Magnus effect: An overview of its past and future practical applications, 1850-1985, volumes 1 and 2
NASA Astrophysics Data System (ADS)
Borg, J.
The report is in two volumes and is intended to present the known data and past and future applications of Magnus effect devices. (Magnus effect devices are very high lift devices which can be used in applications where airfoils are currently used.) This first volume includes the history of Magnus effect devices, theory and principles, a significant patent review, practical marine applications, formulas and experimental data, comparisons of Magnus effect and other state-of-the-art devices, identification of further testing needed, and a proposed test program. Appendices include rudder research and a literature critique. The second volume is a collection of the drawings for 39 magnus effect patents plus a critique of each patent evaluating its potential, especially for marine applications.
van Duijnhoven, J; Aarts, M P J; Aries, M B C; Böhmer, M N; Rosemann, A L P
2017-01-01
The non-image-forming effects of luminous radiation on people with intellectual disabilities or dementia received attention from researchers. Such studies, however, have generally been conducted using disparate methodologies which precludes generalization and reproducibility. The aim of this study was to determine the practical applicability of measurement devices for studies investigating non-image-forming effects of luminous radiation, specifically for people with intellectual disabilities or dementia. In three experiments, ten cognitive impaired people and thirty-nine unaffected subjects participated by wearing one or more portable devices. Six devices were assessed in total. Measurement data was accompanied with user experiences obtained from questionnaires, interviews and observations in order to assess the devices on practical and comfort issues. On average, the devices worn by the cognitive impaired subjects were not experienced as annoying or irritating. No significant differences are found between genders and for one of the portable devices significantly less annoyance was reported by the cognitive impaired participants compared to the unaffected group of participants. The three phases of the research process in towards measuring personal luminous exposures are: selection of the most suitable portable device, application of the assessment method, and the application of the device in the (pilot) study. However, the findings of this study suggest that inaccuracies potentially caused by practical and comfort issues associated with the portable devices need to be considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... research and marketing applications for medical devices. This draft guidance is not final nor is it in... FDA-regulated products (21 CFR 58.1). The draft guidance provides clarification on GLP terminology, the types of medical device research or marketing applications that are subject to the GLP regulation...
Nonlinear dissipative devices in structural vibration control: A review
NASA Astrophysics Data System (ADS)
Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin
2018-06-01
Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.
Screencasting to Support Effective Teaching Practices
ERIC Educational Resources Information Center
Thomas, Amanda
2017-01-01
Increasing availability of digital devices in elementary school classrooms presents exciting new opportunities for teachers to support the teaching and learning of mathematics. Although many of the math applications available for these devices focus on drill and practice of mathematical procedures, screencasting apps can help support effective…
16 CFR 1750.3 - Scope and application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION REFRIGERATOR SAFETY ACT REGULATIONS STANDARD FOR DEVICES TO PERMIT THE OPENING OF HOUSEHOLD REFRIGERATOR DOORS FROM THE INSIDE § 1750.3 Scope and application. This standard shall apply to devices furnished with household refrigerators manufactured and...
Optical design applications for enhanced illumination performance
NASA Astrophysics Data System (ADS)
Gilray, Carl; Lewin, Ian
1995-08-01
Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.
How to identify, assess and utilise mobile medical applications in clinical practice.
Aungst, T D; Clauson, K A; Misra, S; Lewis, T L; Husain, I
2014-02-01
There are thousands of medical applications for mobile devices targeting use by healthcare professionals. However, several factors related to the structure of the existing market for medical applications create significant barriers preventing practitioners from effectively identifying mobile medical applications for individual professional use. To define existing market factors relevant to selection of medical applications and describe a framework to empower clinicians to identify, assess and utilise mobile medical applications in their own practice. Resources available on the Internet regarding mobile medical applications, guidelines and published research on mobile medical applications. Mobile application stores (e.g. iTunes, Google Play) are not effective means of identifying mobile medical applications. Users of mobile devices that desire to implement mobile medical applications into practice need to carefully assess individual applications prior to utilisation. Searching and identifying mobile medical applications requires clinicians to utilise multiple references to determine what application is best for their individual practice methods. This can be done with a cursory exploration of mobile application stores and then moving onto other available resources published in the literature or through Internet resources (e.g. blogs, medical websites, social media). Clinicians must also take steps to ensure that an identified mobile application can be integrated into practice after carefully reviewing it themselves. Clinicians seeking to identify mobile medical application for use in their individual practice should use a combination of app stores, published literature, web-based resources, and personal review to ensure safe and appropriate use. © 2014 John Wiley & Sons Ltd.
High-performance silicon photonics technology for telecommunications applications.
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
High-performance silicon photonics technology for telecommunications applications
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-01-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge–based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge–based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications. PMID:27877659
High-performance silicon photonics technology for telecommunications applications
NASA Astrophysics Data System (ADS)
Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi
2014-04-01
By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.
Practice of Regulatory Science (Development of Medical Devices).
Niimi, Shingo
2017-01-01
Prototypes of medical devices are made in accordance with the needs of clinical practice, and for systems required during the initial process of medical device development for new surgical practices. Verification of whether these prototypes produce the intended performance specifications is conducted using basic tests such as mechanical and animal tests. The prototypes are then improved and modified until satisfactory results are obtained. After a prototype passes through a clinical trial process similar to that for new drugs, application for approval is made. In the approval application process, medical devices are divided into new, improved, and generic types. Reviewers judge the validity of intended use, indications, operation procedures, and precautions, and in addition evaluate the balance between risk and benefit in terms of efficacy and safety. Other characteristics of medical devices are the need for the user to attain proficiency in usage techniques to ensure efficacy and safety, and the existence of a variety of medical devices for which assessment strategies differ, including differences in impact on the body in cases in which a physical burden to the body or failure of a medical device develops. Regulatory science of medical devices involves prediction, judgment, and evaluation of efficacy, safety, and quality, from which data result which can become indices in the development stages from design to application for approval. A reduction in the number of animals used for testing, improvement in efficiency, reduction of the necessity for clinical trials, etc. are expected through rational setting of evaluation items.
Modelling Framework and Assistive Device for Peripheral Intravenous Injections
NASA Astrophysics Data System (ADS)
Kam, Kin F.; Robinson, Martin P.; Gilbert, Mathew A.; Pelah, Adar
2016-02-01
Intravenous access for blood sampling or drug administration that requires peripheral venepuncture is perhaps the most common invasive procedure practiced in hospitals, clinics and general practice surgeries.We describe an idealised mathematical framework for modelling the dynamics of the peripheral venepuncture process. Basic assumptions of the model are confirmed through motion analysis of needle trajectories during venepuncture, taken from video recordings of a skilled practitioner injecting into a practice kit. The framework is also applied to the design and construction of a proposed device for accurate needle guidance during venepuncture administration, assessed as consistent and repeatable in application and does not lead to over puncture. The study provides insights into the ubiquitous peripheral venepuncture process and may contribute to applications in training and in the design of new devices, including for use in robotic automation.
Tutorial: Integrated-photonic switching structures
NASA Astrophysics Data System (ADS)
Soref, Richard
2018-02-01
Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
The Role of Healthcare Technology Management in Facilitating Medical Device Cybersecurity.
Busdicker, Mike; Upendra, Priyanka
2017-09-02
This article discusses the role of healthcare technology management (HTM) in medical device cybersecurity and outlines concepts that are applicable to HTM professionals at a healthcare delivery organization or at an integrated delivery network, regardless of size. It provides direction for HTM professionals who are unfamiliar with the security aspects of managing healthcare technologies but are familiar with standards from The Joint Commission (TJC). It provides a useful set of recommendations, including relevant references for incorporating good security practices into HTM practice. Recommendations for policies, procedures, and processes referencing TJC standards are easily applicable to HTM departments with limited resources and to those with no resource concerns. The authors outline processes from their organization as well as best practices learned through information sharing at AAMI, National Health Information Sharing and Analysis Center (NH-ISAC), and Medical Device Innovation, Safety, and Security Consortium (MDISS) conferences and workshops.
The Iterative Design of a Mobile Learning Application to Support Scientific Inquiry
ERIC Educational Resources Information Center
Marty, Paul F.; Mendenhall, Anne; Douglas, Ian; Southerland, Sherry A.; Sampson, Victor; Kazmer, Michelle M.; Alemanne, Nicole; Clark, Amanda; Schellinger, Jennifer
2013-01-01
The ubiquity of mobile devices makes them well suited for field-based learning experiences that require students to gather data as part of the process of developing scientific inquiry practices. The usefulness of these devices, however, is strongly influenced by the nature of the applications students use to collect data in the field. To…
ERIC Educational Resources Information Center
Bredeson, Paul V.
1988-01-01
Reports on a study of the use of employment application blanks as prescreening devices in public school employee selection. Findings suggest two major areas for further research. The first relates to legal compliance with Equal Opportunity Employment guidelines. The second concerns information relevancy to personnel selection. (JAM)
Portable device technology in organ donation: new "app" for procurement coordinators.
Cavallin, M; Bertini, P; Lopane, P; Guarracino, F
2014-09-01
Portable devices are commonly used at bedside in everyday practice. Transplant procurement coordinators routinely have to deal with protocols and flow charts and need to assess the donor condition several times. In our experience, a great part of the organ procurement management work is provided by nurses "on call." We developed an application for iOS devices to facilitate their approach to relatives and procedures for organ donation. The application, which includes algorithms, tutorials, and simple calculators, has been designed by transplant procurement coordinators to speed up the process of organ donation and at the same time to be as accurate as possible for the process. It can be used alongside all of the procedures for procurement in the emergency room, intensive care unit, operating room, and morgue in both brainstem-dead and cadaver organ donors. The application could be effective in organ procurement management for everyday practice. Copyright © 2014 Elsevier Inc. All rights reserved.
Materials and structures for stretchable energy storage and conversion devices.
Xie, Keyu; Wei, Bingqing
2014-06-11
Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intelligent MEMS spectral sensor for NIR applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne
2017-05-01
Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.
A simplified design of the staggered herringbone micromixer for practical applications
Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong
2010-01-01
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584
A simplified design of the staggered herringbone micromixer for practical applications.
Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong
2010-05-07
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.
[Risk management for medical devices].
Xie, Ying-jie; Xu, Xing-gang
2007-07-01
Based on the practices of the risk management activities by Chinese medical device manufacturers and theoretical study of the latest international standard ISO 14971:2007, this article analyses the risk management in medical device manufacturing industry by introducing the status quo of applications, four requirements at operational stages, and future trends of development. Methods and suggestions are therefore given to medical device manufacturers for risk management.
Nanoelectronics: Opportunities for future space applications
NASA Technical Reports Server (NTRS)
Frazier, Gary
1995-01-01
Further improvements in the performance of integrated electronics will eventually halt due to practical fundamental limits on our ability to downsize transistors and interconnect wiring. Avoiding these limits requires a revolutionary approach to switching device technology and computing architecture. Nanoelectronics, the technology of exploiting physics on the nanometer scale for computation and communication, attempts to avoid conventional limits by developing new approaches to switching, circuitry, and system integration. This presentation overviews the basic principles that operate on the nanometer scale that can be assembled into practical devices and circuits. Quantum resonant tunneling (RT) is used as the center-piece of the overview since RT devices already operate at high temperature (120 degrees C) and can be scaled, in principle, to a few nanometers in semiconductors. Near- and long-term applications of GaAs and silicon quantum devices are suggested for signal and information processing, memory, optoelectronics, and radio frequency (RF) communication.
Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser
2016-10-21
Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments.
Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser
2016-01-01
Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments. PMID:27775673
Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria
2018-01-01
This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, K; Curran, B
I. Information Security Background (Speaker = Kevin McDonald) Evolution of Medical Devices Living and Working in a Hostile Environment Attack Motivations Attack Vectors Simple Safety Strategies Medical Device Security in the News Medical Devices and Vendors Summary II. Keeping Radiation Oncology IT Systems Secure (Speaker = Bruce Curran) Hardware Security Double-lock Requirements “Foreign” computer systems Portable Device Encryption Patient Data Storage System Requirements Network Configuration Isolating Critical Devices Isolating Clinical Networks Remote Access Considerations Software Applications / Configuration Passwords / Screen Savers Restricted Services / access Software Configuration Restriction Use of DNS to restrict accesse. Patches / Upgrades Awareness Intrusionmore » Prevention Intrusion Detection Threat Risk Analysis Conclusion Learning Objectives: Understanding how Hospital IT Requirements affect Radiation Oncology IT Systems. Illustrating sample practices for hardware, network, and software security. Discussing implementation of good IT security practices in radiation oncology. Understand overall risk and threats scenario in a networked environment.« less
Smart dental practice: capitalising on smart mobile technology.
Plangger, K; Bredican, J; Mills, A J; Armstrong, J
2015-08-14
To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.
Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems
NASA Technical Reports Server (NTRS)
Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)
2002-01-01
Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.
Cryogenically Cooled Field Effect Transistors for Low-Noise Systems
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2002-01-01
Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.
Manufacturing of the ISO 25178-70 material measures with direct laser writing: a feasibility study
NASA Astrophysics Data System (ADS)
Eifler, M.; Hering, J.; von Freymann, G.; Seewig, J.
2018-06-01
The standard ISO 25178-70 defines material measures for the calibration of 2D- and 3D-topography measurement devices. Some of the suggested material measures are established within the industrial application for a long time while others have not yet been extensively researched regarding their practical abilities. This paper describes a holistic and systematic investigation of the ISO 25178-70 material measures. The manufacturing of the suggested geometries is executed with two-photon laser lithography, alias direct laser writing (DLW). Since this manufacturing process is not yet frequently used in a material measures context, it is examined regarding its suitability for the fabrication of the ISO 25178-70 material measures. With DLW, it is possible to manufacture multiple material measures on one sample in order to enable a comprehensive calibration of optical topography measurement devices. The manufactured ISO 25178-70 geometries are examined using different 3D-topography measuring devices. In doing so, their abilities regarding the calibration of the devices can be evaluated and the practical feasibility of their industrial application is assessed. For the review of this practical usefulness, varying calibration and evaluation strategies are taken into account.
Compressive sensing scalp EEG signals: implementations and practical performance.
Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther
2012-11-01
Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.
Optimizing Aspect-Oriented Mechanisms for Embedded Applications
NASA Astrophysics Data System (ADS)
Hundt, Christine; Stöhr, Daniel; Glesner, Sabine
As applications for small embedded mobile devices are getting larger and more complex, it becomes inevitable to adopt more advanced software engineering methods from the field of desktop application development. Aspect-oriented programming (AOP) is a promising approach due to its advanced modularization capabilities. However, existing AOP languages tend to add a substantial overhead in both execution time and code size which restricts their practicality for small devices with limited resources. In this paper, we present optimizations for aspect-oriented mechanisms at the level of the virtual machine. Our experiments show that these optimizations yield a considerable performance gain along with a reduction of the code size. Thus, our optimizations establish the base for using advanced aspect-oriented modularization techniques for developing Java applications on small embedded devices.
ERIC Educational Resources Information Center
Sundgren, Marcus
2017-01-01
The use of mobile devices is increasing rapidly in society, and student device ownership is becoming more or less ubiquitous in many parts of the world. This might be an under-utilised resource that could benefit the educational practices of institutions of higher education. This review examines 91 journal articles from 28 countries published in…
Liu, Zhike; Lau, Shu Ping; Yan, Feng
2015-08-07
Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.
The Development and Application of Airway Devices in China
Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong
2017-01-01
Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485
Use of mobile device applications in Canadian dietetic practice.
Lieffers, Jessica R L; Vance, Vivienne A; Hanning, Rhona M
2014-01-01
A cross-sectional web-based survey of dietitians was used to explore topics related to mobile devices and their applications (apps) in Canadian dietetic practice. A survey was drafted, posted on SurveyMonkey, and pretested with dietitians and dietetic interns. Dietitians of Canada (DC), a supporter of this work, promoted the survey to members through its monthly electronic newsletters from January 2012 to April 2012. Of 139 dietitians who answered some survey questions, 118 finished the survey; this represents a response rate of approximately 3%. Overall, 57.3% of respondents reported app use in practice, and 54.2% had a client ask about or use a nutrition/food app. About 40.5% of respondents had recommended nutrition/food apps to clients. Respondents were enthusiastic about apps, but many described challenges with use. From the survey data, three themes emerged that can affect dietitians' use of apps and whether they recommend apps to clients: mobile device and app factors (access to information/tools, content quality, usability, accessibility/compatibility, and cost), personal factors (knowledge, interest, suitability, and willingness/ability to pay), and workplace factors. Apps are now infiltrating dietetic practice. Several factors can affect dietitians' use of apps and whether they recommend them to clients. These findings will help guide future development and use of apps in practice.
Acoustic devices for particle and cell manipulation and sensing.
Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy
2014-08-13
An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.
Acoustic Devices for Particle and Cell Manipulation and Sensing
Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy
2014-01-01
An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
14 CFR 61.1 - Applicability and definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...
[VR and AR Applications in Medical Practice and Education].
Hsieh, Min-Chai; Lin, Yu-Hsuan
2017-12-01
As technology advances, mobile devices have gradually turned into wearable devices. Furthermore, virtual reality (VR), augmented reality (AR), and mixed reality (MR) are being increasingly applied in medical fields such as medical education and training, surgical simulation, neurological rehabilitation, psychotherapy, and telemedicine. Research results demonstrate the ability of VR, AR, and MR to ameliorate the inconveniences that are often associated with traditional medical care, reduce incidents of medical malpractice caused by unskilled operations, and reduce the cost of medical education and training. What is more, the application of these technologies has enhanced the effectiveness of medical education and training, raised the level of diagnosis and treatment, improved the doctor-patient relationship, and boosted the efficiency of medical execution. The present study introduces VR, AR, and MR applications in medical practice and education with the aim of helping health professionals better understand the applications and use these technologies to improve the quality of medical care.
Three-dimensional magnetic cloak working from d.c. to 250 kHz
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-01-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641
A simple blackbody simulator with several possibilities and applications on thermography
NASA Astrophysics Data System (ADS)
dos Santos, Laerte; Lemos, Alisson Maria; Abi-Ramia, Marco Antônio
2016-05-01
Originally designed to make the practical examination on thermography certification1 possible, the device presented in this paper has demonstrated to be a very useful and versatile didactic tool for training centers and educational institutions, it can also be used as a low cost blackbody simulator to verify calibration of radiometers. It is a simple device with several functionalities for studying and for applications on heat transfer and radiometry, among them the interesting ability to thermally simulate the surface of real objects. On that functionality, if the device is seen by a thermographic camera, it reproduces the surface apparent temperatures of the object that it is simulating, at the same time, if it is seen by a naked eye it shows a visible image of that same surface. This functionality makes the practical study in the classroom possible, from different areas such as electrical, mechanical, medical, building, veterinary, etc.
Three-dimensional magnetic cloak working from d.c. to 250 kHz
NASA Astrophysics Data System (ADS)
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-11-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.
Finite-Time Performance of Local Search Algorithms: Theory and Application
2010-06-10
security devices deployed at airport security checkpoints are used to detect prohibited items (e.g., guns, knives, explosives). Each security device...security devices are deployed, the practical issue of determining how to optimally use them can be difficult. For an airport security system design...checked baggage), explosive detection systems (designed to detect explosives in checked baggage), and detailed hand search by an airport security official
Enhancing Field Research Methods with Mobile Survey Technology
ERIC Educational Resources Information Center
Glass, Michael R.
2015-01-01
This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…
Semitransparent organic photovoltaic modules with Ag nanowire top electrodes
NASA Astrophysics Data System (ADS)
Guo, Fei; Kubis, Peter; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.
2014-10-01
Semitransparent organic photovoltaic (OPV) cells are promising for applications in transparent architectures where their opaque counterparts are not suitable. Manufacturing of large-area modules without performance losses compared to their lab-scale devices is a key step towards practical applications of this PV technology. In this paper, we report the use of solution-processed silver nanowires as top electrodes and fabricate semitransparent OPV modules based on ultra-fast laser scribing. Through a rational choice of device architecture in combination with high-precision laser patterning, we demonstrate efficient semitransparent modules with comparable performance as compared to the reference devices.
The measure method of internal screw thread and the measure device design
NASA Astrophysics Data System (ADS)
Hu, Dachao; Chen, Jianguo
2008-12-01
In accordance with the principle of Three-Line, this paper analyzed the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Basis on the measured value and corresponding formula calculation, we can get the internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread and some else. The practical application has proved that this operation of this device is convenience, and the measured dates have a high accuracy. Meanwhile, the application of this device's patent of invention is accepted by the Patent Office. (The filing number: 200710044081.5)
Goodarzy, Farhad; Skafidas, Efstratios Stan; Gambini, Simone
2015-01-01
In this review, biomedical-related wireless miniature devices such as implantable medical devices, neural prostheses, embedded neural systems, and body area network systems are investigated and categorized. The two main subsystems of such designs, the RF subsystem and the energy source subsystem, are studied in detail. Different application classes are considered separately, focusing on their specific data rate and size characteristics. Also, the energy consumption of state-of-the-art communication practices is compared to the energy that can be generated by current energy scavenging devices, highlighting gaps and opportunities. The RF subsystem is classified, and the suitable architecture for each category of applications is highlighted. Finally, a new figure of merit suitable for wireless biomedical applications is introduced to measure the performance of these devices and assist the designer in selecting the proper system for the required application. This figure of merit can effectively fill the gap of a much required method for comparing different techniques in simulation stage before a final design is chosen for implementation.
Medical devices early assessment methods: systematic literature review.
Markiewicz, Katarzyna; van Til, Janine A; IJzerman, Maarten J
2014-04-01
The aim of this study was to get an overview of current theory and practice in early assessments of medical devices, and to identify aims and uses of early assessment methods used in practice. A systematic literature review was conducted in September 2013, using computerized databases (PubMed, Science Direct, and Scopus), and references list search. Selected articles were categorized based on their type, objective, and main target audience. The methods used in the application studies were extracted and mapped throughout the early stages of development and for their particular aims. Of 1,961 articles identified, eighty-three studies passed the inclusion criteria, and thirty were included by searching reference lists. There were thirty-one theoretical papers, and eighty-two application papers included. Most studies investigated potential applications/possible improvement of medical devices, developed early assessment framework or included stakeholder perspective in early development stages. Among multiple qualitative and quantitative methods identified, only few were used more than once. The methods aim to inform strategic considerations (e.g., literature review), economic evaluation (e.g., cost-effectiveness analysis), and clinical effectiveness (e.g., clinical trials). Medical devices were often in the prototype product development stage, and the results were usually aimed at informing manufacturers. This study showed converging aims yet widely diverging methods for early assessment during medical device development. For early assessment to become an integral part of activities in the development of medical devices, methods need to be clarified and standardized, and the aims and value of assessment itself must be demonstrated to the main stakeholders for assuring effective and efficient medical device development.
Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...
2016-03-21
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sibo; Ren, Zheng; Guo, Yanbing
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport.
Malone, James J; Lovell, Ric; Varley, Matthew C; Coutts, Aaron J
2017-04-01
Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) components are now commonplace in sport research and practice. These devices provide large amounts of data that are used to inform decision making on athlete training and performance. However, the data obtained from these devices are often provided without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from their data, which will improve the understanding and impact these devices can have on athlete performance.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.
Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.
Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong
2017-10-11
The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.
Microengineering of magnetic bearings and actuators
NASA Astrophysics Data System (ADS)
Ghantasala, Muralihar K.; Qin, LiJiang; Sood, Dinesh K.; Zmood, Ronald B.
2000-06-01
Microengineering has evolved in the last decade as a subject of its own with the current research encompassing every possible area of devices from electromagnetic to optical and bio-micro electromechanical systems (MEMS). The primary advantage of the micro system technology is its small size, potential to produce high volume and low cost devices. However, the major impediments in the successful realization of many micro devices in practice are the reliability, packaging and integration with the existing microelectronics technology. Microengineering of actuators has recently grown tremendously due to its possible applicability to a wide range of devices of practical importance and the availability of a choice of materials. Selection of materials has been one of the important aspects of the design and fabrication of many micro system and actuators. This paper discusses the issues related to the selection of materials and subsequently their effect on the performance of the actuator. These will be discussed taking micro magnetic actuators and bearings, in particular, as examples. Fabrication and processing strategies and performance evaluation methods adopted will be described. Current status of the technology and projected futuristic applications in this area will be reviewed.
Long-distance measurement-device-independent multiparty quantum communication.
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-06
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.
Conquering Language Babel in the Classroom
ERIC Educational Resources Information Center
Minichino, Mario; Berson, Michael J.
2012-01-01
This article is an exploration of the available applications for speech to speech real-time translation software for use in the classroom. Three different types of machine language translation (MLT) software and devices are reviewed for their features and practical application in secondary education classrooms.
Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.
Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng
2016-09-01
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
NASA Astrophysics Data System (ADS)
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Design of internal screw thread measuring device based on the Three-Line method principle
NASA Astrophysics Data System (ADS)
Hu, Dachao; Chen, Jianguo
2010-08-01
In accordance with the principle of Three-Line, this paper analyze the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread were obtained through calculation and measurement. The practical applications have proved that this device is convenience to use, and the measurements have a high accuracy. Meanwhile, the application for the patent of invention has been accepted by the Patent Office (Filing number: 200710044081.5).
Helicity multiplexed broadband metasurface holograms.
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong
2015-09-10
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.
Helicity multiplexed broadband metasurface holograms
Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong
2015-01-01
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497
Giant Room-Temperature Magnetodielectric Response in a MOF at 0.1 Tesla.
Chen, Li-Hong; Guo, Jiang-Bin; Wang, Xuan; Dong, Xin-Wei; Zhao, Hai-Xia; Long, La-Sheng; Zheng, Lan-Sun
2017-11-01
A giant room-temperature magnetodielectric (MD) response upon the application of a small magnetic field is of fundamental importance for the practical application of a new generation of devices. Here, the giant room-temperature magnetodielectric response is demonstrated in the metal-organic framework (MOF) of [NH 2 (CH 3 ) 2 ] n [Fe III Fe II (1- x ) Ni II x (HCOO) 6 ] n (x ≈ 0.63-0.69) (1) with its MD coefficient remaining between -20% and -24% in the 300-410 K temperature range, even at 0.1 T. Because a room-temperature magnetodielectric response has never been observed in MOFs, the present work not only provides a new type of magnetodielectric material but also takes a solid step toward the practical application of MOFs in a new generation of devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microfabrication and Applications of Opto-Microfluidic Sensors
Zhang, Daiying; Men, Liqiu; Chen, Qiying
2011-01-01
A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904
Tamper Indicating Device: Initial Training, Course 50112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, Stephen Ray; Sandoval, Dana M.
Tamper Indicating Device (TID): Initial Training, course #50112, covers Los Alamos National Laboratory (LANL) Material Control & Accountability (MC&A) TID Program procedures for the application and removal of TIDs. LANL’s policy is to comply with Department of Energy (DOE) requirements for the use of TIDs consistent with the graded safeguards described in DOE Manual DOE O 474.2, Nuclear Material Control and Accountability. When you have completed this course, you will: recognize standard practices and procedures of the LANL TID Program; have hands-on experience in the application and removal of LANL TIDs, and; verify the application and removal of LANL TIDs.
Willemse, Juliana J; Bozalek, Vivienne
2015-01-01
Promoting the quality and effectiveness of nursing education is an important factor, given the increased demand for nursing professionals. It is important to establish learning environments that provide personalised guidance and feedback to students about their practical skills and application of their theoretical knowledge. To explore and describe the knowledge and points of view of students and educators about introduction of new technologies into an undergraduate nursing programme. The qualitative design used Tesch's (1990) steps of descriptive data analysis to complete thematic analysis of the data collected in focus group discussions (FGDs) and individual interviews to identify themes. Themes identified from the students’ FGDs and individual interviews included: mobile devices as a communication tool; email, WhatsApp and Facebook as methods of communication; WhatsApp as a method of communication; nurses as role-models in the clinical setting; setting personal boundaries; and impact of mobile devices in clinical practice on professionalism. Themes identified from the FGD, individual interviews and a discussion session held with educators included: peer learning via mobile devices; email, WhatsApp and Facebook as methods of communication; the mobile device as a positive learning method; students need practical guidance; and ethical concerns in clinical facilities about Internet access and use of mobile devices. The research project established an understanding of the knowledge and points of view of students and educators regarding introduction of new technologies into an undergraduate nursing programme with the aim of enhancing integration of theory and clinical practice through use of mobile devices.
21 CFR 26.79 - Territorial application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Territorial application. 26.79 Section 26.79 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS...
Code of Federal Regulations, 2012 CFR
2012-04-01
... PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT...://dg3.eudra.org.] Council Directive 65/65/EEC of 26 January 1965 on the approximation of provisions laid... extended, widened, and amended. Council Directive 75/319/EEC of 20 May 1975 on the approximation of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT...://dg3.eudra.org.] Council Directive 65/65/EEC of 26 January 1965 on the approximation of provisions laid... extended, widened, and amended. Council Directive 75/319/EEC of 20 May 1975 on the approximation of...
Code of Federal Regulations, 2014 CFR
2014-04-01
... PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT...://dg3.eudra.org.] Council Directive 65/65/EEC of 26 January 1965 on the approximation of provisions laid... extended, widened, and amended. Council Directive 75/319/EEC of 20 May 1975 on the approximation of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT...://dg3.eudra.org.] Council Directive 65/65/EEC of 26 January 1965 on the approximation of provisions laid... extended, widened, and amended. Council Directive 75/319/EEC of 20 May 1975 on the approximation of...
The experience of using the personal electrocardiograph “ECG-Express”
NASA Astrophysics Data System (ADS)
Lezhnina, I. A.; Overchuk, K. V.; Uvarov, A. A.; Perchatkin, V. A.; Lvova, A. B.
2017-08-01
The article describes the results of testing ECG-Express devices, previously developed at the Tomsk Polytechnic University. The testing was carried out on the basis of Tomsk Scientific Research Institute of Cardiology. Here we show the argumentation for application of such a devices in medical practice as well as number of cases of successful use.
Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.
Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun
2017-09-01
2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical characterization of organic thin film transistors and alternative device architectures
NASA Astrophysics Data System (ADS)
Newman, Christopher R.
In the last 10--15 years, organic semiconductors have evolved from experimental curiosities into viable alternatives for practical applications involving large-area and low-cost electronics such as display backplanes, electronic paper, radio frequency identification (RFID) tags, and solar cells. Many of the initially-stated goals in this field have been achieved; organic semconductors have demonstrated performance comparable to or greater than amorphous silicon (a-Si), the entrenched technology for most of the applications listed above. At present, the major obstacles remaining to commercialization of devices based on organic semiconductors involve material stability, processing considerations and optimization of the other device components (e.g. metal contacts and dielectric materials). Despite these technical achievements, significant gaps remain in our understanding of the underlying transport physics in these devices. This thesis summarizes experiments performed on organic field-effect transistors (OFETs) in an attempt to address some of these knowledge gaps. The FET, in addition to being a very useful device for practical applications (such as the driving elements in pixel backplanes), is also a very flexible architecture from an experimental standpoint. The presence of a capacitively-coupled gate electrode allows the investigation of transport physics as a function of carrier concentration. For devices in which non-idealities (i.e. carrier traps) largely dictate the observed characteristics, this is a very useful feature. Although practical OFETs are fabricated as conventional single-gate structures on an organic thin film (OTFTs), more exotic structures can often provide insights that standard OTFTs cannot. Specifically, single-crystal OFETs allow the investigation of carrier transport in the absence of grain boundaries, and double-gated OTFTs facilitate the investigation and comparison of properties across two discrete interfaces. One of the remaining challenges in terms of achieving stability inorganic semiconductors involves understanding, and hopefully minimizing, the bias stress effect of operating OTFTs. Largely ignored during the years in which research groups sought to optimize the standard device metrics of field-effect mobility, current on/off ratio, and threshold voltage, operational stability is emerging as a dominant consideration in these materials. Experiments performed with the goal of quantifying and understanding the bias-stress effect in organic semiconductors are described at the end of this thesis.
Wu, Emily; Torous, John; Hardaway, Rashad; Gutheil, Thomas
2017-01-01
This article summarizes the current literature on clinical knowledge and practical gaps regarding the confidentiality and privacy for smartphone and connected devices in child and adolescent psychiatry and offers practical solutions and consideration for the next steps for the field. Important issues to consider include disclosure of information sharing, access privilege, privacy and trust, risk and benefit analysis, and the need for standardization. Through understanding the privacy and confidentiality concerns regarding digital devices, child and adolescent psychiatrists can guide patients and parents though informed decision-making and also help shape how the field creates the next generation of these tools. Copyright © 2016 Elsevier Inc. All rights reserved.
Application of near field communication for health monitoring in daily life.
Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka
2006-01-01
We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.
Practical applications of hand-held computers in dermatology.
Goldblum, Orin M
2002-09-01
For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.
Medical applications for pharmacists using mobile devices.
Aungst, Timothy Dy
2013-01-01
Mobile devices (eg, smartphones, tablet computers) have become ubiquitous and subsequently there has been a growth in mobile applications (apps). Concurrently, mobile devices have been integrated into health care practice due to the availability and quality of medical apps. These mobile medical apps offer increased access to clinical references and point-of-care tools. However, there has been little identification of mobile medical apps suitable for the practice of pharmacy. To address the shortage of recommendations of mobile medical apps for pharmacists in daily practice. Mobile medical apps were identified via the iTunes and Google Play Stores via the "Medical" app categories and key word searches (eg, drug information, medical calculators). In addition, reviews provided by professional mobile medical app review websites were used to identify apps. Mobile medical apps were included if they had been updated in the previous 3 months, were available in the US, used evidence-based information or literature support, had dedicated app support, and demonstrated stability. Exclusion criteria included apps that were not available in English, had advertisement bias, used nonreferenced sources, were available only via an institution-only subscription, and were web-based portals. Twenty-seven mobile apps were identified and reviewed that involved general pharmacy practice, including apps that involved drug references, clinical references, medical calculators, laboratory references, news and continuing medical education, and productivity. Mobile medical apps have a variety of features that are beneficial to pharmacy practice. Individual clinicians should consider several characteristics of these apps to determine which are suitable to incorporate into their daily practice.
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
An easy packaging hybrid optical element in grating based WDM application
NASA Astrophysics Data System (ADS)
Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang
2005-08-01
We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.
One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications
Liang, Longyue; Kang, Xueliang
2016-01-01
One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477
Practical application of pulsed "eye-safe" microchip laser to laser rangefinders
NASA Astrophysics Data System (ADS)
Młyńczak, J.; Kopczyński, K.; Mierczyk, Z.; Zygmunt, M.; Natkański, S.; Muzal, M.; Wojtanowski, J.; Kirwil, P.; Jakubaszek, M.; Knysak, P.; Piotrowski, W.; Zarzycka, A.; Gawlikowski, A.
2013-09-01
The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.
A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices
Zhao, Shuai; Yu, Le; Cheng, Bo
2016-01-01
With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are “silo” solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users’ data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations. PMID:27690038
A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices.
Zhao, Shuai; Yu, Le; Cheng, Bo
2016-09-28
With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are "silo" solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users' data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations.
Cholesterol Point-of-Care Testing for Community Pharmacies: A Review of the Current Literature.
Haggerty, Lauren; Tran, Deanna
2017-08-01
To summarize the literature on cholesterol point-of-care tests (POCTs). This article would serve as a resource to assist community pharmacists in developing cholesterol point-of-care (POC) pharmacy services. A literature search was performed in MEDLINE Ovid, PubMed, EMBASE, and Cochrane database using the following medical subject headings (MeSH) terms: point-of-care test, cholesterol, blood chemical analysis, rapid testing, collaborative practice, community pharmacy, and ambulatory care. Additional resources including device manufacturer web sites were summarized to supplement the current literature. All human research articles, review articles, meta-analyses, and abstracts published in English through September 1, 2014, were considered. A total of 36 articles were applicable for review. Information was divided into the following categories to be summarized: devices, pharmacists' impact, and operational cost for the pharmacy. The current literature suggests that POCTs in community pharmacies assist with patient outcomes by providing screenings and referring patients with dyslipidemia for further evaluation. The majority of studies on cholesterol POC devices focused on accuracy, revealing the need for further studies to develop best practices and practice models with successful reimbursement. Accuracy, device specifications, required supplies, and patient preference should be considered when selecting a POC device for purchase.
Optical Information Processing for Aerospace Applications
NASA Technical Reports Server (NTRS)
1981-01-01
Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.
Spectral optical coherence tomography for ophthalmologic applications
NASA Astrophysics Data System (ADS)
Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.
2006-09-01
The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.
Application of nanomaterials in two-terminal resistive-switching memory devices
Ouyang, Jianyong
2010-01-01
Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862
SpiderSpec: a low-cost compact colorimeter with IoT functionality
NASA Astrophysics Data System (ADS)
Mignani, Anna G.; Mencaglia, Andrea A.; Baldi, Massimo; Ciaccheri, Leonardo
2015-07-01
A miniaturized device for colorimetry is presented that utilizes a LED array for illumination and a compact spectrometer for detection. It can be battery-powered, operated locally as a stand-alone device, or connected via wi-fi to the internet. It has potentials to be remotely operated by means of a tablet or a smartphone. In practice, it consists of a low-cost hardware configuration that is adaptable via software to the user's most varied requests, as a spectroscopic platform appropriate for a variety of applications. The hardware and software modules can be designed with different performances, complexities and costs, with the aim of making the colorimeter a device for Internet-of-Things use. It will be suitable for a selected range of consumer applications, as well as for targeted industrial, environmental, and food applications.
Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil
NASA Astrophysics Data System (ADS)
Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.
2017-12-01
The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.
Energy Dissipation and Transport in Carbon Nanotube Devices
NASA Astrophysics Data System (ADS)
Pop, Eric
2011-03-01
Power consumption is a significant challenge in electronics, often limiting the performance of integrated circuits from mobile devices to massive data centers. Carbon nanotubes have emerged as potentially energy-efficient future devices and interconnects, with both large mobility and thermal conductivity. This talk will focus on understanding and controlling energy dissipation [1-3] and transport [4-6] in carbon nanotubes, with applications to low-energy devices, interconnects, heat sinks, and memory elements. Experiments have been used to gain new insight into the fundamental behavior of such devices, and to better inform practical device models. The results suggest much room for energy optimization in nanoelectronics through the design of geometry, interfaces, and materials..
Low-frequency 1/f noise in graphene devices
NASA Astrophysics Data System (ADS)
Balandin, Alexander A.
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Low-frequency 1/f noise in graphene devices.
Balandin, Alexander A
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Spin transport and spin torque in antiferromagnetic devices
Zelezny, J.; Wadley, P.; Olejnik, K.; ...
2018-03-02
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelezny, J.; Wadley, P.; Olejnik, K.
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, whichmore » could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.« less
Spin transport and spin torque in antiferromagnetic devices
NASA Astrophysics Data System (ADS)
Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.
2018-03-01
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.
Public health practice course using Google Plus.
Wu, Ting-Ting; Sung, Tien-Wen
2014-03-01
In recent years, mobile device-assisted clinical education has become popular among nursing school students. The introduction of mobile devices saves manpower and reduces errors while enhancing nursing students' professional knowledge and skills. To respond to the demands of various learning strategies and to maintain existing systems of education, the concept of Cloud Learning is gradually being introduced to instructional environments. Cloud computing facilitates learning that is personalized, diverse, and virtual. This study involved assessing the advantages of mobile devices and Cloud Learning in a public health practice course, in which Google+ was used as the learning platform, integrating various application tools. Users could save and access data by using any wireless Internet device. The platform was student centered and based on resource sharing and collaborative learning. With the assistance of highly flexible and convenient technology, certain obstacles in traditional practice training can be resolved. Our findings showed that the students who adopted Google+ were learned more effectively compared with those who were limited to traditional learning systems. Most students and the nurse educator expressed a positive attitude toward and were satisfied with the innovative learning method.
Yuksel, Mustafa; Dogac, Asuman
2011-07-01
Medical devices are essential to the practice of modern healthcare services. Their benefits will increase if clinical software applications can seamlessly acquire the medical device data. The need to represent medical device observations in a format that can be consumable by clinical applications has already been recognized by the industry. Yet, the solutions proposed involve bilateral mappings from the ISO/IEEE 11073 Domain Information Model (DIM) to specific message or document standards. Considering that there are many different types of clinical applications such as the electronic health record and the personal health record systems, the clinical workflows, and the clinical decision support systems each conforming to different standard interfaces, detailing a mapping mechanism for every one of them introduces significant work and, thus, limits the potential health benefits of medical devices. In this paper, to facilitate the interoperability of clinical applications and the medical device data, we use the ISO/IEEE 11073 DIM to derive an HL7 v3 Refined Message Information Model (RMIM) of the medical device domain from the HL7 v3 Reference Information Mode (RIM). This makes it possible to trace the medical device data back to a standard common denominator, that is, HL7 v3 RIM from which all the other medical domains under HL7 v3 are derived. Hence, once the medical device data are obtained in the RMIM format, it can easily be transformed into HL7-based standard interfaces through XML transformations because these interfaces all have their building blocks from the same RIM. To demonstrate this, we provide the mappings from the developed RMIM to some of the widely used HL7 v3-based standard interfaces.
Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology
Kim, Steven; Roy, Shuvo
2013-01-01
Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604
High-precision GPS vehicle tracking to improve safety.
DOT National Transportation Integrated Search
2016-09-01
Commercial Global Positioning System (GPS) devices are being used in transportation for applications : including vehicle navigation, traffic monitoring, and tracking commercial and public transit vehicles. The : current state-of-practice technology i...
One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues
Choi, Kyoung Jin; Jang, Ho Won
2010-01-01
In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343
Mobile Tablet Use among Academic Physicians and Trainees
Sclafani, Joseph; Tirrell, Timothy F.
2014-01-01
The rapid adoption rate and integration of mobile technology (tablet computing devices and smartphones) by physicians is reshaping the current clinical landscape. These devices have sparked an evolution in a variety of arenas, including educational media dissemination, remote patient data access and point of care applications. Quantifying usage patterns of clinical applications of mobile technology is of interest to understand how these technologies are shaping current clinical care. A digital survey examining mobile tablet and associated application usage was administered via email to all ACGME training programs. Data regarding respondent specialty, level of training, and habits of tablet usage were collected and analyzed. 40 % of respondents used a tablet, of which the iPad was the most popular. Nearly half of the tablet owners reported using the tablet in clinical settings; the most commonly used application types were point of care and electronic medical record access. Increased level of training was associated with decreased support for mobile computing improving physician capabilities and patient interactions. There was strong and consistent desire for institutional support of mobile computing and integration of mobile computing technology into medical education. While many physicians are currently purchasing mobile devices, often without institutional support, successful integration of these devices into the clinical setting is still developing. Potential reasons behind the low adoption rate may include interference of technology in doctor-patient interactions or the lack of appropriate applications available for download. However, the results convincingly demonstrate that physicians recognize a potential utility in mobile computing, indicated by their desire for institutional support and integration of mobile technology into medical education. It is likely that the use of tablet computers in clinical practice will expand in the future. Thus, we believe medical institutions, providers, educators, and developers should collaborate in ways that enhance the efficacy, reliability, and safety of integrating these devices into daily medical practice. PMID:23321961
ERIC Educational Resources Information Center
Saito, Hirotaka; Ando, Akinobu; Itagaki, Shota; Kawada, Taku; Davis, Darold; Nagai, Nobuyuki
2017-01-01
Until now, when practicing facial expression recognition skills in nonverbal communication areas of SST, judgment of facial expression was not quantitative because the subjects of SST were judged by teachers. Therefore, we thought whether SST could be performed using facial expression detection devices that can quantitatively measure facial…
Park, Steve; Giri, Gaurav; Shaw, Leo; Pitner, Gregory; Ha, Jewook; Koo, Ja Hoon; Gu, Xiaodan; Park, Joonsuk; Lee, Tae Hoon; Nam, Ji Hyun; Hong, Yongtaek; Bao, Zhenan
2015-01-01
The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed “controlled OSC nucleation and extension for circuits” (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication. PMID:25902502
Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device
NASA Astrophysics Data System (ADS)
Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.
1996-01-01
The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.
NASA Astrophysics Data System (ADS)
Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.
2015-05-01
The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.
A Fast lattice-based polynomial digital signature system for m-commerce
NASA Astrophysics Data System (ADS)
Wei, Xinzhou; Leung, Lin; Anshel, Michael
2003-01-01
The privacy and data integrity are not guaranteed in current wireless communications due to the security hole inside the Wireless Application Protocol (WAP) version 1.2 gateway. One of the remedies is to provide an end-to-end security in m-commerce by applying application level security on top of current WAP1.2. The traditional security technologies like RSA and ECC applied on enterprise's server are not practical for wireless devices because wireless devices have relatively weak computation power and limited memory compared with server. In this paper, we developed a lattice based polynomial digital signature system based on NTRU's Polynomial Authentication and Signature Scheme (PASS), which enabled the feasibility of applying high-level security on both server and wireless device sides.
Predictive Anomaly Management for Resilient Virtualized Computing Infrastructures
2015-05-27
PREC: Practical Root Exploit Containment for Android Devices, ACM Conference on Data and Application Security and Privacy (CODASPY) . 03-MAR-14...05-OCT-11, . : , Hiep Nguyen, Yongmin Tan, Xiaohui Gu. Propagation-aware Anomaly Localization for Cloud Hosted Distributed Applications , ACM...Workshop on Managing Large-Scale Systems via the Analysis of System Logs and the Application of Machine Learning Techniques (SLAML) in conjunction with SOSP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp
2015-05-07
Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet typesmore » in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.« less
Dietary assessment and self-monitoring with nutrition applications for mobile devices.
Lieffers, Jessica R L; Hanning, Rhona M
2012-01-01
Nutrition applications for mobile devices (e.g., personal digital assistants, smartphones) are becoming increasingly accessible and can assist with the difficult task of intake recording for dietary assessment and self-monitoring. This review is a compilation and discussion of research on this tool for dietary intake documentation in healthy populations and those trying to lose weight. The purpose is to compare this tool with conventional methods (e.g., 24-hour recall interviews, paper-based food records). Research databases were searched from January 2000 to April 2011, with the following criteria: healthy or weight loss populations, use of a mobile device nutrition application, and inclusion of at least one of three measures, which were the ability to capture dietary intake in comparison with conventional methods, dietary self-monitoring adherence, and changes in anthropometrics and/or dietary intake. Eighteen studies are discussed. Two application categories were identified: those with which users select food and portion size from databases and those with which users photograph their food. Overall, positive feedback was reported with applications. Both application types had moderate to good correlations for assessing energy and nutrient intakes in comparison with conventional methods. For self-monitoring, applications versus conventional techniques (often paper records) frequently resulted in better self-monitoring adherence, and changes in dietary intake and/or anthropometrics. Nutrition applications for mobile devices have an exciting potential for use in dietetic practice.
Prakash, Punit; Salgaonkar, Vasant A.; Diederich, Chris J.
2014-01-01
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in in device design and optimization, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modeling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimization of inverse treatment plans are presented. PMID:23738697
Quantum information processing with superconducting circuits: a review.
Wendin, G
2017-10-01
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Quantum information processing with superconducting circuits: a review
NASA Astrophysics Data System (ADS)
Wendin, G.
2017-10-01
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Ng, K H; Peh, W C G
2010-02-01
A technical note is a short article giving a brief description of a specific development, technique or procedure, or it may describe a modification of an existing technique, procedure or device applicable to medicine. The technique, procedure or device described should have practical value and should contribute to clinical diagnosis or management. It could also present a software tool, or an experimental or computational method. Technical notes are variously referred to as technical innovations or technical developments. The main criteria for publication will be the novelty of concepts involved, the validity of the technique and its potential for clinical applications.
Multi-material optoelectronic fiber devices
NASA Astrophysics Data System (ADS)
Sorin, F.; Yan, Wei; Volpi, Marco; Page, Alexis G.; Nguyen Dang, Tung; Qu, Y.
2017-05-01
The recent ability to integrate materials with different optical and optoelectronic properties in prescribed architectures within flexible fibers is enabling novel opportunities for advanced optical probes, functional surfaces and smart textiles. In particular, the thermal drawing process has known a series of breakthroughs in recent years that have expanded the range of materials and architectures that can be engineered within uniform fibers. Of particular interest in this presentation will be optoelectronic fibers that integrate semiconductors electrically addressed by conducting materials. These long, thin and flexible fibers can intercept optical radiation, localize and inform on a beam direction, detect its wavelength and even harness its energy. They hence constitute ideal candidates for applications such as remote and distributed sensing, large-area optical-detection arrays, energy harvesting and storage, innovative health care solutions, and functional fabrics. To improve performance and device complexity, tremendous progresses have been made in terms of the integrated semiconductor architectures, evolving from large fiber solid-core, to sub-hundred nanometer thin-films, nano-filaments and even nanospheres. To bridge the gap between the optoelectronic fiber concept and practical applications however, we still need to improve device performance and integration. In this presentation we will describe the materials and processing approaches to realize optoelectronic fibers, as well as give a few examples of demonstrated systems for imaging as well as light and chemical sensing. We will then discuss paths towards practical applications focusing on two main points: fiber connectivity, and improving the semiconductor microstructure by developing scalable approaches to make fiber-integrated single-crystal nanowire based devices.
Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching
NASA Astrophysics Data System (ADS)
Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei
2017-06-01
Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.
Rihal, Charanjit S; Naidu, Srihari S; Givertz, Michael M; Szeto, Wilson Y; Burke, James A; Kapur, Navin K; Kern, Morton; Garratt, Kirk N; Goldstein, James A; Dimas, Vivian; Tu, Thomas
2015-06-01
Although historically the intra-aortic balloon pump has been the only mechanical circulatory support device available to clinicians, a number of new devices have become commercially available and have entered clinical practice. These include axial flow pumps, such as Impella(®); left atrial to femoral artery bypass pumps, specifically the TandemHeart; and new devices for institution of extracorporeal membrane oxygenation. These devices differ significantly in their hemodynamic effects, insertion, monitoring, and clinical applicability. This document reviews the physiologic impact on the circulation of these devices and their use in specific clinical situations. These situations include patients undergoing high-risk percutaneous coronary intervention, those presenting with cardiogenic shock, and acute decompensated heart failure. Specialized uses for right-sided support and in pediatric populations are discussed and the clinical utility of mechanical circulatory support devices is reviewed, as are the American College of Cardiology/American Heart Association clinical practice guidelines. Copyright © 2015. Published by Elsevier Inc.
[Discussion on logistics management of medical consumables].
Deng, Sutong; Wang, Miao; Jiang, Xiali
2011-09-01
Management of medical consumables is an important part of modern hospital management. In modern medical behavior, drugs and medical devices act directly on the patient, and are important factors affecting the quality of medical practice. With the increasing use of medical materials, based on practical application, this article proposes the management model of medical consumables, and discusses the essence of medical materials logistics management.
ERIC Educational Resources Information Center
Abidin, Nurul Aina Syakirah Zainal; Tho, Siew Wei
2018-01-01
The purpose of this research was to design and develop hands-on practical physics activity for the determination of relationship between the fundamental frequency and wavelength of standing waves using open or closed resonance tubes. In this study, an innovative use of smartphone device for the hands-on practical activity was developed with the…
Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo
2008-01-15
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Ishimura, Kento; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi
2018-03-01
We developed a practical useful method for force- and torque-detected electron spin resonance (FDESR/TDESR) spectroscopy in the millimeter wave frequency region. This method uses a commercially available membrane-type surface-stress (MSS) sensor. The MSS is composed of a silicon membrane supported by four beams in which piezoresistive paths are integrated for detecting the deformation of the membrane. Although this device has a lower spin sensitivity than a microcantilever, it offers several distinct advantages, including mechanical strength, ease of use, and versatility. These advantages make this device suitable for practical applications that require FDESR/TDESR.
Contact sensing from force measurements
NASA Technical Reports Server (NTRS)
Bicchi, Antonio; Salisbury, J. K.; Brock, David L.
1993-01-01
This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.
ERIC Educational Resources Information Center
Subotnik, Rena F.; Worrell, Frank C.; Olszewski-Kubilius, Paula
2017-01-01
In 2011, Subotnik, Olszewski-Kubilius, and Worrell proposed a conceptual model for talent development applicable to all domains. Although grounded in available psychological research, significant questions remain regarding practical applications of each tenet of the model. In this article, we highlight a method of implementing the model's focus on…
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2011 CFR
2011-01-01
... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2010 CFR
2010-01-01
... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...
Feasibility study for future implantable neural-silicon interface devices.
Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe
2011-01-01
The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.
Polymer-based actuators for virtual reality devices
NASA Astrophysics Data System (ADS)
Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven
2004-07-01
Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.
NASA Astrophysics Data System (ADS)
Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu
2018-01-01
This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.
Recommended Practices for Interactive Video Portability
1990-10-01
3-9 4. Implementation details 4-1 4.1 Installation issues ....................... 4-1 April 15, 1990 Release R 1.0 vii contents 4.1.1 VDI ...passed via an ASCII or binary application interface to the Virtual Device Interface ( VDI ) Management Software. ’ VDI Management, in turn, executes...the commands by calling appropriate low-level services and passes responses back to the application via the application interface. VDI Manage- ment is
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
NASA Astrophysics Data System (ADS)
Kröger, Knut; Creutzburg, Reiner
2013-03-01
The growth of Android in the mobile sector and the interest to investigate these devices from a forensic point of view has rapidly increased. Many companies have security problems with mobile devices in their own IT infrastructure. To respond to these incidents, it is important to have professional trained staff. Furthermore, it is necessary to further train their existing employees in the practical applications of mobile forensics owing to the fact that a lot of companies are trusted with very sensitive data. Inspired by these facts, this paper - a continuation of a paper of January 2012 [1] which showed the conception of a course for professional training and education in the field of computer and mobile forensics - addresses training approaches and practical exercises to investigate Android mobile devices.
NASA Astrophysics Data System (ADS)
Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang
2018-02-01
The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.
Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang
2018-02-09
The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.
Lindsay, Joseph; McLean, J Allen; Bains, Amrita; Ying, Tom; Kuo, M H
2013-01-01
Computer devices using touch-enabled technology are becoming more prevalent today. The application of a touch screen high definition surgical monitor could allow not only high definition video from an endoscopic camera to be displayed, but also the display and interaction with relevant patient and health related data. However, this technology has not been quickly embraced by all health care organizations. Although traditional keyboard or mouse-based software programs may function flawlessly on a touch-based device, many are not practical due to the usage of small buttons, fonts and very complex menu systems. This paper describes an approach taken to overcome these problems. A real case study was used to demonstrate the novelty and efficiency of the proposed method.
Criteria for the Choice of a Capacitive Device for Mechanical Measurements
NASA Technical Reports Server (NTRS)
Lucifredi, A. L.
1970-01-01
The advantages and disadvantages of different models of capacitive transducers and of various signal conditioning circuits are discussed with particular emphasis on the field of applications. A practical example of a design procedure is discussed.
Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps
NASA Astrophysics Data System (ADS)
Gardner, William Geoffrey
2011-12-01
Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.
Digital micromirror devices: principles and applications in imaging.
Bansal, Vivek; Saggau, Peter
2013-05-01
A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.
Printed Carbon Nanotube Electronics and Sensor Systems.
Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali
2016-06-01
Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Virtual, Augmented, and Mixed Reality to Urology.
Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun
2016-09-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.
Application of Virtual, Augmented, and Mixed Reality to Urology
2016-01-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017
2013-07-01
the devices increase efficiency and make instruction easier for them. (1) Demonstrate the ability of mobile learning to improve student learning ...predictors of learning , after controlling for the effects of cognitive ability and pre-training knowledge of the subject matter. Equally as...conventional teaching. PBL is an instructional model originally developed in medical schools , in which students are given a complex problem to solve that may
Mobile Technology for the Practice of Pathology.
Hartman, Douglas J
2016-03-01
Recently, several technological advances have been introduced to mobile phones leading some people to refer to them as "smartphones." These changes have led to widespread consumer adoption. A similar adoption has occurred within the medical field and this revolution is changing the practice of medicine, including pathology. Several mobile applications have been published for dermatology, orthopedics, ophthalmology, neurosurgery, and clinical pathology. The applications are wide ranging, including mobile technology to increase patient engagement, self-monitoring by patients, clinical algorithm calculation, facilitation between experts to resource-poor environments. These advances have been received with mixed reviews. For anatomic pathology, mobile technology applications can be broken into 4 broad categories: (a) educational uses, (b) microscope with mobile phone, (c) mobile phone as microscope/acquisition device, and (d) miscellaneous. Using a mobile phone as an acquisition device paired with a microscope seems to be the most interesting current application because of the need for expert consultation with resource-poor environments. However, several emerging uses for mobile technology may become more prominent as the technology matures including image analysis, alternative light sources, and increased opportunities for clinician and patient engagement. The flexibility represented by mobile technology represents a burgeoning field in pathology informatics.
Kiselev, Ilia; Sysoev, Victor; Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-02-11
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing.
Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-01-01
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing. PMID:29439468
New Composite Thermoelectric Materials for Macro-size Applications
Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States
2017-12-09
A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.
Development of a multispectral imagery device devoted to weed detection
NASA Astrophysics Data System (ADS)
Vioix, Jean-Baptiste; Douzals, Jean-Paul; Truchetet, Frederic; Navar, Pierre
2003-04-01
Multispectral imagery is a large domain with number of practical applications: thermography, quality control in industry, food science and agronomy, etc. The main interest is to obtain spectral information of the objects for which reflectance signal can be associated with physical, chemical and/or biological properties. Agronomic applications of multispectral imagery generally involve the acquisition of several images in the wavelengths of visible and near infrared. This paper will first present different kind of multispectral devices used for agronomic issues and will secondly introduce an original multispectral design based on a single CCD. Third, early results obtained for weed detection are presented.
Navigating systems ideas for health practice: Towards a common learning device.
Reynolds, Martin; Sarriot, Eric; Swanson, Robert Chad; Rusoja, Evan
2018-06-01
Systems thinking and reference to complexity science have gained currency in health sector practice and research. The extent to which such ideas might represent a mere passing fad or might more usefully be mobilized to tackle wicked problems in health systems is a concern underpinning this paper. Developing the usefulness of the systems idea requires appreciating how systems ideas are used essentially as constructs conceptually bounded by practitioners. Systems are used for purposes of understanding and engaging the reality of health issues, with the intent of transforming the reality into one that is more manageable, equitable, and sustainable. We examine some manifestations of the systems idea in health practice and the traditions of systems practice that variously make use of them. This provides a platform for proposing a systems thinking in (health) practice heuristic: a learning device supporting how different tools and methods can address "wicked problems" in health praxis. The device is built on the use of "conversation" as a metaphor to help practitioners use systems ideas in tandem with existing disciplinary and professional skills and methods. We consider how the application of the heuristic requires, and helps to develop, human characteristics of humility, empathy, and recognition of fallibility. © 2018 John Wiley & Sons, Ltd.
A Rich Client-Server Based Framework for Convenient Security and Management of Mobile Applications
NASA Astrophysics Data System (ADS)
Badan, Stephen; Probst, Julien; Jaton, Markus; Vionnet, Damien; Wagen, Jean-Frédéric; Litzistorf, Gérald
Contact lists, Emails, SMS or custom applications on a professional smartphone could hold very confidential or sensitive information. What could happen in case of theft or accidental loss of such devices? Such events could be detected by the separation between the smartphone and a Bluetooth companion device. This event should typically block the applications and delete personal and sensitive data. Here, a solution is proposed based on a secured framework application running on the mobile phone as a rich client connected to a security server. The framework offers strong and customizable authentication and secured connectivity. A security server manages all security issues. User applications are then loaded via the framework. User data can be secured, synchronized, pushed or pulled via the framework. This contribution proposes a convenient although secured environment based on a client-server architecture using external authentications. Several features of the proposed system are exposed and a practical demonstrator is described.
Electrical and optical 3D modelling of light-trapping single-photon avalanche diode
NASA Astrophysics Data System (ADS)
Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.
2018-02-01
Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.
[Industry regulation and its relationship to the rapid marketing of medical devices].
Matsuoka, Atsuko
2012-01-01
In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 "Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices").
Recent microfluidic devices for studying gamete and embryo biomechanics.
Lai, David; Takayama, Shuichi; Smith, Gary D
2015-06-25
The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stretchable electronics for wearable and high-current applications
NASA Astrophysics Data System (ADS)
Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.
2016-04-01
Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.
Method of junction formation for CIGS photovoltaic devices
Delahoy, Alan E.
2006-03-28
Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.
Method of junction formation for CIGS photovoltaic devices
Delahoy, Alan E.
2010-01-26
Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.
Transfection microarray and the applications.
Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun
2009-05-01
Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.
Constantinescu, L; Pradana, R; Kim, J; Gong, P; Fulham, Michael; Feng, D
2009-01-01
Rich Internet Applications (RIAs) are an emerging software platform that blurs the line between web service and native application, and is a powerful tool for handheld device deployment. By democratizing health data management and widening its availability, this software platform has the potential to revolutionize telemedicine, clinical practice, medical education and information distribution, particularly in rural areas, and to make patient-centric medical computing a reality. In this paper, we propose a telemedicine application that leverages the ability of a mobile RIA platform to transcode, organise and present textual and multimedia data, which are sourced from medical database software. We adopted a web-based approach to communicate, in real-time, with an established hospital information system via a custom RIA. The proposed solution allows communication between handheld devices and a hospital information system for media streaming with support for real-time encryption, on any RIA enabled platform. We demonstrate our prototype's ability to securely and rapidly access, without installation requirements, medical data ranging from simple textual records to multi-slice PET-CT images and maximum intensity (MIP) projections.
Embedded Volttron specification - benchmarking small footprint compute device for Volttron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanyal, Jibonananda; Fugate, David L.; Woodworth, Ken
An embedded system is a small footprint computing unit that typically serves a specific purpose closely associated with measurements and control of hardware devices. These units are designed for reasonable durability and operations in a wide range of operating conditions. Some embedded systems support real-time operations and can demonstrate high levels of reliability. Many have failsafe mechanisms built to handle graceful shutdown of the device in exception conditions. The available memory, processing power, and network connectivity of these devices are limited due to the nature of their specific-purpose design and intended application. Industry practice is to carefully design the softwaremore » for the available hardware capability to suit desired deployment needs. Volttron is an open source agent development and deployment platform designed to enable researchers to interact with devices and appliances without having to write drivers themselves. Hosting Volttron on small footprint embeddable devices enables its demonstration for embedded use. This report details the steps required and the experience in setting up and running Volttron applications on three small footprint devices: the Intel Next Unit of Computing (NUC), the Raspberry Pi 2, and the BeagleBone Black. In addition, the report also details preliminary investigation of the execution performance of Volttron on these devices.« less
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-01-01
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices. PMID:29186012
Mobile Tele-Mental Health: Increasing Applications and a Move to Hybrid Models of Care
Chan, Steven Richard; Torous, John; Hinton, Ladson; Yellowlees, Peter
2014-01-01
Mobile telemental health is defined as the use of mobile phones and other wireless devices as applied to psychiatric and mental health practice. Applications of such include treatment monitoring and adherence, health promotion, ecological momentary assessment, and decision support systems. Advantages of mobile telemental health are underscored by its interactivity, just-in-time interventions, and low resource requirements and portability. Challenges in realizing this potential of mobile telemental health include the low penetration rates of health applications on mobile devices in part due to health literacy, the delay in current published research in evaluating newer technologies, and outdated research methodologies. Despite such challenges, one immediate opportunity for mobile telemental health is utilizing mobile devices as videoconferencing mediums for psychotherapy and psychosocial interventions enhanced by novel sensor based monitoring and behavior-prediction algorithms. This paper provides an overview of mobile telemental health and its current trends, as well as future opportunities as applied to patient care in both academic research and commercial ventures. PMID:27429272
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
NASA Astrophysics Data System (ADS)
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben
2015-03-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.
Mobile Tele-Mental Health: Increasing Applications and a Move to Hybrid Models of Care.
Chan, Steven Richard; Torous, John; Hinton, Ladson; Yellowlees, Peter
2014-05-06
Mobile telemental health is defined as the use of mobile phones and other wireless devices as applied to psychiatric and mental health practice. Applications of such include treatment monitoring and adherence, health promotion, ecological momentary assessment, and decision support systems. Advantages of mobile telemental health are underscored by its interactivity, just-in-time interventions, and low resource requirements and portability. Challenges in realizing this potential of mobile telemental health include the low penetration rates of health applications on mobile devices in part due to health literacy, the delay in current published research in evaluating newer technologies, and outdated research methodologies. Despite such challenges, one immediate opportunity for mobile telemental health is utilizing mobile devices as videoconferencing mediums for psychotherapy and psychosocial interventions enhanced by novel sensor based monitoring and behavior-prediction algorithms. This paper provides an overview of mobile telemental health and its current trends, as well as future opportunities as applied to patient care in both academic research and commercial ventures.
He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang
2017-11-29
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.
Willy, Richard W
2018-01-01
Running-related injuries are common and are associated with a high rate of reoccurrence. Biomechanics and errors in applied training loads are often cited as causes of running-related injuries. Clinicians and runners are beginning to utilize wearable technologies to quantify biomechanics and training loads with the hope of reducing the incidence of running-related injuries. Wearable devices can objectively assess biomechanics and training loads in runners, yet guidelines for their use by clinicians and runners are not currently available. This article outlines several applications for the use of wearable devices in the prevention and rehabilitation of running-related injuries. Applications for monitoring of training loads, running biomechanics, running epidemiology, return to running programs and gait retraining are discussed. Best-practices for choosing and use of wearables are described to provide guidelines for clinicians and runners. Finally, future applications are outlined for this rapidly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben
2015-01-01
The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157
Undergraduate nurses reflections on Whatsapp use in improving primary health care education.
Willemse, Juliana J
2015-08-13
The global use of mobile devices with their connectivity capacity, and integrated with the affordances of social media networks, provides a resource-rich platform for innovative student-directed learning experiences. The objective of this study was to review the experiences of undergraduate nurses on the improvement of primary health care education at a School of Nursing at a University in the Western Cape, South Africa, through the incorporation of a social media application, WhatsApp. A qualitative, exploratory, descriptive, and contextual design was used to explore and describe data collected from a purposive sample of 21 undergraduate nursing students. The study population was engaged in a WhatsApp discussion group to enhance their integration of theory and clinical practice of the health assessment competency of the Primary Health Care Module. Participants submitted electronic reflections on their experiences in the WhatsApp discussion group via email on completion of the study. Thematic analysis of the qualitative data collected was done according to Tesch's (1990) steps of descriptive data analysis in order to identify the major themes in the study. The electronic reflections were analysed to explore their rich, reflective data. Seven themes were identified that included: positive experiences using the WhatsApp group; the usefulness of WhatsApp for integrating theory and clinical practice; the availability of resources for test preparation; opportunity for clarification; anonymity; exclusion of students as a result of the lack of an appropriate device, and the application caused the battery of the device to run flat quickly. The results of the experiences of students in the WhatsApp discussion group could be used to inform the use of social media applications in teaching and learning, with the purpose of enhancing the integration of the theory and clinical practice.
Interconnect patterns for printed organic thermoelectric devices with large fill factors
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.
2017-09-01
Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.
Richard, Craig A H; Hastings, Justine F; Bryant, Jennifer E
2015-03-25
To examine pharmacy students' ownership of, use of, and preference for using a mobile device in a practice setting. Eighty-one pharmacy students were recruited and completed a pretest that collected information about their demographics and mobile devices and also had them rank the iPhone, iPad mini, and iPad for preferred use in a pharmacy practice setting. Students used the 3 devices to perform pharmacy practice-related tasks and then completed a posttest to again rank the devices for preferred use in a pharmacy practice setting. The iPhone was the most commonly owned mobile device (59.3% of students), and the iPad mini was the least commonly owned (18.5%). About 70% of the students used their mobile devices at least once a week in a pharmacy practice setting. The iPhone was the most commonly used device in a practice setting (46.9% of students), and the iPod Touch was the least commonly used device (1.2%). The iPad mini was the most preferred device for use in a pharmacy practice setting prior to performing pharmacy practice-related tasks (49.4% of students), and was preferred by significantly more students after performing the tasks (70.4%). Pharmacy students commonly use their mobile devices in pharmacy practice settings and most selected the iPad mini as the preferred device for use in a practice setting even though it was the device owned by the fewest students.
NASA Astrophysics Data System (ADS)
Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon
2017-10-01
This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.
The Application of Voltage Transformer Simulator in Electrical Test Training
NASA Astrophysics Data System (ADS)
Li, Nan; Zhang, Jun; Chai, Ziqi; Wang, Jingpeng; Yang, Baowei
2018-02-01
The voltage transformer test is an important means to monitor its operating state. The accuracy and reliability of the test data is directly related to the test skill level of the operator. However, the risk of test instruments damage, equipment being tested damage and electric shock in operator is caused by improper operation when training the transformer test. In this paper, a simulation device of voltage transformer is set up, and a simulation model is built for the most common 500kV capacitor voltage transformer (CVT), the simulation model can realize several test items of CVT by combing with teaching guidance platform, simulation instrument, complete set of system software and auxiliary equipment in Changchun. Many successful applications show that the simulation device has good practical value and wide application prospect.
NASA Technical Reports Server (NTRS)
Shieh, Tsay-Jiu
1989-01-01
By directly solving the semiconductor differential equations for the double-injection (DI) devices involving two interacting deep levels, the authors studied the negative differential resistance switching characteristic and its relationship with the device dimension, doping level, and dependence on the deep impurity profile. Computer simulation showed that although one can increase the threshold voltage by increasing the device length, the excessive holding voltage that would follow would put this device in a very limited application such as pulse power source. The excessive leakage current in the low conductance state also jeopardizes the attempt to use the device for any practical purpose. Unless there are new materials and deep impurities found that have a great differential hole and electron capture cross sections and a reasonable energy bandgap for low intrinsic carrier concentration, no big improvement in the fate of DI devices is expected in the near future.
Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode
NASA Astrophysics Data System (ADS)
Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool
2015-12-01
Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
NASA Astrophysics Data System (ADS)
Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang
2018-07-01
Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
NASA Astrophysics Data System (ADS)
Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang
2018-03-01
Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.
Designing Mobile Applications for Emergency Response: Citizens Acting as Human Sensors.
Romano, Marco; Onorati, Teresa; Aedo, Ignacio; Diaz, Paloma
2016-03-19
When an emergency occurs, citizens can be a helpful support for the operation centers involved in the response activities. As witnesses to a crisis, they initially can share updated and detailed information about what is going on. Moreover, thanks to the current technological evolution people are able to quickly and easily gather rich information and transmit it through different communication channels. Indeed, modern mobile devices embed several sensors such as GPS receivers, Wi-Fi, accelerometers or cameras that can transform users into well-equipped human sensors. For these reasons, emergency organizations and small and medium enterprises have demonstrated a growing interest in developing smart applications for reporting any exceptional circumstances. In this paper, we present a practical study about this kind of applications for identifying both limitations and common features. Based on a study of relevant existent contributions in this area and our personal direct experience in developing and evaluating emergency management solutions, our aim is to propose several findings about how to design effective and efficient mobile emergency notification applications. For this purpose we have exploited the basic sensors of modern mobile devices and the users' aptitude for using them. The evaluation consists of a practical and a theoretical part. In the practical part, we have simulated a traffic accident as closely as possible to a real scenario, with a victim lying on the ground near a car in the middle of a street. For the theoretical part, we have interviewed some emergency experts for collecting their opinions about the utility of the proposed solution. Results from this evaluation phase confirm the positive impact that EN application have for both operators' and citizens' perspective. Moreover, we collected several findings useful for future design challenges in the same area, as shown in the final redesign of the proposed application.
Tungsten devices in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Hou, Xiandeng; Jones, Bradley T.
2002-04-01
Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.
Identification of Volunteer Screening Practices for Selected Ohio Youth Organizations.
ERIC Educational Resources Information Center
Henderson, Jan; Schmiesing, Ryan J.
2001-01-01
Interviews with eight coordinators of youth organization volunteers indicated that most used position descriptions, applications, reference checks, and interviews as screening tools; only four checked motor vehicle records and three checked criminal records. Consistent policies and advanced screening devices were recommended. (SK)
ERIC Educational Resources Information Center
EASTCONN Regional Educational Services Center, North Windham, CT.
This secondary carpentry program is designed for grades 10, 11, and 12. Sophomores learn applicable trade procedures and practices, use of tools and materials, products, and devices common to the trade. Juniors receive work experience and a continuing theory program. Seniors are given advanced theory, cost estimation, materials listing, job…
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.
Kimura, Bruce J
2017-07-01
The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Backus, Deborah; Winchester, Patricia; Tefertiller, Candace
2010-01-01
Technological advances continue to infuse the field of neurorehabilitation with both excitement and apprehension. A challenge for clinicians is to determine which of the growing number of devices or interventions available should be incorporated into their clinical practice, and when and with whom they should be offered, in order to best assist their patients in attaining the highest level of function and quality of life. Robotics is one area of technology that has seen robust growth in rehabilitation applications, so much so that the presence of robotic devices in rehabilitation centers has become an expectation among patients, their caregivers, and therapists. Although rehabilitation robotic devices afford the opportunity to provide high doses of repetitive movement in a reliable and controllable manner, the role they play in the continuum of clinical care remains uncertain. The focus of this article is on translating the empirical evidence related to the application of rehabilitation robotics for improving lower limb and walking function in a manner that the clinician, or any stakeholder, will be able to incorporate relevant findings into clinical practice. A process is outlined and applied to a recent review of the literature related to the use of robotics for the treatment of lower limb and walking function in persons with stroke. This process provides the reader with a tool that can be applied to the translation and implementation of evidence related to any intervention for any client with neurological injury or disease.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Duan, Wenhui
2007-03-01
Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.
Sweeney, Dean; Quinlan, Leo R; OLaighin, Gearoid
2015-08-01
The use of NMES has evolved over the last five decades. Technological advancements have transformed these once complex systems into user-friendly devices with enhanced control functions, leading to new applications of NMES being investigated. The use of Randomized Control Trial (RCT) methodology in evaluating the effectiveness of new and existing applications of NMES is a demanding process adding time and cost to a translation into clinical practice. Poor quality trials may result in poor evidence of NMES effectiveness. In this paper some of the key challenges encountered in NMES clinical trials are identified with the aim of purposing a solution to address these challenges through the adoption of Smartphone technology. The design and evaluation of a smartphone application to provide automatic blind randomization control and facilitating the wireless temporal control of a portable Bluetooth enabled NMES is presented.
Applications of three-dimensional printing technology in urological practice.
Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime
2015-11-01
A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.
Hastings, Justine F.; Bryant, Jennifer E.
2015-01-01
Objective. To examine pharmacy students’ ownership of, use of, and preference for using a mobile device in a practice setting. Methods. Eighty-one pharmacy students were recruited and completed a pretest that collected information about their demographics and mobile devices and also had them rank the iPhone, iPad mini, and iPad for preferred use in a pharmacy practice setting. Students used the 3 devices to perform pharmacy practice-related tasks and then completed a posttest to again rank the devices for preferred use in a pharmacy practice setting. Results. The iPhone was the most commonly owned mobile device (59.3% of students), and the iPad mini was the least commonly owned (18.5%). About 70% of the students used their mobile devices at least once a week in a pharmacy practice setting. The iPhone was the most commonly used device in a practice setting (46.9% of students), and the iPod Touch was the least commonly used device (1.2%). The iPad mini was the most preferred device for use in a pharmacy practice setting prior to performing pharmacy practice-related tasks (49.4% of students), and was preferred by significantly more students after performing the tasks (70.4%). Conclusion. Pharmacy students commonly use their mobile devices in pharmacy practice settings and most selected the iPad mini as the preferred device for use in a practice setting even though it was the device owned by the fewest students. PMID:25861103
Application of Semiconductor Devices in Computer Technique.
1960-10-14
large number of circuits v&th point-contact triod.es are used in practice f’^J" - £"i? 7° Yfe shall consider below only sojae of 7 «. -X... la a number of devices, for example in adders and registersj for the control and for connection with other circuits it is necessary to pick up... la discontin tied the voltage on the collector remains the saaaes fox’ some tiae and passing through •’the has© and collector is the space
Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.
Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua
2017-07-13
The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
One-sided measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2018-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
Nanomedicine: application of nanobiotechnology in medical practice.
Jain, K K
2008-01-01
Nanomedicine is the application of nanobiotechnologies to medicine. This article starts with the basics of nanobiotechnology, followed by its applications in molecular diagnostics, nanodiagnostics, and improvements in the discovery, design and delivery of drugs, including nanopharmaceuticals. It will improve biological therapies such as vaccination, cell therapy and gene therapy. Nanobiotechnology forms the basis of many new devices being developed for medicine and surgery such as nanorobots. It has applications in practically every branch of medicine and examples are presented of those concerning cancer (nanooncology), neurological disorders (nanoneurology), cardiovascular disorders (nanocardiology), diseases of bones and joints (nanoorthopedics), diseases of the eye (nanoophthalmology), and infectious diseases. Safety issues of in vivo use of nanomaterials are also discussed. Nanobiotechnology will facilitate the integration of diagnostics with therapeutics and facilitate the development of personalized medicine, i.e. prescription of specific therapeutics best suited for an individual. Many of the developments have already started and within a decade a definite impact will be felt in the practice of medicine. (c) 2008 S. Karger AG, Basel.
Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon
2014-11-01
Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.
The design of an energy harvesting device for prolonging the working time of DC equipment
NASA Astrophysics Data System (ADS)
Wen, Yayuan; Deng, Huaxia; Zhang, Jin; Yu, Liandong
2016-01-01
Energy harvesting (EH) derives from the idea of converting the ambient energy into electric energy, which can solve the problem of DC supply for some electronic equipment. PZT is a typical piezoelectric material of inorganic, which has been developed as EH devices to transfer ambient vibration energy into electric energy. However, these PZT devices require relatively violent excitation, and easy to be fatigue fracture under the resonance condition. In this paper, PVDF, which is a kind of soft piezoelectric polymer, is adopted for developing transducer. The PVDF devices are flexible and have longer life time than PZT devices under the harmonic environment. The EH researches are mainly focused on the development of energy transfer efficiency either by the mechanical structure of transducer or the improvement of circuit. However, the practicality and stability of the EH devices are important in the practical engineering applications. In this paper, a charge amplifier is introduced in the circuit in order to guarantee the stability of the battery charging under small ambient vibration conditions. The model of the mechanical structure of PVDF and the electric performance of circuit are developed. The experimental results and simulation show that the stability of battery charging is improved and the working time of DC equipment is prolonged.
Applications of high average power nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S.P.; Krupke, W.F.
1996-02-05
Nonlinear optical frequency convertors (harmonic generators and optical parametric oscillators are reviewed with an emphasis on high average power performance and limitations. NLO materials issues and NLO device designs are discussed in reference to several emerging scientific, military and industrial commercial applications requiring {approx} 100 watt average power level in the visible and infrared spectral regions. Research efforts required to enable practical {approx} 100 watt class NLO based laser systems are identified.
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
Smartphone Technology and Apps: Rapidly Changing Health Promotion
ERIC Educational Resources Information Center
Kratzke, Cynthia; Cox, Carolyn
2012-01-01
Despite the increased availability of smartphones and health applications (apps), little is known about smartphone technology and apps for implementation in health promotion practice. Smartphones are mobile devices with capabilities for e-mail, text messaging, video viewing, and wireless Internet access. It is essential for health promotion…
An intelligent remote monitoring system for artificial heart.
Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G
2005-12-01
A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.
Surgical virtual reality - highlights in developing a high performance surgical haptic device.
Custură-Crăciun, D; Cochior, D; Constantinoiu, S; Neagu, C
2013-01-01
Just like simulators are a standard in aviation and aerospace sciences, we expect for surgical simulators to soon become a standard in medical applications. These will correctly instruct future doctors in surgical techniques without there being a need for hands on patient instruction. Using virtual reality by digitally transposing surgical procedures changes surgery in are volutionary manner by offering possibilities for implementing new, much more efficient, learning methods, by allowing the practice of new surgical techniques and by improving surgeon abilities and skills. Perfecting haptic devices has opened the door to a series of opportunities in the fields of research,industry, nuclear science and medicine. Concepts purely theoretical at first, such as telerobotics, telepresence or telerepresentation,have become a practical reality as calculus techniques, telecommunications and haptic devices evolved,virtual reality taking a new leap. In the field of surgery barrier sand controversies still remain, regarding implementation and generalization of surgical virtual simulators. These obstacles remain connected to the high costs of this yet fully sufficiently developed technology, especially in the domain of haptic devices. Celsius.
Recent progress of flexible and wearable strain sensors for human-motion monitoring
NASA Astrophysics Data System (ADS)
Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen
2018-01-01
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).
Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan
2016-10-12
Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".
Recent advances in electrohydrodynamic pumps operated by ionic winds: a review
NASA Astrophysics Data System (ADS)
Johnson, Michael J.; Go, David B.
2017-10-01
An ionic or electric wind is a bulk air movement induced by electrohydrodynamic (EHD) phenomena in a gas discharge. Because they are silent, low power, respond rapidly, and require no moving parts, ionic wind devices have been proposed for a wide range of applications, ranging from convection cooling and food drying to combustion management. The past several decades have seen the area grow tremendously leading to a number of new actuation strategies and devices that can be incorporated into various applications. In this review, we discuss the physics of ionic winds and recent developments of the past five years that have pushed the field forward, focusing on the development on bulk air-moving devices we term EHD pumps. We then highlight the ongoing challenges with transitioning ionic wind technologies to the market place, from issues that affect robustness to practical implementation, and point to areas where future research could have an impact on the field.
NASA Astrophysics Data System (ADS)
Castel, J. G.; Husarek, V.
1987-06-01
The usefulness of a portable microprocessor-controlled ultrasound device for the periodic assessment of aircraft parts made of composite materials is shown. The performance of the device is demonstrated with the examples of a metallic honeycomb with a carbon-fiber skin, a phenolic honeycomb with a carbon skin, and a phenolic honeycomb with a Kevlar skin. Also considered are assessments of homogeneous carbon-fiber parts, including the study of artificial defects consisting of 1-2 mm diameter holes, and the assessment of the behavior of a carbon-titanium interface with separated zones. Advantages of the device include ease of adjustment, automated evaluation of the depth of defects, and the nearly-absolute reproducibility of adjustments.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.
Recent progress in photoactive organic field-effect transistors.
Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok
2014-04-01
Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.
Experimental measurement-device-independent quantum digital signatures over a metropolitan network
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei
2017-04-01
Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.
Rihal, Charanjit S; Naidu, Srihari S; Givertz, Michael M; Szeto, Wilson Y; Burke, James A; Kapur, Navin K; Kern, Morton; Garratt, Kirk N; Goldstein, James A; Dimas, Vivian; Tu, Thomas
2015-05-19
Although historically the intra-aortic balloon pump has been the only mechanical circulatory support device available to clinicians, a number of new devices have become commercially available and have entered clinical practice. These include axial flow pumps, such as Impella(®); left atrial to femoral artery bypass pumps, specifically the TandemHeart; and new devices for institution of extracorporeal membrane oxygenation. These devices differ significantly in their hemodynamic effects, insertion, monitoring, and clinical applicability. This document reviews the physiologic impact on the circulation of these devices and their use in specific clinical situations. These situations include patients undergoing high-risk percutaneous coronary intervention, those presenting with cardiogenic shock, and acute decompensated heart failure. Specialized uses for right-sided support and in pediatric populations are discussed and the clinical utility of mechanical circulatory support devices is reviewed, as are the American College of Cardiology/American Heart Association clinical practice guidelines. Copyright © 2015 The Society for Cardiovascular Angiography and Interventions, The American College of Cardiology Foundation, The Heart Failure Society of America, and The Society for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Rihal, Charanjit S; Naidu, Srihari S; Givertz, Michael M; Szeto, Wilson Y; Burke, James A; Kapur, Navin K; Kern, Morton; Garratt, Kirk N; Goldstein, James A; Dimas, Vivian; Tu, Thomas
2015-06-01
Although historically the intra-aortic balloon pump has been the only mechanical circulatory support device available to clinicians, a number of new devices have become commercially available and have entered clinical practice. These include axial flow pumps, such as Impella®; left atrial to femoral artery bypass pumps, specifically the TandemHeart; and new devices for institution of extracorporeal membrane oxygenation. These devices differ significantly in their hemodynamic effects, insertion, monitoring, and clinical applicability. This document reviews the physiologic impact on the circulation of these devices and their use in specific clinical situations. These situations include patients undergoing high-risk percutaneous coronary intervention, those presenting with cardiogenic shock, and acute decompensated heart failure. Specialized uses for right-sided support and in pediatric populations are discussed and the clinical utility of mechanical circulatory support devices is reviewed, as are the American College of Cardiology/American Heart Association clinical practice guidelines. © 2015 by The Society for Cardiovascular Angiography and Interventions, The American College of Cardiology Foundation, The Heart Failure Society of America, and The Society for Thoracic Surgery.
A low cost method for hard x-ray grating interferometry.
Du, Yang; Lei, Yaohu; Liu, Xin; Huang, Jianheng; Zhao, Zhigang; Guo, Jinchuan; Li, Ji; Niu, Hanben
2016-12-07
Grating interferometry is advantageous over conventional x-ray absorption imaging because it enables the detection of samples constituted by low atomic number elements (low-Z materials). Therefore, it has a potential application in biological science and medical diagnostics. The grating interferometry has some critical optics components such as absorption gratings which are conventionally manufactured by the lithography, electroplating, and molding (LIGA) technique and employing gold as the absorbent material in it. However, great challenge lies in its implementations for practical applications because of the cost and difficulty to achieve high aspect ratio absorbing grating devices. In this paper, we present a low-cost approach that involves using the micro-casting technique with bismuth (Bi) as the absorber in source grating and as well as filling cesium iodide thallium(CsI:Tl) in a periodically structured scintillator. No costly facilities as synchrotron radiation are required and cheap material is used in our approach. Our experiment using these components shows high quality complementary images can be obtained with contrast of absorption, phase and visibility. This alternative method conquers the limitation of costly grating devices for a long time and stands an important step towards the further practical application of grating interferometry.
NASA Astrophysics Data System (ADS)
Zhao, Yiping
2012-06-01
Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.
Bharucha, Adil E; Rao, Satish S C; Shin, Andrea S
2017-12-01
The purpose of this clinical practice update expert review is to describe the key principles in the use of surgical interventions and device-aided therapy for managing fecal incontinence (FI) and defecatory disorders. The best practices outlined in this review are based on relevant publications, including systematic reviews and expert opinion (when applicable). Best Practice Advice 1: A stepwise approach should be followed for management of FI. Conservative therapies (diet, fluids, techniques to improve evacuation, a bowel training program, management of diarrhea and constipation with diet and medications if necessary) will benefit approximately 25% of patients and should be tried first. Best Practice Advice 2: Pelvic floor retraining with biofeedback therapy is recommended for patients with FI who do not respond to the conservative measures indicated above. Best Practice Advice 3: Perianal bulking agents such as intra-anal injection of dextranomer may be considered when conservative measures and biofeedback therapy fail. Best Practice Advice 4: Sacral nerve stimulation should be considered for patients with moderate or severe FI in whom symptoms have not responded after a 3-month or longer trial of conservative measures and biofeedback therapy and who do not have contraindications to these procedures. Best Practice Advice 5: Until further evidence is available, percutaneous tibial nerve stimulation should not be used for managing FI in clinical practice. Best Practice Advice 6: Barrier devices should be offered to patients who have failed conservative or surgical therapy, or in those who have failed conservative therapy who do not want or are not eligible for more invasive interventions. Best Practice Advice 7: Anal sphincter repair (sphincteroplasty) should be considered in postpartum women with FI and in patients with recent sphincter injuries. In patients who present later with symptoms of FI unresponsive to conservative and biofeedback therapy and evidence of sphincter damage, sphincteroplasty may be considered when perianal bulking injection and sacral nerve stimulation are not available or have proven unsuccessful. Best Practice Advice 8: The artificial anal sphincter, dynamic graciloplasty, may be considered for patients with medically refractory severe FI who have failed treatment or are not candidates for barrier devices, sacral nerve stimulation, perianal bulking injection, sphincteroplasty and a colostomy. Best Practice Advice 9: Major anatomic defects (eg, rectovaginal fistula, full-thickness rectal prolapse, fistula in ano, or cloaca-like deformity) should be rectified with surgery. Best Practice Advice 10: A colostomy should be considered in patients with severe FI who have failed conservative treatment and have failed or are not candidates for barrier devices, minimally invasive surgical interventions, and sphincteroplasty. Best Practice Advice 11: A magnetic anal sphincter device may be considered for patients with medically refractory severe FI who have failed or are not candidates for barrier devices, perianal bulking injection, sacral nerve stimulation, sphincteroplasty, or a colostomy. Data regarding efficacy are limited and 40% of patients had moderate or severe complications. Best Practice Advice 12: For defecatory disorders, biofeedback therapy is the treatment of choice. Best Practice Advice 13: Based on limited evidence, sacral nerve stimulation should not be used for managing defecatory disorders in clinical practice. Best Practice Advice 14: Anterograde colonic enemas are not effective in the long term for management of defecatory disorders. Best Practice Advice 15: The stapled transanal rectal resection and related procedures should not be routinely performed for correction of structural abnormalities in patients with defecatory disorders. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Carreiro, Stephanie; Chai, Peter R; Carey, Jennifer; Chapman, Brittany; Boyer, Edward W
2017-06-01
Rapid proliferation of mobile technologies in social and healthcare spaces create an opportunity for advancement in research and clinical practice. The application of mobile, personalized technology in healthcare, referred to as mHealth, has not yet become routine in toxicology. However, key features of our practice environment, such as frequent need for remote evaluation, unreliable historical data from patients, and sensitive subject matter, make mHealth tools appealing solutions in comparison to traditional methods that collect retrospective or indirect data. This manuscript describes the features, uses, and costs associated with several of common sectors of mHealth research including wearable biosensors, ingestible biosensors, head-mounted devices, and social media applications. The benefits and novel challenges associated with the study and use of these applications are then discussed. Finally, opportunities for further research and integration are explored with a particular focus on toxicology-based applications.
Design of pressure-driven microfluidic networks using electric circuit analogy.
Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P
2012-02-07
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee
2016-09-01
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Mikai; Nam, Hongsuk; Rokni, Hossein; Wi, Sungjin; Yoon, Jeong Seop; Chen, Pengyu; Kurabayashi, Katsuo; Lu, Wei; Liang, Xiaogan
2015-09-22
MoS2 and other semiconducting transition metal dichalcogenides (TMDCs) are of great interest due to their excellent physical properties and versatile chemistry. Although many recent research efforts have been directed to explore attractive properties associated with MoS2 monolayers, multilayer/few-layer MoS2 structures are indeed demanded by many practical scale-up device applications, because multilayer structures can provide sizable electronic/photonic state densities for driving upscalable electrical/optical signals. Currently there is a lack of processes capable of producing ordered, pristine multilayer structures of MoS2 (or other relevant TMDCs) with manufacturing-grade uniformity of thicknesses and electronic/photonic properties. In this article, we present a nanoimprint-based approach toward addressing this challenge. In this approach, termed as nanoimprint-assisted shear exfoliation (NASE), a prepatterned bulk MoS2 stamp is pressed into a polymeric fixing layer, and the imprinted MoS2 features are exfoliated along a shear direction. This shear exfoliation can significantly enhance the exfoliation efficiency and thickness uniformity of exfoliated flakes in comparison with previously reported exfoliation processes. Furthermore, we have preliminarily demonstrated the fabrication of multiple transistors and biosensors exhibiting excellent device-to-device performance consistency. Finally, we present a molecular dynamics modeling analysis of the scaling behavior of NASE. This work holds significant potential to leverage the superior properties of MoS2 and other emerging TMDCs for practical scale-up device applications.
14 CFR 61.45 - Practical tests: Required aircraft and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in a flight simulator or a flight training device, an applicant for a certificate or rating issued... limited, primary, or light-sport category. (2) At the discretion of the examiner who administers the..., or light-sport category, but that otherwise meets the requirements of paragraph (a)(1) of this...
75 FR 80011 - Good Laboratory Practice for Nonclinical Laboratory Studies
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
... for research or marketing permits for products regulated by FDA, including food and color additives, animal food additives, human and animal drugs, medical devices for human use, biological products, and... requested the ability to cite compliance with the applicable good manufacturing requirements (i.e, parts 210...
Optical Information Processing for Aerospace Applications 2
NASA Technical Reports Server (NTRS)
Stermer, R. L. (Compiler)
1984-01-01
Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.
Exploitation of Unintentional Information Leakage from Integrated Circuits
ERIC Educational Resources Information Center
Cobb, William E.
2011-01-01
The information leakage of electronic devices, especially those used in cryptographic or other vital applications, represents a serious practical threat to secure systems. While physical implementation attacks have evolved rapidly over the last decade, relatively little work has been done to allow system designers to effectively counter the…
The detection of soft X-rays with charged coupled detectors
NASA Technical Reports Server (NTRS)
Burstein, P.; Davis, John M.
1989-01-01
The characteristics of an ideal soft X-ray imaging detector are enumerated. Of recent technical developments the CCD or charge coupled device goes furthest to meeting these requirements. Several properties of CCDs are described with reference to experimental work and their application to practical instruments is reviewed.
Secondary School Projects and the Microchip.
ERIC Educational Resources Information Center
Irvine, A. F.
This study of the applications of microelectronic devices in industry, together with an assessment of their value for use in schools, emphasizes the basic principles underlying the new technology and the practical ways in which these can contribute to associated work in computing and other disciplines in the school curriculum. Following a…
Fast response pyroelectric detector-preamplifier assembled device
NASA Astrophysics Data System (ADS)
Bai, PiJi; Tai, Yunjian; Liu, Huiping
2008-03-01
The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
Reflection: moving from a mandatory ritual to meaningful professional development.
Murdoch-Eaton, Deborah; Sandars, John
2014-03-01
Reflection has become established as a key principle underpinning maintenance of standards within professional education and practice. A requirement to evidence reflection within performance review is intended to develop a transformative approach to practice, identify developmental goals, and ultimately, improve healthcare. However, some applications have taken an excessively instrumental approach to the evidencing of reflection, and while they have provided useful templates or framing devices for recording individualistic reflective practice, they potentially have distorted the original intentions. This article revisits the educational theory underpinning the importance of reflection for enhancing performance and considers how to enhance its value within current paediatric practice.
Photosensitive graphene transistors.
Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng
2014-08-20
High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hakim, Renée M; Tunis, Brandon G; Ross, Michael D
2017-11-01
The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.
2004-10-01
practical applications of the technology in road vehicles. Active dampers based on several mechanical principles are available on the market ...between sportive and comfortable operating modes. A second type is the feedback of vehicle motion and, consequently, a dynamic suspension control...of-the-art in railway and automotive applications and have found an, albeit yet small, market . Typical representatives of semi-active devices are
Material System Engineering for Advanced Electrocaloric Cooling Technology
NASA Astrophysics Data System (ADS)
Qian, Xiaoshi
Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor ferroelectric polymers which possess both giant ECE (27 Kelvin temperature drop) and much wider operating temperature window (over 50 kelvin covering RT) by proper defect modification which delicately tailors ferroelectrics in meso-, micro- and molecular scales. In addition, in order to be practical, EC device requires EC material can be driven at low electric fields upon achieve the large ECE. It is demonstrated in this dissertation that by facially modifying materials structure in meso-, micro- and molecular scale, lowfield ECE can be greatly improved. Large ECE, induced by low electric fields and existing in wide temperature window, is a major improvement in EC materials for practical applications. Besides EC polymers, this thesis also investigated EC ceramics. Due to several unique opportunities offered by the EC ceramics, Ba(ZrxTi 1-x)O3 (BZT), that is studied. (i) This class of EC ceramics offers a possibility to explore the invariant critical point (ICP), which maximizes the number of coexistent phase and provides a nearly vanishing energy barrier for switching among different phases. As demonstrated in this thesis, the BZT bulk ceramics at x˜ 0.2 exhibits a large adiabatic temperature drop DeltaTc=4.5 K, a large isothermal entropy change DeltaS = 8 Jkg-1K-1, a large EC coefficient (|DeltaT c/DeltaE| = 0.52x10-6 KmV-1 and DeltaS/DeltaE=0.93x10 -6 Jmkg-1K-1V-1) over a wide operating temperature range Tspan>30K. (ii) The thermal conductivity of EC ceramics is in general, much higher than that of EC polymers, and consequently they will allow EC cooling configurations which are not accessible by the EC polymers. Moreover, in the same device configuration, the high thermal conductivity of EC ceramics (kappa> 5 W/mK, compared with EC polymer, ˜ 0.25 W/mK) allows higher operation frequency and therefore a higher cooling power. (iii) Well-established fabrication processes of multilayer ceramic capacitor (MLCC) provide a foundation for the EC ceramic toward mass production. In this thesis, BZT thick film double layers have been fabricated and large ECE has been directly measured. EC induced temperature drop (DeltaT) around 6.3 °C and entropy change (DeltaS) of 11.0 Jkg-1K -1 are observed under an electric field of DeltaE=14.6 MV/m at 40 °C was observed in BZT thick film double layers. The result encourages further investigations on ECE in MLCC for practical applications. (Abstract shortened by ProQuest.).
Sayedalamin, Zaid; Alshuaibi, Abdulaziz; Almutairi, Osama; Baghaffar, Mariam; Jameel, Tahir; Baig, Mukhtiar
The present study explored the utility, attitude, and trends regarding Smartphone related Medical Applications (Apps) among medical students of King Abdulaziz University (KAU) Jeddah, Saudi Arabia (SA) and their perceptions of the impact of Medical Apps in their training activities. This survey was conducted at the Faculty of Medicine, Jeddah, and Rabigh campuses, KAU, Jeddah, SA. All participants were medical students of 2nd to 6th year. The data was collected by using an anonymous questionnaire regarding the perception of medical students about Medical Apps on the smart devices and the purpose of installation of the Apps. Additionally examined was the use of different Medical Apps by the students to investigate the impact of Medical Apps on the clinical training/practice. Data was analyzed on SPSS 21. The opinion of 330/460 medical students from all academic years was included in the study with a response rate of 72%. There were 170 (51.5%) males and 160 (48.5%) females with a mean age of 21.26±1.86 years. Almost all participating students 320 (97%) were well aware of Medical Apps for smart devices and 89.1% had installed different applications on their smart devices. The main usage was for either revision of courses (62.4%) or for looking up of medical information (67.3%), followed by preparing for a presentation (34.5%) and getting the medical news (32.1%). Regarding the impact of Medical Apps, most of the students considered these helpful in clinical decision-making, assisting in differential diagnosis, allowing faster access to Evidence-Based Medical practice, saving time and others. The practical use of these Apps was found to be minimal in medical students. Around 73% were occasional users of Medical Apps, and only 27% were using Medical Apps at least once a day. The regular use of Medical Apps on mobile devices is not common among medical students of KAU. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
All-printed magnetically self-healing electrochemical devices
Bandodkar, Amay J.; López, Cristian S.; Vinu Mohan, Allibai Mohanan; Yin, Lu; Kumar, Rajan; Wang, Joseph
2016-01-01
The present work demonstrates the synthesis and application of permanent magnetic Nd2Fe14B microparticle (NMP)–loaded graphitic inks for realizing rapidly self-healing inexpensive printed electrochemical devices. The incorporation of NMPs into the printable ink imparts impressive self-healing ability to the printed conducting trace, with rapid (~50 ms) recovery of repeated large (3 mm) damages at the same or different locations without any user intervention or external trigger. The permanent and surrounding-insensitive magnetic properties of the NMPs thus result in long-lasting ability to repair extreme levels of damage, independent of ambient conditions. This remarkable self-healing capability has not been reported for existing man-made self-healing systems and offers distinct advantages over common capsule and intrinsically self-healing systems. The printed system has been characterized by leveraging crystallographic, magnetic hysteresis, microscopic imaging, electrical conductivity, and electrochemical techniques. The real-life applicability of the new self-healing concept is demonstrated for the autonomous repair of all-printed batteries, electrochemical sensors, and wearable textile-based electrical circuits, indicating considerable promise for widespread practical applications and long-lasting printed electronic devices. PMID:27847875
Security of BB84 with weak randomness and imperfect qubit encoding
NASA Astrophysics Data System (ADS)
Zhao, Liang-Yuan; Yin, Zhen-Qiang; Li, Hong-Wei; Chen, Wei; Fang, Xi; Han, Zheng-Fu; Huang, Wei
2018-03-01
The main threats for the well-known Bennett-Brassard 1984 (BB84) practical quantum key distribution (QKD) systems are that its encoding is inaccurate and measurement device may be vulnerable to particular attacks. Thus, a general physical model or security proof to tackle these loopholes simultaneously and quantitatively is highly desired. Here we give a framework on the security of BB84 when imperfect qubit encoding and vulnerability of measurement device are both considered. In our analysis, the potential attacks to measurement device are generalized by the recently proposed weak randomness model which assumes the input random numbers are partially biased depending on a hidden variable planted by an eavesdropper. And the inevitable encoding inaccuracy is also introduced here. From a fundamental view, our work reveals the potential information leakage due to encoding inaccuracy and weak randomness input. For applications, our result can be viewed as a useful tool to quantitatively evaluate the security of a practical QKD system.
Chen, RuiKe; Bao, WanSu; Zhou, Chun; Li, Hongwei; Wang, Yang; Bao, HaiZe
2016-03-21
In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 1011 to 1013 signals) it is possible to perform secure MDI-QCC over reasonable distances.
Methods And Devices For Characterizing Duplex Nucleic Acid Molecules
Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen
2005-08-30
Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.
Increasing cell-device adherence using cultured insect cells for receptor-based biosensors
NASA Astrophysics Data System (ADS)
Terutsuki, Daigo; Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei
2018-03-01
Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.
Theoretical insights into multiscale electronic processes in organic photovoltaics
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.
Increasing cell–device adherence using cultured insect cells for receptor-based biosensors
Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei
2018-01-01
Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell–device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell–device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell–device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs. PMID:29657822
Ma, Y G; Lan, L; Zhong, S M; Ong, C K
2011-10-24
In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America
Jeong, Jaeyoung; Kim, Juho; Song, Kwangsun; Autumn, Kellar; Lee, Jongho
2014-01-01
Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional ‘geckoprinted’ microelectronic devices provides a proof of concept of our results in practical applications. PMID:25056216
Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications
Vegni, Lucio
2018-01-01
A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853
Resonant cavity enhanced photonic devices
NASA Astrophysics Data System (ADS)
Ünlü, M. Selim; Strite, Samuel
1995-07-01
We review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. Such resonant cavity enhanced (RCE) devices benefit from the wavelength selectivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows RCE photodetector structures to be thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Off-resonance wavelengths are rejected by the cavity making RCE photodetectors promising for low crosstalk wavelength division multiplexing (WDM) applications. RCE optical modulators require fewer quantum wells so are capable of reduced voltage operation. The spontaneous emission spectrum of RCE light emitting diodes (LED) is drastically altered, improving the spectral purity and directivity. RCE devices are also highly suitable for integrated detectors and emitters with applications as in optical logic and in communication networks. This review attempts an encyclopedic overview of RCE photonic devices and systems. Considerable attention is devoted to the theoretical formulation and calculation of important RCE device parameters. Materials criteria are outlined and the suitability of common heteroepitaxial systems for RCE devices is examined. Arguments for the improved bandwidth in RCE detectors are presented intuitively, and results from advanced numerical simulations confirming the simple model are provided. An overview of experimental results on discrete RCE photodiodes, phototransistors, modulators, and LEDs is given. Work aimed at integrated RCE devices, optical logic and WDM systems is also covered. We conclude by speculating what remains to be accomplished to implement a practical RCE WDM system.
Practical applications of current loop signal conditioning
NASA Astrophysics Data System (ADS)
Anderson, Karl F.
1994-10-01
This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature devices. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge.
Uncooled infrared photodetectors in Poland
NASA Astrophysics Data System (ADS)
Piotrowski, Jozef; Piotrowski, Adam
2005-09-01
The history and present status of the middle and long wavelength Hg1xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche. Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapor phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapor phase deposition (MOCVD), frequently in combination with the ISOVPE. Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. Actually, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1-15 μm and 200-300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.
Alternative divertor target concepts for next step fusion devices
NASA Astrophysics Data System (ADS)
Mazul, I. V.
2016-12-01
The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.
Heterotic computing: exploiting hybrid computational devices.
Kendon, Viv; Sebald, Angelika; Stepney, Susan
2015-07-28
Current computational theory deals almost exclusively with single models: classical, neural, analogue, quantum, etc. In practice, researchers use ad hoc combinations, realizing only recently that they can be fundamentally more powerful than the individual parts. A Theo Murphy meeting brought together theorists and practitioners of various types of computing, to engage in combining the individual strengths to produce powerful new heterotic devices. 'Heterotic computing' is defined as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This post-meeting collection of articles provides a wide-ranging survey of the state of the art in diverse computational paradigms, together with reflections on their future combination into powerful and practical applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Radial Photonic Crystal for detection of frequency and position of radiation sources.
Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J
2012-01-01
Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.
Energy transport in cooling device by magnetic fluid
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi; Iwamoto, Yuhiro
2017-06-01
Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.
Hwang, Bohee; Lee, Jang-Sik
2017-08-01
The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime
2017-09-13
We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
Liquid crystal materials and tunable devices for optical communications
NASA Astrophysics Data System (ADS)
Du, Fang
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ˜12 V rms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime. Another major achievement in this thesis is the first demonstration of an electrically tunable LC-infiltrated photonic crystal fiber (PCF). Two different LC PCF configurations are studied. For the first time, electrically tunable LC PCFs are demonstrated experimentally. The guiding mechanism and polarization properties are studied. Preliminary experimental results are also given for the thermo-optical properties of a LC filled air-core PCF. In conclusion, this dissertation has solved important issues related to PSLC and enables its applications as VOAs and light shutters in optical communications. Through experimental investigations of the LC filled PCFs, a new possibility of developing tunable micro-sized fiber devices is opened for optical communications as well.
Signal and noise extraction from analog memory elements for neuromorphic computing.
Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T
2018-05-29
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure
NASA Astrophysics Data System (ADS)
Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He
2017-12-01
An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.
NASA Astrophysics Data System (ADS)
Cheng, Shiou-Ying
2004-07-01
An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.
Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao
2017-11-09
We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.
Selected photographic techniques, a compilation
NASA Technical Reports Server (NTRS)
1971-01-01
A selection has been made of methods, devices, and techniques developed in the field of photography during implementation of space and nuclear research projects. These items include many adaptations, variations, and modifications to standard hardware and practice, and should prove interesting to both amateur and professional photographers and photographic technicians. This compilation is divided into two sections. The first section presents techniques and devices that have been found useful in making photolab work simpler, more productive, and higher in quality. Section two deals with modifications to and special applications for existing photographic equipment.
Green-emitting MADF complex for OLED applications
NASA Astrophysics Data System (ADS)
Klimes, Kody; Zhu, Zhi-Qiang; Holloway, Sean; Li, Jian
2016-09-01
In this article, we demonstrated an exceptional palladium complex that exhibits both phosphorescence and delayed fluorescence for use as an efficient emitter in OLEDs. Devices employing PdN3N achieved external quantum efficiencies in excess of 22% and remarkable device operational lifetime to 90% initial luminance estimated at over 30,000 h at a practical luminance of 100 cd/m2. Further tuning of the phosphorescent and delayed fluorescent emission should have a great impact in the development of efficient and stable emitters for deep blue or white OLEDs.
Outer-layer manipulators for turbulent drag reduction
NASA Technical Reports Server (NTRS)
Anders, J. B., Jr.
1990-01-01
The last ten years have yielded intriguing research results on aerodynamic boundary outer-layer manipulators as local skin friction reduction devices at low Reynolds numbers; net drag reduction device systems for entire aerodynamic configurations are nevertheless noted to remain elusive. Evidence has emerged for dramatic alterations of the structure of a turbulent boundary layer which persist for long distances downstream and reduce wall shear as a results of any one of several theoretically possible mechanisms. Reduced effectiveness at high Reynolds numbers may, however, limit the applicability of outer-layer manipulators to practical aircraft drag reduction.
General method for designing wave shape transformers.
Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu
2008-12-22
An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.
Note: Model-based identification method of a cable-driven wearable device for arm rehabilitation
NASA Astrophysics Data System (ADS)
Cui, Xiang; Chen, Weihai; Zhang, Jianbin; Wang, Jianhua
2015-09-01
Cable-driven exoskeletons have used active cables to actuate the system and are worn on subjects to provide motion assistance. However, this kind of wearable devices usually contains uncertain kinematic parameters. In this paper, a model-based identification method has been proposed for a cable-driven arm exoskeleton to estimate its uncertainties. The identification method is based on the linearized error model derived from the kinematics of the exoskeleton. Experiment has been conducted to demonstrate the feasibility of the proposed model-based method in practical application.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction
NASA Astrophysics Data System (ADS)
Shin, Ik-Soo; Kim, Jung-Min; Jeun, Jun-Ho; Yoo, Seok-Hyun; Ge, Ziyi; Hong, Jong-In; Ho Bang, Jin; Kim, Yong-Sang
2012-04-01
An organic floating-gate memory device using CdSe quantum dots (QDs) as a charge-trapping element was fabricated. CdSe QDs were localized beneath a pentacene without any tunneling insulator, and the QD layer played a role as hole-trapping sites. The band bending formed at the junction between pentacene and QD layers inhibited back-injection of holes trapped in CdSe into pentacene, which appeared as a hysteretic capacitance-voltage response during the operation of the device. Nearly, 60% of trapped charge was sustained even after 104 s in programmed state, and this long retention time can be potentially useful in practical applications of non-volatile memory.
Multifunctional Energy Storage and Conversion Devices.
Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi
2016-10-01
Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space Solar Cell Research and Development Projects at Emcore Photovoltaics
NASA Technical Reports Server (NTRS)
Sharps, Paul; Aiken,Dan; Stan, Mark; Cornfeld, Art; Newman, Fred; Endicter, Scott; Girard, Gerald; Doman, John; Turner, Michele; Sandoval, Annette;
2007-01-01
The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance.
Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.
Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi
2017-12-01
The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin
2018-09-15
Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.
The application and improvement of Fourier transform spectrometer experiment
NASA Astrophysics Data System (ADS)
Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning
2017-08-01
According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.
Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging
NASA Astrophysics Data System (ADS)
Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon
2017-04-01
Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo
2016-01-01
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications. PMID:27762286
Advances in Miniaturized Instruments for Genomics
2014-01-01
In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919
Thermoelectricity for future sustainable energy technologies
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2017-07-01
Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.
An Evaluation Tool for Agricultural Health and Safety Mobile Applications.
Reyes, Iris; Ellis, Tammy; Yoder, Aaron; Keifer, Matthew C
2016-01-01
As the use of mobile devices and their software applications, or apps, becomes ubiquitous, use amongst agricultural working populations is expanding as well. The smart device paired with a well-designed app has potential for improving workplace health and safety in the hands of those who can act upon the information provided. Many apps designed to assess workplace hazards and implementation of worker protections already exist. However, the abundance and diversity of such applications also presents challenges regarding evaluation practices and assignation of value. This is particularly true in the agricultural workspace, as there is currently little information on the value of these apps for agricultural safety and health. This project proposes a framework for developing and evaluating apps that have potential usefulness in agricultural health and safety. The evaluation framework is easily transferable, with little modification for evaluation of apps in several agriculture-specific areas.
A Computer Model for Teaching the Dynamic Behavior of AC Contactors
ERIC Educational Resources Information Center
Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.
2010-01-01
Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... applicable manufacturers of drugs, devices, biologicals, or medical supplies covered under title XVIII of the Act (Medicare) or a State plan under title XIX (Medicaid) or XXI of the Act (the Children's Health..., ``Conflict of Interest in Medical Research, Education and Practice.'' Given these recommendations and other...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available. 424.22 Section 424.22 Protection of Environment ENVIRONMENTAL PROTECTION... Covered Electric Furnaces and Other Smelting Operations With Wet Air Pollution Control Devices Subcategory... application of the best practicable control technology currently available. Except as provided in §§ 125.30...
75 FR 27318 - Notice of Intent To Grant an Exclusive License; FIXMO U.S. INC.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
..., license to practice the following Government-Owned invention as described in U.S. Patent Application Serial No.11/999,050 entitled: ``Method of Tamper Detection for Digital Device,'' which was allowed by... above-mentioned invention is assigned to the United States Government as represented by the National...
Stieglitz, T
2010-08-01
Stimulation of the nervous system with the aid of electrical active implants has changed the therapy of neurological diseases and rehabilitation of lost functions and has expanded clinical practice within the last few years. Alleviation of effects of neurodegenerative diseases, therapy of psychiatric diseases, the functional restoration of hearing as well as other applications have been transferred successfully into clinical practice. Other approaches are still under development in preclinical and clinical trials. The restoration of sight by implantable electronic systems that interface with the retina in the eye is an example how technological progress promotes novel medical devices. The idea of using the electrical signal of the brain to control technical devices and (neural) prostheses is driving current research in the field of brain-computer interfaces. The benefit for the patient always has to be balanced with the risks and side effects of those implants in comparison to medicinal and surgical treatments. How these and other developments become established in practice depends finally on their acceptance by the patients and the reimbursement of their costs.
Design and fabrication of high-performance diamond triple-gate field-effect transistors
Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo
2016-01-01
The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications. PMID:27708372
Compact and portable digitally controlled device for testing footwear materials: technical note.
Foto, James G
2008-01-01
Little or no practical decision-making data are available to the foot-care provider regarding the selection of orthotic materials used in therapeutic footwear. A device for simulating in-shoe forefoot conditions for the testing of orthosis materials is described. Materials are tested for their effectiveness by evaluating and comparing stress-strain and dynamic compression fatigue characteristics. The device, called the Cyclical Compression Tester (CCT), has been optimized for size, simplicity of construction, and cost. Application of the device ranges from the clinician deciding the useful life of single- and multidensity orthosis materials to the researcher characterizing materials for finite-element analysis modeling. This real-time CCT device and custom user interface combine to make an evaluation tool useful for testing how the pressure distribution of in-shoe materials changes over time in therapeutic footwear for those with peripheral neuropathy at risk for foot injury.
Nanophotonic applications for silicon-on-insulator (SOI)
NASA Astrophysics Data System (ADS)
de la Houssaye, Paul R.; Russell, Stephen D.; Shimabukuro, Randy L.
2004-07-01
Silicon-on-insulator is a proven technology for very large scale integration of microelectronic devices. The technology also offers the potential for development of nanophotonic devices and the ability to interface such devices to the macroscopic world. This paper will report on fabrication techniques used to form nano-structured silicon wires on an insulating structure that is amenable to interfacing nanostructured sensors with high-performance microelectronic circuitry for practical implementation. Nanostructures formed on silicon-on-sapphire can also exploit the transparent substrate for novel device geometries. This research harnesses the unique properties of a high-quality single crystal film of silicon on sapphire and uses the film thickness as one of the confinement dimensions. Lateral arrays of silicon nanowires were fabricated in the thin (5 to 20 nm) silicon layer and studied. This technique offers simplified contact to individual wires and provides wire surfaces that are more readily accessible for controlled alteration and device designs.
Quantum technology and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boshier, Malcolm; Berkeland, Dana; Govindan, Tr
Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have anothermore » powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.« less
Design of an innovative magnetostrictive patch actuator
NASA Astrophysics Data System (ADS)
Cinquemani, S.; Giberti, H.
2015-04-01
Magnetostrictive actuators can be profitably used to reduce vibration in structures. However, this technology has been exploited only to develop inertial actuators, while patches actuators have not been ever used in practice. Patches actuators consist on a layer of magnetostrictive material, which has to be stuck to the surface of the vibrating structure, and on a coil surrounding the layer itself. However, the presence of the winding severely limits the use of such devices. As a matter of fact, the scientific literature reports only theoretical uses of such actuators, but, in practice it does not seem they were ever used. This paper presents an innovative solution to improve the structure of the actuator patches, allowing their use in several practical applications. The principle of operation of these devices is rather simple. The actuator patch is able to generate a local deformation of the surface of the vibrating structure so as to introduce an equivalent damping that dissipates the kinetic energy associated to the vibration. This deformation is related to the behavior of the magnetostrictive material immersed in a variable magnetic field generated by the a variable current flowing in the winding. Contrary to what suggested in the theoretical literature, the designed device has the advantage of generating the variable magnetic field no longer in close proximity of the material, but in a different area, thus allowing a better coupling. The magnetic field is then conveyed through a suitable ferromagnetic structure to the magnetostrictive material. The device has been designed and simulated through FEA. Results confirm that the new configuration can easily overcome all the limits of traditional devices.
Wu, Ting-Ting
2014-06-01
Virtual communities provide numerous resources, immediate feedback, and information sharing, enabling people to rapidly acquire information and knowledge and supporting diverse applications that facilitate interpersonal interactions, communication, and sharing. Moreover, incorporating highly mobile and convenient devices into practice-based courses can be advantageous in learning situations. Therefore, in this study, a tablet PC and Google+ were introduced to a health education practice course to elucidate satisfaction of learning module and conditions and analyze the sequence and frequency of learning behaviors during the social-network-based learning process. According to the analytical results, social networks can improve interaction among peers and between educators and students, particularly when these networks are used to search for data, post articles, engage in discussions, and communicate. In addition, most nursing students and nursing educators expressed a positive attitude and satisfaction toward these innovative teaching methods, and looked forward to continuing the use of this learning approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.
2012-10-01
Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.
Plessky, Victor P; Reindl, Leonhard M
2010-03-01
SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.
Designing Mobile Applications for Emergency Response: Citizens Acting as Human Sensors
Romano, Marco; Onorati, Teresa; Aedo, Ignacio; Diaz, Paloma
2016-01-01
When an emergency occurs, citizens can be a helpful support for the operation centers involved in the response activities. As witnesses to a crisis, they initially can share updated and detailed information about what is going on. Moreover, thanks to the current technological evolution people are able to quickly and easily gather rich information and transmit it through different communication channels. Indeed, modern mobile devices embed several sensors such as GPS receivers, Wi-Fi, accelerometers or cameras that can transform users into well-equipped human sensors. For these reasons, emergency organizations and small and medium enterprises have demonstrated a growing interest in developing smart applications for reporting any exceptional circumstances. In this paper, we present a practical study about this kind of applications for identifying both limitations and common features. Based on a study of relevant existent contributions in this area and our personal direct experience in developing and evaluating emergency management solutions, our aim is to propose several findings about how to design effective and efficient mobile emergency notification applications. For this purpose we have exploited the basic sensors of modern mobile devices and the users’ aptitude for using them. The evaluation consists of a practical and a theoretical part. In the practical part, we have simulated a traffic accident as closely as possible to a real scenario, with a victim lying on the ground near a car in the middle of a street. For the theoretical part, we have interviewed some emergency experts for collecting their opinions about the utility of the proposed solution. Results from this evaluation phase confirm the positive impact that EN application have for both operators’ and citizens’ perspective. Moreover, we collected several findings useful for future design challenges in the same area, as shown in the final redesign of the proposed application. PMID:27007375
Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk
2017-07-27
An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.
Liu, Yuqing; Weng, Bo; Razal, Joselito M; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G; Chen, Jun
2015-11-20
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Full-scale characterization of UVLED Al(x)Ga(1-x)N nanowires via advanced electron microscopy.
Phillips, Patrick J; Carnevale, Santino D; Kumar, Rajan; Myers, Roberto C; Klie, Robert F
2013-06-25
III-Nitride semiconductor heterostructures continue to attract a great deal of attention due to the wide range of wavelengths at which they can emit light, and the subsequent desire to employ them in optoelectronic applications. Recently, a new type of pn-junction which relies on polarization-induced doping has shown promise for use as an ultraviolet light emitting diode (UVLED); nanowire growth of this device has been successfully demonstrated. However, as these devices are still in their infancy, in order to more fully understand their physical and electronic properties, they require a multitude of characterization techniques. Specifically, the present contribution will discuss the application of advanced scanning transmission electron microscopy (STEM) to AlxGa1-xN UVLED nanowires. In addition to structural data, chemical and electronic properties will also be probed through various spectroscopy techniques, with the focus remaining on practically applying the knowledge gained via STEM to the growth procedures in order to optimize device peformance.
Weidert, S; Wang, L; von der Heide, A; Navab, N; Euler, E
2012-03-01
The intraoperative application of augmented reality (AR) has so far mainly taken place in the field of endoscopy. Here, the camera image of the endoscope was augmented by computer graphics derived mostly from preoperative imaging. Due to the complex setup and operation of the devices, they have not yet become part of routine clinical practice. The Camera Augmented Mobile C-arm (CamC) that extends a classic C-arm by a video camera and mirror construction is characterized by its uncomplicated handling. It combines its video live stream geometrically correct with the acquired X-ray. The clinical application of the device in 43 cases showed the strengths of the device in positioning for X-ray acquisition, incision placement, K-wire placement, and instrument guidance. With its new function and the easy integration into the OR workflow of any procedure that requires X-ray imaging, the CamC has the potential to become the first widely used AR technology for orthopedic and trauma surgery.
NASA Astrophysics Data System (ADS)
Liu, Yuqing; Weng, Bo; Razal, Joselito M.; Xu, Qun; Zhao, Chen; Hou, Yuyang; Seyedin, Shayan; Jalili, Rouhollah; Wallace, Gordon G.; Chen, Jun
2015-11-01
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm-2 was achieved at a scan rate of 10 mV s-1 using the composite electrode with a high mass loading (8.49 mg cm-2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.
He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua
2012-10-08
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Qi-Jun; Zhuang, Jiaqing; Venkatesh, Shishir; Zhou, Ye; Han, Su-Ting; Wu, Wei; Kong, Ka-Wai; Li, Wen-Jung; Chen, Xianfeng; Li, Robert K Y; Roy, Vellaisamy A L
2018-01-31
Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa -1 ), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.
Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.
Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka
2017-08-10
Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.
Chemical-to-Electricity Carbon: Water Device.
He, Sisi; Zhang, Yueyu; Qiu, Longbin; Zhang, Longsheng; Xie, Yun; Pan, Jian; Chen, Peining; Wang, Bingjie; Xu, Xiaojie; Hu, Yajie; Dinh, Cao Thang; De Luna, Phil; Banis, Mohammad Norouzi; Wang, Zhiqiang; Sham, Tsun-Kong; Gong, Xingao; Zhang, Bo; Peng, Huisheng; Sargent, Edward H
2018-05-01
The ability to release, as electrical energy, potential energy stored at the water:carbon interface is attractive, since water is abundant and available. However, many previous reports of such energy converters rely on either flowing water or specially designed ionic aqueous solutions. These requirements restrict practical application, particularly in environments with quiescent water. Here, a carbon-based chemical-to-electricity device that transfers the chemical energy to electrical form when coming into contact with quiescent deionized water is reported. The device is built using carbon nanotube yarns, oxygen content of which is modulated using oxygen plasma-treatment. When immersed in water, the device discharges electricity with a power density that exceeds 700 mW m -2 , one order of magnitude higher than the best previously published result. X-ray absorption and density functional theory studies support a mechanism of operation that relies on the polarization of sp 2 hybridized carbon atoms. The devices are incorporated into a flexible fabric for powering personal electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sumboja, Afriyanti; Liu, Jiawei; Zheng, Wesley Guangyuan; Zong, Yun; Zhang, Hua; Liu, Zhaolin
2018-06-27
Compatible energy storage devices that are able to withstand various mechanical deformations, while delivering their intended functions, are required in wearable technologies. This imposes constraints on the structural designs, materials selection, and miniaturization of the cells. To date, extensive efforts have been dedicated towards developing electrochemical energy storage devices for wearables, with a focus on incorporation of shape-conformable materials into mechanically robust designs that can be worn on the human body. In this review, we highlight the quantified performances of reported wearable electrochemical energy storage devices, as well as their micro-sized counterparts under specific mechanical deformations, which can be used as the benchmark for future studies in this field. A general introduction to the wearable technology, the development of the selection and synthesis of active materials, cell design approaches and device fabrications are discussed. It is followed by challenges and outlook toward the practical use of electrochemical energy storage devices for wearable applications.
Uncooled infrared photodetectors in Poland
NASA Astrophysics Data System (ADS)
Piotrowski, J.; Piotrowski, A.
2006-03-01
The history and present status of the middle and long wavelength Hg1-xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche. Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapour phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition (MOCVD), frequently in combination with the ISOVPE. Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. At present, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1-15 μm and 200-300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.
Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; No, You-Shin
2017-12-01
In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.
Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan
2016-01-01
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023
Vertical GaN Devices for Power Electronics in Extreme Environments
2016-03-31
electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...holes in p-GaN has deleterious effect on p-n junction behavior (Fig. 2), p-GaN contacts, and channel control in junction field-effect transistors at...and transistors ) utilizing p-n junctions are suitable for most practical applications including automotive (210K < T < 423K) but may have limitations
NASA Astrophysics Data System (ADS)
Delen, Ibrahim
Engage students in constructing scientific practices is a critical component of science instruction. Therefore a number of researchers have developed software programs to help students and teachers in this hard task. The Zydeco group, designed a mobile application called Zydeco, which enables students to collect data inside and outside the classroom, and then use the data to create scientific explanations by using claim-evidence-reasoning framework. Previous technologies designed to support scientific explanations focused on how these programs improve students' scientific explanations, but these programs ignored how scientific explanation technologies can support teacher practices. Thus, to increase our knowledge how different scaffolds can work together, this study aimed to portray the synergy between a teacher's instructional practices (part 1) and using supports within a mobile devices (part 2) to support students in constructing explanations. Synergy can be thought of as generic and content-specific scaffolds working together to enable students to accomplish challenging tasks, such as creating explanations that they would not normally be able to do without the scaffolds working together. Providing instruction (part 1) focused on understanding how the teacher scaffolds students' initial understanding of the claim-evidence-reasoning (CER) framework. The second component of examining synergy (part 2: using mobile devices) investigated how this teacher used mobile devices to provide feedback when students created explanations. The synergy between providing instruction and using mobile devices was investigated by analyzing a middle school teacher's practices in two different units (plants and water quality). Next, this study focused on describing how the level of synergy influenced the quality of students' scientific explanations. Finally, I investigated the role of focused teaching intervention sessions to inform teacher in relation to students' performance. In conclusion, findings of this study showed that the decrease in the teacher's support for claims, did not affect the quality of the students' claims. On the other hand, the quality of students' reasoning were linked with the teacher's practices. This suggests that when supporting students' explanations, focusing on components that students find challenging would benefit students' construction of explanations. To achieve synergy in this process, the collaboration between teacher's practices, focused teaching intervention sessions and scaffolds designed to support teachers played a crucial role in aiding students in creating explanations.
2008-11-05
Description Operationally Feasible? EEG ms ms cm Measures electrical activity in the brain. Practical tool for applications - real time monitoring or...Cognitive Systems Device Development & Processing Methods Brain activity can be monitored in real-time in operational environments with EEG Brain...biological and cognitive findings about the user to customize the learning environment Neurofeedback • Present the user with real-time feedback
The Computer and Its Functions; How to Communicate with the Computer.
ERIC Educational Resources Information Center
Ward, Peggy M.
A brief discussion of why it is important for students to be familiar with computers and their functions and a list of some practical applications introduce this two-part paper. Focusing on how the computer works, the first part explains the various components of the computer, different kinds of memory storage devices, disk operating systems, and…
Miniature personal UV solar dosimeter
NASA Technical Reports Server (NTRS)
Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr.
1981-01-01
Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.
Medical Information Exchange: Pattern of Global Mobile Messenger Usage among Otolaryngologists.
Siegal, Gil; Dagan, Elad; Wolf, Michael; Duvdevani, Shay; Alon, Eran E
2016-11-01
Information technology has revolutionized health care. However, the development of dedicated mobile health software has been lagging, leading to the use of general mobile applications to fill in the void. The use of such applications has several legal, ethical, and regulatory implications. We examined the experience and practices governing the usage of a global mobile messenger application (WhatsApp) for mobile health purposes in a national cohort of practicing otolaryngologists in Israel, a known early adaptor information technology society. Cross-sectional data were collected from practicing otolaryngologists and otolaryngology residents via self-administered questionnaire. The questionnaire was composed of a demographic section, a section surveying the practices of mobile application use, mobile health application use, and knowledge regarding institutional policies governing the transmission of medical data. The sample included 22 otolaryngology residents and 47 practicing otolaryngologists. Of the physicians, 83% worked in academic centers, and 88% and 40% of the physicians who worked in a hospital setting or a community clinic used WhatsApp for medical use, respectively. Working with residents increased the medical usage of WhatsApp from 50% to 91% (P = .006). Finally, 72% were unfamiliar with any institutional policy regarding the transfer of medical information by personal smartphones. Mobile health is becoming an integral part of modern medical systems, improving accessibility, efficiency, and possibly quality of medical care. The need to incorporate personal mobile devices in the overall information technology standards, guidelines, and regulation is becoming more acute. Nonetheless, practices must be properly instituted to prevent unwanted consequences. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Design of belt conveyor electric control device based on CC-link bus
NASA Astrophysics Data System (ADS)
Chen, Goufen; Zhan, Minhua; Li, Jiehua
2016-01-01
In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.
NASA Astrophysics Data System (ADS)
Shin, Sunhae; Rok Kim, Kyung
2015-06-01
In this paper, we propose a novel multiple negative differential resistance (NDR) device with ultra-high peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with a conventional MOSFET, which suppresses the valley current with transistor off-leakage level. Band-to-band tunneling (BTBT) in tunnel junction provides the first peak, and the second peak and valley are generated from the suppression of diffusion current in tunnel diode by the off-state MOSFET. The multiple NDR curves can be controlled by doping concentration of tunnel junction and the threshold voltage of MOSFET. By using complementary multiple NDR devices, five-state memory is demonstrated only with six transistors.
A physically transient form of silicon electronics.
Hwang, Suk-Won; Tao, Hu; Kim, Dae-Hyeong; Cheng, Huanyu; Song, Jun-Kyul; Rill, Elliott; Brenckle, Mark A; Panilaitis, Bruce; Won, Sang Min; Kim, Yun-Soung; Song, Young Min; Yu, Ki Jun; Ameen, Abid; Li, Rui; Su, Yewang; Yang, Miaomiao; Kaplan, David L; Zakin, Mitchell R; Slepian, Marvin J; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A
2012-09-28
A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
NASA Astrophysics Data System (ADS)
Lin, Pei-Sheng; Rosset, Denis; Zhang, Yanbao; Bancal, Jean-Daniel; Liang, Yeong-Cherng
2018-03-01
The device-independent approach to physics is one where conclusions are drawn directly from the observed correlations between measurement outcomes. In quantum information, this approach allows one to make strong statements about the properties of the underlying systems or devices solely via the observation of Bell-inequality-violating correlations. However, since one can only perform a finite number of experimental trials, statistical fluctuations necessarily accompany any estimation of these correlations. Consequently, an important gap remains between the many theoretical tools developed for the asymptotic scenario and the experimentally obtained raw data. In particular, a physical and concurrently practical way to estimate the underlying quantum distribution has so far remained elusive. Here, we show that the natural analogs of the maximum-likelihood estimation technique and the least-square-error estimation technique in the device-independent context result in point estimates of the true distribution that are physical, unique, computationally tractable, and consistent. They thus serve as sound algorithmic tools allowing one to bridge the aforementioned gap. As an application, we demonstrate how such estimates of the underlying quantum distribution can be used to provide, in certain cases, trustworthy estimates of the amount of entanglement present in the measured system. In stark contrast to existing approaches to device-independent parameter estimations, our estimation does not require the prior knowledge of any Bell inequality tailored for the specific property and the specific distribution of interest.
Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.
Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming
2014-08-20
Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N
2015-10-05
The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.
New Approach to a Practical Quartz Crystal Microbalance Sensor Utilizing an Inkjet Printing System
Fuchiwaki, Yusuke; Tanaka, Masato; Makita, Yoji; Ooie, Toshihiko
2014-01-01
The present work demonstrates a valuable approach to developing quartz crystal microbalance (QCM) sensor units inexpensively for reliable determination of analytes. This QCM sensor unit is constructed by inkjet printing equipment utilizing background noise removal techniques. Inkjet printing equipment was chosen as an alternative to an injection pump in conventional flow-mode systems to facilitate the commercial applicability of these practical devices. The results demonstrate minimization of fluctuations from external influences, determination of antigen-antibody interactions in an inkjet deposition, and quantification of C-reactive protein in the range of 50–1000 ng(x000B7)mL−1. We thus demonstrate a marketable application of an inexpensive and easily available QCM sensor system. PMID:25360577
Chemical modification of group IV graphene analogs
Nakano, Hideyuki; Tetsuka, Hiroyuki; Spencer, Michelle J. S.; Morishita, Tetsuya
2018-01-01
Abstract Mono-elemental two-dimensional (2D) crystals (graphene, silicene, germanene, stanene, and so on), termed 2D-Xenes, have been brought to the forefront of scientific research. The stability and electronic properties of 2D-Xenes are main challenges in developing practical devices. Therefore, in this review, we focus on 2D free-standing group-IV graphene analogs (graphene quantum dots, silicane, and germanane) and the functionalization of these sheets with organic moieties, which could be handled under ambient conditions. We highlight the present results and future opportunities, functions and applications, and novel device concepts. PMID:29410713
Modular reservoir concept for MEMS-based transdermal drug delivery systems
NASA Astrophysics Data System (ADS)
Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.
2014-11-01
While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.
Nonimaging reflectors for efficient uniform illumination.
Gordon, J M; Kashin, P; Rabl, A
1992-10-01
Nonimaging reflectors that are an extension of the design principle that was developed for compound parabolic concentrator type devices are proposed for illumination applications. The optical designs presented offer maximal lighting efficiency while they retain sharp angular control of the radiation and highly uniform flux densities on distant target planes. Our results are presented for symmetrical configurations in two dimensions (troughlike reflectors) for flat and for tubular sources. For fields of view of practical interest (half-angle in the 30-60 degrees range), these devices can achieve minimum-tomaximum intensity ratios of 0.7, while they remain compact and incur low reflective losses.
Fractal-based wideband invisibility cloak
NASA Astrophysics Data System (ADS)
Cohen, Nathan; Okoro, Obinna; Earle, Dan; Salkind, Phil; Unger, Barry; Yen, Sean; McHugh, Daniel; Polterzycki, Stefan; Shelman-Cohen, A. J.
2015-03-01
A wideband invisibility cloak (IC) at microwave frequencies is described. Using fractal resonators in closely spaced (sub wavelength) arrays as a minimal number of cylindrical layers (rings), the IC demonstrates that it is physically possible to attain a `see through' cloaking device with: (a) wideband coverage; (b) simple and attainable fabrication; (c) high fidelity emulation of the free path; (d) minimal side scattering; (d) a near absence of shadowing in the scattering. Although not a practical device, this fractal-enabled technology demonstrator opens up new opportunities for diverted-image (DI) technology and use of fractals in wideband optical, infrared, and microwave applications.
Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie
2009-11-15
Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
NASA Technical Reports Server (NTRS)
Lin, John C.
2002-01-01
An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.
A Review of Multimode Interference in Tapered Optical Fibers and Related Applications.
Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Farrell, Gerald; Brambilla, Gilberto
2018-03-14
In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom.
A Review of Multimode Interference in Tapered Optical Fibers and Related Applications
Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Brambilla, Gilberto
2018-01-01
In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom. PMID:29538333
Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R
2013-12-26
We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.
Metal-organic molecular device for non-volatile memory storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radha, B., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in; Sagade, Abhay A.; Kulkarni, G. U., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in
Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organicmore » complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.« less
Computational Hemodynamics Involving Artificial Devices
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)
2001-01-01
This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.
Virtual firm as a role-playing tool for biomedical education.
Blagosklonov, Oleg; Soto-Romero, Georges; Guyon, Florent; Courjal, Nadège; Euphrasie, Sebatien; Yahiaoui, Reda; Butterlin, Nadia
2006-01-01
The paper describes design of a role-playing tool based on the experience of the practice firm which allows participants to obtain relevant and practical on-the-job experience. The students played the roles of the employees and the applicants for vacant positions at the virtual firm - a small business specialized in biomedical sector - founded to design the demonstration vehicle for a biomedical device. We found that this innovative concept may be used to improve the young engineers performance and to facilitate their post-graduate integration.
Matching brain-machine interface performance to space applications.
Citi, Luca; Tonet, Oliver; Marinelli, Martina
2009-01-01
A brain-machine interface (BMI) is a particular class of human-machine interface (HMI). BMIs have so far been studied mostly as a communication means for people who have little or no voluntary control of muscle activity. For able-bodied users, such as astronauts, a BMI would only be practical if conceived as an augmenting interface. A method is presented for pointing out effective combinations of HMIs and applications of robotics and automation to space. Latency and throughput are selected as performance measures for a hybrid bionic system (HBS), that is, the combination of a user, a device, and a HMI. We classify and briefly describe HMIs and space applications and then compare the performance of classes of interfaces with the requirements of classes of applications, both in terms of latency and throughput. Regions of overlap correspond to effective combinations. Devices requiring simpler control, such as a rover, a robotic camera, or environmental controls are suitable to be driven by means of BMI technology. Free flyers and other devices with six degrees of freedom can be controlled, but only at low-interactivity levels. More demanding applications require conventional interfaces, although they could be controlled by BMIs once the same levels of performance as currently recorded in animal experiments are attained. Robotic arms and manipulators could be the next frontier for noninvasive BMIs. Integrating smart controllers in HBSs could improve interactivity and boost the use of BMI technology in space applications.
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Yi-Siang; Chen, Jui-Yuan; Huang, Chun-Wei
Recently, the mechanism of resistive random access memory (RRAM) has been partly clarified and determined to be controlled by the forming and erasing of conducting filaments (CF). However, the size of the CF may restrict the application and development as devices are scaled down. In this work, we synthesized CuO nanowires (NW) (∼150 nm in diameter) to fabricate a CuO NW RRAM nanodevice that was much smaller than the filament (∼2 μm) observed in a bulk CuO RRAM device in a previous study. HRTEM indicated that the Cu{sub 2}O phase was generated after operation, which demonstrated that the filament could be minimizemore » to as small as 3.8 nm when the device is scaled down. In addition, energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) show the resistive switching of the dielectric layer resulted from the aggregated oxygen vacancies, which also match with the I-V fitting results. Those results not only verify the switching mechanism of CuO RRAM but also show RRAM has the potential to shrink in size, which will be beneficial to the practical application of RRAM devices.« less
NASA Astrophysics Data System (ADS)
Chavez, Ruben; Angst, Sebastian; Hall, Joseph; Maculewicz, Franziska; Stoetzel, Julia; Wiggers, Hartmut; Thanh Hung, Le; Van Nong, Ngo; Pryds, Nini; Span, Gerhard; Wolf, Dietrich E.; Schmechel, Roland; Schierning, Gabi
2018-01-01
In many industrial processes, a large proportion of energy is lost in the form of heat. Thermoelectric generators can convert this waste heat into electricity by means of the Seebeck effect. However, the use of thermoelectric generators in practical applications on an industrial scale is limited in part because electrical, thermal, and mechanical bonding contacts between the semiconductor materials and the metal electrodes in current designs are not capable of withstanding thermal-mechanical stress and alloying of the metal-semiconductor interface when exposed to the high temperatures occurring in many real-world applications. Here we demonstrate a concept for thermoelectric generators that can address this issue by replacing the metallization and electrode bonding on the hot side of the device by a p-n junction between the two semiconductor materials, making the device robust against temperature induced failure. In our proof-of-principle demonstration, a p-n junction device made from nanocrystalline silicon is at least comparable in its efficiency and power output to conventional devices of the same material and fabrication process, but with the advantage of sustaining high hot side temperatures and oxidative atmosphere.
Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho
2010-03-01
Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.
MO-A-BRC-00: TG167: Clinical Recommendations for Innovative Brachytherapy Devices and Applicators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used to evaluate innovative radiotherapy devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining equivalence of the innovative device to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of an innovative brachytherapy device or application is a critical part in which physicists are actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative products or applications and includes evaluation of 1)more » dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, 2) risks and benefits from regulatory and safety perspectives, and 3) resource assessment and preparedness. Further, calibration methods should be traceable to a primary standards dosimetry laboratory such as NIST in the U.S. or to other primary standards dosimetry laboratory located elsewhere. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the ADCLs is encouraged before a source is introduced into widespread routine clinical use. The AAPM and GEC-ESTRO have developed guidelines for the safe and consistent application of brachytherapy using innovative brachytherapy devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. NRC, FDA, Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, European Commission for CE Marking, and institutional review boards and radiation safety committees. Learning Objectives: Understand the necessary dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use. Evaluate risks and benefits from regulatory and safety perspectives. Identify necessary resources and create a plan for clinical introduction of innovative brachytherapy device or applications. Consultant for Theragenics Corp.; R. Nath, Consultant to Theragenics Corp.« less
16 CFR 1507.8 - Wheel devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Wheel devices. 1507.8 Section 1507.8 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.8 Wheel devices. Drivers in fireworks devices commonly known as “wheels” shall be...
NASA Astrophysics Data System (ADS)
Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang
2006-02-01
Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.
Black silicon: fabrication methods, properties and solar energy applications
Liu, Xiaogang; Coxon, Paul R.; Peters, Marius; ...
2014-08-04
Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. Here in this article, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, basedmore » upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al 2O 3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.« less
MindEdit: A P300-based text editor for mobile devices.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2017-01-01
Practical application of Brain-Computer Interfaces (BCIs) requires that the whole BCI system be portable. The mobility of BCI systems involves two aspects: making the electroencephalography (EEG) recording devices portable, and developing software applications with low computational complexity to be able to run on low computational-power devices such as tablets and smartphones. This paper addresses the development of MindEdit; a P300-based text editor for Android-based devices. Given the limited resources of mobile devices and their limited computational power, a novel ensemble classifier is utilized that uses Principal Component Analysis (PCA) features to identify P300 evoked potentials from EEG recordings. PCA computations in the proposed method are channel-based as opposed to concatenating all channels as in traditional feature extraction methods; thus, this method has less computational complexity compared to traditional P300 detection methods. The performance of the method is demonstrated on data recorded from MindEdit on an Android tablet using the Emotiv wireless neuroheadset. Results demonstrate the capability of the introduced PCA ensemble classifier to classify P300 data with maximum average accuracy of 78.37±16.09% for cross-validation data and 77.5±19.69% for online test data using only 10 trials per symbol and a 33-character training dataset. Our analysis indicates that the introduced method outperforms traditional feature extraction methods. For a faster operation of MindEdit, a variable number of trials scheme is introduced that resulted in an online average accuracy of 64.17±19.6% and a maximum bitrate of 6.25bit/min. These results demonstrate the efficacy of using the developed BCI application with mobile devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lobo, Lorena; Travieso, David; Barrientos, Antonio; Jacobs, David M.
2014-01-01
Practice is essential for an adapted use of sensory substitution devices. Understanding the learning process is therefore a fundamental issue in this field of research. This study presents a novel sensory substitution device worn on the lower leg and uses the device to study learning. The device includes 32 vibrotactile actuators that each vibrate as a function of the distance to the nearest surface in a particular direction. Participants wearing the device were asked to approach an object and to step on the object. Two 144-trial practice conditions were compared in a pretest-practice-posttest design. Participants in the first condition practiced with vibrotactile stimulation while blindfolded. Participants in the second condition practiced with vibrotactile stimulation along with normal vision. Performance was relatively successful, both types of practice led to improvements in performance, and practice without vision led to a larger reduction in the number of errors than practice with vision. These results indicate that distance-based sensory substitution is promising in addition to the more traditional light-intensity-based sensory substitution and that providing appropriate sensorimotor couplings is more important than applying the stimulation to highly sensitive body parts. The observed advantage of practice without vision over practice with vision is interpreted in terms of the guidance hypothesis of feedback and learning. PMID:24901843
Applications of high power lasers. [using reflection holograms for machining and surface treatment
NASA Technical Reports Server (NTRS)
Angus, J. C.
1979-01-01
The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.
Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis
Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik
2017-01-01
One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply ‘pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production. PMID:28497791
Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis
NASA Astrophysics Data System (ADS)
Rozynek, Zbigniew; Han, Ming; Dutka, Filip; Garstecki, Piotr; Józefczak, Arkadiusz; Luijten, Erik
2017-05-01
One-dimensional conductive particle assembly holds promise for a variety of practical applications, in particular for a new generation of electronic devices. However, synthesis of such chains with programmable shapes outside a liquid environment has proven difficult. Here we report a route to simply `pull' flexible granular and colloidal chains out of a dispersion by combining field-directed assembly and capillary effects. These chains are automatically stabilized by liquid bridges formed between adjacent particles, without the need for continuous energy input or special particle functionalization. They can further be deposited onto any surface and form desired conductive patterns, potentially applicable to the manufacturing of simple electronic circuits. Various aspects of our route, including the role of particle size and the voltages needed, are studied in detail. Looking towards practical applications, we also present the possibility of two-dimensional writing, rapid solidification of chains and methods to scale up chain production.
Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng
2015-09-30
Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.
NASA Astrophysics Data System (ADS)
Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.
2012-07-01
Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.
Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping
NASA Astrophysics Data System (ADS)
Lee, Sanghyun; Kim, Hojin; Lee, Wonhyung; Kim, Joonwon
2018-12-01
This study presents a finger-triggered portable polydimethylsiloxane suction cup that enables equipment-free microfluidic pumping. The key feature of this method is that its operation only involves a "pressing-and-releasing" action for the cup placed at the outlet of a microfluidic device, which transports the fluid at the inlet toward the outlet through a microchannel. This method is simple, but effective and powerful. The cup is portable and can easily be fabricated from a three-dimensional printed mold, used without any pre-treatment, reversibly bonded to microfluidic devices without leakage, and applied to various material-based microfluidic devices. The effect of the suction cup geometry and fabrication conditions on the pumping performance was investigated. Furthermore, we demonstrated the practical applications of the suction cup by conducting an equipment-free pumping of thermoplastic-based microfluidic devices and water-in-oil droplet generation.
Quantum random number generation
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; ...
2016-06-28
Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less
Multilayered analog optical differentiating device: performance analysis on structural parameters.
Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui
2017-12-15
Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu
Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less
Main principles of developing exploitation models of semiconductor devices
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Simonova, A. V.
2018-05-01
The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.
DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.
Kumada, Hiroaki; Takada, Kenta; Sakurai, Yoshinori; Suzuki, Minoru; Takata, Takushi; Sakurai, Hideyuki; Matsumura, Akira; Sakae, Takeji
2017-10-26
To establish boron neutron capture therapy (BNCT), the University of Tsukuba is developing a treatment device and peripheral devices required in BNCT, such as a treatment planning system. We are developing a new multimodal Monte Carlo based treatment planning system (developing code: Tsukuba Plan). Tsukuba Plan allows for dose estimation in proton therapy, X-ray therapy and heavy ion therapy in addition to BNCT because the system employs PHITS as the Monte Carlo dose calculation engine. Regarding BNCT, several verifications of the system are being carried out for its practical usage. The verification results demonstrate that Tsukuba Plan allows for accurate estimation of thermal neutron flux and gamma-ray dose as fundamental radiations of dosimetry in BNCT. In addition to the practical use of Tsukuba Plan in BNCT, we are investigating its application to other radiation therapies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Staggers, Nancy; McCasky, Teresa; Brazelton, Nancy; Kennedy, Rosemary
2008-01-01
Nanotechnology promises to revolutionize manufactured materials as we know them, creating a vast array of new products, drug delivery devices, and monitoring mechanisms. The promise of these products and devices is tremendous. Likewise, the implications of this technology are immense, ranging across consumers, clinicians, and the practice of informatics. Specific implications include opportunities for education of health care consumers and clinicians about the safe and ethical use of nanomaterials, a requirement for new policies and regulations, potential radical role changes for both consumers and clinicians, and new demands in the practice of informatics. The most pressing concern for health applications is the safe use of nanomaterials. Given the promise of nanomaterials and the implications across at least these 3 areas, nurses need to understand the capabilities and limitations of nanomaterials, proceed with reasoned caution, and plan now for its wide-ranging impacts.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
Surface-enabled propulsion and control of colloidal microwheels.
Tasci, T O; Herson, P S; Neeves, K B; Marr, D W M
2016-01-04
Propulsion at the microscale requires unique strategies such as the undulating or rotating filaments that microorganisms have evolved to swim. These features however can be difficult to artificially replicate and control, limiting the ability to actuate and direct engineered microdevices to targeted locations within practical timeframes. An alternative propulsion strategy to swimming is rolling. Here we report that low-strength magnetic fields can reversibly assemble wheel-shaped devices in situ from individual colloidal building blocks and also drive, rotate and direct them along surfaces at velocities faster than most other microscale propulsion schemes. By varying spin frequency and angle relative to the surface, we demonstrate that microwheels can be directed rapidly and precisely along user-defined paths. Such in situ assembly of readily modified colloidal devices capable of targeted movements provides a practical transport and delivery tool for microscale applications, especially those in complex or tortuous geometries.
iMedEd: the role of mobile health technologies in medical education.
Gaglani, Shiv M; Topol, Eric J
2014-09-01
Mobile health (mHealth) technologies have experienced a recent surge in attention because of their potential to transform the delivery of health care. This enthusiasm is partly due to the near ubiquity of smartphones and tablets among clinicians, as well as to the stream of mobile medical apps and devices being created. While much discussion has been devoted to how these tools will impact the practice of medicine, surprisingly little has been written on the role these technologies will play in medical education. In this commentary the authors describe the opportunities, applications, and challenges of mHealth apps and devices in medical education and argue that medical schools should make efforts to integrate these technologies into their curricula. By not doing so, medical educators risk producing a generation of clinicians underprepared for the changing realities of medical practice brought on by mHealth technologies.
Surface-enabled propulsion and control of colloidal microwheels
Tasci, T. O.; Herson, P. S.; Neeves, K. B.; Marr, D. W. M.
2016-01-01
Propulsion at the microscale requires unique strategies such as the undulating or rotating filaments that microorganisms have evolved to swim. These features however can be difficult to artificially replicate and control, limiting the ability to actuate and direct engineered microdevices to targeted locations within practical timeframes. An alternative propulsion strategy to swimming is rolling. Here we report that low-strength magnetic fields can reversibly assemble wheel-shaped devices in situ from individual colloidal building blocks and also drive, rotate and direct them along surfaces at velocities faster than most other microscale propulsion schemes. By varying spin frequency and angle relative to the surface, we demonstrate that microwheels can be directed rapidly and precisely along user-defined paths. Such in situ assembly of readily modified colloidal devices capable of targeted movements provides a practical transport and delivery tool for microscale applications, especially those in complex or tortuous geometries. PMID:26725747
Schwartz, Christopher; Sarlette, Ralf; Weinmann, Michael; Rump, Martin; Klein, Reinhard
2014-04-28
Understanding as well as realistic reproduction of the appearance of materials play an important role in computer graphics, computer vision and industry. They enable applications such as digital material design, virtual prototyping and faithful virtual surrogates for entertainment, marketing, education or cultural heritage documentation. A particularly fruitful way to obtain the digital appearance is the acquisition of reflectance from real-world material samples. Therefore, a great variety of devices to perform this task has been proposed. In this work, we investigate their practical usefulness. We first identify a set of necessary attributes and establish a general categorization of different designs that have been realized. Subsequently, we provide an in-depth discussion of three particular implementations by our work group, demonstrating advantages and disadvantages of different system designs with respect to the previously established attributes. Finally, we survey the existing literature to compare our implementation with related approaches.
14 CFR 61.64 - Use of a flight simulator and flight training device.
Code of Federal Regulations, 2012 CFR
2012-01-01
... helicopter is not used during the practical test for a type rating in a helicopter (except for preflight... and the applicant must meet one of the following requirements— (1) Hold a type rating in a helicopter... appointed by the U.S. Armed Forces as pilot in command of a helicopter; (3) Have 500 hours of flight time in...
How Do K-12 Students' Manage Applications on Their Mobile Devices?
ERIC Educational Resources Information Center
Aladjem, Ruthi; Hardof, Sharon
2016-01-01
Personal information management (PIM) is a research field that examines the activities by which users save, organize and retrieve personal information items. PIM is a one of the essential new literacies for learners in the 21st century. This paper reports results from a pilot study that explored PIM practices and strategies of K-12 students, on…
2009-03-01
utilizing a radioisotope, polonium - 210 , the advent of a practical use TEG launched the development and array of applications for such devices. Rapidly...47 1. Seebeck Effect ...............................47 2. Principles of Operation ......................48...UltraCell XX25 Fuel Cell (From UltraCell Corporation)....................................59 Figure 13. Effect of CO on PEMFC (From Baschuk and Li 2001
Can Robots Help the Learning of Skilled Actions?
Reinkensmeyer, David J.; Patton, James L.
2010-01-01
Learning to move skillfully requires that the motor system adjusts muscle commands based on ongoing performance errors, a process influenced by the dynamics of the task being practiced. Recent experiments from our laboratories show how robotic devices can temporarily alter task dynamics in ways that contribute to the motor learning experience, suggesting possible applications in rehabilitation and sports training. PMID:19098524
Dual-color single-mode lasing in axially coupled organic nanowire resonators
Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng
2017-01-01
Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731
NASA Astrophysics Data System (ADS)
Stieglitz, Thomas
2009-05-01
Implantable medical devices to interface with muscles, peripheral nerves, and the brain have been developed for many applications over the last decades. They have been applied in fundamental neuroscientific studies as well as in diagnosis, therapy and rehabilitation in clinical practice. Success stories of these implants have been written with help of precision mechanics manufacturing techniques. Latest cutting edge research approaches to restore vision in blind persons and to develop an interface with the human brain as motor control interface, however, need more complex systems and larger scales of integration and higher degrees of miniaturization. Microsystems engineering offers adequate tools, methods, and materials but so far, no MEMS based active medical device has been transferred into clinical practice. Silicone rubber, polyimide, parylene as flexible materials and silicon and alumina (aluminum dioxide ceramics) as substrates and insulation or packaging materials, respectively, and precious metals as electrodes have to be combined to systems that do not harm the biological target structure and have to work reliably in a wet environment with ions and proteins. Here, different design, manufacturing and packaging paradigms will be presented and strengths and drawbacks will be discussed in close relation to the envisioned biological and medical applications.
Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon
2014-03-25
Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.
Cai, Jinguang; Lv, Chao; Watanabe, Akira
2018-01-10
Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.
Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2018-01-01
One major challenge for wearable electronics is that the state-of-the-art batteries are inadequate to provide sufficient energy for long-term operations, leading to inconvenient battery replacement or frequent recharging. Other than the pursuit of high energy density of secondary batteries, an alternative approach recently drawing intensive attention from the research community, is to integrate energy-generation and energy-storage devices into self-charging power systems (SCPSs), so that the scavenged energy can be simultaneously stored for sustainable power supply. This paper reviews recent developments in SCPSs with the integration of various energy-harvesting devices (including piezoelectric nanogenerators, triboelectric nanogenerators, solar cells, and thermoelectric nanogenerators) and energy-storage devices, such as batteries and supercapacitors. SCPSs with multiple energy-harvesting devices are also included. Emphasis is placed on integrated flexible or wearable SCPSs. Remaining challenges and perspectives are also examined to suggest how to bring the appealing SCPSs into practical applications in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autonomous Landmark Calibration Method for Indoor Localization
Kim, Jae-Hoon; Kim, Byoung-Seop
2017-01-01
Machine-generated data expansion is a global phenomenon in recent Internet services. The proliferation of mobile communication and smart devices has increased the utilization of machine-generated data significantly. One of the most promising applications of machine-generated data is the estimation of the location of smart devices. The motion sensors integrated into smart devices generate continuous data that can be used to estimate the location of pedestrians in an indoor environment. We focus on the estimation of the accurate location of smart devices by determining the landmarks appropriately for location error calibration. In the motion sensor-based location estimation, the proposed threshold control method determines valid landmarks in real time to avoid the accumulation of errors. A statistical method analyzes the acquired motion sensor data and proposes a valid landmark for every movement of the smart devices. Motion sensor data used in the testbed are collected from the actual measurements taken throughout a commercial building to demonstrate the practical usefulness of the proposed method. PMID:28837071
NASA Astrophysics Data System (ADS)
Jiang, Chenyang; Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao; Ichiki, Takanori
2015-06-01
Implementation of shape-memory polymer (SMP) sheet-based microvalves into plastic-based microfluidic devices has been studied toward the use in disposable and mass producible micro total analysis devices. Poly(ε-caprolactone) (PCL) and poly(methyl methacrylate-co-styrene) (MS) were used as SMP and main substrate materials, respectively. Bonding between PCL sheets and MS plates was the critical issue in the practical implementation. We found the pristine PCL sheet has relatively rough surface with Ra of 85.14 nm, which is the cause of poor bonding. Hence, by introducing the post-anneal treatment with sandwiched between two flat glass plates, the PCL surface could be smoothed to Ra of 12.50 nm, and tight bonding could be obtained. Consequently, microfluidic devices consisting of plastic/PCL/plastic layers were successfully fabricated and therein the actuation of SMP valves without any leakage was demonstrated. The present technology is expected to be applicable to disposable microfluidic devices as required for point-of-care testing.
Vertical power MOS transistor as a thermoelectric quasi-nanowire device
NASA Astrophysics Data System (ADS)
Roizin, Gregory; Beeri, Ofer; Peretz, Mor Mordechai; Gelbstein, Yaniv
2016-12-01
Nano-materials exhibit superior performance over bulk materials in a variety of applications such as direct heat to electricity thermoelectric generators (TEGs) and many more. However, a gap still exists for the integration of these nano-materials into practical applications. This study explores the feasibility of utilizing the advantages of nano-materials' thermo-electric properties, using regular bulk technology. Present-day TEGs are often applied by dedicated thermoelectric materials such as semiconductor alloys (e.g., PbTe, BiTe) whereas the standard semiconductor materials such as the doped silicon have not been widely addressed, with limited exceptions of nanowires. This study attempts to close the gap between the nano-materials' properties and the well-established bulk devices, approached for the first time by exploiting the nano-metric dimensions of the conductive channel in metal-oxide-semiconductor (MOS) structures. A significantly higher electrical current than expected from a bulk silicon device has been experimentally measured as a result of the application of a positive gate voltage and a temperature gradient between the "source" and the "drain" terminals of a commercial NMOS transistor. This finding implies on a "quasi-nanowire" behaviour of the transistor channel, which can be easily controlled by the transistor's gate voltage that is applied. This phenomenon enables a considerable improvement of silicon based TEGs, fabricated by traditional silicon technology. Four times higher ZT values (TEG quality factor) compared to conventional bulk silicon have been observed for an off-the-shelf silicon device. By optimizing the device, it is believed that even higher ZT values can be achieved.
Optimize Use of Space Research and Technology for Medical Devices
NASA Technical Reports Server (NTRS)
Minnifield, Nona K.
2012-01-01
systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.
The application of microwave photonic detection in quantum communication
NASA Astrophysics Data System (ADS)
Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi
2018-03-01
Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.
NASA Technical Reports Server (NTRS)
Wallace, Robert
1986-01-01
A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.
Development and practice of a Telehealthcare Expert System (TES).
Lin, Hanjun; Hsu, Yeh-Liang; Hsu, Ming-Shinn; Cheng, Chih-Ming
2013-07-01
Expert systems have been widely used in medical and healthcare practice for various purposes. In addition to vital sign data, important concerns in telehealthcare include the compliance with the measurement prescription, the accuracy of vital sign measurements, and the functioning of vital sign meters and home gateways. However, few expert system applications are found in the telehealthcare domain to address these issues. This article presents an expert system application for one of the largest commercialized telehealthcare practices in Taiwan by Min-Sheng General Hospital. The main function of the Telehealthcare Expert System (TES) developed in this research is to detect and classify events based on the measurement data transmitted to the database at the call center, including abnormality of vital signs, violation of vital sign measurement prescriptions, and malfunction of hardware devices (home gateway and vital sign meter). When the expert system detects an abnormal event, it assigns an "urgent degree" and alerts the nursing team in the call center to take action, such as phoning the patient for counseling or to urge the patient to return to the hospital for further tests. During 2 years of clinical practice, from 2009 to 2011, 19,182 patients were served by the expert system. The expert system detected 41,755 events, of which 22.9% indicated abnormality of vital signs, 75.2% indicated violation of measurement prescription, and 1.9% indicated malfunction of devices. On average, the expert system reduced by 76.5% the time that the nursing team in the call center spent in handling the events. The expert system helped to reduce cost and improve quality of the telehealthcare service.
Energy Efficient Graphene Based High Performance Capacitors.
Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo
2017-07-10
Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DeBuc, Delia Cabrera
2016-12-01
In the years since its introduction, retinal imaging has transformed our capability to visualize the posterior pole of the eye. Increasing practical advances in mobile technology, regular monitoring, and population screening for diabetic retinopathy management offer the opportunity for further development of cost-effective applications through remote assessment of the diabetic eye using portable retinal cameras, smart-phone-based devices and telemedicine networks. Numerous retinal imaging methods and mobile technologies in tele-ophthalmology applications have been reported for diabetic retinopathy screening and management. They provide several advantages of automation, sensitivity, specificity, portability, and miniaturization for the development of point-of-care diagnostics for eye complications in diabetes. The aim of this paper is to review the role of retinal imaging and mobile technologies in tele-ophthalmology applications for diabetic retinopathy screening and management. At large, although improvements in current technology and telemedicine services are still needed, telemedicine has demonstrated to be a worthy tool to support health caregivers in the effective management and prevention of diabetes and its complications.
Zhang, Hongbin; Man, Baoyuan; Zhang, Qi
2017-04-26
Due to the gapless surface state and narrow bulk band gap, the light absorption of topological crystalline insulators covers a broad spectrum ranging from terahertz to infrared, revealing promising applications in new generation optoelectronic devices. To date, the photodetectors based on topological insulators generally suffer from a large dark current and a weaker photocurrent especially under the near-infrared lights, which severely limits the practical application of devices. Owing to the lower excitation energy of infrared lights, the photodetection application of topological crystalline insulators in the near-infrared region relies critically on understanding the preparation and properties of their heterostructures. Herein, we fabricate the high-quality topological crystalline insulator SnTe film/Si vertical heterostructure by a simple physical vapor deposition process. The resultant heterostructure exhibits an excellent diode characteristic, enabling the construction of high-performance near-infrared photodetectors. The built-in electric field at SnTe/Si interface enhances the absorption efficiency of near-infrared lights and greatly facilitates the separation of photogenerated carriers, making the device capable of operating as a self-driven photodetector. The as-grown SnTe film acts as the hole transport layer in heterostructure photodetectors, promoting the transport of holes to electrode and reducing electron-hole recombination effectively. These merits enable the SnTe/Si heterostructure photodetector to have a high responsivity of 2.36 AW -1 , a high detectivity of 1.54 × 10 14 Jones, and a large bandwidth of 10 4 Hz in the near-infrared wavelength, which makes the detector have a promising market in novel device applications.
Biosensing with optical fiber gratings
NASA Astrophysics Data System (ADS)
Chiavaioli, Francesco; Baldini, Francesco; Tombelli, Sara; Trono, Cosimo; Giannetti, Ambra
2017-06-01
Optical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.
Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah
2018-01-01
Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate "Correct"/"Incorrect" feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a "Wizard of Oz" experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human "Wizard" will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children.
Doubé, Wendy; Carding, Paul; Flanagan, Kieran; Kaufman, Jordy; Armitage, Hannah
2018-01-01
Children with speech sound disorders benefit from feedback about the accuracy of sounds they make. Home practice can reinforce feedback received from speech pathologists. Games in mobile device applications could encourage home practice, but those currently available are of limited value because they are unlikely to elaborate “Correct”/”Incorrect” feedback with information that can assist in improving the accuracy of the sound. This protocol proposes a “Wizard of Oz” experiment that aims to provide evidence for the provision of effective multimedia feedback for speech sound development. Children with two common speech sound disorders will play a game on a mobile device and make speech sounds when prompted by the game. A human “Wizard” will provide feedback on the accuracy of the sound but the children will perceive the feedback as coming from the game. Groups of 30 young children will be randomly allocated to one of five conditions: four types of feedback and a control which does not play the game. The results of this experiment will inform not only speech sound therapy, but also other types of language learning, both in general, and in multimedia applications. This experiment is a cost-effective precursor to the development of a mobile application that employs pedagogically and clinically sound processes for speech development in young children. PMID:29674986
Motulsky, Aude; Wong, Jenna; Cordeau, Jean-Pierre; Pomalaza, Jorge; Barkun, Jeffrey; Tamblyn, Robyn
2017-04-01
To describe the usage of a novel application (The FLOW) that allows mobile devices to be used for rounding and handoffs. The FLOW provides a view of patient data and the capacity to enter short notes via personal mobile devices. It was deployed using a "bring-your-own-device" model in 4 pilot units. Social network analysis (SNA) was applied to audit trails in order to visualize usage patterns. A questionnaire was used to describe user experience. Overall, 253 health professionals used The FLOW with their personal mobile devices from October 2013 to March 2015. In pediatric and neonatal intensive care units (ICUs), a median of 26-26.5 notes were entered per user per day. Visual network representation of app entries showed that usage patterns were different between the ICUs. In 127 questionnaires (50%), respondents reported using The FLOW most often to enter notes and for handoffs. The FLOW was perceived as having improved patient care by 57% of respondents, compared to usual care. Most respondents (86%) wished to continue using The FLOW. This study shows how a handoff and rounding tool was quickly adopted in pediatric and neonatal ICUs in a hospital setting where patient charts were still paper-based. Originally developed as a tool to support informal documentation using smartphones, it was adapted to local practices and expanded to print sign-out documents and import notes within the medicolegal record with desktop computers. Interestingly, even if not supported by the nursing administrative authorities, the level of use for data entry among nurses and doctors was similar in all units, indicating close collaboration in documentation practices in these ICUs. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
From micro to nano contacts in biological attachment devices
Arzt, Eduard; Gorb, Stanislav; Spolenak, Ralph
2003-01-01
Animals with widely varying body weight, such as flies, spiders, and geckos, can adhere to and move along vertical walls and even ceilings. This ability is caused by very efficient attachment mechanisms in which patterned surface structures interact with the profile of the substrate. An extensive microscopic study has shown a strong inverse scaling effect in these attachment devices. Whereas μm dimensions of the terminal elements of the setae are sufficient for flies and beetles, geckos must resort to sub-μm devices to ensure adhesion. This general trend is quantitatively explained by applying the principles of contact mechanics, according to which splitting up the contact into finer subcontacts increases adhesion. This principle is widely spread in design of natural adhesive systems and may also be transferred into practical applications. PMID:12960386
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-11-22
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.
High-density magnetoresistive random access memory operating at ultralow voltage at room temperature
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-01-01
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527
Usability evaluation of mobile applications; where do we stand?
NASA Astrophysics Data System (ADS)
Zahra, Fatima; Hussain, Azham; Mohd, Haslina
2017-10-01
The range and availability of mobile applications is expanding rapidly. With the increased processing power available on portable devices, developers are increasing the range of services by embracing smartphones in their extensive and diverse practices. While usability testing and evaluations of mobile applications have not yet touched the accuracy level of other web based applications. The existing usability models do not adequately capture the complexities of interacting with applications on a mobile platform. Therefore, this study aims to presents review on existing usability models for mobile applications. These models are in their infancy but with time and more research they may eventually be adopted. Moreover, different categories of mobile apps (medical, entertainment, education) possess different functional and non-functional requirements thus customized models are required for diverse mobile applications.
78 FR 12068 - Device Good Manufacturing Practice Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Device Good Manufacturing Practice Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Device Good Manufacturing Practice Advisory Committee. General Function of the Committee: To...
Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong
2016-02-21
Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.
Practical experimental certification of computational quantum gates using a twirling procedure.
Moussa, Osama; da Silva, Marcus P; Ryan, Colm A; Laflamme, Raymond
2012-08-17
Because of the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3-qubit code with only a 1% degradation in average fidelity discounting preparation and measurement errors. We also highlight one of the advances that was instrumental in achieving such high fidelity control.
MRI-powered biomedical devices.
Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-16
Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.
Sader, John E; Sanelli, Julian; Hughes, Barry D; Monty, Jason P; Bieske, Evan J
2011-09-01
The thermal noise spectrum of nanomechanical devices is commonly used to characterize their mechanical properties and energy dissipation. This spectrum is measured from finite time series of Brownian motion of the device, which is windowed and Fourier transformed. Here, we present a theoretical and experimental investigation of the effect of such finite sampling on the measured device quality factor. We prove that if no spectral window is used, the thermal noise spectrum retains its original Lorentzian distribution but with a reduced quality factor, indicating an apparent enhancement in energy dissipation. A simple analytical formula is derived connecting the true and measured quality factors - this enables extraction of the true device quality factor from measured data. Common windows used to reduce spectral leakage are found to distort the (true) Lorentzian shape, potentially making fitting problematic. These findings are expected to be of particular importance for devices with high quality factors, where spectral resolution can be limited in practice. Comparison and validation using measurements on atomic force microscope cantilevers are presented. © 2011 American Institute of Physics
Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo
2013-01-01
We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.
Cone beam computed tomography: basics and applications in dentistry.
Venkatesh, Elluru; Elluru, Snehal Venkatesh
2017-01-01
The introduction of cone beam computed tomography (CBCT) devices, changed the way oral and maxillofacial radiology is practiced. CBCT was embraced into the dental settings very rapidly due to its compact size, low cost, low ionizing radiation exposure when compared to medical computed tomography. Alike medical CT, 3 dimensional evaluation of the maxillofacial region with minimal distortion is offered by the CBCT. This article provides an overview of basics of CBCT technology and reviews the specific application of CBCT technology to oral and maxillofacial region with few illustrations.
Mobile Technology Applications in Cancer Palliative Care.
Freire de Castro Silva, Sandro Luís; Gonçalves, Antônio Augusto; Cheng, Cezar; Fernandes Martins, Carlos Henrique
2018-01-01
Mobile devices frequently used in other specialties can find great utility in palliative care. For healthcare professionals, the use of mobile technology not only can bring additional resources to the care, but it can actually radically change the cancer remote care practices. The Brazilian National Cancer Institute (INCA) has developed the largest cancer home care program in Latin America, which currently benefits more than 500 patients. The purpose of this paper is to show the development of an ICT environment of mobile applications developed to support the palliative cancer care program at INCA.
Maezawa, Shun-ya; Watanabe, Hiroshi; Takeda, Masahiro; Kuroda, Kenta; Someya, Takashi; Matsuda, Iwao; Suemoto, Tohru
2015-01-01
Ultrafast infrared photoluminescence spectroscopy was applied to a three-dimensional topological insulator TlBiSe2 under ambient conditions. The dynamics of the luminescence exhibited bulk-insulating and gapless characteristics bounded by the bulk band gap energy. The existence of the topologically protected surface state and the picosecond-order relaxation time of the surface carriers, which was distinguishable from the bulk response, were observed. Our results provide a practical method applicable to topological insulators under ambient conditions for device applications. PMID:26552784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimeng; Zhang, Xinping, E-mail: Zhangxinping@bjut.edu.cn; Zhang, Jian
We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.
Alkali metal vapors - Laser spectroscopy and applications
NASA Technical Reports Server (NTRS)
Stwalley, W. C.; Koch, M. E.
1980-01-01
The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... Representatives on the Device Good Manufacturing Practice Advisory Committee AGENCY: Food and Drug Administration... Device Good Manufacturing Practice Advisory Committee (DGMPAC) in the Center for Devices and Radiological... regarding good manufacturing practices governing the methods used in, and the facilities and controls used...
Paper-Based Quantification of Male Fertility Potential.
Nosrati, Reza; Gong, Max M; San Gabriel, Maria C; Pedraza, Claudio E; Zini, Armand; Sinton, David
2016-03-01
More than 70 million couples worldwide are affected by infertility, with male-factor infertility accounting for about half of the cases. Semen analysis is critical for determining male fertility potential, but conventional testing is costly and complex. Here, we demonstrate a paper-based microfluidic approach to quantify male fertility potential, simultaneously measuring 3 critical semen parameters in 10 min: live and motile sperm concentrations and sperm motility. The device measures the colorimetric change of yellow tetrazolium dye to purple formazan by the diaphorase flavoprotein enzyme present in metabolically active human sperm to quantify live and motile sperm concentration. Sperm motility was determined as the ratio of motile to live sperm. We assessed the performance of the device by use of clinical semen samples, in parallel with standard clinical approaches. Detection limits of 8.46 and 15.18 million/mL were achieved for live and motile sperm concentrations, respectively. The live and motile sperm concentrations and motility values from our device correlated with those of the standard clinical approaches (R(2) ≥ 0.84). In all cases, our device provided 100% agreement in terms of clinical outcome. The device was also robust and could tolerate conditions of high absolute humidity (22.8 g/m(3)) up to 16 weeks when packaged with desiccant. Our device outperforms existing commercial paper-based assays by quantitatively measuring live and motile sperm concentrations and motility, in only 10 min. This approach is applicable to current clinical practices as well as self-diagnostic applications. © 2015 American Association for Clinical Chemistry.
Microbial fuel cells for biosensor applications.
Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue
2015-12-01
Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R
2015-12-15
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A , 1985, 2 .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
NASA Astrophysics Data System (ADS)
Khim Chng, Elaine Lay; Zhao, Guanjia; Pumera, Martin
2014-01-01
Recent advances in nanotechnology have led to the evolution of self-propelled, artificial nano/microjet motors. These intelligent devices are considered to be the next generation self-powered drug delivery system in the field of biomedical applications. While many studies have strived to further improve the various properties of these devices such as their efficiency, performance and power, little attention has been paid to the actual biocompatibility of nanojets in vivo. In this paper, we will present for the first time the investigation of the toxicity effects of nanojets on the viability of human lung epithelial cells (A549 cells). From the 24 h and 48 h post-exposure studies, it is clearly shown that the nanojets we used in our work has negligible influence on the cell viability across all the concentrations tested. As such, the toxicity profile of our nanojets have been shown to be neither dose- nor time-dependent. This is strongly indicative of the benign nature of our nanojets, which is of paramount significance as it is the first step towards the applications of nano/micromotors in real-world practical medical devices.
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging
NASA Astrophysics Data System (ADS)
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.
2015-12-01
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa
2015-01-01
In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566
Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics
NASA Astrophysics Data System (ADS)
Secor, Ethan Benjamin
Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.
Proposal of a method for the evaluation of inaccuracy of home sphygmomanometers.
Akpolat, Tekin
2009-10-01
There is no formal protocol for evaluating the individual accuracy of home sphygmomanometers. The aims of this study were to propose a method for achieving accuracy in automated home sphygmomanometers and to test the applicability of the defined method. The purposes of this method were to avoid major inaccuracies and to estimate the optimal circumstance for individual accuracy. The method has three stages and sequential measurement of blood pressure is used. The tested devices were categorized into four groups: accurate, acceptable, inaccurate and very inaccurate (major inaccuracy). The defined method takes approximately 10 min (excluding relaxation time) and was tested on three different occasions. The application of the method has shown that inaccuracy is a common problem among non-tested devices, that validated devices are superior to those that are non-validated or whose validation status is unknown, that major inaccuracy is common, especially in non-tested devices and that validation does not guarantee individual accuracy. A protocol addressing the accuracy of a particular sphygmomanometer in an individual patient is required, and a practical method has been suggested to achieve this. This method can be modified, but the main idea and approach should be preserved unless a better method is proposed. The purchase of validated devices and evaluation of accuracy for the purchased device in an individual patient will improve the monitoring of self-measurement of blood pressure at home. This study addresses device inaccuracy, but errors related to the patient, observer or blood pressure measurement technique should not be underestimated, and strict adherence to the manufacturer's instructions is essential.
Replicated Composite Optics Development
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell
1997-01-01
Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in ten-ns of fine surface finish and figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicate optic is not better than the master or mandrel from which it is made. This task is a continuance of previous studies to identify methods and materials for forming these extremely low roughness optical components.
Bulleit, T N; Krause, J H
1999-01-01
This article summarizes the purposes and history of the antikickback law and describes its evolution into a potent weapon against the corruption of medical decision making in the procurement of prescription drugs and medical devices. The article also details a variety of strategies for reducing risks under the law in several key areas of importance to manufacturers. While the purposes of the law are laudable, its current broad interpretation may impede not only corruption, but also benign forms of customer relations and innovative approaches to cost-effective medical care.
Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
NASA Astrophysics Data System (ADS)
Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun
2018-05-01
We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.
Basics of Lasers: History, Physics, and Clinical Applications.
Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O
2016-07-01
Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice). Copyright © 2016 Elsevier Inc. All rights reserved.
Technological inductive power transfer systems
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Nemkov, Valentin S.
2017-05-01
Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs
Device-Free Passive Identity Identification via WiFi Signals.
Lv, Jiguang; Yang, Wu; Man, Dapeng
2017-11-02
Device-free passive identity identification attracts much attention in recent years, and it is a representative application in sensorless sensing. It can be used in many applications such as intrusion detection and smart building. Previous studies show the sensing potential of WiFi signals in a device-free passive manner. It is confirmed that human's gait is unique from each other similar to fingerprint and iris. However, the identification accuracy of existing approaches is not satisfactory in practice. In this paper, we present Wii, a device-free WiFi-based Identity Identification approach utilizing human's gait based on Channel State Information (CSI) of WiFi signals. Principle Component Analysis (PCA) and low pass filter are applied to remove the noises in the signals. We then extract several entities' gait features from both time and frequency domain, and select the most effective features according to information gain. Based on these features, Wii realizes stranger recognition through Gaussian Mixture Model (GMM) and identity identification through a Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. It is implemented using commercial WiFi devices and evaluated on a dataset with more than 1500 gait instances collected from eight subjects walking in a room. The results indicate that Wii can effectively recognize strangers and can achieves high identification accuracy with low computational cost. As a result, Wii has the potential to work in typical home security systems.
Device-Free Passive Identity Identification via WiFi Signals
Yang, Wu; Man, Dapeng
2017-01-01
Device-free passive identity identification attracts much attention in recent years, and it is a representative application in sensorless sensing. It can be used in many applications such as intrusion detection and smart building. Previous studies show the sensing potential of WiFi signals in a device-free passive manner. It is confirmed that human’s gait is unique from each other similar to fingerprint and iris. However, the identification accuracy of existing approaches is not satisfactory in practice. In this paper, we present Wii, a device-free WiFi-based Identity Identification approach utilizing human’s gait based on Channel State Information (CSI) of WiFi signals. Principle Component Analysis (PCA) and low pass filter are applied to remove the noises in the signals. We then extract several entities’ gait features from both time and frequency domain, and select the most effective features according to information gain. Based on these features, Wii realizes stranger recognition through Gaussian Mixture Model (GMM) and identity identification through a Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. It is implemented using commercial WiFi devices and evaluated on a dataset with more than 1500 gait instances collected from eight subjects walking in a room. The results indicate that Wii can effectively recognize strangers and can achieves high identification accuracy with low computational cost. As a result, Wii has the potential to work in typical home security systems. PMID:29099091
Ciani, Oriana; Wilcher, Britni; van Giessen, Anoukh; Taylor, Rod S
2017-02-01
Much criticism has been directed at the licencing requirements for medical devices (MDs) as they often result in a lack of robust evidence to inform health technology assessment (HTA) decisions. To better understand the current international decisional framework on MD technologies, we undertook three linked research studies: a review of the device regulatory procedures, a survey of current HTA practices and an empirical comparison of HTA reports of drugs versus MDs. Our review confirms that current device regulatory processes across the globe are substantially less stringent than drugs. As a result, international HTA agencies report that they face a number of challenges when assessing MDs, including reliance on suboptimal data to make clinical and cost-effectiveness decisions. Whilst many HTA agencies have adapted their processes and procedures to handle MD technology submissions, in our comparison of HTA reports we found little evidence of the application of methodologies that take account of device-specific issues, such as incremental development. Overall, our research reinforces the need for better linkage between licencing and HTA and the development and application of innovative HTA methodologies with the objective of securing faster patient access for those technologies that can be shown to represent good value for money. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd. © 2017 The Authors. Health Economics Published by John Wiley & Sons, Ltd.
Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa
2016-04-13
We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.
Tsai, Ming-Yen; Chen, Shih-Yu; Lin, Chung-Chun
2017-04-01
The Meridian Energy Analysis Device is currently a popular tool in the scientific research of meridian electrophysiology. In this field, it is generally believed that measuring the electrical conductivity of meridians provides information about the balance of bioenergy or Qi-blood in the body. PubMed database based on some original articles from 1956 to 2014 and the authoŕs clinical experience. In this short communication, we provide clinical examples of Meridian Energy Analysis Device application, especially in the field of traditional Chinese medicine, discuss the reliability of the measurements, and put the values obtained into context by considering items of considerable variability and by estimating sample size. The Meridian Energy Analysis Device is making a valuable contribution to the diagnosis of Qi-blood dysfunction. It can be assessed from short-term and long-term meridian bioenergy recordings. It is one of the few methods that allow outpatient traditional Chinese medicine diagnosis, monitoring the progress, therapeutic effect and evaluation of patient prognosis. The holistic approaches underlying the practice of traditional Chinese medicine and new trends in modern medicine toward the use of objective instruments require in-depth knowledge of the mechanisms of meridian energy, and the Meridian Energy Analysis Device can feasibly be used for understanding and interpreting traditional Chinese medicine theory, especially in view of its expansion in Western countries.
Thin film resonator technology.
Lakin, Kenneth M
2005-05-01
Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.
NASA Astrophysics Data System (ADS)
Thoma, Jean Ulrich
The fundamental principles and applications of the bond graph method, in which a system is represented on paper by letter elements and their interconnections (bonds), are presented in an introduction for engineering students. Chapters are devoted to simulation and graphical system models; bond graphs as networks for power and signal exchange; the simulation and design of mechanical engineering systems; the simulation of fluid power systems and hydrostatic devices; electrical circuits, drives, and components; practical procedures and problems of bond-graph-based numerical simulation; and applications to thermodynamics, chemistry, and biology. Also included are worked examples of applications to robotics, shocks and collisions, ac circuits, hydraulics, and a hydropneumatic fatigue-testing machine.
Saunders, A B; Keefe, L; Birch, S A; Wierzbicki, M A; Maitland, D J
2017-06-01
The purpose of this study was to evaluate a canine patent ductus arteriosus (PDA) model developed for practicing device placement and to determine practices and perceptions regarding transcatheter closure of PDA from the veterinary cardiology community. A silicone model was developed from images obtained from a dog with a PDA and device placement was performed with catheter equipment and a document camera to simulate fluoroscopy. A total of 36 individuals including 24 diplomates and 12 residents participated, and the feedback was obtained. The study included an initial questionnaire, practice with the model, observation of device placement using the model, and a follow-up questionnaire. A total of 92% of participants including 100% of residents indicated they did not have the opportunity to practice device placement before performing the procedure and obtained knowledge of the procedure from reading journal articles or observation. Participants indicated selecting the appropriate device size (30/36, 83%) and ensuring the device is appropriately positioned before release (18/36, 50%) as the most common areas of difficulty with device placement. Confidence level was higher after practicing with the model for residents when compared with diplomates and for participants that had performed 1-15 procedures when compared with those that had performed >15 procedures. These findings suggest those that have performed fewer procedures may benefit the most from practicing with a model. This preliminary study demonstrates the feasibility of a PDA model for practicing device placement and suggests that there is a potential benefit from providing additional training resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation of the feasibility of a small scale transmutation device
NASA Astrophysics Data System (ADS)
Sit, Roger Carson
This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long-lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of < 1 year can be achieved with a four orders magnitude increase in the on-target flux; (6) the ideal neutron energy spectra for transmuting actinides is highly dependent on the particular radionuclide and its fission-to-capture ratio as they determine the generationrate of other actinides; and (7) the methodology developed in this dissertation provides a mechanism that can be used for studying the feasibility of transmuting other radionuclides, and its application can be extended to studying the production of radionuclides of interest in a transmutation process. Although large-scale transmutation technology is presently being researched world-wide for spent fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.
MEMS for Practical Applications
NASA Astrophysics Data System (ADS)
Esashi, Masayoshi
Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.
NASA Technical Reports Server (NTRS)
1972-01-01
Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.
Functional flexible and wearable supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Yan; Zhi, Chunyi
2017-07-01
Substantial effort has been devoted to endowing flexible and wearable supercapacitors with desirable functions and solving urgent concerns regarding their practical application, particularly materials selection, air permeability, self-healability, shape memory, integration, and modularization. This gives rise to challenges with regard to both suitable materials and device fabrication. This review highlights the current state-of-the-art of these supercapacitors pertinent to materials, fabrication strategies, and performance. Challenges and solutions are also discussed to further improve their practicality. The aim of this review is to make a timely summary of this emerging field and discuss future opportunities and challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzuang, C.K.C.
1986-01-01
Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.
Palta, Jatinder R; Liu, Chihray; Li, Jonathan G
2008-01-01
The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.
Enabling personalized implant and controllable biosystem development through 3D printing.
Nagarajan, Neerajha; Dupret-Bories, Agnes; Karabulut, Erdem; Zorlutuna, Pinar; Vrana, Nihal Engin
The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques. Copyright © 2018 Elsevier Inc. All rights reserved.
Intrinsically shunted Josephson junctions for electronics applications
NASA Astrophysics Data System (ADS)
Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.
2017-07-01
Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.
A Systematic Review of Electric-Acoustic Stimulation
Ching, Teresa Y. C.; Cowan, Robert
2013-01-01
Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259
Electronic medical devices: a primer for pathologists.
Weitzman, James B
2003-07-01
Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.
Practical Issues of Wireless Mobile Devices Usage with Downlink Optimization
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej; Janckulik, Dalibor; Motalova, Leona
Mobile device makers produce tens of new complex mobile devices per year to put users a special mobile device with a possibility to do anything, anywhere, anytime. These devices can operate full scale applications with nearly the same comfort as their desktop equivalents only with several limitations. One of such limitation is insufficient download on wireless connectivity in case of the large multimedia files. Main area of paper is in a possibilities description of solving this problem as well as the test of several new mobile devices along with server interface tests and common software descriptions. New devices have a full scale of wireless connectivity which can be used not only to communication with outer land. Several such possibilities of use are described. Mobile users will have also an online connection to internet all time powered on. Internet is mainly the web pages but the web services use is still accelerate up. The paper deal also with a possibility of maximum user amounts to have a connection at same time to current server type. At last the new kind of database access - Linq technology is compare to ADO.NET in response time meaning.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2002-01-01
A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.
NASA Astrophysics Data System (ADS)
Oyarbide, E.; Bernal, C.; Molina, P.; Jiménez, L. A.; Gálvez, R.; Martínez, A.
2016-01-01
Ultracapacitors are low voltage devices and therefore, for practical applications, they need to be used in modules of series-connected cells. Because of the inherent manufacturing tolerance of the capacitance parameter of each cell, and as the maximum voltage value cannot be exceeded, the module requires inter-cell voltage equalization. If the intended application suffers repeated fast charging/discharging cycles, active equalization circuits must be rated to full power, and thus the module becomes expensive. Previous work shows that a series connection of several sets of paralleled ultracapacitors minimizes the dispersion of equivalent capacitance values, and also the voltage differences between capacitors. Thus the overall life expectancy is improved. This paper proposes a method to distribute ultracapacitors with a number partitioning-based strategy to reduce the dispersion between equivalent submodule capacitances. Thereafter, the total amount of stored energy and/or the life expectancy of the device can be considerably improved.
High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qian; Wang, Yonggang; Pan, Weicheng
Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less
Three-terminal quantum-dot thermal management devices
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan
2017-04-01
We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.
Metalenses based on the non-parallel double-slit arrays
NASA Astrophysics Data System (ADS)
Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian
2017-09-01
Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.
Energy harvesting for human wearable and implantable bio-sensors.
Mitcheson, Paul D
2010-01-01
There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.
Extension of spectral range of Peltier cooled photodetectors to 16 μm
NASA Astrophysics Data System (ADS)
Piotrowski, A.; Piotrowski, J.; Gawron, W.; Pawluczyk, J.; Pedzinska, M.
2009-05-01
We have developed various types of photodetectors operating without cryocooling. Initially, the devices were mostly used for uncooled detection of CO2 laser radiation. Over the years the performance and speed of response has been steadily improved. At present the uncooled or Peltier cooled photodetectors can be used for sensitive and fast response detection in the MWIR and LWIR spectral range. The devices have found important applications in IR spectrometry, quantum cascade laser based gas analyzers, laser radiation alerters and many other IR systems. Recent efforts were concentrated on the extension of useful spectral range to >13 μm, as required for its application in FTIR spectrometers. This was achieved with improved design of the active elements, use of monolithic optical immersion technology, enhanced absorption of radiation, dedicated electronics, series connection of small cells in series, and last but not least, applying more efficient Peltier coolers. Practical devices are based on the complex HgCdTe heterostructures grown on GaAs substrates with MOCVD technique with immersion lens formed by micromachining in the GaAs substrates. The results are very encouraging. The devices cooled with miniature 4 stage Peltier coolers mounted in TO-8 style housings show significant response at wavelength exceeding 16 μm.
Printable thermoelectric devices and conductive patterns for medical applications
NASA Astrophysics Data System (ADS)
Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.
2012-10-01
Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.
A stable and convenient protein electrophoresis titration device with bubble removing system.
Zhang, Qiang; Fan, Liu-Yin; Li, Wen-Lin; Cong, Feng-Song; Zhong, Ran; Chen, Jing-Jing; He, Yu-Chen; Xiao, Hua; Cao, Cheng-Xi
2017-07-01
Moving reaction boundary titration (MRBT) has a potential application to immunoassay and protein content analysis with high selectivity. However, air bubbles often impair the accuracy of MRBT, and the leakage of electrolyte greatly decreases the safety and convenience of electrophoretic titration. Addressing these two issues a reliable MRBT device with modified electrolyte chamber of protein titration was designed. Multiphysics computer simulation was conducted for optimization according to two-phase flow. The single chamber was made of two perpendicular cylinders with different diameters. After placing electrophoretic tube, the resident air in the junction next to the gel could be eliminated by a simple fast electrolyte flow. Removing the electrophoretic tube automatically prevented electrolyte leakage at the junction due to the gravity-induced negative pressure within the chamber. Moreover, the numerical simulation and experiments showed that the improved MRBT device has following advantages: (i) easy and rapid setup of electrophoretic tube within 20 s; (ii) simple and quick bubble dissipates from the chamber of titration within 2 s; (iii) no electrolyte leakage from the two chambers: and (iv) accurate protein titration and safe instrumental operation. The developed technique and apparatus greatly improves the performance of the previous MRBT device, and providing a new route toward practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices.
Chen, Shan; Shi, Gaoquan
2017-06-01
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non-radiative charge recombination. Thus, they are attractive photoactive materials for developing high-performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite-based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two-dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite-based photodetectors, solar cells and light-emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono- and few-layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden-Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of high-performance printed organic field-effect transistors and integrated circuits.
Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young
2015-10-28
Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.
A force compliant surgical robotic tool with IPMC actuator and integrated sensing
NASA Astrophysics Data System (ADS)
Fu, Lixue; McDaid, Andrew J.; Aw, Kean C.
2013-08-01
A robotic surgical device, actuated by Ionic Polymer-metal Composite (IPMC), integrated with a strain gauge to achieve force control is proposed. Test results have proved the capabilities of this device to conduct surgical procedures. The recent growth of patient acceptance and demand for robotic aided surgery has stimulated the progress of research where in many applications the performance has been proven to surpass human surgeons. A new area which uses the inherently force compliant and back-drivable properties of polymers, IPMC in this case, has shown its potential to undertake precise surgical procedures in delicate environments of medical practice. This is because IPMCs have similar actuation characteristics to real biological systems ensuring the safety of the practice. Nevertheless, little has been done in developing IPMCs as a rotary joint actuators used as functional surgical devices. This research demonstrates the design of a single degree of freedom (1DOF) robotic surgical instrument with one joint mechanism actuated by IPMC with an embedded strain gauge as a feedback unit, and controlled by a scheduled gain PI controller. With the simplicity of the system it was proven to be able to cut to the desired controlled force and hence depth.
NASA Astrophysics Data System (ADS)
Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.
2015-05-01
In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.
Diffraction Gratings for High-Intensity Laser Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britten, J
The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swallow, E.C.
This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable -more » applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.« less
Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen
2017-07-10
Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object
NASA Astrophysics Data System (ADS)
Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab
2017-02-01
In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.
TEM-nanoindentation studies of semiconducting structures.
Le Bourhis, E; Patriarche, G
2007-01-01
This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.
Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.
2010-11-02
Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.
Białkowski, Jacek; Szkutnik, Małgorzata; Fiszer, Roland; Głowacki, Jan; Banaszak, Paweł; Zembala, Marian
2010-01-01
Transcatheter treatment has become the method of choice for treating many heart defects. Recently, Cardio-O-Fix occluder (COF) - a new, self-expandable nitinol wire-mesh device very similar to the Amplatzer device - has been introduced into clinical practice. To the best of our knowledge, this is the first publication related to its application. Five patients aged from six months to 69 years were included in the study: two with atrial septal defect (ASD), one with patent foramen ovale (PFO) after cryptogenic stroke, and two with patent ductus arteriosus (PDA). These latter two comprised one six month old infant with co-existent hypertrophied cardiomyopathy, and a 53 year-old woman with recanalized PDA after previous ligation. All were treated percutaneously with COF. There was no preliminary patient selection. The only limitation was the size of the devices in our possession (16 and 22 mm ASD COF, 25 PFO COF, 4/6 and 6/8 PDA COF). The implantation technique was the same as previously described for Amplatzer occluders. All procedures were finished successfully with complete closure of the shunt. No complications were observed during a six month follow-up. In the child with PDA, we observed decrease of gradient from 80 to 60 mm Hg in hypertrophied left ventricular outflow tract, although a small protrusion of PDA-COF device was noted in the descending aorta (8 mm Hg gradient in ECHO). In the patient with recanalized PDA, the procedure was performed after arterio-venous loop creation. Mean fluoroscopy time was 4.4 (range from 1.6 to 11) minutes. Our preliminary experience indicates that the application of Cardio-O-Fix devices is safe and effective.
Raman spectroscopy of graphene-based materials and its applications in related devices.
Wu, Jiang-Bin; Lin, Miao-Ling; Cong, Xin; Liu, He-Nan; Tan, Ping-Heng
2018-03-05
Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.
[Telemedicine in dermatological practice: teledermatology].
Danis, Judit; Forczek, Erzsébet; Bari, Ferenc
2016-03-06
Technological advances in the fields of information and telecommunication technologies have affected the health care system in the last decades, and lead to the emergence of a new discipline: telemedicine. The appearance and rise of internet and smart phones induced a rapid progression in telemedicine. Several new applications and mobile devices are published every hour even for medical purposes. Parallel to these changes in the technical fields, medical literature about telemedicine has grown rapidly. Due to its visual nature, dermatology is ideally suited to benefit from this new technology and teledermatology became one of the most dynamically evolving fields of telemedicine by now. Teledermatology is not routinely practiced in Hungary yet, however, it promises the health care system to become better, cheaper and faster, but we have to take notice on the experience and problems faced in teledermatologic applications so far, summarized in this review.
Mondani intraoral welding: historical process and main practical applications.
Dal Carlo, L; Pasqualini, M E; Mondani, P M; Rossi, F; Moglioni, E; Shulman, M
2017-01-01
The intraoral welder was invented by Dr. Pierluigi Mondani during the early 70s to weld titanium needle implants to a titanium bar in patients mouth and to load them immediately by means of resin prosthesis. The clinical use documented dates back to 1972. Over the years, many practical applications have been added to the initial one, which have expanded the use of this device. In this scientific work, main applications are described. The aim of the work was to trace the historical process of intra-oral welding according to Mondani and describe the main practical applications. Intra-oral welding is a process introduced by dr. Pier Luigi Mondani of Genova (Italy) which allows to firmly conjoin titanium implants of any shape by means of a titanium bar or also directly between them in the mouth during surgery. The immediate stabilization achieved by intraoral welding increases implants success rate, allows immediate loading even in situations of bone atrophy, saves implants that are running into failure, re-evaluates fractured implants, allows to stabilize submerged implants postponing prosthesis management, allows to achieve efficient rehabilitation protocols to deal with difficult cases. The 40-years experience with intra-oral welding described in this article, confirms the ease of use and efficiency in providing immediate stabilization of titanium implants of all types.
21 CFR 872.3140 - Resin applicator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of...
High Current Density Scandate Cathodes for Future Vacuum Electronics Applications
2008-05-30
of Technology HFSS Ansoft Corporation’s High Frequency Structure Simulator TWT Traveling Wave Tube - device for generating high levels of RF power ...cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a tungsten matrix impregnated with a mixture of barium oxide...electron beam with the largest possible diameter, consistent with high gain, bandwidth, and efficiency at W- Band . The research concentrated on photonic
2017-02-22
AFOSR)/ RTB1 Arlington, Virginia 22203 Air Force Research Laboratory Air Force Materiel Command REPORT DOCUMENTATION PAGE Form ApprovedOMB No . 0704...Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no ...mainly due to the intrinsic loss and narrow bandwidth (large dispersion) determined by the fundamental physics of metamaterials. In this program, we
Translational illusion of acoustic sources by transformation acoustics.
Sun, Fei; Li, Shichao; He, Sailing
2017-09-01
An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.
NASA Astrophysics Data System (ADS)
Greitzer, E. M.; Tan, C. S.; Graf, M. B.
2004-06-01
Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.
Planar-Processed Polymer Transistors.
Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young
2016-10-01
Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of single crystal ferrite thin films
NASA Technical Reports Server (NTRS)
Mee, J. E.; Besser, P. J.; Elkins, P. E.; Glass, H. L.; Whitcomb, E. C.
1972-01-01
Materials suitable for use in magnetic bubble domain memories were developed for aerospace applications. Practical techniques for the preparation of such materials in forms required for fabrication of computer memory devices were considered. The materials studied were epitaxial films of various compositions of the gallium-substituted yttrium gadolinium iron garnet system. The major emphasis was to determine their bubble properties and the conditions necessary for growing uncracked, high quality films.
Crystal engineering, structure–function relationships, and the future of metal–organic frameworks
Allendorf, Mark D.; Stavila, Vitalie
2014-10-15
Metal-Organic Frameworks (MOFs) are a rapidly expanding class of hybrid organic-inorganic materials that can be rationally designed and assembled through crystal engineering. The explosion of interest in this subclass of coordination polymers results from their outstanding properties and myriad possible applications that include traditional uses of microporous materials, such as gas storage, separations, and catalysis, to new realms in biomedicine, electronic devices, and and information storage. The objective of this Highlight article is to provide the reader with a sense of where the field stands after roughly fifteen years of research. Remarkable progress has been made, but the barriers tomore » practical and commercial advances are also illuminated. We discuss the basic elements of MOF assembly and present a conceptual hierarchy of structural elements that assists in understanding how unique properties in these materials can be achieved. Structure-function relationships are then discussed; several are now well understood as a result of the focused efforts of many research groups over the past decade. Prospects for practical applications of MOFs in membranes, catalysis, biomedicine, and as active components in electronic and photonic devices are also discussed. Finally, we list key challenges that, in our view, must be addressed for these materials to realize their full potential in the marketplace.« less
Using FLUKA to Calculate Spacecraft: Single Event Environments: A Practical Approach
NASA Technical Reports Server (NTRS)
Koontz, Steve; Boeder, Paul; Reddell, Brandon
2009-01-01
The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide.
Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle
2017-02-10
While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.
All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide
Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle
2017-01-01
While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab. PMID:28186188
Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.
Wu, Xiaohan; Mao, Shun; Chen, Junhong; Huang, Jia
2018-04-01
Organic semiconductors (OSCs) have been extensively studied as sensing channel materials in field-effect transistors due to their unique charge transport properties. Stimulation caused by its environmental conditions can readily change the charge-carrier density and mobility of OSCs. Organic field-effect transistors (OFETs) can act as both signal transducers and signal amplifiers, which greatly simplifies the device structure. Over the past decades, various sensors based on OFETs have been developed, including physical sensors, chemical sensors, biosensors, and integrated sensor arrays with advanced functionalities. However, the performance of OFET-based sensors still needs to be improved to meet the requirements from various practical applications, such as high sensitivity, high selectivity, and rapid response speed. Tailoring molecular structures and micro/nanofilm structures of OSCs is a vital strategy for achieving better sensing performance. Modification of the dielectric layer and the semiconductor/dielectric interface is another approach for improving the sensor performance. Moreover, advanced sensory functionalities have been achieved by developing integrated device arrays. Here, a brief review of strategies used for improving the performance of OFET sensors is presented, which is expected to inspire and provide guidance for the design of future OFET sensors for various specific and practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators
NASA Astrophysics Data System (ADS)
Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua
2017-12-01
Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.
All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide
NASA Astrophysics Data System (ADS)
Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle
2017-02-01
While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.
Quantum tagging for tags containing secret classical data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Adrian
Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less
Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.
Lu, Yang; Lee, Jong Ho; Chen, I-Wei
2017-08-31
Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.
NASA Technical Reports Server (NTRS)
Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan
2010-01-01
We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.
Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon
2016-01-01
The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching. PMID:27796291
Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon
2016-10-31
The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.
Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.
Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili
2015-12-09
Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei
2016-03-18
The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards stable and commercially available perovskite solar cells
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...
2016-10-17
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Work function of bulk-insulating topological insulator Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takane, Daichi; Souma, Seigo; Center for Spintronics Research Network, Tohoku University, Sendai 980-8577
Recent discovery of bulk insulating topological insulator (TI) Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs' work function is of essential importance. We have determined the compositional dependence of the work function in Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} by high-resolution photoemission spectroscopy. The obtained work-function values (4.95–5.20 eV) track the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as amore » useful guide for developing TI-based electronic devices.« less
[Point-of-care Coagulation Testing in Neurosurgery].
Adam, Elisabeth Hannah; Füllenbach, Christoph; Lindau, Simone; Konczalla, Jürgen
2018-06-01
Disorders of the coagulation system can seriously impact the clinical course and outcome of neurosurgical patients. Due to the anatomical location of the central nervous system within the closed skull, bleeding complications can lead to devastating consequences such as an increase in intracranial pressure or enlargement of intracranial hematoma. Point-of-care (POC) devices for the testing of haemostatic parameters have been implemented in various fields of medicine. Major advantages of these devices are that results are available quickly and that analysis can be performed at the bedside, directly affecting patient management. POC devices allow identification of increased bleeding tendencies and therefore may enable an assessment of hemorrhagic risks in neurosurgical patients. Although data regarding the use of POC testing in neurosurgical patients are limited, they suggest that coagulation testing and hemostatic therapy using POC devices might have beneficial effects in this patient population. This article provides an overview of the application of point-of-care coagulation testing in clinical practice in neurosurgical patients. Georg Thieme Verlag KG Stuttgart · New York.
Spatially resolved Hall effect measurement in a single semiconductor nanowire.
Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M; Monemar, Bo; Samuelson, Lars
2012-11-01
Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.
Temperature-Controlled Chameleonlike Cloak
NASA Astrophysics Data System (ADS)
Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; Zhang, Fuli; Meng, Yonggang; Li, Bo; Zhou, Ji; Fan, Yuancheng; Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; Soukoulis, Costas M.
2017-01-01
Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.
Ambrico, Marianna; Ambrico, Paolo Francesco; Minafra, Angelantonio; De Stradis, Angelo; Vona, Danilo; Cicco, Stefania R.; Palumbo, Fabio; Favia, Pietro; Ligonzo, Teresa
2016-01-01
Early diagnosis of plant virus infections before the disease symptoms appearance may represent a significant benefit in limiting disease spread by a prompt application of appropriate containment steps. We propose a label-free procedure applied on a device structure where the electrical signal transduction is evaluated via impedance spectroscopy techniques. The device consists of a droplet suspension embedding two representative purified plant viruses i.e., Tomato mosaic virus and Turnip yellow mosaic virus, put in contact with a highly hydrophobic plasma textured silicon surface. Results show a high sensitivity of the system towards the virus particles with an interestingly low detection limit, from tens to hundreds of attomolar corresponding to pg/mL of sap, which refers, in the infection time-scale, to a concentration of virus particles in still-symptomless plants. Such a threshold limit, together with an envisaged engineering of an easily manageable device, compared to more sophisticated apparatuses, may contribute in simplifying the in-field plant virus diagnostics. PMID:27869726
Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation
2011-01-01
This paper covers the use of depth sensors such as Microsoft Kinect and ASUS Xtion to provide a natural user interface (NUI) for controlling 3-D (three-dimensional) virtual globes such as Google Earth (including its Street View mode), Bing Maps 3D, and NASA World Wind. The paper introduces the Microsoft Kinect device, briefly describing how it works (the underlying technology by PrimeSense), as well as its market uptake and application potential beyond its original intended purpose as a home entertainment and video game controller. The different software drivers available for connecting the Kinect device to a PC (Personal Computer) are also covered, and their comparative pros and cons briefly discussed. We survey a number of approaches and application examples for controlling 3-D virtual globes using the Kinect sensor, then describe Kinoogle, a Kinect interface for natural interaction with Google Earth, developed by students at Texas A&M University. Readers interested in trying out the application on their own hardware can download a Zip archive (included with the manuscript as additional files 1, 2, &3) that contains a 'Kinnogle installation package for Windows PCs'. Finally, we discuss some usability aspects of Kinoogle and similar NUIs for controlling 3-D virtual globes (including possible future improvements), and propose a number of unique, practical 'use scenarios' where such NUIs could prove useful in navigating a 3-D virtual globe, compared to conventional mouse/3-D mouse and keyboard-based interfaces. PMID:21791054
Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth navigation.
Boulos, Maged N Kamel; Blanchard, Bryan J; Walker, Cory; Montero, Julio; Tripathy, Aalap; Gutierrez-Osuna, Ricardo
2011-07-26
This paper covers the use of depth sensors such as Microsoft Kinect and ASUS Xtion to provide a natural user interface (NUI) for controlling 3-D (three-dimensional) virtual globes such as Google Earth (including its Street View mode), Bing Maps 3D, and NASA World Wind. The paper introduces the Microsoft Kinect device, briefly describing how it works (the underlying technology by PrimeSense), as well as its market uptake and application potential beyond its original intended purpose as a home entertainment and video game controller. The different software drivers available for connecting the Kinect device to a PC (Personal Computer) are also covered, and their comparative pros and cons briefly discussed. We survey a number of approaches and application examples for controlling 3-D virtual globes using the Kinect sensor, then describe Kinoogle, a Kinect interface for natural interaction with Google Earth, developed by students at Texas A&M University. Readers interested in trying out the application on their own hardware can download a Zip archive (included with the manuscript as additional files 1, 2, &3) that contains a 'Kinnogle installation package for Windows PCs'. Finally, we discuss some usability aspects of Kinoogle and similar NUIs for controlling 3-D virtual globes (including possible future improvements), and propose a number of unique, practical 'use scenarios' where such NUIs could prove useful in navigating a 3-D virtual globe, compared to conventional mouse/3-D mouse and keyboard-based interfaces.
Aungst, Timothy Dy; Belliveau, Paul
2015-01-01
As mobile smart device use has increased in society, the healthcare community has begun using these devices for communication among professionals in practice settings. The purpose of this review is to describe primary literature which reports on the experiences with interprofessional healthcare communication via mobile smart devices. Based on these findings, this review also addresses how these devices may be utilized to facilitate interprofessional education (IPE) in health professions education programs. The literature search revealed limited assessments of mobile smart device use in clinical practice settings. In available reports, communication with mobile smart devices was perceived as more effective and faster among interdisciplinary members. Notable drawbacks included discrepancies in the urgency labeling of messages, increased interruptions associated with constant accessibility to team members, and professionalism breakdowns. Recently developed interprofessional competencies include an emphasis on ensuring that health profession students can effectively communicate on interprofessional teams. With the increasing reliance on mobile smart devices in the absence of robust benefit and risk assessments on their use in clinical practice settings, use of these devices may be leveraged to facilitate IPE activities in health education professions programs while simultaneously educating students on their proper use in patient care settings.
Biological Evaluation of the Copper/Low-density Polyethylene Nanocomposite Intrauterine Device
Wang, Hong; Li, Jun; Xie, Changsheng; Duan, Zhuo; Sun, Li-Kui; Wang, Xin; Zhu, Changhong
2013-01-01
Devices and materials intended for clinical applications as medical and implant devices should be evaluated to determine their biocompatibility in physiological systems. This article presents results from cytotoxicity assay of L929 mouse fibroblasts culture, tests for skin irritation, intracutaneous reactivity and sensitization, and material implantation tests for the novel copper/low-density polyethylene nanocomposite intrauterine device (nano-Cu/LDPE IUD) with potential for future clinical utilization. Cytotoxicity test in vitro was conducted to evaluate the change in morphology, growth and proliferation of cultured L929 mouse fibroblasts, which in vivo examination for skin irritation (n = 6) and intracutaneous reactivity (n = 6) were carried out to explore the irritant behavior in New Zealand White rabbits. Skin sensitization was implemented to evaluate the potential skin sensitizing in Hartley guinea pigs (n = 35). The materials were implanted into the spinal muscle of rabbits (n = 9). The cytotoxicity grade of the nano-Cu/LDPE IUD was 0–1, suggested that the composite was nontoxic or mildly cytotoxic; no irritation reaction and skin sensitization were identified in any animals of specific extracts prepared from the material under test; similarly to the control sides, the inflammatory reaction was observed in the rabbits living tissue of the implanted material in intramuscular implantation assay. They indicated that the novel composite intrauterine device presented potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity. The nano-Cu/LDPE IUD has good biocompatibility, which is biologically safe for the clinical research as a novel contraceptive device. PMID:24058521
Biological evaluation of the copper/low-density polyethylene nanocomposite intrauterine device.
Hu, Li-Xia; He, Jing; Hou, Li; Wang, Hong; Li, Jun; Xie, Changsheng; Duan, Zhuo; Sun, Li-Kui; Wang, Xin; Zhu, Changhong
2013-01-01
Devices and materials intended for clinical applications as medical and implant devices should be evaluated to determine their biocompatibility in physiological systems. This article presents results from cytotoxicity assay of L929 mouse fibroblasts culture, tests for skin irritation, intracutaneous reactivity and sensitization, and material implantation tests for the novel copper/low-density polyethylene nanocomposite intrauterine device (nano-Cu/LDPE IUD) with potential for future clinical utilization. Cytotoxicity test in vitro was conducted to evaluate the change in morphology, growth and proliferation of cultured L929 mouse fibroblasts, which in vivo examination for skin irritation (n = 6) and intracutaneous reactivity (n = 6) were carried out to explore the irritant behavior in New Zealand White rabbits. Skin sensitization was implemented to evaluate the potential skin sensitizing in Hartley guinea pigs (n = 35). The materials were implanted into the spinal muscle of rabbits (n = 9). The cytotoxicity grade of the nano-Cu/LDPE IUD was 0-1, suggested that the composite was nontoxic or mildly cytotoxic; no irritation reaction and skin sensitization were identified in any animals of specific extracts prepared from the material under test; similarly to the control sides, the inflammatory reaction was observed in the rabbits living tissue of the implanted material in intramuscular implantation assay. They indicated that the novel composite intrauterine device presented potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity. The nano-Cu/LDPE IUD has good biocompatibility, which is biologically safe for the clinical research as a novel contraceptive device.
On-sky performance evaluation and calibration of a polarization-sensitive focal plane array
NASA Astrophysics Data System (ADS)
Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray
2016-07-01
The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.
Aschbrenner, Kelly A.; Barre, Laura K.; Bartels, Stephen J.
2015-01-01
Abstract Obesity prevalence is nearly double among individuals with serious mental illness (SMI), including schizophrenia spectrum disorders, bipolar disorder, or major depressive disorder, compared with the general population. Emerging mobile health (m-health) technologies are increasingly available and offer the potential to support lifestyle interventions targeting weight loss, yet the practical feasibility of using these technologies in this high-risk group has not been established. We evaluated the feasibility and acceptability of popular m-health technologies for activity tracking among overweight and obese individuals with SMI. We provided wearable activity monitoring devices (FitBit [San Francisco, CA] Zip™ or Nike Inc. [Beaverton, OR] FuelBand) and smartphones (Apple [Cupertino, CA] iPhone® 4S) for accessing the smartphone application for each device to participants with SMI enrolled in a weight loss program. Feasibility of these devices was measured by the frequency of use over time. Acceptability was measured through qualitative follow-up interviews with participants. Ten participants with SMI wore the devices for a mean of 89% (standard deviation=13%) of the days in the study. Five participants wore the devices 100% of the time. Participants reported high satisfaction, stating the devices were easy to use, helpful for setting goals, motivational, and useful for self-monitoring. Several participants liked the social connectivity feature of the devices where they could see each other's progress on the smartphone application, noting that “friendly” competition increased motivation to be more physically active. This study supports using popular m-health technologies for activity tracking among individuals with SMI. These findings can inform the design of weight loss interventions targeting this vulnerable patient population. PMID:25536190
Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control
Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.
2013-01-01
We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812
Naslund, John A; Aschbrenner, Kelly A; Barre, Laura K; Bartels, Stephen J
2015-03-01
Obesity prevalence is nearly double among individuals with serious mental illness (SMI), including schizophrenia spectrum disorders, bipolar disorder, or major depressive disorder, compared with the general population. Emerging mobile health (m-health) technologies are increasingly available and offer the potential to support lifestyle interventions targeting weight loss, yet the practical feasibility of using these technologies in this high-risk group has not been established. We evaluated the feasibility and acceptability of popular m-health technologies for activity tracking among overweight and obese individuals with SMI. We provided wearable activity monitoring devices (FitBit [San Francisco, CA] Zip™ or Nike Inc. [Beaverton, OR] FuelBand) and smartphones (Apple [Cupertino, CA] iPhone(®) 4S) for accessing the smartphone application for each device to participants with SMI enrolled in a weight loss program. Feasibility of these devices was measured by the frequency of use over time. Acceptability was measured through qualitative follow-up interviews with participants. Ten participants with SMI wore the devices for a mean of 89% (standard deviation=13%) of the days in the study. Five participants wore the devices 100% of the time. Participants reported high satisfaction, stating the devices were easy to use, helpful for setting goals, motivational, and useful for self-monitoring. Several participants liked the social connectivity feature of the devices where they could see each other's progress on the smartphone application, noting that "friendly" competition increased motivation to be more physically active. This study supports using popular m-health technologies for activity tracking among individuals with SMI. These findings can inform the design of weight loss interventions targeting this vulnerable patient population.
Friederichs, Hendrik; Marschall, Bernhard; Weissenstein, Anne
2014-12-05
Practicing evidence-based medicine is an important aspect of providing good medical care. Accessing external information through literature searches on computer-based systems can effectively achieve integration in clinical care. We conducted a pilot study using smartphones, tablets, and stationary computers as search devices at the bedside. The objective was to determine possible differences between the various devices and assess students' internet use habits. In a randomized controlled pilot study, 120 students were divided in three groups. One control group solved clinical problems on a computer and two intervention groups used mobile devices at the bedside. In a questionnaire, students were asked to report their internet use habits as well as their satisfaction with their respective search tool using a 5-point Likert scale. Of 120 surveys, 94 (78.3%) complete data sets were analyzed. The mobility of the tablet (3.90) and the smartphone (4.39) was seen as a significant advantage over the computer (2.38, p < .001). However, for performing an effective literature search at the bedside, the computer (3.22) was rated superior to both tablet computers (2.13) and smartphones (1.68). No significant differences were detected between tablets and smartphones except satisfaction with screen size (tablet 4.10, smartphone 2.00, p < .001). Using a mobile device at the bedside to perform an extensive search is not suitable for students who prefer using computers. However, mobility is regarded as a substantial advantage, and therefore future applications might facilitate quick and simple searches at the bedside.
[New possibilities in practical education of surgery].
Kormos, Katalin; Sándor, József; Haidegger, Tamás; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György
2013-10-01
The fast spread of laparoscopic surgery in the surgical community also required introduction of new methods of surgical education of these techniques. Training boxes applied for this reason meant a considerable help. The technique of the virtual reality introduced simulation, which is a new possibility in education. For the first time in the history of surgery we can measure medical students' or residents' dexterity and one can get acquainted with a surgical procedure in the form of "serious games". By application of the up-to-date imaging methods we can plan the movements of the surgeon's hand even before the planned operation, practice and repeating can contribute to the safety of the real procedure. Open surgical procedures can be practiced on plastic phantoms mimicking human anatomy and the use of interactive touch devices and e-learning can also contribute to practical education of surgery.
George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S
2018-07-01
The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.
NASA Astrophysics Data System (ADS)
Chung, Kunook; Sui, Jingyang; Demory, Brandon; Ku, Pei-Cheng
2017-07-01
Additive color mixing across the visible spectrum was demonstrated from an InGaN based light-emitting diode (LED) pixel comprising red, green, and blue subpixels monolithically integrated and enabled by local strain engineering. The device was fabricated using a top-down approach on a metal-organic chemical vapor deposition-grown sample consisting of a typical LED epitaxial stack. The three color subpixels were defined in a single lithographic step. The device was characterized for its electrical properties and emission spectra under an uncooled condition, which is desirable in practical applications. The color mixing was controlled by pulse-width modulation, and the degree of color control was also characterized.
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, M. N.; Wang, Q. X.; Alshareef, H. N.
2014-01-01
We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n- and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350°C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications. PMID:24728223
High brightness laser-diode device emitting 160 watts from a 100 μm/NA 0.22 fiber.
Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai
2015-11-10
A practical method of achieving a high-brightness and high-power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by a beam transformation system, free-space beam combining, and polarization beam combining based on a mini-bar laser-diode chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 100 μm core diameter and 0.22 numerical aperture (NA) could reach 174 W, with equalizing brightness of 14.2 MW/(cm2·sr). By this method, much wider applications of fiber-coupled laser-diodes are anticipated.
Wireless sensor network for wide-area high-mobility applications
NASA Astrophysics Data System (ADS)
del Castillo, Ignacio; Esper-Chaín, Roberto; Tobajas, Félix; de Armas, Valentín.
2013-05-01
In recent years, IEEE 802.15.4-based Wireless Sensor Networks (WSN) have experienced significant growth, mainly motivated by the standard features, such as small size oriented devices, low power consumption nodes, wireless communication links, and sensing and data processing capabilities. In this paper, the development, implementation and deployment of a novel fully compatible IEEE 802.15.4-based WSN architecture for applications operating over extended geographic regions with high node mobility support, is described. In addition, a practical system implementation of the proposed WSN architecture is presented and described for experimental validation and characterization purposes.
Applications using high-Tc superconducting terahertz emitters
Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo
2016-01-01
Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905
Slade Shantz, Jesse Alan; Veillette, Christian J. H.
2014-01-01
Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented. PMID:25593963
Your Higgs number—how fundamental physics is connected to technology and societal revolutions
NASA Astrophysics Data System (ADS)
Allen, Roland E.; Lidström, Suzy
2015-02-01
Fundamental physics, as exemplified by the recently discovered Higgs boson, often appears to be completely disconnected from practical applications and ordinary human life. But this is not really the case, because science, technology, and human affairs are profoundly integrated in ways that are not immediately obvious. We illustrate this by defining a ‘Higgs number’ through overlapping activities. Following three different paths, which end respectively in applications of the World Wide Web, digital photography, and all modern electronic devices, we find that most people have a Higgs number of no greater than 3.
NASA Astrophysics Data System (ADS)
Saldan, Yosyp R.; Pavlov, Sergii V.; Vovkotrub, Dina V.; Saldan, Yulia Y.; Vassilenko, Valentina B.; Mazur, Nadia I.; Nikolaichuk, Daria V.; Wójcik, Waldemar; Romaniuk, Ryszard; Suleimenov, Batyrbek; Bainazarov, Ulan
2017-08-01
Process of eye tomogram obtaining by means of optical coherent tomography is studied. Stages of idiopathic macula holes formation in the process of eye grounds diagnostics are considered. Main stages of retina pathology progression are determined: Fuzzy logic units for obtaining reliable conclusions regarding the result of diagnosis are developed. By the results of theoretical and practical research system and technique of retinal macular region of the eye state analysis is developed ; application of the system, based on fuzzy logic device, improves the efficiency of eye retina complex.