising and conducting CA. PMID:29563436

  14. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on space science.

  15. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  16. The Mexican National Programs on Teaching Mathematics and Science with Technology: The Legacy of a Decade of Experiences of Transformation of School Practices and Interactions

    NASA Astrophysics Data System (ADS)

    Sacristán, Ana Isabel; Rojano, Teresa

    Here we give an overview of the Mexican experience of a national program, begun in 1997, of gradual implementation of computational tools in the lower secondary-school classrooms (children 12-15 years-old) for mathematics and science. This project illustrates, through the benefit of long-term hindsight, the successes and difficulties of large-scale massive implementation of technologies in schools. The key factors for success and for transforming school practices seem to be: adequate planning, gradual implementation, continuous training and support, and enough time (years) for assimilation and integration.

  17. Gross anatomy of network security

    NASA Technical Reports Server (NTRS)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  18. Laboratory Sequence in Computational Methods for Introductory Chemistry

    NASA Astrophysics Data System (ADS)

    Cody, Jason A.; Wiser, Dawn C.

    2003-07-01

    A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.

  19. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.

  20. "One hundred percent efficiency": Technology and the pursuit of scientific literacy

    NASA Astrophysics Data System (ADS)

    King, Kenneth Paul

    This dissertation examined the role of technology in science education during the twentieth century. A historical approach was taken to examine teacher practices in the use of technology. The three technologies considered in this study were the motion picture, the television, and the computer. As an organizing principle, historical definitions of "scientific literacy" were used to examine the goals of using technology within science education. The evolution of the concept of science literacy is traced from the early part of the twentieth century to the late 1990s. Documentation examined revealed the "best practices" associated with the use of technology. The use of the motion picture was traced from the silent film through film loops, videotape, videodisc and the advent of the digital video disc, and the means by which teachers used this technology were considered. The instructional use of television was examined from several different approaches: commercial broadcasts, educational and instructional programming, closed circuit approaches and the use of cable and satellite programming. The manner in which these approaches were used to achieve goals of scientific literacy was considered. The use of the computer was examined in terms of the purpose of the software involved. Teaching practice to achieve scientific literacy, using computers as a means of accessing information, as an analytical tool, as a creativity tool, and as a means of communication were addressed. In each of these technologies, similar implementation trends were present within each one. The literature supporting the use of the technology described first the focus on the hardware, followed by the development of appropriate pedagogy, and then by the proliferation of software supporting the use of the technology. Suggestions for additional study were offered as well as speculation as to future practices with technology in science teaching. Investigations using expectation-value theory suggest particular promise with regard to staff development needs among teachers using technology. The convergence of the various technologies into a single entity represents one likely scenario for the use of technology within science teaching. Further developments with telecommunications may provide simple and direct delivery systems for national and/or state curricula.

  1. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  2. Assessment of a computer-based Taenia solium health education tool 'The Vicious Worm' on knowledge uptake among professionals and their attitudes towards the program.

    PubMed

    Ertel, Rebekka Lund; Braae, Uffe Christian; Ngowi, Helena Aminiel; Johansen, Maria Vang

    2017-01-01

    Health education has been recognised as a specific intervention tool for control of Taenia solium taeniosis/cysticercosis but evaluation of the efficacy of the tool remains. The aim of our study was to assess the effect of a computer-based T. solium health education tool 'The Vicious Worm' on knowledge uptake among professionals and investigate attitudes towards the program. The study was carried out between March and May 2014 in Mbeya Region, Tanzania, where T. solium is endemic. The study was a pre and post assessment of a health education tool based on questionnaire surveys and focus group discussions to investigate knowledge and attitudes. A total of 79 study subjects participated in the study including study subjects from both health- and agriculture sector. The health education consisted of 1½h individual practice with the computer program. The baseline questionnaire showed an overall knowledge on aspects of acquisition and transmission of T. solium infections (78%), porcine cysticercosis treatment (77%), human tapeworm in general (72%), neurocysticercosis in general (49%), and porcine cysticercosis diagnosis (48%). However, there was a lack of knowledge on acquisition of neurocysticercosis (15%), prevention of T. solium taeniosis/cysticercosis (28%), and relation between porcine cysticercosis, human cysticercosis, and taeniosis (32%). Overall, the study subject's knowledge was significantly improved both immediately after (p=0.001) and two weeks after (p<0.001) the health education and knowledge regarding specific aspects was significantly improved in most aspects immediately after and two weeks after the health education. The focus group discussions showed positive attitudes towards the program and the study subjects found 'The Vicious Worm' efficient, simple, and appealing. The study revealed a good effect of 'The Vicious Worm' suggesting that it could be a useful health education tool, which should be further assessed and thereafter integrated in T. solium taeniosis/cysticercosis control. Copyright © 2016. Published by Elsevier B.V.

  3. PLAYGROUND: preparing students for the cyber battleground

    NASA Astrophysics Data System (ADS)

    Nielson, Seth James

    2016-12-01

    Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition, economic analysis, and even human psychology. While an individual may choose to specialize in one of these more narrow elements, there is a pressing need for practitioners that have a solid understanding of the unifying principles of the whole. We created the Playground network simulation tool and used it in the instruction of a network security course to graduate students. This tool was created for three specific purposes. First, it provides simulation sufficiently powerful to permit rigorous study of desired principles while simultaneously reducing or eliminating unnecessary and distracting complexities. Second, it permitted the students to rapidly prototype a suite of security protocols and mechanisms. Finally, with equal rapidity, the students were able to develop attacks against the protocols that they themselves had created. Based on our own observations and student reviews, we believe that these three features combine to create a powerful pedagogical tool that provides students with a significant amount of breadth and intense emotional connection to computer security in a single semester.

  4. Development of a Learning-Oriented Computer Assisted Instruction Designed to Improve Skills in the Clinical Assessment of the Nutritional Status: A Pilot Evaluation

    PubMed Central

    García de Diego, Laura; Cuervo, Marta; Martínez, J. Alfredo

    2015-01-01

    Computer assisted instruction (CAI) is an effective tool for evaluating and training students and professionals. In this article we will present a learning-oriented CAI, which has been developed for students and health professionals to acquire and retain new knowledge through the practice. A two-phase pilot evaluation was conducted, involving 8 nutrition experts and 30 postgraduate students, respectively. In each training session, the software developed guides users in the integral evaluation of a patient’s nutritional status and helps them to implement actions. The program includes into the format clinical tools, which can be used to recognize possible patient’s needs, to improve the clinical reasoning and to develop professional skills. Among them are assessment questionnaires and evaluation criteria, cardiovascular risk charts, clinical guidelines and photographs of various diseases. This CAI is a complete software package easy to use and versatile, aimed at clinical specialists, medical staff, scientists, educators and clinical students, which can be used as a learning tool. This application constitutes an advanced method for students and health professionals to accomplish nutritional assessments combining theoretical and empirical issues, which can be implemented in their academic curriculum. PMID:25978456

  5. Development of a learning-oriented computer assisted instruction designed to improve skills in the clinical assessment of the nutritional status: a pilot evaluation.

    PubMed

    García de Diego, Laura; Cuervo, Marta; Martínez, J Alfredo

    2015-01-01

    Computer assisted instruction (CAI) is an effective tool for evaluating and training students and professionals. In this article we will present a learning-oriented CAI, which has been developed for students and health professionals to acquire and retain new knowledge through the practice. A two-phase pilot evaluation was conducted, involving 8 nutrition experts and 30 postgraduate students, respectively. In each training session, the software developed guides users in the integral evaluation of a patient's nutritional status and helps them to implement actions. The program includes into the format clinical tools, which can be used to recognize possible patient's needs, to improve the clinical reasoning and to develop professional skills. Among them are assessment questionnaires and evaluation criteria, cardiovascular risk charts, clinical guidelines and photographs of various diseases. This CAI is a complete software package easy to use and versatile, aimed at clinical specialists, medical staff, scientists, educators and clinical students, which can be used as a learning tool. This application constitutes an advanced method for students and health professionals to accomplish nutritional assessments combining theoretical and empirical issues, which can be implemented in their academic curriculum.

  6. Investigating the Heart Pump Implant Decision Process: Opportunities for Decision Support Tools to Help

    PubMed Central

    Yang, Qian; Zimmerman, John; Steinfeld, Aaron; Carey, Lisa; Antaki, James F.

    2016-01-01

    Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients’ healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations. PMID:27833397

  7. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  8. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2017-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.

  9. Verifying Stability of Dynamic Soft-Computing Systems

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  10. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    PubMed Central

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  11. Virtual microscopes in podiatric medical education.

    PubMed

    Becker, John H

    2006-01-01

    In many medical schools, microscopes are being replaced as teaching tools by computers with software that emulates the use of a light microscope. This article chronicles the adoption of "virtual microscopes" by a podiatric medical school and presents the results of educational research on the effectiveness of this adoption in a histology course. If the trend toward virtual microscopy in education continues, many 21st-century physicians will not be trained to operate a light microscope. The replacement of old technologies by new is discussed. The fundamental question is whether all podiatric physicians should be trained in the use of a particular tool or only those who are likely to use it in their own practice.

  12. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  13. The medical matters wiki: building a library Web site 2.0.

    PubMed

    Robertson, Justin; Burnham, Judy; Li, Jie; Sayed, Ellen

    2008-01-01

    New and innovative information technologies drive the ever-evolving library profession. From clay tablet to parchment scroll to manufactured paper to computer screen pixel, information storage, retrieval, and delivery methods continue to evolve, and each advance irrevocably affects the way libraries, and librarians, work. The Internet has forever altered information and library science, both in theory and practice, but even within this context the progression continues. Though ambiguously defined, Web 2.0 offers a new outlook and new software, presenting librarians with potentially invaluable new tools and methods. This paper discusses the creation, implementation, and maintenance of a Web 2.0 technology, the wiki, as a resource tool for an academic biomedical library.

  14. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  15. Gaia Launch Imminent: A Review of Practices (Good and Bad) in Building the Gaia Ground Segment

    NASA Astrophysics Data System (ADS)

    O'Mullane, W.

    2014-05-01

    As we approach launch the Gaia ground segment is ready to process a steady stream of complex data coming from Gaia at L2. This talk will focus on the software engineering aspects of the ground segment. Of course in a short paper it is difficult to cover everything but an attempt will be made to highlight some good things, like the Dictionary Tool and some things to be careful with like computer aided software engineering tools. The usefulness of some standards like ECSS will be touched upon. Testing is also certainly part of this story as are Challenges or Rehearsals so they will not go without mention.

  16. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  17. The ab-initio density matrix renormalization group in practice.

    PubMed

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  18. What Physicists Should Know About High Performance Computing - Circa 2002

    NASA Astrophysics Data System (ADS)

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  19. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  20. An evaluation capacity building toolkit for principal investigators of undergraduate research experiences: A demonstration of transforming theory into practice.

    PubMed

    Rorrer, Audrey S

    2016-04-01

    This paper describes the approach and process undertaken to develop evaluation capacity among the leaders of a federally funded undergraduate research program. An evaluation toolkit was developed for Computer and Information Sciences and Engineering(1) Research Experiences for Undergraduates(2) (CISE REU) programs to address the ongoing need for evaluation capacity among principal investigators who manage program evaluation. The toolkit was the result of collaboration within the CISE REU community with the purpose being to provide targeted instructional resources and tools for quality program evaluation. Challenges were to balance the desire for standardized assessment with the responsibility to account for individual program contexts. Toolkit contents included instructional materials about evaluation practice, a standardized applicant management tool, and a modulated outcomes measure. Resulting benefits from toolkit deployment were having cost effective, sustainable evaluation tools, a community evaluation forum, and aggregate measurement of key program outcomes for the national program. Lessons learned included the imperative of understanding the evaluation context, engaging stakeholders, and building stakeholder trust. Results from project measures are presented along with a discussion of guidelines for facilitating evaluation capacity building that will serve a variety of contexts. Copyright © 2016. Published by Elsevier Ltd.

  1. Evidence-based decision making and asthma in the internet age: the tools of the trade.

    PubMed

    Jadad, A R

    2002-01-01

    At the dawn of the Information Age, the practice of evidence-based decision making (EBDM) is still hindered by many important barriers related to the decision makers, to the evidence per se or to the health system. Some of these barriers, particularly those related to the distillation, dissemination and packaging of research evidence, could be overcome by recent and ongoing developments in portable/wearable computers, internet appliances, multimedia and wireless broadband internet traffic. This article describes specific EBDM-related tools, with emphasis on internet-enabled "how to" books; and tools to improve the quality of reporting research, to formulate questions; to search for evidence; to access journals, systematic reviews and guidelines; to interact with organizations promoting EBDM; and to tailor evidence to individual cases. However, thinking that all barriers to the practice of EBDM could be solved by fancy information technology is naïve. Barriers related to the generation, interpretation, integration and use of the evidence demand more complex and perhaps unfeasible solutions, as overcoming them will require substantial changes in the structure of the health system, in the politics of science and in the way in which humans think and behave.

  2. Egas Moniz: 90 Years (1927–2017) from Cerebral Angiography

    PubMed Central

    Artico, Marco; Spoletini, Marialuisa; Fumagalli, Lorenzo; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco; Salvati, Maurizio; Frati, Alessandro; Pastore, Francesco Saverio; Taurone, Samanta

    2017-01-01

    In June 2017 we celebrate the 90th anniversary of the pioneer discovery of cerebral angiography, the seminal imaging technique used for visualizing cerebral blood vessels and vascular alterations as well as other intracranial disorders. Egas Moniz (1874–1955) was the first to describe the use of this revolutionary technique which, until 1975 (when computed tomography, CT, scan was introduced in the clinical practice), was the sole diagnostic tool to provide an imaging of cerebral vessels and therefore alterations due to intracranial pathology. Moniz introduced in the clinical practice this fundamental and important diagnostic tool. The present contribution wishes to pay a tribute to the Portuguese neurosurgeon, who was also a distinguished neurologist and statesman. Despite his tremendous contribution in modern brain imaging, Egas Moniz was awarded the Nobel Prize in Physiology or Medicine in 1949 for prefrontal leucotomy, the neurosurgical intervention nowadays unacceptable, but should rather be remembered for his key contribution to modern brain imaging. PMID:28974927

  3. Evaluating a digital ship design tool prototype: Designers' perceptions of novel ergonomics software.

    PubMed

    Mallam, Steven C; Lundh, Monica; MacKinnon, Scott N

    2017-03-01

    Computer-aided solutions are essential for naval architects to manage and optimize technical complexities when developing a ship's design. Although there are an array of software solutions aimed to optimize the human element in design, practical ergonomics methodologies and technological solutions have struggled to gain widespread application in ship design processes. This paper explores how a new ergonomics technology is perceived by naval architecture students using a mixed-methods framework. Thirteen Naval Architecture and Ocean Engineering Masters students participated in the study. Overall, results found participants perceived the software and its embedded ergonomics tools to benefit their design work, increasing their empathy and ability to understand the work environment and work demands end-users face. However, participant's questioned if ergonomics could be practically and efficiently implemented under real-world project constraints. This revealed underlying social biases and a fundamental lack of understanding in engineering postgraduate students regarding applied ergonomics in naval architecture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparison of software packages for detecting differential expression in RNA-seq studies

    PubMed Central

    Seyednasrollah, Fatemeh; Laiho, Asta

    2015-01-01

    RNA-sequencing (RNA-seq) has rapidly become a popular tool to characterize transcriptomes. A fundamental research problem in many RNA-seq studies is the identification of reliable molecular markers that show differential expression between distinct sample groups. Together with the growing popularity of RNA-seq, a number of data analysis methods and pipelines have already been developed for this task. Currently, however, there is no clear consensus about the best practices yet, which makes the choice of an appropriate method a daunting task especially for a basic user without a strong statistical or computational background. To assist the choice, we perform here a systematic comparison of eight widely used software packages and pipelines for detecting differential expression between sample groups in a practical research setting and provide general guidelines for choosing a robust pipeline. In general, our results demonstrate how the data analysis tool utilized can markedly affect the outcome of the data analysis, highlighting the importance of this choice. PMID:24300110

  5. Comparison of software packages for detecting differential expression in RNA-seq studies.

    PubMed

    Seyednasrollah, Fatemeh; Laiho, Asta; Elo, Laura L

    2015-01-01

    RNA-sequencing (RNA-seq) has rapidly become a popular tool to characterize transcriptomes. A fundamental research problem in many RNA-seq studies is the identification of reliable molecular markers that show differential expression between distinct sample groups. Together with the growing popularity of RNA-seq, a number of data analysis methods and pipelines have already been developed for this task. Currently, however, there is no clear consensus about the best practices yet, which makes the choice of an appropriate method a daunting task especially for a basic user without a strong statistical or computational background. To assist the choice, we perform here a systematic comparison of eight widely used software packages and pipelines for detecting differential expression between sample groups in a practical research setting and provide general guidelines for choosing a robust pipeline. In general, our results demonstrate how the data analysis tool utilized can markedly affect the outcome of the data analysis, highlighting the importance of this choice. © The Author 2013. Published by Oxford University Press.

  6. Evidence of Effectiveness of Health Care Professionals Using Handheld Computers: A Scoping Review of Systematic Reviews

    PubMed Central

    2013-01-01

    Background Handheld computers and mobile devices provide instant access to vast amounts and types of useful information for health care professionals. Their reduced size and increased processing speed has led to rapid adoption in health care. Thus, it is important to identify whether handheld computers are actually effective in clinical practice. Objective A scoping review of systematic reviews was designed to provide a quick overview of the documented evidence of effectiveness for health care professionals using handheld computers in their clinical work. Methods A detailed search, sensitive for systematic reviews was applied for Cochrane, Medline, EMBASE, PsycINFO, Allied and Complementary Medicine Database (AMED), Global Health, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases. All outcomes that demonstrated effectiveness in clinical practice were included. Classroom learning and patient use of handheld computers were excluded. Quality was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A previously published conceptual framework was used as the basis for dual data extraction. Reported outcomes were summarized according to the primary function of the handheld computer. Results Five systematic reviews met the inclusion and quality criteria. Together, they reviewed 138 unique primary studies. Most reviewed descriptive intervention studies, where physicians, pharmacists, or medical students used personal digital assistants. Effectiveness was demonstrated across four distinct functions of handheld computers: patient documentation, patient care, information seeking, and professional work patterns. Within each of these functions, a range of positive outcomes were reported using both objective and self-report measures. The use of handheld computers improved patient documentation through more complete recording, fewer documentation errors, and increased efficiency. Handheld computers provided easy access to clinical decision support systems and patient management systems, which improved decision making for patient care. Handheld computers saved time and gave earlier access to new information. There were also reports that handheld computers enhanced work patterns and efficiency. Conclusions This scoping review summarizes the secondary evidence for effectiveness of handheld computers and mhealth. It provides a snapshot of effective use by health care professionals across four key functions. We identified evidence to suggest that handheld computers provide easy and timely access to information and enable accurate and complete documentation. Further, they can give health care professionals instant access to evidence-based decision support and patient management systems to improve clinical decision making. Finally, there is evidence that handheld computers allow health professionals to be more efficient in their work practices. It is anticipated that this evidence will guide clinicians and managers in implementing handheld computers in clinical practice and in designing future research. PMID:24165786

  7. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  8. Factors influencing exemplary science teachers' levels of computer use

    NASA Astrophysics Data System (ADS)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.

  9. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively loose tolerances) indicate an accuracy only 3 or 4 times that achieved by conventional two-axis contouring (10 AM as opposed to 3 pm rms) The successful completion of these projects demonstrates the successful application of three-axis contouring with the LOG. Toroidal cutters have also solved many of the drawbacks of spherical wheels. Work remains to be done in improving machine response and decreasing the contribution of backlash errors.

  10. Acoustic Signature from Flames as a Combustion Diagnostic Tool

    DTIC Science & Technology

    1983-11-01

    empirical visual flame length had to be input to the computer for the inversion method to give good results. That is, if the experiment cnd inversion...method were asked to yield the flame length , poor results were obtained. Since this wa3 part of the information sought for practical application of the...to small experimental uncertainty. The method gave reasonably good results for the open flame but substantial input (the flame length ) had to be

  11. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization.

    PubMed

    Pavan, Ana Luiza Menegatti; Rosa, Maria Eugênia Dela; Giacomini, Guilherme; Bacchim Neto, Fernando Antonio; Yamashita, Seizo; Vulcano, Luiz Carlos; Duarte, Sergio Barbosa; Miranda, José Ricardo de Arruda; de Pina, Diana Rodrigues

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.

  12. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  13. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization

    PubMed Central

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures. PMID:27101001

  14. Geoscience Through the Lens of Art: a collaborative course of science and art for undergraduates of various disciplines

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.

    2017-12-01

    A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.

  15. Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    1995-06-01

    Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.

  16. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  17. Computer-aided design of biological circuits using TinkerCell.

    PubMed

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience

  18. AstroML: Python-powered Machine Learning for Astronomy

    NASA Astrophysics Data System (ADS)

    Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.

    2014-01-01

    As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.

  19. Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS

    NASA Technical Reports Server (NTRS)

    Callegari, Andres C.

    1990-01-01

    This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.

  20. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  1. Astronomy education and the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Nemiroff, Robert J.

    2016-01-01

    The Astrophysics Source Code Library (ASCL) is an online registry of source codes used in refereed astrophysics research. It currently lists nearly 1,200 codes and covers all aspects of computational astrophysics. How can this resource be of use to educators and to the graduate students they mentor? The ASCL serves as a discovery tool for codes that can be used for one's own research. Graduate students can also investigate existing codes to see how common astronomical problems are approached numerically in practice, and use these codes as benchmarks for their own solutions to these problems. Further, they can deepen their knowledge of software practices and techniques through examination of others' codes.

  2. Building a Generic Virtual Research Environment Framework for Multiple Earth and Space Science Domains and a Diversity of Users.

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Fraser, R.; Evans, B. J. K.; Friedrich, C.; Klump, J. F.; Lescinsky, D. T.

    2017-12-01

    Virtual Research Environments (VREs) are now part of academic infrastructures. Online research workflows can be orchestrated whereby data can be accessed from multiple external repositories with processing taking place on public or private clouds, and centralised supercomputers using a mixture of user codes, and well-used community software and libraries. VREs enable distributed members of research teams to actively work together to share data, models, tools, software, workflows, best practices, infrastructures, etc. These environments and their components are increasingly able to support the needs of undergraduate teaching. External to the research sector, they can also be reused by citizen scientists, and be repurposed for industry users to help accelerate the diffusion and hence enable the translation of research innovations. The Virtual Geophysics Laboratory (VGL) in Australia was started in 2012, built using a collaboration between CSIRO, the National Computational Infrastructure (NCI) and Geoscience Australia, with support funding from the Australian Government Department of Education. VGL comprises three main modules that provide an interface to enable users to first select their required data; to choose a tool to process that data; and then access compute infrastructure for execution. VGL was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools. Over the years it has evolved into a multi-purpose Earth science platform with access to an increased variety of data (e.g., Natural Hazards, Geochemistry), a broader range of software packages, and an increasing diversity of compute infrastructures. This expansion has been possible because of the approach to loosely couple data, tools and compute resources via interfaces that are built on international standards and accessed as network-enabled services wherever possible. Built originally for researchers that were not fussy about general usability, increasing emphasis on User Interfaces (UIs) and stability will lead to increased uptake in the education and industry sectors. Simultaneously, improvements are being added to facilitate access to data and tools by experienced researchers who want direct access to both data and flexible workflows.

  3. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  4. Use of computer models to assess exposure to agricultural chemicals via drinking water.

    PubMed

    Gustafson, D I

    1995-10-27

    Surveys of drinking water quality throughout the agricultural regions of the world have revealed the tendency of certain crop protection chemicals to enter water supplies. Fortunately, the trace concentrations that have been detected are generally well below the levels thought to have any negative impact on human health or the environment. However, the public expects drinking water to be pristine and seems willing to bear the costs involved in further regulating agricultural chemical use in such a way so as to eliminate the potential for such materials to occur at any detectable level. Of all the tools available to assess exposure to agricultural chemicals via drinking water, computer models are one of the most cost-effective. Although not sufficiently predictive to be used in the absence of any field data, such computer programs can be used with some degree of certainty to perform quantitative extrapolations and thereby quantify regional exposure from field-scale monitoring information. Specific models and modeling techniques will be discussed for performing such exposure analyses. Improvements in computer technology have recently made it practical to use Monte Carlo and other probabilistic techniques as a routine tool for estimating human exposure. Such methods make it possible, at least in principle, to prepare exposure estimates with known confidence intervals and sufficient statistical validity to be used in the regulatory management of agricultural chemicals.

  5. Identification of probabilities.

    PubMed

    Vitányi, Paul M B; Chater, Nick

    2017-02-01

    Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a probabilistic model from a sample. The practical problems of such inference are substantial: the brain has limited data and restricted computational resources. But there is a more fundamental question: is the problem of inferring a probabilistic model from a sample possible even in principle? We explore this question and find some surprisingly positive and general results. First, for a broad class of probability distributions characterized by computability restrictions, we specify a learning algorithm that will almost surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large class of dependent sequences, we specify an algorithm which identifies in the limit a computable measure for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in both cases. We also briefly consider special cases, including language learning, and wider theoretical implications for psychology.

  6. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  7. Bayesian Latent Class Analysis Tutorial.

    PubMed

    Li, Yuelin; Lord-Bessen, Jennifer; Shiyko, Mariya; Loeb, Rebecca

    2018-01-01

    This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or related fields who have a working knowledge of Bayes Theorem and conditional probability and have experience in writing computer programs in the statistical language R . The overall goals are to provide an accessible and self-contained tutorial, along with a practical computation tool. We begin with how Bayesian computation is typically described in academic articles. Technical difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian computation can be broken down into a series of simpler calculations, which can then be assembled together to complete a computationally more complex model. The details are described much more explicitly than what is typically available in elementary introductions to Bayesian modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided computer program shows how Bayesian LCA can be implemented with relative ease. The computer program is then applied in a large, real-world data set and explained line-by-line. We outline the general steps in how to extend these considerations to other methodological applications. We conclude with suggestions for further readings.

  8. Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter

    2015-04-01

    Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.

  9. Smartphones and the plastic surgeon.

    PubMed

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    NASA Astrophysics Data System (ADS)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  11. Using Galaxy to Perform Large-Scale Interactive Data Analyses

    PubMed Central

    Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton

    2014-01-01

    Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312

  12. A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.

  13. The impact of computer self-efficacy, computer anxiety, and perceived usability and acceptability on the efficacy of a decision support tool for colorectal cancer screening

    PubMed Central

    Lindblom, Katrina; Gregory, Tess; Flight, Ingrid H K; Zajac, Ian

    2011-01-01

    Objective This study investigated the efficacy of an internet-based personalized decision support (PDS) tool designed to aid in the decision to screen for colorectal cancer (CRC) using a fecal occult blood test. We tested whether the efficacy of the tool in influencing attitudes to screening was mediated by perceived usability and acceptability, and considered the role of computer self-efficacy and computer anxiety in these relationships. Methods Eighty-one participants aged 50–76 years worked through the on-line PDS tool and completed questionnaires on computer self-efficacy, computer anxiety, attitudes to and beliefs about CRC screening before and after exposure to the PDS, and perceived usability and acceptability of the tool. Results Repeated measures ANOVA found that PDS exposure led to a significant increase in knowledge about CRC and screening, and more positive attitudes to CRC screening as measured by factors from the Preventive Health Model. Perceived usability and acceptability of the PDS mediated changes in attitudes toward CRC screening (but not CRC knowledge), and computer self-efficacy and computer anxiety were significant predictors of individuals' perceptions of the tool. Conclusion Interventions designed to decrease computer anxiety, such as computer courses and internet training, may improve the acceptability of new health information technologies including internet-based decision support tools, increasing their impact on behavior change. PMID:21857024

  14. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    NASA Astrophysics Data System (ADS)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  15. Analyzing the Cohesion of English Text and Discourse with Automated Computer Tools

    ERIC Educational Resources Information Center

    Jeon, Moongee

    2014-01-01

    This article investigates the lexical and discourse features of English text and discourse with automated computer technologies. Specifically, this article examines the cohesion of English text and discourse with automated computer tools, Coh-Metrix and TEES. Coh-Metrix is a text analysis computer tool that can analyze English text and discourse…

  16. The Implications of Cognitive Psychology for Computer-Based Learning Tools.

    ERIC Educational Resources Information Center

    Kozma, Robert B.

    1987-01-01

    Defines cognitive computer tools as software programs that use the control capabilities of computers to amplify, extend, or enhance human cognition; suggests seven ways in which computers can aid learning; and describes the "Learning Tool," a software package for the Apple Macintosh microcomputer that is designed to aid learning of…

  17. Designing a Software Tool for Fuzzy Logic Programming

    NASA Astrophysics Data System (ADS)

    Abietar, José M.; Morcillo, Pedro J.; Moreno, Ginés

    2007-12-01

    Fuzzy Logic Programming is an interesting and still growing research area that agglutinates the efforts for introducing fuzzy logic into logic programming (LP), in order to incorporate more expressive resources on such languages for dealing with uncertainty and approximated reasoning. The multi-adjoint logic programming approach is a recent and extremely flexible fuzzy logic paradigm for which, unfortunately, we have not found practical tools implemented so far. In this work, we describe a prototype system which is able to directly translate fuzzy logic programs into Prolog code in order to safely execute these residual programs inside any standard Prolog interpreter in a completely transparent way for the final user. We think that the development of such fuzzy languages and programing tools might play an important role in the design of advanced software applications for computational physics, chemistry, mathematics, medicine, industrial control and so on.

  18. Social argumentation in online synchronous communication

    NASA Astrophysics Data System (ADS)

    Angiono, Ivan

    In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.

  19. Questioned document workflow for handwriting with automated tools

    NASA Astrophysics Data System (ADS)

    Das, Krishnanand; Srihari, Sargur N.; Srinivasan, Harish

    2012-01-01

    During the last few years many document recognition methods have been developed to determine whether a handwriting specimen can be attributed to a known writer. However, in practice, the work-flow of the document examiner continues to be manual-intensive. Before a systematic or computational, approach can be developed, an articulation of the steps involved in handwriting comparison is needed. We describe the work flow of handwritten questioned document examination, as described in a standards manual, and the steps where existing automation tools can be used. A well-known ransom note case is considered as an example, where one encounters testing for multiple writers of the same document, determining whether the writing is disguised, known writing is formal while questioned writing is informal, etc. The findings for the particular ransom note case using the tools are given. Also observations are made for developing a more fully automated approach to handwriting examination.

  20. Giving students the run of sprinting models

    NASA Astrophysics Data System (ADS)

    Heck, André; Ellermeijer, Ton

    2009-11-01

    A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.

  1. Virtual Screening with AutoDock: Theory and Practice

    PubMed Central

    Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.

    2011-01-01

    Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931

  2. Applications of structural optimization methods to fixed-wing aircraft and spacecraft in the 1980s

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Neill, Douglas J.

    1992-01-01

    This report is the summary of a technical survey on the applications of structural optimization in the U.S. aerospace industry through the 1980s. Since applications to rotary wing aircraft will be covered by other literature, applications to fixed-wing aircraft and spacecraft were considered. It became clear that very significant progress has been made during this decade, indicating this technology is about to become one of the practical tools in computer aided structural design.

  3. Designing and testing computer based screening engine for severe sepsis/septic shock.

    PubMed

    Herasevich, V; Afessa, B; Chute, C G; Gajic, O

    2008-11-06

    This study addresses the role of a sepsis "sniffer", an automatic screening tool for the timely identification of patients with severe sepsis/septic shock, based electronic medical records. During the two months prospective implementation in a medical intensive care unit, 37 of 320 consecutive patients developed severe sepsis/septic shock. The sniffer demonstrated a sensitivity of 48% and specificity of 86%, and positive predictive value 32%. Further improvements are needed prior to the implementation of sepsis sniffer in clinical practice and research.

  4. Synthetic battery cycling

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1981-01-01

    The use of interactive computer graphics is suggested as an aid in battery system development. Mathematical representations of simplistic but fully representative functions of many electrochemical concepts of current practical interest will permit battery level charge and discharge phenomena to be analyzed in a qualitative manner prior to the assembly and testing of actual hardware. This technique is a useful addition to the variety of tools available to the battery system designer as he bridges the gap between interesting single cell life test data and reliable energy storage subsystems.

  5. Development of a computer-interpretable clinical guideline model for decision support in the differential diagnosis of hyponatremia.

    PubMed

    González-Ferrer, Arturo; Valcárcel, M Ángel; Cuesta, Martín; Cháfer, Joan; Runkle, Isabelle

    2017-07-01

    Hyponatremia is the most common type of electrolyte imbalance, occurring when serum sodium is below threshold levels, typically 135mmol/L. Electrolyte balance has been identified as one of the most challenging subjects for medical students, but also as one of the most relevant areas to learn about according to physicians and researchers. We present a computer-interpretable guideline (CIG) model that will be used for medical training to learn how to improve the diagnosis of hyponatremia applying an expert consensus document (ECDs). We used the PROForma set of tools to develop the model, using an iterative process involving two knowledge engineers (a computer science Ph.D. and a preventive medicine specialist) and two expert endocrinologists. We also carried out an initial validation of the model and a qualitative post-analysis from the results of a retrospective study (N=65 patients), comparing the consensus diagnosis of two experts with the output of the tool. The model includes over two-hundred "for", "against" and "neutral" arguments that are selectively triggered depending on the input value of more than forty patient-state variables. We share the methodology followed for the development process and the initial validation results, that achieved a high ratio of 61/65 agreements with the consensus diagnosis, having a kappa value of K=0.86 for overall agreement and K=0.80 for first-ranked agreement. Hospital care professionals involved in the project showed high expectations of using this tool for training, but the process to follow for a successful diagnosis and application is not trivial, as reported in this manuscript. Secondary benefits of using these tools are associated to improving research knowledge and existing clinical practice guidelines (CPGs) or ECDs. Beyond point-of-care clinical decision support, knowledge-based decision support systems are very attractive as a training tool, to help selected professionals to better understand difficult diseases that are underdiagnosed and/or incorrectly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  7. The rhinoplasty consultation and the business of rhinoplasty.

    PubMed

    Constantinides, Minas

    2009-02-01

    The business of rhinoplasty has undergone changes in keeping with increased competitive pressures locally, nationally, and internationally. Patient demands and progress in the field have abolished the "cookie-cutter" nose, with patients now requesting extensive discussions and predictions with computer photoimaging. The R-Factor Question and The D.O.S. Conversation are effective tools in rhinoplasty consultations. These tools provide patients with the clarity of what surgery can do for their lives and help patients overcome the fear produced by the overwhelming amount of information available. By helping our patients achieve the next level of success in their lives, we guarantee ourselves a busy practice filled with happy patients. The rhinoplasty consultation is the key to beginning this relationship of success.

  8. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    The ResStock analysis tool is helping states, municipalities, utilities, and manufacturers identify which home upgrades save the most energy and money. Across the country there's a vast diversity in the age, size, construction practices, installed equipment, appliances, and resident behavior of the housing stock, not to mention the range of climates. These variations have hindered the accuracy of predicting savings for existing homes. Researchers at the National Renewable Energy Laboratory (NREL) developed ResStock. It's a versatile tool that takes a new approach to large-scale residential energy analysis by combining: large public and private data sources, statistical sampling, detailed subhourly buildingmore » simulations, high-performance computing. This combination achieves unprecedented granularity and most importantly - accuracy - in modeling the diversity of the single-family housing stock.« less

  10. An Innovative Interactive Modeling Tool to Analyze Scenario-Based Physician Workforce Supply and Demand.

    PubMed

    Gupta, Saurabh; Black-Schaffer, W Stephen; Crawford, James M; Gross, David; Karcher, Donald S; Kaufman, Jill; Knapman, Doug; Prystowsky, Michael B; Wheeler, Thomas M; Bean, Sarah; Kumar, Paramhans; Sharma, Raghav; Chamoli, Vaibhav; Ghai, Vikrant; Gogia, Vineet; Weintraub, Sally; Cohen, Michael B; Robboy, Stanley J

    2015-01-01

    Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models.

  11. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  12. An Innovative Interactive Modeling Tool to Analyze Scenario-Based Physician Workforce Supply and Demand

    PubMed Central

    Gupta, Saurabh; Black-Schaffer, W. Stephen; Crawford, James M.; Gross, David; Karcher, Donald S.; Kaufman, Jill; Knapman, Doug; Prystowsky, Michael B.; Wheeler, Thomas M.; Bean, Sarah; Kumar, Paramhans; Sharma, Raghav; Chamoli, Vaibhav; Ghai, Vikrant; Gogia, Vineet; Weintraub, Sally; Cohen, Michael B.

    2015-01-01

    Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models. PMID:28725751

  13. [Computer games in childhood and adolescence: relations to addictive behavior, ADHD, and aggression].

    PubMed

    Frölich, Jan; Lehmkuhl, Gerd; Döpfner, Manfred

    2009-09-01

    Playing computer games has become one of the main leisure activities in children and adolescents and increasingly replaces traditional playing and interactional activities. There might exist developmental benefits or positive effects of computer games that can be used for educational or therapeutic purposes. More important several studies have well demonstrated that excessive computer game playing is associated with behavior that features all components of non-chemical addiction and the prevalences across all age groups seem to be impressingly high. This overview relies on a Medline research. Its objective is to describe motivational and developmental characteristics attributed to computer games as well as the prevalences of computer playing in children and adolescents to better understand the risks for addictive use. We especially focus on the relations of excessive computer playing with attention-deficit hyperactivity disorder (ADHD) and aggressive behavior. The results demonstrate that children with ADHD are especially vulnerable to addictive use of computer games due to their neuropsychological profile. Moreover excessive violent computer game playing might be a significant risk variable for aggressive behavior in the presence of personality traits with aggressive cognitions and behavior scripts in the consumers. The increasing clinical meaning of addictive computer games playing urgently necessitates the development of diagnostic and therapeutic tools for clinical practice as well as the cooperation with allied disciplines.

  14. Simulation-based ongoing professional practice evaluation in psychiatry: a novel tool for performance assessment.

    PubMed

    Gorrindo, Tristan; Goldfarb, Elizabeth; Birnbaum, Robert J; Chevalier, Lydia; Meller, Benjamin; Alpert, Jonathan; Herman, John; Weiss, Anthony

    2013-07-01

    Ongoing professional practice evaluation (OPPE) activities consist of a quantitative, competency-based evaluation of clinical performance. Hospitals must design assessments that measure clinical competencies, are scalable, and minimize impact on the clinician's daily routines. A psychiatry department at a large academic medical center designed and implemented an interactive Web-based psychiatric simulation focusing on violence risk assessment as a tool for a departmentwide OPPE. Of 412 invited clinicians in a large psychiatry department, 410 completed an online simulation in April-May 2012. Participants received scheduled e-mail reminders with instructions describing how to access the simulation. Using the Computer Simulation Assessment Tool, participants viewed an introductory video and were then asked to conduct a risk assessment, acting as a clinician in the encounter by selecting actions from a series of drop-down menus. Each action was paired with a corresponding video segment of a clinical encounter with a standardized patient. Participants were scored on the basis of their actions within the simulation (Measure 1) and by their responses to the open-ended questions in which they were asked to integrate the information from the simulation in a summative manner (Measure 2). Of the 410 clinicians, 381 (92.9%) passed Measure 1,359 (87.6%) passed Measure 2, and 5 (1.2%) failed both measures. Seventy-five (18.3%) participants were referred for focused professional practice evaluation (FPPE) after failing either Measure 1, Measure 2, or both. Overall, Web-based simulation and e-mail engagement tools were a scalable and efficient way to assess a large number of clinicians in OPPE and to identify those who required FPPE.

  15. Designing a Hydro-Economic Collaborative Computer Decision Support System: Approaches, Best Practices, Lessons Learned, and Future Trends

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.

    2008-12-01

    Designing and implementing a hydro-economic computer model to support or facilitate collaborative decision making among multiple stakeholders or users can be challenging and daunting. Collaborative modeling is distinguished and more difficult than non-collaborative efforts because of a large number of users with different backgrounds, disagreement or conflict among stakeholders regarding problem definitions, modeling roles, and analysis methods, plus evolving ideas of model scope and scale and needs for information and analysis as stakeholders interact, use the model, and learn about the underlying water system. This presentation reviews the lifecycle for collaborative model making and identifies some key design decisions that stakeholders and model developers must make to develop robust and trusted, verifiable and transparent, integrated and flexible, and ultimately useful models. It advances some best practices to implement and program these decisions. Among these best practices are 1) modular development of data- aware input, storage, manipulation, results recording and presentation components plus ways to couple and link to other models and tools, 2) explicitly structure both input data and the meta data that describes data sources, who acquired it, gaps, and modifications or translations made to put the data in a form usable by the model, 3) provide in-line documentation on model inputs, assumptions, calculations, and results plus ways for stakeholders to document their own model use and share results with others, and 4) flexibly program with graphical object-oriented properties and elements that allow users or the model maintainers to easily see and modify the spatial, temporal, or analysis scope as the collaborative process moves forward. We draw on examples of these best practices from the existing literature, the author's prior work, and some new applications just underway. The presentation concludes by identifying some future directions for collaborative modeling including geo-spatial display and analysis, real-time operations, and internet-based tools plus the design and programming needed to implement these capabilities.

  16. Computers in the examination room and the electronic health record: physicians' perceived impact on clinical encounters before and after full installation and implementation.

    PubMed

    Doyle, Richard J; Wang, Nina; Anthony, David; Borkan, Jeffrey; Shield, Renee R; Goldman, Roberta E

    2012-10-01

    We compared physicians' self-reported attitudes and behaviours regarding electronic health record (EHR) use before and after installation of computers in patient examination rooms and transition to full implementation of an EHR in a family medicine training practice to identify anticipated and observed effects these changes would have on physicians' practices and clinical encounters. We conducted two individual qualitative interviews with family physicians. The first interview was before and second interview was 8 months later after full implementation of an EHR and computer installation in the examination rooms. Data were analysed through project team discussions and subsequent coding with qualitative analysis software. At the first interviews, physicians frequently expressed concerns about the potential negative effect of the EHR on quality of care and physician-patient interaction, adequacy of their skills in EHR use and privacy and confidentiality concerns. Nevertheless, most physicians also anticipated multiple benefits, including improved accessibility of patient data and online health information. In the second interviews, physicians reported that their concerns did not persist. Many anticipated benefits were realized, appearing to facilitate collaborative physician-patient relationships. Physicians reported a greater teaching role with patients and sharing online medical information and treatment plan decisions. Before computer installation and full EHR implementation, physicians expressed concerns about the impact of computer use on patient care. After installation and implementation, however, many concerns were mitigated. Using computers in the examination rooms to document and access patients' records along with online medical information and decision-making tools appears to contribute to improved physician-patient communication and collaboration.

  17. [Development of a Text-Data Based Learning Tool That Integrates Image Processing and Displaying].

    PubMed

    Shinohara, Hiroyuki; Hashimoto, Takeyuki

    2015-01-01

    We developed a text-data based learning tool that integrates image processing and displaying by Excel. Knowledge required for programing this tool is limited to using absolute, relative, and composite cell references and learning approximately 20 mathematical functions available in Excel. The new tool is capable of resolution translation, geometric transformation, spatial-filter processing, Radon transform, Fourier transform, convolutions, correlations, deconvolutions, wavelet transform, mutual information, and simulation of proton density-, T1-, and T2-weighted MR images. The processed images of 128 x 128 pixels or 256 x 256 pixels are observed directly within Excel worksheets without using any particular image display software. The results of image processing using this tool were compared with those using C language and the new tool was judged to have sufficient accuracy to be practically useful. The images displayed on Excel worksheets were compared with images using binary-data display software. This comparison indicated that the image quality of the Excel worksheets was nearly equal to the latter in visual impressions. Since image processing is performed by using text-data, the process is visible and facilitates making contrasts by using mathematical equations within the program. We concluded that the newly developed tool is adequate as a computer-assisted learning tool for use in medical image processing.

  18. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    PubMed

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  19. Computational tools for exact conditional logistic regression.

    PubMed

    Corcoran, C; Mehta, C; Patel, N; Senchaudhuri, P

    Logistic regression analyses are often challenged by the inability of unconditional likelihood-based approximations to yield consistent, valid estimates and p-values for model parameters. This can be due to sparseness or separability in the data. Conditional logistic regression, though useful in such situations, can also be computationally unfeasible when the sample size or number of explanatory covariates is large. We review recent developments that allow efficient approximate conditional inference, including Monte Carlo sampling and saddlepoint approximations. We demonstrate through real examples that these methods enable the analysis of significantly larger and more complex data sets. We find in this investigation that for these moderately large data sets Monte Carlo seems a better alternative, as it provides unbiased estimates of the exact results and can be executed in less CPU time than can the single saddlepoint approximation. Moreover, the double saddlepoint approximation, while computationally the easiest to obtain, offers little practical advantage. It produces unreliable results and cannot be computed when a maximum likelihood solution does not exist. Copyright 2001 John Wiley & Sons, Ltd.

  20. Computational analysis of drop formation before and after the first singularity: the fate of free and satellite drops during simple dripping and DOD drop formation

    NASA Astrophysics Data System (ADS)

    Chen, Alvin U.; Basaran, Osman A.

    2000-11-01

    Drop formation from a capillary --- dripping mode --- or an ink jet nozzle --- drop-on-demand (DOD) mode --- falls into a class of scientifically challenging yet practically useful free surface flows that exhibit a finite time singularity, i.e. the breakup of an initially single liquid mass into two or more fragments. While computational tools to model such problems have been developed recently, they lack the accuracy needed to quantitatively predict all the dynamics observed in experiments. Here we present a new finite element method (FEM) based on a robust algorithm for elliptic mesh generation and remeshing to handle extremely large interface deformations. The new algorithm allows continuation of computations beyond the first singularity to track fates of both primary and any satellite drops. The accuracy of the computations is demonstrated by comparison of simulations with experimental measurements made possible with an ultra high-speed digital imager capable of recording 100 million frames per second.

  1. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  2. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  3. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  4. BIRCH: a user-oriented, locally-customizable, bioinformatics system.

    PubMed

    Fristensky, Brian

    2007-02-09

    Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.

  5. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    PubMed Central

    Fristensky, Brian

    2007-01-01

    Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere. PMID:17291351

  6. Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2011-01-01

    An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.

  7. Promising Practices in Instruction of Discovery Tools

    ERIC Educational Resources Information Center

    Buck, Stefanie; Steffy, Christina

    2013-01-01

    Libraries are continually changing to meet the needs of users; this includes implementing discovery tools, also referred to as web-scale discovery tools, to make searching library resources easier. Because these tools are so new, it is difficult to establish definitive best practices for teaching these tools; however, promising practices are…

  8. Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.

    1991-01-01

    A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.

  9. Computer-assisted cervical cancer screening using neural networks.

    PubMed

    Mango, L J

    1994-03-15

    A practical and effective system for the computer-assisted screening of conventionally prepared cervical smears is presented and described. Recent developments in neural network technology have made computerized analysis of the complex cellular scenes found on Pap smears possible. The PAPNET Cytological Screening System uses neural networks to automatically analyze conventional smears by locating and recognizing potentially abnormal cells. It then displays images of these objects for review and final diagnosis by qualified cytologists. The results of the studies presented indicate that the PAPNET system could be a useful tool for both the screening and rescreening of cervical smears. In addition, the system has been shown to be sensitive to some types of abnormalities which have gone undetected during manual screening.

  10. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    PubMed Central

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  11. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  12. Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.

    PubMed

    Khavrutskii, Ilja V; Wallqvist, Anders

    2010-11-09

    This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.

  13. Personal Computer-less (PC-less) Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Wahyudin, D.; Fushilat, I.

    2018-02-01

    The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.

  14. Teaching Computer Languages and Elementary Theory for Mixed Audiences at University Level

    NASA Astrophysics Data System (ADS)

    Christiansen, Henning

    2004-09-01

    Theoretical issues of computer science are traditionally taught in a way that presupposes a solid mathematical background and are usually considered more or less inaccessible for students without this. An effective methodology is described which has been developed for a target group of university students with different backgrounds such as natural science or humanities. It has been developed for a course that integrates theoretical material on computer languages and abstract machines with practical programming techniques. Prolog used as meta-language for describing language issues is the central instrument in the approach: Formal descriptions become running prototypes that are easy and appealing to test and modify, and can be extended into analyzers, interpreters, and tools such as tracers and debuggers. Experience shows a high learning curve, especially when the principles are extended into a learning-by-doing approach having the students to develop such descriptions themselves from an informal introduction.

  15. The development of the ICME supply-chain: Route to ICME implementation and sustainment

    NASA Astrophysics Data System (ADS)

    Furrer, David; Schirra, John

    2011-04-01

    Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.

  16. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline.

    PubMed

    Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric

    2014-01-29

    Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.

  17. Learning to see, seeing to learn: visual aspects of sensemaking

    NASA Astrophysics Data System (ADS)

    Russell, Daniel M.

    2003-06-01

    When one says "I see," what is usually meant is "I understand." But what does it mean to create a sense of understanding a large, complex, problem, one with many interlocking pieces, sometimes ill-fitting data and the occasional bit of contradictory information? The traditional computer science perspective on helping people towards understanding is to provide an armamentarium of tools and techniques - databases, query tools and a variety of graphing methods. As a field, we have an overly simple perspective on what it means to grapple with real information. In practice, people who try to make sense of some thing (say, the life sciences, the Middle East, the large scale structure of the universe, their taxes) are faced with a complex collection of information, some in easy-to-digest structured forms, but with many relevant parts scattered hither and yon, in forms and shapes too difficult to manage. To create an understanding, we find that people create representations of complex information. Yet using representations relies on fairly sophisticated perceptual practices. These practices are in no way preordained, but subject to the kinds of perceptual and cognitive phenomena we see in every day life. In order to understand our information environments, we need to learn to perceive these perceptual elements, and understand when they do, and do not, work to our advantage. A more powerful approach to the problem of supporting realistic sensemaking practice is to design information environments that accommodate both the world"s information realities and people"s cognitive characteristics. This paper argues that visual aspects of representation use often dominate sensemaking behavior, and illustrates this by showing three sensemaking tools we have built that take advantage of this property.

  18. Computational modeling of human oral bioavailability: what will be next?

    PubMed

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  19. Community-based oral health promotion practices targeted at children and adolescents in Finland--developing an assessment tool.

    PubMed

    Blomqvist, Pia; Ojala, Ellinoora; Kettunen, Tarja; Poskiparta, Marita; Kasila, Kirsti

    2014-06-01

    To develop an assessment tool for evaluating oral health promotion practices and to evaluate community-based oral health promotion practices targeted at children and adolescents with this tool. A theoretical framework about health promotion planning, implementation and evaluation was made on the basis of a literature review. Then, information about Finnish community-based oral health promotion practices (n=12) targeted at children and adolescents was collected using semi-structured interviews. Also, related documents, for example action plans and reports, were collected when available. Next, an assessment tool based on the theoretical framework was developed, and the recorded and transcribed interview data and other documents were evaluated with this tool. The assessment tool proved to be practical: it pointed out the strengths and weaknesses of the practices. The tool revealed strengths in the implementation and deficiencies in the planning and evaluation of oral health promotion practices. One-quarter of the 12 practices assessed could be considered 'good practices'. There is a need to improve the planning and evaluation of oral health promotion practices. The assessment tool developed in this study might be useful for practitioners both in the field of oral health promotion and general health promotion. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. [Use of informatics technology in psychiatry].

    PubMed

    Margariti, M; Papadimitriou, G N

    2012-01-01

    Computer technology dominates our daily lives and has become an integral professional tool in medical practice and by extension, in psychiatry as well. The widespread use of internet technology has taken place with unprecedented speed in the history of human civilization, spreading in a few decades to all countries of the world, offering novel possibilities for transmitting information, and leading to the globalization of knowledge. However, the speed with which computer technology is becoming a part of our lives is accompanied by difficulties in integration. The continued evolution of applications often leads to the impression that to be modern and efficient we have to run continuously after developments, dedicating time and effort that we cannot often afford. At the same time, its widespread use alters the needs of our patients, and our efficiency is constantly judged in a globalized environment which, while offering new possibilities, also has new demands. The initial impression that computer technology is simply a tool that can facilitate the work of those who are willing and able to use it has been replaced by the perception that the practice of medicine, in both clinical and academic level, requires sufficient knowledge of modern technology and the development of relevant skills for ongoing training and following innovative applications. The result of this assumption is the introduction of technology courses in the curricula of medical schools in the country. This article offers a brief description of the uses of information technology in psychiatry. In particular, e-mail is one of the most popular Internet services and there is internationally an increasing pressure from the public to be able to contact their doctor by e-mail. Furthermore, almost all psychiatric journals now have a digital electronic edition, thus increasing the volume of articles published, the ease of accessing the required information, and ultimately the reduction of the time it takes a psychiatrist to come to possess a specialized field of knowledge. The Internet also enables psychiatrists, while being at their residence and from their offices and homes in remote areas of a country, or from developing countries to be able to take part relatively easily in continuing medical education programs that are under development in advanced educational centers, eliminating in this way the barrier of distance. Furthermore, telemedicine allows access in health-care to people living in geographically isolated areas with poor medical facilities. The electronic filing systems on the other hand, are also expected in the near future to provide the essential foundation of sharing and managing information material in health care. Apart from the uses of technology in the practice of psychiatry, technology has many uses in Psychiatric Education, providing valuable assistance to both trainees and trainers. Today the educational community has at its disposal a range of devices, operating systems, and web applications useful in medical education. For example, we can mention the existence of technological tools for educational administration and management, evaluation of educational work, tools for creating educational content, and learning outside the confines of the classroom. Developments arising from the use of technology are rapid, and its use brings new applications that have the potential to alter the framework of practicing medicine. However, in many cases, these applications do not go along with the guidelines and principles available to doctors in order to practice their profession in a manner not inconsistent with moral imperatives. The challenge of this new environment is to establish guidelines consistent with the principles of medical ethics.

  1. A Roadmap for the Development of Applied Computational Psychiatry.

    PubMed

    Paulus, Martin P; Huys, Quentin J M; Maia, Tiago V

    2016-09-01

    Computational psychiatry is a burgeoning field that utilizes mathematical approaches to investigate psychiatric disorders, derive quantitative predictions, and integrate data across multiple levels of description. Computational psychiatry has already led to many new insights into the neurobehavioral mechanisms that underlie several psychiatric disorders, but its usefulness from a clinical standpoint is only now starting to be considered. Examples of computational psychiatry are highlighted, and a phase-based pipeline for the development of clinical computational-psychiatry applications is proposed, similar to the phase-based pipeline used in drug development. It is proposed that each phase has unique endpoints and deliverables, which will be important milestones to move tasks, procedures, computational models, and algorithms from the laboratory to clinical practice. Application of computational approaches should be tested on healthy volunteers in Phase I, transitioned to target populations in Phase IB and Phase IIA, and thoroughly evaluated using randomized clinical trials in Phase IIB and Phase III. Successful completion of these phases should be the basis of determining whether computational models are useful tools for prognosis, diagnosis, or treatment of psychiatric patients. A new type of infrastructure will be necessary to implement the proposed pipeline. This infrastructure should consist of groups of investigators with diverse backgrounds collaborating to make computational psychiatry relevant for the clinic.

  2. Willingness of patients with diabetes to use an ICT-based self-management tool: a cross-sectional study.

    PubMed

    Shibuta, Tomomi; Waki, Kayo; Tomizawa, Nobuko; Igarashi, Ayumi; Yamamoto-Mitani, Noriko; Yamaguchi, Satoko; Fujita, Hideo; Kimura, Shigeko; Fujiu, Katsuhito; Waki, Hironori; Izumida, Yoshihiko; Sasako, Takayoshi; Kobayashi, Masatoshi; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Ohe, Kazuhiko

    2017-01-01

    To examine the prevalence of the willingness of patients with diabetes to use a self-management tool based on information and communication technology (ICT) such as personal computers, smartphones, and mobile phones; and to examine the patient characteristics associated with that willingness. We conducted a cross-sectional interview survey of 312 adults with diabetes at a university hospital in an urban area in Japan. Participants were classified into 2 groups: those who were willing to use an ICT-based self-management tool and those who were unwilling. Multiple logistic regression analysis was used to identify factors associated with the willingness, including clinical and social factors, current use of ICT, self-management practices, self-efficacy, and diabetes-related emotional distress. The mean age of the 312 participants was 66.3 years (SD=11.5) and 198 (63%) were male. Most of the participants (93%) had type 2 diabetes. Although only 51 (16%) currently used ICT-based self-management tools, a total of 157 (50%) expressed the willingness to use such a tool. Factors associated with the willingness included: not having nephropathy (OR=2.02, 95% CI 1.14 to 3.58); outpatient visits once a month or more (vs less than once a month, OR=2.13, 95% CI 1.13 to 3.99); current use of personal computers and/or smartphones (OR=4.91, 95% CI 2.69 to 8.98); and having greater diabetes-related emotional distress (OR=1.10, 95% CI 1.01 to 1.20). Approximately half of the patients showed interest in using an ICT-based self-management tool. Willing patients may expect ICT-based self-management tools to complement outpatient visits and to make self-management easier. Starting with patients who display the willingness factors might optimize programs based on such tools.

  3. Willingness of patients with diabetes to use an ICT-based self-management tool: a cross-sectional study

    PubMed Central

    Waki, Kayo; Tomizawa, Nobuko; Igarashi, Ayumi; Yamamoto-Mitani, Noriko; Yamaguchi, Satoko; Fujita, Hideo; Kimura, Shigeko; Fujiu, Katsuhito; Waki, Hironori; Izumida, Yoshihiko; Sasako, Takayoshi; Kobayashi, Masatoshi; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Ohe, Kazuhiko

    2017-01-01

    Objectives To examine the prevalence of the willingness of patients with diabetes to use a self-management tool based on information and communication technology (ICT) such as personal computers, smartphones, and mobile phones; and to examine the patient characteristics associated with that willingness. Research design and methods We conducted a cross-sectional interview survey of 312 adults with diabetes at a university hospital in an urban area in Japan. Participants were classified into 2 groups: those who were willing to use an ICT-based self-management tool and those who were unwilling. Multiple logistic regression analysis was used to identify factors associated with the willingness, including clinical and social factors, current use of ICT, self-management practices, self-efficacy, and diabetes-related emotional distress. Results The mean age of the 312 participants was 66.3 years (SD=11.5) and 198 (63%) were male. Most of the participants (93%) had type 2 diabetes. Although only 51 (16%) currently used ICT-based self-management tools, a total of 157 (50%) expressed the willingness to use such a tool. Factors associated with the willingness included: not having nephropathy (OR=2.02, 95% CI 1.14 to 3.58); outpatient visits once a month or more (vs less than once a month, OR=2.13, 95% CI 1.13 to 3.99); current use of personal computers and/or smartphones (OR=4.91, 95% CI 2.69 to 8.98); and having greater diabetes-related emotional distress (OR=1.10, 95% CI 1.01 to 1.20). Conclusions Approximately half of the patients showed interest in using an ICT-based self-management tool. Willing patients may expect ICT-based self-management tools to complement outpatient visits and to make self-management easier. Starting with patients who display the willingness factors might optimize programs based on such tools. PMID:28243450

  4. Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation

    NASA Astrophysics Data System (ADS)

    Schiavazzi, Daniele; Marsden, Alison

    2015-11-01

    Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.

  5. Expert models and modeling processes associated with a computer-modeling tool

    NASA Astrophysics Data System (ADS)

    Zhang, Baohui; Liu, Xiufeng; Krajcik, Joseph S.

    2006-07-01

    Holding the premise that the development of expertise is a continuous process, this study concerns expert models and modeling processes associated with a modeling tool called Model-It. Five advanced Ph.D. students in environmental engineering and public health used Model-It to create and test models of water quality. Using think aloud technique and video recording, we captured their computer screen modeling activities and thinking processes. We also interviewed them the day following their modeling sessions to further probe the rationale of their modeling practices. We analyzed both the audio-video transcripts and the experts' models. We found the experts' modeling processes followed the linear sequence built in the modeling program with few instances of moving back and forth. They specified their goals up front and spent a long time thinking through an entire model before acting. They specified relationships with accurate and convincing evidence. Factors (i.e., variables) in expert models were clustered, and represented by specialized technical terms. Based on the above findings, we made suggestions for improving model-based science teaching and learning using Model-It.

  6. Science in the cloud (SIC): A use case in MRI connectomics

    PubMed Central

    Gorgolewski, Krzysztof J.; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A.; Wiener, Martin; Vogelstein, R. Jacob; Burns, Randal

    2017-01-01

    Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud’ (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. PMID:28327935

  7. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  8. An innovative approach to compensator design

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1973-01-01

    The design is considered of a computer-aided-compensator for a control system from a frequency domain point of view. The design technique developed is based on describing the open loop frequency response by n discrete frequency points which result in n functions of the compensator coefficients. Several of these functions are chosen so that the system specifications are properly portrayed; then mathematical programming is used to improve all of these functions which have values below minimum standards. To do this, several definitions in regard to measuring the performance of a system in the frequency domain are given, e.g., relative stability, relative attenuation, proper phasing, etc. Next, theorems which govern the number of compensator coefficients necessary to make improvements in a certain number of functions are proved. After this a mathematical programming tool for aiding in the solution of the problem is developed. This tool is called the constraint improvement algorithm. Then for applying the constraint improvement algorithm generalized, gradients for the constraints are derived. Finally, the necessary theory is incorporated in a Computer program called CIP (compensator Improvement Program). The practical usefulness of CIP is demonstrated by two large system examples.

  9. Computer-enhanced visual learning method: a paradigm to teach and document surgical skills.

    PubMed

    Maizels, Max; Mickelson, Jennie; Yerkes, Elizabeth; Maizels, Evelyn; Stork, Rachel; Young, Christine; Corcoran, Julia; Holl, Jane; Kaplan, William E

    2009-09-01

    Changes in health care are stimulating residency training programs to develop new methods for teaching surgical skills. We developed Computer-Enhanced Visual Learning (CEVL) as an innovative Internet-based learning and assessment tool. The CEVL method uses the educational procedures of deliberate practice and performance to teach and learn surgery in a stylized manner. CEVL is a learning and assessment tool that can provide students and educators with quantitative feedback on learning a specific surgical procedure. Methods involved examine quantitative data of improvement in surgical skills. Herein, we qualitatively describe the method and show how program directors (PDs) may implement this technique in their residencies. CEVL allows an operation to be broken down into teachable components. The process relies on feedback and remediation to improve performance, with a focus on learning that is applicable to the next case being performed. CEVL has been shown to be effective for teaching pediatric orchiopexy and is being adapted to additional adult and pediatric procedures and to office examination skills. The CEVL method is available to other residency training programs.

  10. The COPERNIC3 project: how AREVA is successfully developing an advanced global fuel rod performance code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, Ch.; Mailhe, P.; Sontheimer, F.

    2007-07-01

    Fuel performance is a key factor for minimizing operating costs in nuclear plants. One of the important aspects of fuel performance is fuel rod design, based upon reliable tools able to verify the safety of current fuel solutions, prevent potential issues in new core managements and guide the invention of tomorrow's fuels. AREVA is developing its future global fuel rod code COPERNIC3, which is able to calculate the thermal-mechanical behavior of advanced fuel rods in nuclear plants. Some of the best practices to achieve this goal are described, by reviewing the three pillars of a fuel rod code: the database,more » the modelling and the computer and numerical aspects. At first, the COPERNIC3 database content is described, accompanied by the tools developed to effectively exploit the data. Then is given an overview of the main modelling aspects, by emphasizing the thermal, fission gas release and mechanical sub-models. In the last part, numerical solutions are detailed in order to increase the computational performance of the code, with a presentation of software configuration management solutions. (authors)« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, P.R.; Widney, T.W.; Goolsby, P.T.

    The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspected Party and the Inspection Team. Current training techniques include table-top inspections and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. ACE-IT has been designed to provide training for a hypothetical challenge inspection under the Chemical Weapons Convention (CWC); however, this training tool can be modified for other inspection regimes. Although ACE-IT provides training from notification of an inspection through post-inspection activities, the primarymore » emphasis of ACE-IT is in the inspection itself--particularly with the concept of managed access. ACE-IT also demonstrates how inspection provisions impact compliance determination and the protection of sensitive information. The Exercise Manual supplements the ACE-IT software by providing general information on on-site inspections and detailed information for the CWC challenge inspection exercise. The detailed information includes the pre-inspection briefing, maps, list of sensitive items, medical records, and shipping records.« less

  12. Science in the cloud (SIC): A use case in MRI connectomics.

    PubMed

    Kiar, Gregory; Gorgolewski, Krzysztof J; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A; Wiener, Martin; Vogelstein, R Jacob; Burns, Randal; Vogelstein, Joshua T

    2017-05-01

    Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called 'science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. © The Author 2017. Published by Oxford University Press.

  13. Computer-Enhanced Visual Learning Method: A Paradigm to Teach and Document Surgical Skills

    PubMed Central

    Maizels, Max; Mickelson, Jennie; Yerkes, Elizabeth; Maizels, Evelyn; Stork, Rachel; Young, Christine; Corcoran, Julia; Holl, Jane; Kaplan, William E.

    2009-01-01

    Innovation Changes in health care are stimulating residency training programs to develop new methods for teaching surgical skills. We developed Computer-Enhanced Visual Learning (CEVL) as an innovative Internet-based learning and assessment tool. The CEVL method uses the educational procedures of deliberate practice and performance to teach and learn surgery in a stylized manner. Aim of Innovation CEVL is a learning and assessment tool that can provide students and educators with quantitative feedback on learning a specific surgical procedure. Methods involved examine quantitative data of improvement in surgical skills. Herein, we qualitatively describe the method and show how program directors (PDs) may implement this technique in their residencies. Results CEVL allows an operation to be broken down into teachable components. The process relies on feedback and remediation to improve performance, with a focus on learning that is applicable to the next case being performed. CEVL has been shown to be effective for teaching pediatric orchiopexy and is being adapted to additional adult and pediatric procedures and to office examination skills. The CEVL method is available to other residency training programs. PMID:21975716

  14. Visualization techniques for computer network defense

    NASA Astrophysics Data System (ADS)

    Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew

    2011-06-01

    Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.

  15. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.

    PubMed

    Fong, Stephen S

    2014-08-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

  16. Rapid Prototyping of Hydrologic Model Interfaces with IPython

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.

    2014-12-01

    A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.

  17. Geoscience in the Big Data Era: Are models obsolete?

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Zheng, L.; Stark, P. B.; Morra, G.; Knepley, M.; Wang, X.

    2016-12-01

    In last few decades, the velocity, volume, and variety of geophysical data have increased, while the development of the Internet and distributed computing has led to the emergence of "data science." Fitting and running numerical models, especially based on PDEs, is the main consumer of flops in geoscience. Can large amounts of diverse data supplant modeling? Without the ability to conduct randomized, controlled experiments, causal inference requires understanding the physics. It is sometimes possible to predict well without understanding the system—if (1) the system is predictable, (2) data on "important" variables are available, and (3) the system changes slowly enough. And sometimes even a crude model can help the data "speak for themselves" much more clearly. For example, Shearer (1991) used a 1-dimensional velocity model to stack long-period seismograms, revealing upper mantle discontinuities. This was a "big data" approach: the main use of computing was in the data processing, rather than in modeling, yet the "signal" became clear. In contrast, modelers tend to use all available computing power to fit even more complex models, resulting in a cycle where uncertainty quantification (UQ) is never possible: even if realistic UQ required only 1,000 model evaluations, it is never in reach. To make more reliable inferences requires better data analysis and statistics, not more complex models. Geoscientists need to learn new skills and tools: sound software engineering practices; open programming languages suitable for big data; parallel and distributed computing; data visualization; and basic nonparametric, computationally based statistical inference, such as permutation tests. They should work reproducibly, scripting all analyses and avoiding point-and-click tools.

  18. Electronic Medical Records and the Technological Imperative: The Retrieval of Dialogue in Community-Based Primary Care.

    PubMed

    Franz, Berkeley; Murphy, John W

    2015-01-01

    Electronic medical records are regarded as an important tool in primary health-care settings. Because these records are thought to standardize medical information, facilitate provider communication, and improve office efficiency, many practices are transitioning to these systems. However, much of the concern with improving the practice of record keeping has related to technological innovations and human-computer interaction. Drawing on the philosophical reflection raised in Jacques Ellul's work, this article questions the technological imperative that may be supporting medical record keeping. Furthermore, given the growing emphasis on community-based care, this article discusses important non-technological aspects of electronic medical records that might bring the use of these records in line with participatory primary-care medicine.

  19. The evolution of tumour phylogenetics: principles and practice

    PubMed Central

    Schwartz, Russell; Schäffer, Alejandro A.

    2018-01-01

    Rapid advances in high-throughput sequencing and a growing realization of the importance of evolutionary theory to cancer genomics have led to a proliferation of phylogenetic studies of tumour progression. These studies have yielded not only new insights but also a plethora of experimental approaches, sometimes reaching conflicting or poorly supported conclusions. Here, we consider this body of work in light of the key computational principles underpinning phylogenetic inference, with the goal of providing practical guidance on the design and analysis of scientifically rigorous tumour phylogeny studies. We survey the range of methods and tools available to the researcher, their key applications, and the various unsolved problems, closing with a perspective on the prospects and broader implications of this field. PMID:28190876

  20. The evolution of tumour phylogenetics: principles and practice.

    PubMed

    Schwartz, Russell; Schäffer, Alejandro A

    2017-04-01

    Rapid advances in high-throughput sequencing and a growing realization of the importance of evolutionary theory to cancer genomics have led to a proliferation of phylogenetic studies of tumour progression. These studies have yielded not only new insights but also a plethora of experimental approaches, sometimes reaching conflicting or poorly supported conclusions. Here, we consider this body of work in light of the key computational principles underpinning phylogenetic inference, with the goal of providing practical guidance on the design and analysis of scientifically rigorous tumour phylogeny studies. We survey the range of methods and tools available to the researcher, their key applications, and the various unsolved problems, closing with a perspective on the prospects and broader implications of this field.

  1. [Development and application of emergency medical information management system].

    PubMed

    Wang, Fang; Zhu, Baofeng; Chen, Jianrong; Wang, Jian; Gu, Chaoli; Liu, Buyun

    2011-03-01

    To meet the needs of clinical practice of rescuing critical illness and develop the information management system of the emergency medicine. Microsoft Visual FoxPro, which is one of Microsoft's visual programming tool, is used to develop computer-aided system included the information management system of the emergency medicine. The system mainly consists of the module of statistic analysis, the module of quality control of emergency rescue, the module of flow path of emergency rescue, the module of nursing care in emergency rescue, and the module of rescue training. It can realize the system management of emergency medicine and,process and analyze the emergency statistical data. This system is practical. It can optimize emergency clinical pathway, and meet the needs of clinical rescue.

  2. A Computer Model for Red Blood Cell Chemistry

    DTIC Science & Technology

    1996-10-01

    5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important

  3. Internet of People: Opportunities and challenges for engaging stakeholders in watershed planning via the Web

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.

    2016-12-01

    Social computing technologies are transforming the way our society interacts and generates content on the Web via collective intelligence. Previously unimagined possibilities have arisen for using these technologies to engage stakeholders and involve them in policy making and planning efforts. While the Internet has been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that engages the community in using science-based methods for the design of potential conservation practices on their landscape, and thereby, reducing undesirable impacts of extreme hydroclimatic events. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. This human-centered design approach, which is reinforced by use of Web 2.0 technologies, has the potential to enable policy makers to connect to a larger community of stakeholders and directly engage them in environmental stewardship efforts. Additionally, the design framework can be used by watershed groups to plug-in their own hydrologic models, climate observations and forecasts, and various other simulation models unique to their watersheds. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices in a HUC-11 Midwestern watershed, results of various experiments with a diverse set of test users and stakeholders, and discuss potential for future developments.

  4. Eliciting expert opinion for economic models: an applied example.

    PubMed

    Leal, José; Wordsworth, Sarah; Legood, Rosa; Blair, Edward

    2007-01-01

    Expert opinion is considered as a legitimate source of information for decision-analytic modeling where required data are unavailable. Our objective was to develop a practical computer-based tool for eliciting expert opinion about the shape of the uncertainty distribution around individual model parameters. We first developed a prepilot survey with departmental colleagues to test a number of alternative approaches to eliciting opinions on the shape of the uncertainty distribution around individual parameters. This information was used to develop a survey instrument for an applied clinical example. This involved eliciting opinions from experts to inform a number of parameters involving Bernoulli processes in an economic model evaluating DNA testing for families with a genetic disease, hypertrophic cardiomyopathy. The experts were cardiologists, clinical geneticists, and laboratory scientists working with cardiomyopathy patient populations and DNA testing. Our initial prepilot work suggested that the more complex elicitation techniques advocated in the literature were difficult to use in practice. In contrast, our approach achieved a reasonable response rate (50%), provided logical answers, and was generally rated as easy to use by respondents. The computer software user interface permitted graphical feedback throughout the elicitation process. The distributions obtained were incorporated into the model, enabling the use of probabilistic sensitivity analysis. There is clearly a gap in the literature between theoretical elicitation techniques and tools that can be used in applied decision-analytic models. The results of this methodological study are potentially valuable for other decision analysts deriving expert opinion.

  5. Moving research tools into practice: the successes and challenges in promoting uptake of classification tools.

    PubMed

    Cunningham, Barbara Jane; Hidecker, Mary Jo Cooley; Thomas-Stonell, Nancy; Rosenbaum, Peter

    2018-05-01

    In this paper, we present our experiences - both successes and challenges - in implementing evidence-based classification tools into clinical practice. We also make recommendations for others wanting to promote the uptake and application of new research-based assessment tools. We first describe classification systems and the benefits of using them in both research and practice. We then present a theoretical framework from Implementation Science to report strategies we have used to implement two research-based classification tools into practice. We also illustrate some of the challenges we have encountered by reporting results from an online survey investigating 58 Speech-language Pathologists' knowledge and use of the Communication Function Classification System (CFCS), a new tool to classify children's functional communication skills. We offer recommendations for researchers wanting to promote the uptake of new tools in clinical practice. Specifically, we identify structural, organizational, innovation, practitioner, and patient-related factors that we recommend researchers address in the design of implementation interventions. Roles and responsibilities of both researchers and clinicians in making implementations science a success are presented. Implications for rehabilitation Promoting uptake of new and evidence-based tools into clinical practice is challenging. Implementation science can help researchers to close the knowledge-to-practice gap. Using concrete examples, we discuss our experiences in implementing evidence-based classification tools into practice within a theoretical framework. Recommendations are provided for researchers wanting to implement new tools in clinical practice. Implications for researchers and clinicians are presented.

  6. Implementation of an Electronic Data Collection Tool to Monitor Nursing-Sensitive Indicators in a Large Academic Health Sciences Centre.

    PubMed

    Backman, Chantal; Vanderloo, Saskia; Momtahan, Kathy; d'Entremont, Barb; Freeman, Lisa; Kachuik, Lynn; Rossy, Dianne; Mille, Toba; Mojaverian, Naghmeh; Lemire-Rodger, Ginette; Forster, Alan

    2015-09-01

    Monitoring the quality of nursing care is essential to identify patients at risk, measure adherence to hospital policies and evaluate the effectiveness of best practice interventions. However, monitoring nursing-sensitive indicators (NSI) is a challenge. Prevalence surveys are one method used by some organizations to monitor NSI, which are patient outcomes that are directly affected by the quantity or quality of nursing care that the patient receives. The aim of this paper is to describe the development of an innovative electronic data collection tool to monitor NSI. In the preliminary development work, we designed a mobile computing application with pre-populated patient census information to collect the nursing quality data. In subsequent phases, we refined this process by designing an electronic trigger using The Ottawa Hospital's Patient Safety Learning System, which automatically generated a case report form for each inpatient based on the hospital's daily patient census on the day of the prevalence survey. Both of these electronic data collection tools were accessible on tablet computers, which substantially reduced data collection, analysis and reporting time compared to previous paper-based methods. The electronic trigger provided improved completeness of the data. This work leveraged the use of tablet computers combined with a web-based application for patient data collection at point of care. Overall, the electronic methods improved data completeness and timeliness compared to traditional paper-based methods. This initiative has resulted in the ability to collect and report on NSI organization-wide to advance decision-making support and identify quality improvement opportunities within the organization. Copyright © 2015 Longwoods Publishing.

  7. In silico polypharmacology of natural products.

    PubMed

    Fang, Jiansong; Liu, Chuang; Wang, Qi; Lin, Ping; Cheng, Feixiong

    2017-04-27

    Natural products with polypharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Currently, many gaps exist in our knowledge of which compounds interact with which targets, and experimentally testing all possible interactions is infeasible. Recent advances and developments of systems pharmacology and computational (in silico) approaches provide powerful tools for exploring the polypharmacological profiles of natural products. In this review, we introduce recent progresses and advances of computational tools and systems pharmacology approaches for identifying drug targets of natural products by focusing on the development of targeted cancer therapy. We survey the polypharmacological and systems immunology profiles of five representative natural products that are being considered as cancer therapies. We summarize various chemoinformatics, bioinformatics and systems biology resources for reconstructing drug-target networks of natural products. We then review currently available computational approaches and tools for prediction of drug-target interactions by focusing on five domains: target-based, ligand-based, chemogenomics-based, network-based and omics-based systems biology approaches. In addition, we describe a practical example of the application of systems pharmacology approaches by integrating the polypharmacology of natural products and large-scale cancer genomics data for the development of precision oncology under the systems biology framework. Finally, we highlight the promise of cancer immunotherapies and combination therapies that target tumor ecosystems (e.g. clones or 'selfish' sub-clones) via exploiting the immunological and inflammatory 'side' effects of natural products in the cancer post-genomics era. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Electronic Risk Assessment System as an Appropriate Tool for the Prevention of Cancer: a Qualitative Study.

    PubMed

    Javan Amoli, Amir Hossein; Maserat, Elham; Safdari, Reza; Zali, Mohammad Reza

    2015-01-01

    Decision making modalities for screening for many cancer conditions and different stages have become increasingly complex. Computer-based risk assessment systems facilitate scheduling and decision making and support the delivery of cancer screening services. The aim of this article was to survey electronic risk assessment system as an appropriate tool for the prevention of cancer. A qualitative design was used involving 21 face-to-face interviews. Interviewing involved asking questions and getting answers from exclusive managers of cancer screening. Of the participants 6 were female and 15 were male, and ages ranged from 32 to 78 years. The study was based on a grounded theory approach and the tool was a semi- structured interview. Researchers studied 5 dimensions, comprising electronic guideline standards of colorectal cancer screening, work flow of clinical and genetic activities, pathways of colorectal cancer screening and functionality of computer based guidelines and barriers. Electronic guideline standards of colorectal cancer screening were described in the s3 categories of content standard, telecommunications and technical standards and nomenclature and classification standards. According to the participations' views, workflow and genetic pathways of colorectal cancer screening were identified. The study demonstrated an effective role of computer-guided consultation for screening management. Electronic based systems facilitate real-time decision making during a clinical interaction. Electronic pathways have been applied for clinical and genetic decision support, workflow management, update recommendation and resource estimates. A suitable technical and clinical infrastructure is an integral part of clinical practice guidline of screening. As a conclusion, it is recommended to consider the necessity of architecture assessment and also integration standards.

  9. Integrating Computational Science Tools into a Thermodynamics Course

    ERIC Educational Resources Information Center

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…

  10. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.

    PubMed

    Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S

    2017-10-01

    An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT, or to design OCT systems with improved performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Applying Semantic Web technologies to improve the retrieval, credibility and use of health-related web resources.

    PubMed

    Mayer, Miguel A; Karampiperis, Pythagoras; Kukurikos, Antonis; Karkaletsis, Vangelis; Stamatakis, Kostas; Villarroel, Dagmar; Leis, Angela

    2011-06-01

    The number of health-related websites is increasing day-by-day; however, their quality is variable and difficult to assess. Various "trust marks" and filtering portals have been created in order to assist consumers in retrieving quality medical information. Consumers are using search engines as the main tool to get health information; however, the major problem is that the meaning of the web content is not machine-readable in the sense that computers cannot understand words and sentences as humans can. In addition, trust marks are invisible to search engines, thus limiting their usefulness in practice. During the last five years there have been different attempts to use Semantic Web tools to label health-related web resources to help internet users identify trustworthy resources. This paper discusses how Semantic Web technologies can be applied in practice to generate machine-readable labels and display their content, as well as to empower end-users by providing them with the infrastructure for expressing and sharing their opinions on the quality of health-related web resources.

  12. From continuing education to personal digital assistants: what do physical therapists need to support evidence-based practice in stroke management?

    PubMed

    Salbach, Nancy M; Veinot, Paula; Jaglal, Susan B; Bayley, Mark; Rolfe, Danielle

    2011-08-01

    Understanding how to structure educational interventions and resources to facilitate physical therapists' application of the research literature is required. The objective of this study was to explore physical therapists' preferences for strategies to facilitate their access to, evaluation and implementation of the stroke research literature in clinical practice. In-depth, qualitative telephone interviews were conducted with 23 physical therapists who treat people with stroke in Ontario, Canada and who had participated in a previous survey on evidence-based practice. Data were analysed using a constant comparative approach to identify emergent themes. Participants preferred online access to research summaries or systematic reviews to save time to filter and critique research articles. To enable access in the workplace, an acceptable computer-to-staff ratio, permission to access web sites and protected work time were suggested. Participants considered personal digital assistants as excellent tools for quick access to online resources but were unsure of their advantage over a desktop computer. Therapists favoured use of non-technical language, glossaries of research terms and quality ratings of studies to ease understanding and appraisal. Teleconferencing or videoconferencing overcame geographical but not scheduling barriers to accessing education. To achieve behaviour change in clinical practice, therapists preferred multiple interactive, face-to-face education sessions in a group format, with opportunities for case-based learning and practice of new skills. Physical therapists prefer technology-assisted access to resources and education and favour attending multiple interactive, expert-facilitated education sessions incorporating opportunities for case-based learning and practice of new skills to change behaviour related to evidence-based practice. © 2010 Blackwell Publishing Ltd.

  13. Mathematical and Computational Foundations of Recurrence Quantifications

    NASA Astrophysics Data System (ADS)

    Marwan, Norbert; Webber, Charles L.

    Real-world systems possess deterministic trajectories, phase singularities and noise. Dynamic trajectories have been studied in temporal and frequency domains, but these are linear approaches. Basic to the field of nonlinear dynamics is the representation of trajectories in phase space. A variety of nonlinear tools such as the Lyapunov exponent, Kolmogorov-Sinai entropy, correlation dimension, etc. have successfully characterized trajectories in phase space, provided the systems studied were stationary in time. Ubiquitous in nature, however, are systems that are nonlinear and nonstationary, existing in noisy environments all of which are assumption breaking to otherwise powerful linear tools. What has been unfolding over the last quarter of a century, however, is the timely discovery and practical demonstration that the recurrences of system trajectories in phase space can provide important clues to the system designs from which they derive. In this chapter we will introduce the basics of recurrence plots (RP) and their quantification analysis (RQA). We will begin by summarizing the concept of phase space reconstructions. Then we will provide the mathematical underpinnings of recurrence plots followed by the details of recurrence quantifications. Finally, we will discuss computational approaches that have been implemented to make recurrence strategies feasible and useful. As computers become faster and computer languages advance, younger generations of researchers will be stimulated and encouraged to capture nonlinear recurrence patterns and quantification in even better formats. This particular branch of nonlinear dynamics remains wide open for the definition of new recurrence variables and new applications untouched to date.

  14. Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods.

    PubMed

    Obrzut, Bogdan; Kusy, Maciej; Semczuk, Andrzej; Obrzut, Marzanna; Kluska, Jacek

    2017-12-12

    Computational intelligence methods, including non-linear classification algorithms, can be used in medical research and practice as a decision making tool. This study aimed to evaluate the usefulness of artificial intelligence models for 5-year overall survival prediction in patients with cervical cancer treated by radical hysterectomy. The data set was collected from 102 patients with cervical cancer FIGO stage IA2-IIB, that underwent primary surgical treatment. Twenty-three demographic, tumor-related parameters and selected perioperative data of each patient were collected. The simulations involved six computational intelligence methods: the probabilistic neural network (PNN), multilayer perceptron network, gene expression programming classifier, support vector machines algorithm, radial basis function neural network and k-Means algorithm. The prediction ability of the models was determined based on the accuracy, sensitivity, specificity, as well as the area under the receiver operating characteristic curve. The results of the computational intelligence methods were compared with the results of linear regression analysis as a reference model. The best results were obtained by the PNN model. This neural network provided very high prediction ability with an accuracy of 0.892 and sensitivity of 0.975. The area under the receiver operating characteristics curve of PNN was also high, 0.818. The outcomes obtained by other classifiers were markedly worse. The PNN model is an effective tool for predicting 5-year overall survival in cervical cancer patients treated with radical hysterectomy.

  15. Hybrid, experimental and computational, investigation of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1996-07-01

    Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.

  16. Parallel peak pruning for scalable SMP contour tree computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less

  17. Artificial neural networks: fundamentals, computing, design, and application.

    PubMed

    Basheer, I A; Hajmeer, M

    2000-12-01

    Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. The attractiveness of ANNs comes from their remarkable information processing characteristics pertinent mainly to nonlinearity, high parallelism, fault and noise tolerance, and learning and generalization capabilities. This paper aims to familiarize the reader with ANN-based computing (neurocomputing) and to serve as a useful companion practical guide and toolkit for the ANNs modeler along the course of ANN project development. The history of the evolution of neurocomputing and its relation to the field of neurobiology is briefly discussed. ANNs are compared to both expert systems and statistical regression and their advantages and limitations are outlined. A bird's eye review of the various types of ANNs and the related learning rules is presented, with special emphasis on backpropagation (BP) ANNs theory and design. A generalized methodology for developing successful ANNs projects from conceptualization, to design, to implementation, is described. The most common problems that BPANNs developers face during training are summarized in conjunction with possible causes and remedies. Finally, as a practical application, BPANNs were used to model the microbial growth curves of S. flexneri. The developed model was reasonably accurate in simulating both training and test time-dependent growth curves as affected by temperature and pH.

  18. Computer ergonomics: the medical practice guide to developing good computer habits.

    PubMed

    Hills, Laura

    2011-01-01

    Medical practice employees are likely to use computers for at least some of their work. Some sit several hours each day at computer workstations. Therefore, it is important that members of your medical practice team develop good computer work habits and that they know how to align equipment, furniture, and their bodies to prevent strain, stress, and computer-related injuries. This article delves into the field of computer ergonomics-the design of computer workstations and work habits to reduce user fatigue, discomfort, and injury. It describes practical strategies medical practice employees can use to improve their computer work habits. Specifically, this article describes the proper use of the computer workstation chair, the ideal placement of the computer monitor and keyboard, and the best lighting for computer work areas and tasks. Moreover, this article includes computer ergonomic guidelines especially for bifocal and progressive lens wearers and offers 10 tips for proper mousing. Ergonomically correct posture, movements, positioning, and equipment are all described in detail to enable the frequent computer user in your medical practice to remain healthy, pain-free, and productive.

  19. Cutting tool form compensation system and method

    DOEpatents

    Barkman, W.E.; Babelay, E.F. Jr.; Klages, E.J.

    1993-10-19

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed. 9 figures.

  20. Cutting tool form compensaton system and method

    DOEpatents

    Barkman, William E.; Babelay, Jr., Edwin F.; Klages, Edward J.

    1993-01-01

    A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation utilizes a camera and a vision computer for gathering information at a preselected stage of a machining operation relating to the actual shape and size of the cutting edge of the cutting tool and for altering the preprogrammed path in accordance with detected variations between the actual size and shape of the cutting edge and an assumed size and shape of the cutting edge. The camera obtains an image of the cutting tool against a background so that the cutting tool and background possess contrasting light intensities, and the vision computer utilizes the contrasting light intensities of the image to locate points therein which correspond to points along the actual cutting edge. Following a series of computations involving the determining of a tool center from the points identified along the tool edge, the results of the computations are fed to the controller where the preprogrammed path is altered as aforedescribed.

Top