Microbial contamination of soft contact lenses & accessories in asymptomatic contact lens users.
Thakur, Deeksha V; Gaikwad, Ujjwala N
2014-08-01
With increasing use of soft contact lenses the incidence of contact lens induced infections is also increasing. This study was aimed to assess the knowledge of new and existing contact lens users about the risk of microbial contamination associated with improper use and maintenance of contact lenses, type of microbial flora involved and their potential to cause ophthalmic infections. Four samples each from 50 participants (n=200) were collected from the lenses, lens care solutions, lens care solution bottles and lens cases along with a questionnaire regarding their lens use. The samples were inoculated onto sheep blood agar, Mac Conkey's agar and Sabouraud's dextrose agar. Organisms were identified using standard laboratory protocols. Overall rate of microbial contamination among the total samples was 52 per cent. The most and the least contaminated samples were found to be lens cases (62%) and lens care solution (42%), respectively. The most frequently isolated contaminant was Staphylococcus aureus (21%) followed by Pseudomonas species (19.5%). Majority (64%) of the participants showed medium grade of compliance to lens cleaning practices. Rate of contamination was 100 and 93.75 per cent respectively in those participants who showed low and medium compliance to lens care practices as compared to those who had high level of compliance (43.75%) (P<0.05). Lens care practices amongst the participants were not optimum which resulted into high level contamination. Hence, creating awareness among the users about the lens care practices and regular cleaning and replacements of lens cases are required.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; stepp, A.K.; Dennis, D.M.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Detection of microbial contamination during human islet isolation.
Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T
2007-01-01
Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n=157), after surface decontamination of the pancreas with antiseptic agents (n=89), from islet supernatant at the end of the isolation (n=104), and from islet supernatant as a final transplantable product after culture (n=53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during processing even under cGMP conditions.
Detection of Microbial Contamination during Human Islet Isolation.
Kin, Tatsuya; Rosichuk, Shawn; Shapiro, A M James; Lakey, Jonathan R T
2007-01-01
Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n = 157), after surface decontamination of the pancreas with antiseptic agents (n = 89), from islet supernatant at the end of the isolation (n = 104), and from islet supernatant as a final transplantable product after culture (n = 53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during processing even under cGMP conditions.
García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate
2013-01-01
Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.
Microbial contamination of soft contact lenses & accessories in asymptomatic contact lens users
Thakur, Deeksha V.; Gaikwad, Ujjwala N.
2014-01-01
Background & objectives: With increasing use of soft contact lenses the incidence of contact lens induced infections is also increasing. This study was aimed to assess the knowledge of new and existing contact lens users about the risk of microbial contamination associated with improper use and maintenance of contact lenses, type of microbial flora involved and their potential to cause ophthalmic infections. Methods: Four samples each from 50 participants (n=200) were collected from the lenses, lens care solutions, lens care solution bottles and lens cases along with a questionnaire regarding their lens use. The samples were inoculated onto sheep blood agar, Mac Conkey's agar and Sabouraud's dextrose agar. Organisms were identified using standard laboratory protocols. Results: Overall rate of microbial contamination among the total samples was 52 per cent. The most and the least contaminated samples were found to be lens cases (62%) and lens care solution (42%), respectively. The most frequently isolated contaminant was Staphylococcus aureus (21%) followed by Pseudomonas species (19.5%). Majority (64%) of the participants showed medium grade of compliance to lens cleaning practices. Rate of contamination was 100 and 93.75 per cent respectively in those participants who showed low and medium compliance to lens care practices as compared to those who had high level of compliance (43.75%) (P<0.05). Interpretation & conclusions: Lens care practices amongst the participants were not optimum which resulted into high level contamination. Hence, creating awareness among the users about the lens care practices and regular cleaning and replacements of lens cases are required. PMID:25297366
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Stepp, A.K.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitzman, D.O.; Bailey, S.A.; Stepp, A.K.
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue
2013-01-01
Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.
Innovative MIOR Process Utilizing Indigenous Reservoir Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. O. Hitzman; A. K. Stepp; D. M. Dennis
This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less
Falconer, James R; Wu, Zimei; Lau, Hugo; Suen, Joanna; Wang, Lucy; Pottinger, Sarah; Lee, Elaine; Alazawi, Nawar; Kallesen, Molly; Gargiulo, Derryn A; Swift, Simon; Svirskis, Darren
2014-10-01
Citric acid is used in cough reflex testing in clinical and research settings to assess reflexive cough in patients at risk of swallowing disorders. To address a lack of knowledge in this area, this study investigated the stability and sterility of citric acid solutions. Triplicate solutions of citric acid (0.8 M) in isotonic saline were stored at 4 ± 2 °C for up to 28 days and analysed by high-performance liquid chromatography. Microbiological sterility of freshly prepared samples and bulk samples previously used for 2 weeks within the hospital was determined using a pour plate technique. Microbial survival in citric acid was determined by inoculating Staphylococcus aureus, Escherichia coli, or Candida albicans into citric acid solution and monitoring the number of colony-forming units/mL over 40 min. Citric acid solutions remained stable at 4 °C for 28 days (98.4 ± 1.8 % remained). The freshly prepared and clinical samples tested were sterile. However, viability studies revealed that citric acid solution allows for the survival of C. albicans but not for S. aureus or E. coli. The microbial survival study showed that citric acid kills S. aureus and E. coli but has no marked effect on C. albicans after 40 min. Citric acid samples at 0.8 M remained stable over the 4-week testing period, with viable microbial cells absent from samples tested. However, C. albicans has the ability to survive in citric acid solution if inadvertently introduced in practice. For this reason, in clinical and research practice it is suggested to use single-use aliquots prepared aseptically which can be stored for up to 28 days at 4 °C.
Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Sekiguchi, Yuji; Gorby, Yuri A.; Bretschger, Orianna
2012-01-01
Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations. PMID:22347379
INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.O. Hitzman; A.K. Stepp; D.M. Dennis
This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted inmore » sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.« less
Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T
2016-08-01
Implanted biomedical devices typically last a number of years before their batteries are depleted and a surgery is required to replace them. A Microbial Fuel Cell (MFC) is a device which by using bacteria, directly breaks down sugars to generate electricity. Conceptually there is potential to continually power implanted medical devices for the lifetime of a patient. To investigate the practical potential of this technology, H-Cell Dual Chamber MFCs were evaluated with two different growth solutions and measurements recorded for maximum power output both of individual MFCs and connected MFCs. Using Luria-Bertani media and connecting MFCs in a hybrid series and parallel arrangement with larger membrane sizes showed the highest power output and the greatest potential for replacing implanted batteries.
Evaluation of food storage racks available on the Polish market in the hygienic context
Grzesińska, Wiesława; Tomaszewska, Marzena; Bilska, Beata; Trafiałek, Joanna; Dziadek, Michał
Providing safe food products to the consumer depends on the material and technology used and adherence to hygienic practices, throughout the production process. The degree of microbial contamination of a surface is an important indicator of equipment cleanliness and effectiveness of cleaning and disinfection. Used material, construction solutions and quality of the applied devices also have an effect on hygienic status. The objective of the present study was to evaluate the influence of the design and construction material of selected food storage racks, available on the Polish market, on their hygienic status. The study was based on determination of the capability of microbial growth on the surface of the racks and the effectiveness of their cleaning. Microbiological cleanliness on the surface of the racks was monitored by the contact plates which are able to estimate the total number of icroorganisms. Examination of effectiveness of cleaning was conducted by the use of ATP bioluminescence method. This experiment has proven a significant influence of adopted construction solutions on the hygienic status of the examined racks. Presence of antibacterial layer and a choice of the appropriate construction material characterized by a low surface roughness impedes the microbial growth and increases the effectiveness of cleaning. Design solutions have significant impact on the hygienic status of shelves. Selection of a suitable material for the construction of racks can greatly reduce the possibility of the development of microorganism, despite the low efficiency of the cleaning. The application of antimicrobial coatings inhibits microbial growth.
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate
2013-04-01
Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).
Agnello, A C; Potysz, A; Fourdrin, C; Huguenot, D; Chauhan, P S
2018-06-05
Metallurgical exploitation originates metal-rich by-products termed slags, which are often disposed in the environment being a source of heavy metal pollution. Despite the environmental risk that this may pose for living organisms, little is known about the impact of slags on biotic components of the ecosystem like plants and rhizosphere microbial communities. In this study, metal-rich (Cu, Pb, Zn) granulated slags (GS) derived from Cu production process, were used for a leaching test in the presence of the soil pore solution, showing that soil solution enhanced the release of Cu from GS. A pot experiment was conducted using as growing substrate for sunflower (Helianthus annuus) a 50% w/w mix of an agricultural soil and GS. Bioavailability of metals in soil was, in increasing order: Pb < Zn < Cu. Sunflower was able to grow in the presence of GS and accumulated metals preferentially in above-ground tissues. Microbial diversity was assessed in rhizosphere and bulk soil using community level physiological profiling (CLPP) and 16S rRNA gene based denaturing gradient gel electrophoresis (DGGE) analyses, which demonstrated a shift in the diversity of microbial communities induced by GS. Overall, these results suggest that metallurgical wastes should not be considered inert when dumped in the soil. Implications from this study are expected to contribute to the development of sustainable practices for the management of pyrometallurgical slags, possibly involving a phytomanagement approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu
2018-03-01
This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.
INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.O. Hitzman; S.A. Bailey
This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated frommore » produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.« less
Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.
Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafał; Zielonka, Urszula; Małkowski, Eugeniusz; Gray, Laymon
2008-02-01
Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.
Dynamics of microorganism populations in recirculating nutrient solutions
NASA Technical Reports Server (NTRS)
Strayer, R. F.
1994-01-01
This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.
Dynamics of microorganism populations in recirculating nutrient solutions
NASA Technical Reports Server (NTRS)
Strayer, R. F.
1994-01-01
This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.
New perspectives in plastic biodegradation.
Sivan, Alex
2011-06-01
During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microbial ecology of denitrification in biological wastewater treatment.
Lu, Huijie; Chandran, Kartik; Stensel, David
2014-11-01
Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1992-01-01
The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.
NASA Astrophysics Data System (ADS)
Pereg, Lily
2013-04-01
Crop production and agricultural practices heavily impact the soil microbial communities, which differ among varying types of soils and environmental conditions. Soil-borne microbial communities in cotton production systems, as in every other cropping system, consist of microbial populations that may either be pathogenic, beneficial or neutral with respect to the cotton crop. Crop production practices have major roles in determining the composition of microbial communities and function of microbial populations in soils. The structure and function of any given microbial community is determined by various factors, including those that are influenced by farming and those not controlled by farming activities. Examples of the latter are environmental conditions such as soil type, temperature, daylight length and UV radiation, air humidity, atmospheric pressure and some abiotic features of the soil. On the other hand, crop production practices may determine other abiotic soil properties, such as water content, density, oxygen levels, mineral and elemental nutrient levels and the load of other crop-related soil amendments. Moreover, crop production highly influences the biotic properties of the soil and has a major role in determining the fate of soil-borne microbial communities associated with the crop plant. Various microbial strains react differently to the presence of certain plants and plant exudates. Therefore, the type of plant and crop rotations are important factors determining microbial communities. In addition, practice management, e.g. soil cultivation versus crop stubble retention, have a major effect on the soil conditions and, thus, on microbial community structure and function. All of the above-mentioned factors can lead to preferential selection of certain microbial population over others. It may affect not only the composition of microbial communities (diversity and abundance of microbial members) but also the function of the community (the ability of different microbes to perform certain activities). Therefore, agricultural practices may determine the ability of beneficial microbes to realise their plant growth promoting potential or the pathogenic expression of others. This presentation will review the current knowledge about the impact of cotton growing practices on microbial communities and soil health in different environments as well as endeavour to identify gaps worthwhile exploring in future research for promoting plant growth in healthy soils.
Averill, Colin
2014-10-01
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.
Das, B Kumar; Kim, Ji Gang; Choi, Ji Weon
2011-10-01
The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100 mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4 mg/L). Then, samples were packaged in 50 µm polypropylene bags and stored at 5 °C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika.
Wang, Yi; Li, Chunyue; Tu, Cong; Hoyt, Greg D; DeForest, Jared L; Hu, Shuijin
2017-12-31
Intensive tillage and high inputs of chemicals are frequently used in conventional agriculture management, which critically depresses soil properties and causes soil erosion and nonpoint source pollution. Conservation practices, such as no-tillage and organic farming, have potential to enhance soil health. However, the long-term impact of no-tillage and organic practices on soil microbial diversity and community structure has not been fully understood, particularly in humid, warm climate regions such as the southeast USA. We hypothesized that organic inputs will lead to greater microbial diversity and a more stable microbial community, and that the combination of no-tillage and organic inputs will maximize soil microbial diversity. We conducted a long-term experiment in the southern Appalachian mountains of North Carolina, USA to test these hypotheses. The results showed that soil microbial diversity and community structure diverged under different management regimes after long term continuous treatments. Organic input dominated the effect of management practices on soil microbial properties, although no-tillage practice also exerted significant impacts. Both no-tillage and organic inputs significantly promoted soil microbial diversity and community stability. The combination of no-tillage and organic management increased soil microbial diversity over the conventional tillage and led to a microbial community structure more similar to the one in an adjacent grassland. These results indicate that effective management through reducing tillage and increasing organic C inputs can enhance soil microbial diversity and community stability. Copyright © 2017 Elsevier B.V. All rights reserved.
Girma, Gosa; Ketema, Tsige; Bacha, Ketema
2014-11-25
Paper currency is used for every type of commerce and plays an important role in the life of human beings. However, the combination of its widespread use and constant exchange make paper currency a likely agent for disease transmission. Thus, the aim of this study was to evaluate the microbial load and safety of Ethiopian paper currencies collected from some food vendors in Jimma town. Standard microbiological methods were used for the enumeration of various microbial groups, isolation and characterization of pathogenic bacteria and their growth potential in selected weaning foods. A total of 100 samples of Ethiopian paper currencies, consisting of five denominations, from street food venders, hotels and cafeterias in Jimma town were collected aseptically. Sterile cotton swabs moistened with buffered peptone water solution were used for swabbing and the swabs were separately soaked into 10 ml sterile buffered peptone water solution. Mean microbial counts of Aerobic mesophilic bacteria, Staphylococci, Enterobacteriaceae, coliforms and Aerobic bacterial spores were (log CFU/cm2) 6.32, 4.43, 3.14, 2.98 and 3.78, respectively. However, mean counts of Yeasts and Moulds were below detectable levels. There was statistically significant variation (p<0.05) among the mean counts of microbes isolated from samples of paper currencies. The predominantly isolated microbial groups were Staphylococcus spp. (34.06%) followed by Bacillus spp. (31.88%), Enterobacteraceae (13.39%), Micrococcus spp. (9.55%) and Streptococcus spp. (9.03%). Overall, 25% and 10% of the samples were positive for S. aureus and Salmonella spp, respectively. In challenge study, Salmonella spp. and S. aureus reached the infective dose within 12 to 18 hours of inoculation. Thus, paper currencies could be considered as one of the possible vehicles for transmission of disease causing microorganisms. Poor handling practices and personal hygiene of the food vendors could contribute to the observed microbial counts. Thus, it calls for awareness development on the potential risks associated with poor handling of paper currencies at all level of the food establishments.
Provenza, N; Calpena, A C; Mallandrich, M; Sánchez, A; Egea, M A; Clares, B
2014-11-20
Personalized medicine is a challenging research area in paediatric drug design since no suitable pharmaceutical forms are currently available. Furosemide is an anthranilic acid derivative used in paediatric practice to treat cardiac and pulmonary disorders in premature infants and neonates. However, it is not commercialized in suitable dosage forms for paediatrics. Elaborating new paediatric formulations when no commercial forms are available is a common practice in pharmacy laboratories; amongst these, oral liquid formulations are the most common. We developed two extemporaneous paediatric oral solutions of furosemide (pure powder). The characterization and stability study were also performed. Parameters such as organoleptic characteristics, rheology, pH, content of active substance, and microbial stability were evaluated at three temperatures for two months. Evaluation of all these parameters showed that both solutions were stable for 60 days at 4 and 25 °C. Moreover, ex vivo studies were performed to evaluate the permeation behaviour of developed solutions through porcine small intestine to evaluate the potential paediatric biological parameters influencing the bioavailability and efficacy. A validated spectrofluorometric method was also used for this purpose. Our results guarantee a correct dosification, administration and potential efficacy of furosemide when is formulated in liquid oral forms for the treatment of cardiac and pulmonary disorders in children. Copyright © 2014 Elsevier B.V. All rights reserved.
Maune, S; Johannssen, V; Sahly, H; Werner, J A; Salhy, H
1999-09-01
Endonasal dissolution by the use of NaCl-solution is a common postoperative treatment of the nasal mucosa after endonasal surgery. These procedure involve for example endonasal shower and sterilized solutions. The contamination of nasal shower in case of unprofessional cleaning after treatment was an argument against this technique in earlier discussions. The danger of such an infection should be avoided by the use of sterilized solution. Therefore the dependence of nasal microbial climate on different nasal dissoluting techniques was investigated by the use of such named endonasal shower (Siemens und Co, Bad Ems, Germany) in comparison with sterilized solution (Rhinomer, Zyma SA, Nyon, France). Microbial cultures were investigated of 80 patients after endonasal surgery (53 m, 27 f; 31 +/- 21 age). Surgery was done for the treatment of chronic polypous sinusitis. Pre-, intra- and postoperative samples were taken in 640 cases to proceed microbial cultures. Material was transferred with the use of a Port-A-Cul-transport medium and preparation of the microbial cultures was done during the first four hours. As a result 895 bacterial clones were cultivated. These consisted of 87% aerob and 13% anaerob bacteria. Staphylococcus aureus (39%) and members of the family of Enterobactericae (30%) were the most common microbes. There was neither an evidence for postoperative microbes on the nasal mucosa nor a correlation between the dissoluting technique and the postoperative outcome. The use of sterilized solutions for the postoperative care of endonasal mucosa does not cause an additional worthful effect on neither the postoperative microbial climate nor the outcome in comparison to endonasal shower.
Microbial populations in contaminant plumes
Haack, S.K.; Bekins, B.A.
2000-01-01
Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.
A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells
NASA Astrophysics Data System (ADS)
Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong
2014-12-01
In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.
Wang, Chin-Tsan; Huang, Yan-Sian; Sangeetha, Thangavel; Chen, Yen-Ming; Chong, Wen-Tong; Ong, Hwai-Chyuan; Zhao, Feng; Yan, Wei-Mon
2018-05-01
Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m 2 , current density of 46.34 mA/m 2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Omics approaches in food safety: fulfilling the promise?
Bergholz, Teresa M.; Moreno Switt, Andrea I.; Wiedmann, Martin
2014-01-01
Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to detection, prevention and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. While practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions. PMID:24572764
Martincic, I; Mastronardi, C; Chung, A; Ramirez-Arcos, S
2008-01-01
Alsever's solution has been used for decades as a preservative solution for storage of RBCs. From October 2005 to January 2006, unexplained hemagglutination of approximately 10 to 20 percent of RBCs stored for several days in a modified version of Alsever's solution was noticed in quality control testing at the Canadian Blood Services Serology Laboratory. An investigation, including microbial testing, was initiated to determine the cause of the unexplained hemagglutination. The gram-negative bacterium Serratia liquefaciens was isolated from supernatant solutions of agglutinated RBCs. Further characterization of this strain revealed that it has the ability to form biofilms; presents high levels of resistance to chloramphenicol, neomycin, and gentamicin; and causes mannose-sensitive hemagglutination. The source of S. liquefaciens contamination in RBC supernatants was not found. However, this bacterium has not been isolated since January 2006 after enhanced cleaning practices were implemented in the serology laboratory where the RBCs are stored. This biofilm-forming, antibiotic-resistant S. liquefaciens strain could be directly linked to the unexplained hemagglutination observed in stored RBCs.
Mark A. Bradford; Ashley D. Keiser; Christian A. Davies; Calley A. Mersmann; Michael S. Strickland
2012-01-01
Plant-carbon inputs to soils in the form of dissolved sugars, organic acids and amino acids fuel much of heterotrophic microbial activity belowground. Initial residence times of these compounds in the soil solution are on the order of hours, with microbial uptake a primary removal mechanism. Through microbial biosynthesis, the dissolved compounds become dominant...
Oyinlola, Lateefah A; Obadina, Adewale O; Omemu, Adebukunola M; Oyewole, Olusola B
2017-01-01
Lettuce is consumed raw in salads and is susceptible to microbial contamination through environment, agricultural practices, and its morphology, thus, a potential vehicle for food-borne illness. This study investigated the effect of adoption of food safety and hygienic practices by lettuce farmers on the microbial safety of field sourced lettuce in Lagos State, Nigeria. Ten structured questionnaires were administered randomly to 10 lettuce farmers to assess food safety and hygienic practices (FSH). Two farmers who practice FSH and two farmers who do not practice NFSH were finally used for this study. Samples of ready-to-harvest lettuce, manure applied, and irrigation water were obtained for a period of five months (August - December 2013) and analyzed for total plate count (TPC), total coliform count (TCC), Escherichia coli, Listeria spp., Salmonella spp., and Shigella spp . counts. Result of microbial analyses of lettuce samples was compared with international microbiological specification for ready-to-eat foods. Results showed that the range of TPC on lettuce was 6.00 to 8.11 LogCFU/g from FSH farms and TPC of lettuce samples from NFSH farms ranged from 6.66 to 13.64 LogCFU/g. 1.49 to 4.85LogCFU/g were TCC ranges from lettuce samples obtained from FSH farms while NFSH farms had TCC ranging between 3.95 and 10.86 LogCFU/g, respectively. The range of isolated pathogen count on lettuce from FSH and NFSH farms exceeded the international safety standard; there was a significant difference in the microbial count of lettuce from FSH farms and NFSH farms. This study concludes that the lettuce samples obtained did not pass the international microbial safety standards. FSH compliance is a major determinant of the microbial safety of lettuce. Hence, the institution of FSH on farm to improve microbial safety of lettuce produced for public consumption is emphasized.
Feng, Cuijie; Hou, Chia-Hung; Chen, Shaohua; Yu, Chang-Ping
2013-04-01
The microbial fuel cell (MFC) is an emerging technology, which uses exoelectrogenic microorganisms to oxidize organic matter in the wastewater to produce electricity. However, the low energy output limits its application in practice. Capacitive deionization (CDI), an electrochemically controlled method for deionization by the adsorption of ions in the electrical double layer region at an electrode-solution interface, requires a low external power supply. Therefore, in this study, we investigated the MFC driven CDI (MFC-CDI) technology to integrate deionization with wastewater treatment and electricity production. Taking advantage of the low potential requirement of CDI, voltage generated from a continuous flow MFC could be used to drive the CDI to achieve removal of the electrolyte to a stable status. The results indicated that among the three connection types of MFCs including single-, series-, and parallel-configuration, the parallel connection of two MFCs resulted in the highest potential (0.63V) applied to CDI and the conductivity removal of NaCl solution was more than 60%. The electrosorption capacities under different electrolyte concentrations of 50, 100 and 150 mg L(-1) were 150, 346 and 295 μg g(-1), respectively. These results suggest that the new MFC-CDI technology, which utilizes energy recovery from the wastewater, has great potential to be an energy saving technology to remove low level dissolved ions from aqueous solutions for the water and wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cornell, C. R.; Peterson, B.; Zhou, J.; Xiao, X.; Wawrik, B.
2017-12-01
Greenhouse gases (GHG) emissions from soils are primarily the consequence of microbial processes. Agricultural management of soils is known to affect the structure of microbial communities, and it is likely that dominant GHG emitting microbial activities are impacted via requisite practices. To gain better insight into the impact of seasonal forcing and management practices on the microbiome structure in Oklahoma agricultural soils, a seasonal study was conducted. Over a year period, samples were collected bi-weekly during wet months, and monthly during dry months from two grassland and two managed agricultural sites in El Reno, Oklahoma. Microbial community structure was determined in quadruplicate for each site and time point via 16S rRNA gene sequencing. Measures of soil water content, subsoil nitrate, ammonium, organic matter, total nitrogen, and biomass were also taken for each time point. Data analysis revealed several important trends, indicating greater microbial diversity in native grassland and distinct microbial community changes in response to management practices. The native grassland soils also contained greater microbial biomass than managed soils and both varied in response to rainfall events. Native grassland soils harbor more diverse microbial communities, with the diversity and biomass decreasing along a gradient of agricultural management intensity. These data indicate that microbial community structure in El Reno soils occurs along a continuum in which native grasslands and highly managed agricultural soils (tilling and manure application) form end members. Integration with measurements from eddy flux towers into modelling efforts using the DeNitrification-DeComposition (DNDC) model is currently being explored to improve predictions of GHG emissions from grassland soils.
Lau, Ming Woei
2015-12-08
A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.
Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.
2014-01-01
Background Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. Methods Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. Results Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. Conclusions The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner. PMID:24624346
Raeisi, Mojtaba; Tabaraei, Alijan; Hashemi, Mohammad; Behnampour, Nasser
2016-12-05
The present study was conducted to preserve the microbial quality of chicken meat fillets during storage time by using sodium alginate active coating solutions incorporated with different natural antimicrobials including nisin, Cinnamomum zeylanicum (cinnamon), and rosemary essential oils (EOs) which were added individually and in combination. The samples were stored in refrigeration condition for 15days and were analyzed for total viable count, Enterobacteriaceae count, lactic acid bacteria count, Pseudomonas spp. count, psychrotrophic count, and yeast and mold count, as well as fate of inoculated Listeria monocytogenes at 3-day intervals. Results indicated that values of tested microbial indicators in all samples increased during storage. Antimicrobial agents, when used in combination, had stronger effect in preserving the microbial quality of chicken meat samples rather than their individual use and the strongest effect was observed in samples coated with alginate solution containing both cinnamon and rosemary EOs (CEO+REO). However, all treatments significantly inhibited microbial growth when compared to the control (P<0.05). Therefore, based on the results of this study, application of alginate coating solutions containing nisin, cinnamon, and rosemary EOs as natural preservatives is recommended in meat products especially in chicken meats. Copyright © 2016. Published by Elsevier B.V.
Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.
Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M
2016-11-01
We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.
NASA Technical Reports Server (NTRS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
NASA Astrophysics Data System (ADS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
NASA Astrophysics Data System (ADS)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard
Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong
2015-01-01
Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields. PMID:25849654
Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong
2015-04-02
Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields.
Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian
2015-01-01
Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of calcium on microbial reduction of solid phase uranium(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming
2007-08-15
The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.
2002-12-01
In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.
Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs.
Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis
2015-08-01
To date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports--for the first time--on novel ceramic MFC systems that generate electricity whilst simultaneously driving the electrosynthesis of useful chemical products. A novel, inexpensive and low maintenance MFC demonstrated electrical power production and implementation into a practical application. Terracotta based tubular MFCs were able to produce sufficient power to operate an LED continuously over a 7 day period with a concomitant 92% COD reduction. Whilst the MFCs were generating energy, an alkaline solution was produced on the cathode that was directly related to the amount of power generated. The alkaline catholyte was able to fix CO2 into carbonate/bicarbonate salts. This approach implies carbon capture and storage (CCS), effectively capturing CO2 through wet caustic 'scrubbing' on the cathode, which ultimately locks carbon dioxide. Copyright © 2015 Elsevier B.V. All rights reserved.
Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.
Hussain, S A; Perrier, M; Tartakovsky, B
2018-04-01
Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.
Chiellini, Carolina; Mocali, Stefano; Fani, Renato; Ferro, Iolanda; Bruschi, Serenella; Pinzani, Alessandro
2016-08-01
Commercially available lyophilized microbial standards are expensive and subject to reduction in cell viability due to freeze-drying stress. Here we introduce an inexpensive and straightforward method for in-house microbial standard preparation and cryoconservation that preserves constant cell titre and cell viability over 14 months.
Microbial fuel cells: From fundamentals to applications. A review.
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-15
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Microbial fuel cells: From fundamentals to applications. A review
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Carbon nanotube dispersed conductive network for microbial fuel cells
NASA Astrophysics Data System (ADS)
Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.
2014-08-01
Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.
Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate
NASA Astrophysics Data System (ADS)
Ren, Jingli; Yuan, Qigang
2017-08-01
A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.
Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L; Sprenger, Richard R; Stepanauskas, Ramunas; Pachiadaki, Maria G; Jensen, Ole N; Herndl, Gerhard J
2018-01-16
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. Copyright © 2018 the Author(s). Published by PNAS.
Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A. L.; Sprenger, Richard R.; Stepanauskas, Ramunas; Pachiadaki, Maria G.; Herndl, Gerhard J.
2018-01-01
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. PMID:29255014
Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin
2016-11-15
Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Bacterial community analysis of Tatsoi cultivated by hydroponics.
Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C
2016-07-02
Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.
[Advances in microbial solar cells--A review].
Guo, Xiaoyun; Yu, Changping; Zheng, Tianling
2015-08-04
The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.
A mathematical model of microbial enhanced oil recovery (MEOR) method for mixed type rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitnikov, A.A.; Eremin, N.A.; Ibattulin, R.R.
1994-12-31
This paper deals with the microbial enhanced oil recovery method. It covers: (1) Mechanism of microbial influence on the reservoir was analyzed; (2) The main groups of metabolites affected by the hydrodynamic characteristics of the reservoir were determined; (3) The criterions of use of microbial influence method on the reservoir are defined. The mathematical model of microbial influence on the reservoir was made on this basis. The injection of molasse water solution with Clostridium bacterias into the mixed type of rock was used in this model. And the results of calculations were compared with experimental data.
Nou, Xiangwu; Luo, Yaguang
2010-06-01
Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine or other sanitizers for microbial reduction. The objective of this study is to evaluate whether a sanitizer wash before cutting improves microbial reduction efficacy compared to a traditional postcutting sanitizer wash. Romaine lettuce leaves were quantitatively inoculated with E. coli O157:H7 strains and washed in chlorinated water before or after cutting, and E. coli O157:H7 cells that survived the washing process were enumerated to determine the effectiveness of microbial reduction for the 2 cutting and washing sequences. Whole-leaf washing in chlorinated water improved pathogen reduction by approximately 1 log unit over traditional cut-leaf sanitization. Similar improvement in the reduction of background microflora was also observed. Inoculated "Lollo Rossa" red lettuce leaves were mixed with noninoculated Green-Leaf lettuce leaves to evaluate pathogen cross-contamination during processing. High level (96.7% subsamples, average MPN 0.6 log CFU/g) of cross-contamination of noninoculated green leaves by inoculated red leaves was observed when mixed lettuce leaves were cut prior to washing in chlorinated water. In contrast, cross-contamination of noninoculated green leaves was significantly reduced (3.3% of subsamples, average MPN
Microbial solubilization of phosphate
Rogers, R.D.; Wolfram, J.H.
1993-10-26
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.
Microbial solubilization of phosphate
Rogers, Robert D.; Wolfram, James H.
1993-01-01
A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.
Particulate and microbial contamination in in-use admixed intravenous infusions.
Yorioka, Katsuhiro; Oie, Shigeharu; Oomaki, Masafumi; Imamura, Akihisa; Kamiya, Akira
2006-11-01
We compared particulate and microbial contamination in residual solutions of peripheral intravenous admixtures after the termination of drip infusion between intravenous fluids admixed with glass ampoule drugs and those admixed with pre-filled syringe drugs. The mean number of particles>or=1.3 microm in diameter per 1 ml of residual solution was 758.4 for fluids (n=60) admixed with potassium chloride in a glass ampoule (20 ml volume), 158.6 for fluids (n=63) admixed with potassium chloride in a pre-filled syringe (20 ml volume), 736.5 for fluids (n=66) admixed with sodium chloride in a glass ampoule (20 ml volume), 179.2 for fluids (n=15) admixed with sodium chloride in a pre-filled syringe (20 ml volume), 1884.5 in fluids (n=30) admixed with dobutamine hydrochloride in 3 glass ampoules (5 ml volume), and 178.9 (n=10) in diluted dobutamine hydrochloride in pre-filled syringes (50 ml volume: For these samples alone, particulate and microbial contamination were evaluated in sealed products.) Thus, for potassium chloride or sodium chloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was significantly higher for fluids admixed with glass ampoule drugs than for those admixed with pre-filled syringe drugs (p<0.0001). For dobutamine hydrochloride for injection, the number of particles>or=1.3 microm in diameter in the residual intravenous solution was estimated to be higher for fluids admixed with its glass ampoule drug than for those admixed with its pre-filled syringe drug. Observation of the residual solutions of fluids admixed with potassium chloride, sodium chloride, or dobutamine hydrochloride in glass ampoules using an electron microscope with an X-ray analyzer showed glass fragments in each residual solution. Therefore, for the prevention of glass particle contamination in peripheral intravenous admixtures, the use of pre-filled syringe drugs may a useful method. No microbial contamination was observed in any of the residual solutions of 5 types of admixture.
Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan
2015-01-01
A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.
Crowe, K M; Bushway, A A; Bushway, R J; Davis-Dentici, K
2007-10-01
Phosmet-adapted bacteria isolated from lowbush blueberries (Vaccinium angustifolium) were evaluated for their ability to degrade phosmet on blueberry fruit and in minimal salt solutions. Microbial metabolism of phosmet by isolates of Enterobacter agglomerans and Pseudomonas fluorescens resulted in significant reductions (P < 0.05; 33.8%) in phosmet residues on blueberry fruit. Degradation was accompanied by microbial proliferation of phosmet-adapted bacteria. Preferential utilization of phosmet as a carbon source was investigated in minimal salt solutions inoculated with either E. agglomerans or P. fluorescens and supplemented with phosmet or phosmet and glucose. Microbial degradation concurrent with the proliferation of P. fluorescens was similar in both liquid systems, indicative of preferential utilization of phosmet as an energy substrate. E. agglomerans exhibited the ability to degrade phosmet as a carbon source, yet in the presence of added glucose, phosmet degradation occurred within the 1st 24 h only followed by total population mortality resulting in no appreciable degradation. Characteristic utilization of glucose by this isolate suggests a possible switch in carbon substrate utilization away from phosmet, which resulted in toxicity from the remaining phosmet. Overall, microbial metabolism of phosmet as an energy source resulted in significant degradation of residues on blueberries and in minimal salt solutions. Thus, the role of adapted strains of E. agglomerans and P. fluorescens in degrading phosmet on blueberries represents an extensive plant-microorganism relationship, which is essential to determination of phosmet persistence under pre- and postharvest conditions.
Microbial biotechnology and circular economy in wastewater treatment.
Nielsen, Per Halkjaer
2017-09-01
Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Risk factors for moderate and severe microbial keratitis in daily wear contact lens users.
Stapleton, Fiona; Edwards, Katie; Keay, Lisa; Naduvilath, Thomas; Dart, John K G; Brian, Garry; Holden, Brien
2012-08-01
To establish risk factors for moderate and severe microbial keratitis among daily contact lens (CL) wearers in Australia. A prospective, 12-month, population-based, case-control study. New cases of moderate and severe microbial keratitis in daily wear CL users presenting in Australia over a 12-month period were identified through surveillance of all ophthalmic practitioners. Case detection was augmented by record audits at major ophthalmic centers. Controls were users of daily wear CLs in the community identified using a national telephone survey. Cases and controls were interviewed by telephone to determine subject demographics and CL wear history. Multiple binary logistic regression was used to determine independent risk factors and univariate population attributable risk percentage (PAR%) was estimated for each risk factor. Independent risk factors, relative risk (with 95% confidence intervals [CIs]), and PAR%. There were 90 eligible moderate and severe cases related to daily wear of CLs reported during the study period. We identified 1090 community controls using daily wear CLs. Independent risk factors for moderate and severe keratitis while adjusting for age, gender, and lens material type included poor storage case hygiene 6.4× (95% CI, 1.9-21.8; PAR, 49%), infrequent storage case replacement 5.4× (95% CI, 1.5-18.9; PAR, 27%), solution type 7.2× (95% CI, 2.3-22.5; PAR, 35%), occasional overnight lens use (<1 night per week) 6.5× (95% CI, 1.3-31.7; PAR, 23%), high socioeconomic status 4.1× (95% CI, 1.2-14.4; PAR, 31%), and smoking 3.7× (95% CI, 1.1-12.8; PAR, 31%). Moderate and severe microbial keratitis associated with daily use of CLs was independently associated with factors likely to cause contamination of CL storage cases (frequency of storage case replacement, hygiene, and solution type). Other factors included occasional overnight use of CLs, smoking, and socioeconomic class. Disease load may be considerably reduced by attention to modifiable risk factors related to CL storage case practice. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Rice rhizosphere soil and root surface bacterial community response to water management changes
USDA-ARS?s Scientific Manuscript database
Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...
Microbial Resources and Enological Significance: Opportunities and Benefits
Petruzzi, Leonardo; Capozzi, Vittorio; Berbegal, Carmen; Corbo, Maria R.; Bevilacqua, Antonio; Spano, Giuseppe; Sinigaglia, Milena
2017-01-01
Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives. PMID:28642742
Manzoni, S.; Katul, G.
2014-09-30
We report that soil microbial respiration rates decrease with soil drying, ceasing below water potentials around -15 MPa. A proposed mechanism for this pattern is that under dry conditions, microbes are substrate limited because solute diffusivity is halted due to breaking of water film continuity. However, pore connectivity estimated from hydraulic conductivity and solute diffusivity (at Darcy's scale) is typically interrupted at much less negative water potentials than microbial respiration (-0.1 to -1 MPa). It is hypothesized here that the more negative respiration thresholds than at the Darcy's scale emerge because microbial activity is restricted to microscale soil patches thatmore » retain some hydrological connectivity even when it is lost at the macroscale. This hypothesis is explored using results from percolation theory and meta-analyses of respiration-water potential curves and hydrological percolation points. Lastly, when reducing the spatial scale from macroscale to microscale, hydrological and respiration thresholds become consistent, supporting the proposed hypothesis.« less
Kim, Seul-Ki; Kwen, Hai-Doo; Choi, Seong-Ho
2011-01-01
An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT) composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC) electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor. PMID:22319395
Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang
2017-09-01
Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel
2017-04-01
Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu 2+ = -log 10 [Cu 2+ ]) measured in 55 soil sample solutions with pCu 2+ predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu 2+ were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu 2+ by up to 2.7 pCu 2+ units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu 2+ (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.
How to Teach Procedures, Problem Solving, and Concepts in Microbial Genetics
ERIC Educational Resources Information Center
Bainbridge, Brian W.
1977-01-01
Flow-diagrams, algorithms, decision logic tables, and concept maps are presented in detail as methods for teaching practical procedures, problem solving, and basic concepts in microbial genetics. It is suggested that the flexible use of these methods should lead to an improved understanding of microbial genetics. (Author/MA)
Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.
Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q
2009-01-01
There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh-cut industry currently uses antibrowning agents to prevent discoloration. However, the antibrowning solutions can become contaminated with human pathogens such as Listeria monocytogenes, and washing of apple slices with the contaminated solutions can result in the transfer of pathogens to the product. It would be ideal if an antibrowning compound prevented the proliferation of human pathogens in solutions and minimized the growth of pathogens during storage. The study was conducted to investigate antibrowning and antimicrobial properties of sodium acid sulfate (SAS) in comparison with other common antibrowning agents on Granny Smith apples. Results showed that among the antimicrobial agents we tested, SAS was the most effective in inhibiting browning and microbial growth for 14 d at 4 degrees C. However, SAS caused some skin discoloration of apple slices. Overall, SAS can potentially be used to inhibit tissue browning while reducing the microbial growth on apple slices. The information is useful for the fresh-cut produce industry to enhance microbial safety of fresh-cut apples while minimizing browning, thus increasing the consumption of the health benefiting fresh fruit.
Microbial Fuel Cell Performance with a Pressurized Cathode Chamber
USDA-ARS?s Scientific Manuscript database
Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...
de Loor, Henriette; Poesen, Ruben; De Leger, Wout; Dehaen, Wim; Augustijns, Patrick; Evenepoel, Pieter; Meijers, Björn
2016-09-14
Chronic kidney disease (CKD) is associated with an increased risk of mortality and cardiovascular disease, which is, at least partly, mediated by the accumulation of so-called uremic retention solutes. Although there has been an increasing interest in the behavior of these solutes, derived from both the endogenous and colonic microbial metabolism, methods to simultaneously and accurately measure a broad panel of relevant uremic retention solutes remain scarce. We developed a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. A high throughput sample preparation was used with extraction of analytes from 50 μl serum using Ostro plate technology. For most solutes, stable isotopes labelled metabolites were used as internal standards. Chromatography was achieved using an Acquity UPLC CSH Fluoro Phenyl column. The total run time was 8 min, the mobile phase was a gradient of 0.1% formic acid in Milli-Q water and pure methanol at a flow rate of 0.5 ml min(-1). Detection was performed using a tandem mass spectrometer with alternated positive and negative electrospray ionization. Calibration curves were linear for all solutes. Precision was assessed according to the NCCLS EP5-T guideline, being below 15% for all metabolites. Mean recoveries were between 83 and 104% for all metabolites. The validated method was successfully applied in a cohort of 488 patients with CKD. We developed and validated a sensitive and robust UPLC-MS/MS method for quantification of 15 uremic retention solutes derived from endogenous and colonic microbial metabolism. This method allows for studying the behavior and relevance of these solutes in patients with CKD. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent developments in microbial fuel cell technologies for sustainable bioenergy.
Watanabe, Kazuya
2008-12-01
Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.
USDA-ARS?s Scientific Manuscript database
Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...
Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang
2016-06-01
The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi
2010-01-01
Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.
Speda, Jutta; Johansson, Mikaela A; Odnell, Anna; Karlsson, Martin
2017-01-01
Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemicals compromises the rationale of using enzymes for low energy treatment to promote biogas production. Therefore, simpler and less energy intensive in situ anaerobic digester treatment with enzymes is desirable. However, investigations in which exogenous enzymes are added to treat the material in situ have shown mixed success, possibly because the enzymes used originated from organisms not evolutionarily adapted to the environment of anaerobic digesters. In this study, to examine the effect of enzymes endogenous to methanogenic microbial communities, cellulolytic enzymes were instead overproduced and collected from a dedicated methanogenic microbial community. By this approach, a solution with very high endogenous microbial cellulolytic activity was produced and tested for the effect on biogas production from lignocellulose by in situ anaerobic digester treatment. Addition of enzymes, endogenous to the environment of a mixed methanogenic microbial community, to the anaerobic digestion of ensiled forage ley resulted in significantly increased rate and yield of biomethane production. The enzyme solution had an instant effect on more readily available cellulosic material. More importantly, the induced enzyme solution also affected the biogas production rate from less accessible cellulosic material in a second slower phase of lignocellulose digestion. Notably, this effect was maintained throughout the experiment to completely digested lignocellulosic substrate. The induced enzyme solution collected from a microbial methanogenic community contained enzymes that were apparently active and stable in the environment of anaerobic digestion. The enzymatic activity had a profound effect on the biogas production rate and yield, comparable with the results of many pretreatment methods. Thus, application of such enzymes could enable efficient low energy in situ anaerobic digester treatment for increased biomethane production from lignocellulosic material.
Tice, Ryan C; Kim, Younggy
2014-11-01
Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen
2016-01-01
A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.
The practicality of using ozone with fruit and vegetables.
Glowacz, Marcin; Rees, Deborah
2016-11-01
The fresh produce industry is constantly growing as a result of increasing consumer demand. Food quality and safety management are still major issues for the supply chain. The use of ozone has been identified as a feasible solution to reduce microorganisms present in food, in this way extending the shelf-life of fresh produce. A number of factors that may affect the efficiency of ozone treatment have been identified, e.g. microbial populations, ozone concentration and time of exposure, type of produce, temperature, relative humidity and packaging material, and they are briefly discussed. Furthermore, practical information derived from studies with ozone conducted by the authors and from their knowledge of the subject directs the reader's attention to the key aspects of ozone use under commercial conditions, i.e. from the practical point of view. Finally, one possible direction for future research with the postharvest use of ozone, i.e. the important role of fruit cuticle in response to this postharvest treatment, is indicated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei
2016-01-01
Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N∙ha−1∙yr−1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations. PMID:27302857
NASA Astrophysics Data System (ADS)
Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei
2016-06-01
Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.
Microbial xylitol production from corn cobs using Candida magnoliae.
Tada, Kiyoshi; Horiuchi, Jun-Ichi; Kanno, Tohru; Kobayashi, Masayoshi
2004-01-01
Microbial production of xylitol from corn cobs using Candida magnoliae was experimentally investigated. Approximately 25 g-xylose/l solution was obtained from 100 g-corn cobs/l solution by hydrolysis using 1.0% sulfuric acid at 121 degrees C for 60 min. To remove inhibitors from the hydrolysates, charcoal pellets were found to be effective in selectively removing the inhibitors from the hydrolysates without affecting xylose concentration. C. magnoliae was successfully cultivated using the treated corn cob hydrolysate, resulting in the production of 18.7 g-xylitol/l from 25 g-xylose/l within 36 h.
The role of ecological theory in microbial ecology.
Prosser, James I; Bohannan, Brendan J M; Curtis, Tom P; Ellis, Richard J; Firestone, Mary K; Freckleton, Rob P; Green, Jessica L; Green, Laura E; Killham, Ken; Lennon, Jack J; Osborn, A Mark; Solan, Martin; van der Gast, Christopher J; Young, J Peter W
2007-05-01
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.
Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U
2008-08-01
Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.
Abong', George Ooko
2018-01-01
Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161
Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko
2018-01-01
Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.
Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk
2014-11-12
The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.
UPT scenarios: Implications for system reliability
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1992-01-01
The objective of this project was to examine the corrosion resistance of 316L stainless steel in several urine pre-treat solutions. Four solutions were examined: untreated urine (control); urine pretreated with oxone (potassium peroxymonosulfate sulfate); urine pretreated with sodium hypochlorite (NaOCl); and urine pretreated with ozone (O3). In accordance with current procedures, all solutions but the control were acidified to a pH of 2.5 using sulfuric acid--this suppresses the generation of ammonia in the solutions and is intended to limit microbial growth. Welded and unwelded coupons were exposed to each solution. In addition, Titanium coupons (welded and unwelded) were exposed to biologically active environmental control and life support system (ECLSS) water. Microbial attachment and biofilm growth were monitored. Ozone was examined as a biocide/oxidizer/corrosion preventative (simultaneous addition) and as a remediation method (added one week after exposure). In an unrelated effort, HP 9-4-30 coupons were exposed to biologically active solutions. Corrosion rates for welded and unwelded samples were determined--results were correlated to the ongoing HP 9-4-30 weldment stress corrosion study.
Short communication: Snapshot of industry milk hauling practices in the western United States.
Kuhn, Eva; Meunier-Goddik, Lisbeth; Waite-Cusic, Joy G
2018-03-01
The Pasteurized Milk Ordinance (PMO) mandates milk hauling sanitation and operational practices; however, the use of vague language (i.e., "as needed") and gaps in processes lead to variability in industry practices. Our aim was to characterize industry milk hauling practices and identify areas that may be an unexplained source of contamination in the dairy processing continuum, and communicate this information with industry to cultivate best practices. The objectives of this study were to (1) survey industry hauling sanitation and operation practices in the Pacific Northwest region of the United States, and (2) quantify microbial populations [aerobic plate count (APC), lactic acid bacteria, coliforms] on the internal surfaces of transfer hoses (tanker and receiving bay) to determine their potential contribution to the microbiological quality of raw milk. Eleven facilities (78% response rate) participated in our survey. All facilities surveyed were compliant with the PMO; however, overall milk reception layout, sanitation practices, and routine maintenance greatly varied between facilities. Farm hose samples (n = 115) had significantly higher microbial loads (APC: mean 4.7 log cfu/100 cm 2 ; median 5.1 log cfu/cm 2 ) than receiving hose samples (n = 57; APC: mean: 2.1 log cfu/100 cm 2 ; median 1.9 log cfu/100 cm 2 ). Microbial populations on transfer hose surfaces did not correlate with time since last cleaning for either tanker or receiving bay hoses. Microbial content of farm hoses is likely to reflect the microbial quality of the previous milk transferred through the hose, making on-farm management practices the primary consideration to maintain low microbiological counts downstream. Upon arrival at the processor, 10% of farm hoses were missing caps. Although this did not correlate with elevated microbiological counts, uncapped farm hoses are exposed to the farm environment, provide opportunity for contamination, and are in violation of the PMO. Through observations made during our studies, manual cleaning procedures appear to be a major weakness in hauling practices and need more attention. Recognizing and communicating variability and areas of weakness allows industry to elevate their hauling sanitation and operational practices to maintain optimum milk microbiological quality. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Plouchart, Diane; Guizard, Guillaume; Latrille, Eric
2018-01-01
Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering. PMID:29518106
Agroforestry management in vineyards: effects on soil microbial communities
NASA Astrophysics Data System (ADS)
Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel
2017-04-01
Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.
Improved Flotation Technique for Microscopy of In Situ Soil and Sediment Microorganisms
Bone, T. L.; Balkwill, D. L.
1986-01-01
An improved flotation method for microscopy of in situ soil and sediment microorganisms was developed. Microbial cells were released into gellike flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% solutions of polyvinylpyrrolidone. The use of polyvinylpyrrolidone solutions instead of water facilitated the release of films from saturated samples such as aquifer sediments as well as from typical surface soils. In situ microbial morphological characteristics could then be surveyed rapidly by light microscopy of films stained with acridine orange. This method effectively determined the ranges of morphological diversity in a variety of sample types. It also detected microcolonies and other spatial relationships among microbial cells. Only a small fraction (3.4 to 10.1%) of the microflora was released into the flotation films, but plating and direct evaluations by microscopy showed that this fraction was representative of the total population. Images PMID:16347005
[Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].
Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao
2009-04-15
The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.
Challenges and prospects of xylitol production with whole cell bio-catalysis: A review.
Dasgupta, Diptarka; Bandhu, Sheetal; Adhikari, Dilip K; Ghosh, Debashish
2017-04-01
Xylitol, as an alternative low calorie sweetener is well accepted in formulations of various confectioneries and healthcare products. Worldwide it is industrially produced by catalytic hydrogenation of pure d-xylose solution under high temperature and pressure. Biotechnological xylitol production is a potentially attractive replacement for chemical process, as it occurs under much milder process conditions and can be based on sugar mixtures derived from low-cost industrial and agri-waste. However, microbial fermentation route of xylitol production is not so far practiced industrially. This review highlights the challenges and prospects of biotechnological xylitol production considering possible genetic modifications of fermenting microorganisms and various aspects of industrial bioprocessing and product downstreaming. Copyright © 2017 Elsevier GmbH. All rights reserved.
MICROBIAL BIOMASS IN SOILS OF RUSSIA UNDER LONG-TERM MANAGEMENT PRACTICES
Non-tilled and tilled plots on a spodosol (C-org 0.65-1.70%; pH 4.1-4.5) and a mollisol (C-org 3.02-3.13%, pH 4.9-5.3), located in the European region of Russia, were investigated to determine variances in soil microbial biomass and microbial community composition. Continuous, lo...
Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R
2017-06-15
This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial taxonomy in the post-genomic era: Rebuilding from scratch?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Cristiane C.; Amaral, Gilda R.; Campeão, Mariana
2014-12-23
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. We re-evaluated the prokaryote species twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. We will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
USDA-ARS?s Scientific Manuscript database
Currently, nearly all fresh-cut lettuce processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. It is believed that freshly cut lettuce releases significant amounts of organic matters that negatively impact the effec...
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W
2007-05-01
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.
Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.
Wang, Shizeng; Sun, Xinxiao; Yuan, Qipeng
2018-06-01
Using lignocellulosic biomass for the production of renewable biofuel provides a sustainable and promising solution to the crisis of energy and environment. However, the processes of biomass pretreatment and biofuel fermentation bring a variety of inhibitors to microbial strains. These inhibitors repress microbial growth, decrease biofuel yields and increase fermentation costs. The production of biofuels from renewable lignocellulosic biomass relies on the development of tolerant and robust microbial strains. In recent years, the advancement of tolerance engineering and evolutionary engineering provides powerful platform for obtaining host strains with desired tolerance for further metabolic engineering of biofuel pathways. In this review, we summarized the inhibitors derived from biomass pretreatment and biofuel fermentation, the mechanisms of inhibitor toxicity, and the strategies for enhancing microbial tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pereg, Lily; Aldorri, Sind; McMillan, Mary
2017-04-01
Wheat and cotton are important food and cash crops often grown in rotation on black, grey and red clay soil, in Australia. The common practice of nitrogen and phosphate fertilizers have been solely in the form of agrochemicals, however, a few growers have incorporated manure or composted plant material into the soil before planting. While the cotton yield in studied farms was comparable, we found that the use of such organic amendments significantly enhanced the pool of nitrogen cycling genes, suggesting increased potential of soil microbial function as well as increased microbial metabolic diversity and abundance. Therefore, the regular use of organic amendments contributed to improved soil sustainability.
NASA Astrophysics Data System (ADS)
Proctor, C.; He, Y.
2017-12-01
Deposition of carbon belowground via the root exudation pathway is the net of root-borne efflux and influx processes. For select exudates, root have a remarkable ability to actively recapture lost compounds, suggesting that influx mechanisms regulate exudation. However, roots are not the sole sink for root effluxed carbon. Roots compete with solute sorption and microbial uptake, whom are regulated by a unique set of soil environmental conditions. Peatland soil features stark vertical gradients in their physical, chemical, biological, and hydrological properties, which has downstream implications for the relative competitive ability of each actor in root-soil-microbial interactions. This study developed a single root exudate model using the Barber-Cushman approach to examine the radial accumulation of exudates in simulated peatland soil with vertical gradients. The model simulated efflux, influx, solute diffusion, solute mineralization and solid phase sorption mechanisms as depth dependent on bulk density, porosity, tortuosity, buffer power, temperature, and microbial biomass. Deeper peat soil reduced the porosity that permits solute transport, increased tortuosity which lowered the effective diffusion rate, increased solute-solid sorption, and reduced microbial mineralization of effluxed compounds. Slower mineralization rates were partially juxtaposed by increases in sorption, albeit the net removal of effluxed compounds was lower, leading to a larger amount of exudates to remain in the rhizosphere around deeper roots. Increase in the solid phase, and its subsequent constriction of solute migration, lead to a higher accumulation of effluxed compounds on the rhizoplane, up to 1.23x higher than shallow soil. Subsequently, influx mechanisms captured a larger fraction of effluxed compounds (69.06% at -10cm versus 84.8% at -80 cm), reducing net exudation rates from 0.641 to 0.315 nmol cm-1 hr-1 between -10 and -80cm depths. These results suggest that localized environmental conditions around roots can be a considerable influence on root influx and competition for root exudates. The insights provided by this model help provide a better understanding of exudate regulation in peatlands and the quantity and quality of carbon deposited to the methanogen community.
Saleem, Muhammad; Moe, Luke A
2014-10-01
Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Significance of rhizosphere microorganisms in reclaiming water in a CELSS
NASA Astrophysics Data System (ADS)
1997-01-01
Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.
Significance of rhizosphere microorganisms in reclaiming water in a CELSS
NASA Astrophysics Data System (ADS)
Greene, C.; Bubenheim, D. L.; Wignarajah, K.
1997-01-01
Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L^-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.
NASA Astrophysics Data System (ADS)
Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.
2017-12-01
Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.
Gharasoo, Mehdi; Centler, Florian; Van Cappellen, Philippe; Wick, Lukas Y; Thullner, Martin
2015-05-05
Microbial degradation is an important process in many environments controlling for instance the cycling of nutrients or the biodegradation of contaminants. At high substrate concentrations toxic effects may inhibit the degradation process. Bioavailability limitations of a degradable substrate can therefore either improve the overall dynamics of degradation by softening the contaminant toxicity effects to microorganisms, or slow down the biodegradation by reducing the microbial access to the substrate. Many studies on biodegradation kinetics of a self-inhibitive substrate have mainly focused on physiological responses of the bacteria to substrate concentration levels without considering the substrate bioavailability limitations rising from different geophysical and geochemical dynamics at pore-scale. In this regard, the role of bioavailability effects on the kinetics of self-inhibiting substrates is poorly understood. In this study, we theoretically analyze this role and assess the interactions between self-inhibition and mass transfer-limitations using analytical/numerical solutions, and show the findings practical relevance for a simple model scenario. Although individually self-inhibition and mass-transfer limitations negatively impact biodegradation, their combined effect may enhance biodegradation rates above a concentration threshold. To our knowledge, this is the first theoretical study describing the cumulative effects of the two mechanisms together.
Mohamed, Hussein; Clasen, Thomas; Njee, Robert Mussa; Malebo, Hamisi M; Mbuligwe, Stephen; Brown, Joe
2016-01-01
To assess the microbiological effectiveness of several household water treatment and safe storage (HWTS) options in situ in Tanzania, before consideration for national scale-up of HWTS. Participating households received supplies and instructions for practicing six HWTS methods on a rotating 5-week basis. We analysed 1202 paired samples (source and treated) of drinking water from 390 households, across all technologies. Samples were analysed for thermotolerant (TTC) coliforms, an indicator of faecal contamination, to measure effectiveness of treatment in situ. All HWTS methods improved microbial water quality, with reductions in TTC of 99.3% for boiling, 99.4% for Waterguard ™ brand sodium hypochlorite solution, 99.5% for a ceramic pot filter, 99.5% for Aquatab ® sodium dichloroisocyanurate (NaDCC) tablets, 99.6% for P&G Purifier of Water ™ flocculent/disinfectant sachets, and 99.7% for a ceramic siphon filter. Microbiological performance was relatively high compared with other field studies and differences in microbial reductions between technologies were not statistically significant. Given that microbiological performance across technologies was comparable, decisions regarding scale-up should be based on other factors, including uptake in the target population and correct, consistent, and sustained use over time. © 2015 John Wiley & Sons Ltd.
Diversifying biological fuel cell designs by use of nanoporous filters.
Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R
2007-02-15
The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.
NASA Astrophysics Data System (ADS)
Shaikh, Anas Ejaz; Satardekar, Kshitij Vasant; Khan, Rummana Rehman; Tarte, Nanda Amit; Barve, Siddhivinayak Satyasandha
2018-03-01
Hydro-alcoholic (2:8 v/v) extract of the pulp of Phoenix dactylifera fruit pulp obtained using Soxhlet extraction (70 °C, 6 h) was found to contain alkaloids, sterols, tannins, flavonoids, cardiac glycosides, proteins, and carbohydrates. An aqueous solution (20% v/v) of the extract led to the synthesis of silver nanoparticles (AgNPs) from 0.01 M AgNO3 solution as confirmed by the surface plasmon resonance at 445 nm determined using UV-visible spectroscopy after 24 h. The synthesized AgNPs were found to be mostly spherical and complexed with phytochemicals from the extract. The size of AgNPs ranged from 12.2-140.2 nm with mean diameter of 47.0 nm as characterized by scanning electron microscopy (SEM). The elemental composition of the AgNPs complexed with the phytochemicals was found to be 80.49% silver (Ag), 15.21% carbon (C), and 4.30% oxygen (O) on a weight basis by energy-dispersive spectroscopy (EDS). Using the α,α-diphenyl-β-picrylhydrazyl (DPPH) assay, an anti-oxidant activity of 89.15% for 1 µg L-1 ultrasonically homogenized ethanolic solution of complexed AgNPs was obtained (equivalent to 0.20 mg mL-1 gallic acid solution), while methanolic solution of plant extract possessed an EC50 value of 3.45% (v/v) (equivalent to 0.11 mg mL-1 gallic acid solution). The plant-nanosilver broth was also found to possess effective anti-microbial activity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Candida albicans ATCC 10231 as assessed by the disc diffusion assay. However, the plant extract showed negligible anti-microbial activity.
Khadka, Ram B; Marasini, Madan; Rawal, Ranjana; Gautam, Durga M; Acedo, Antonio L
2017-01-01
Background . Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g -1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest ( P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g -1 , resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g -1 , resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g -1 , resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g -1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation ( P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market.
Marasini, Madan; Rawal, Ranjana; Gautam, Durga M.; Acedo, Antonio L.
2017-01-01
Background. Fresh vegetables such as tomato should have low microbial population for safe consumption and long storage life. The aerobic bacterial count (ABC) and coliform bacterial count (CBC), yeast, and mold population are the most widely used microbial indicators in fresh vegetables which should be lower than 4 log CFU g−1 for safe consumption. The stages of the supply chain, postharvest handling methods, and crop varieties had significant effects on microbial population. ABC, CBC, yeast, and mold population were significantly highest (P < 0.05) at retail market (5.59, 4.38, 2.60, and 3.14 log CFU g−1, resp.), followed by wholesale market (4.72, 4.71, 2.43, and 2.44 log CFU g−1, resp.), and were least at farm gate (3.89, 3.63, 2.38, and 2.03 log CFU g−1, resp.). Improved postharvest practices (washing in clean water and grading and packaging in clean plastic crate) helped to reduce ABC, CBC, and mold population by 2.51, 32.70, and 29.86 percentage as compared to the conventional method (no washing and no grading and packaging in mud plastered bamboo baskets). Among varieties, Pusa ruby had the lowest microbial load of 2.58, 4.53, 0.96, and 1.77 log CFU g−1 for ABC, CBC, yeast, and mold count, respectively. Significantly negative correlation (P < 0.05) was observed between fruit pH & ABC and pH & mold count. Although the microbial quality of fresh tomato is safe in the local market of western Terai of Nepal both in conventional and in improved practices however still it is essential to follow improved postharvest handling practices in production and marketing of newly introduced tomato cultivars (high-pH cultivars) for ensuring the safe availability of fresh tomato in the market. PMID:29124068
Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng
2017-02-01
Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dunn, G; Henrich, N; Holmes, B; Harris, L; Prystajecky, N
2014-09-01
This work examines the communication interactions of water suppliers and health authorities with the general public regarding microbial source water quality for recreational and drinking water. We compare current approaches to risk communication observable in British Columbia (BC), Canada, with best practices derived from the communications literature, finding significant gaps between theory and practice. By considering public views and government practices together, we identify key disconnects, leading to the conclusion that at present, neither the public's needs nor public health officials' goals are being met. We find: (1) there is a general lack of awareness and poor understanding by the public of microbial threats to water and the associated health implications; (2) the public often does not know where to find water quality information; (3) public information needs are not identified or met; (4) information sharing by authorities is predominantly one-way and reactive (crisis-oriented); and (5) the effectiveness of communications is not evaluated. There is a need for both improved public understanding of water quality-related risks, and new approaches to ensure information related to water quality reaches audiences. Overall, greater attention should be given to planning and goal setting related to microbial water risk communication.
Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E
2014-11-01
Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cho, Il-Hoon; Ku, Seockmo
2017-09-30
The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.
Single-cell transcriptomics for microbial eukaryotes.
Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J
2014-11-17
One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tiecco, Matteo; Cardinali, Gianluigi; Roscini, Luca; Germani, Raimondo; Corte, Laura
2013-11-01
Thirty-six quaternary ammonium salts, of which 28 structurally different non-commercially available surfactants, were tested to screen their biocidal and inhibitory antimicrobial activity. Their activity was compared to commercially available amphiphiles as well as to non-amphiphilic quaternary ammonium salts. As target of these compounds four microbial species were employed of which two (Saccharomyces cerevisiae and Candida albicans) were important yeast in the food and clinical environment and the other two (Escherichia coli and Listeria innocua) represented the Gram negative and positive bacteria, respectively. The surfactants showed the ability to kill the microbial cells in water solution and to variably hamper their growth onto agar medium. The non-amphiphilic compounds (which represent analogues of some surfactants used in this study, since they have the same head group but no hydrophobic portion) had little effect in solution and no effect against the microbial growth on plate. Amphoteric and non-amphoteric zwitterionic surfactants showed reduced biocidal activity. The most active antimicrobial agent was N-tetradecyltropinium bromide (23S) surfactant. The presence of cells did not significantly affect the ability to form micelles, as demonstrated by comparative conductometric measurements. Copyright © 2013 Elsevier B.V. All rights reserved.
Greatest soil microbial diversity found in micro-habitats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bach, Elizabeth M.; Williams, Ryan J.; Hargreaves, Sarah K.
Microbial interactions occur in habitats much smaller than typically considered in classic ecological studies. This study uses soil aggregates to examine soil microbial community composition and structure of both bacteria and fungi at a microbially relevant scale. Aggregates were isolated from three land management systems in central Iowa, USA to test if aggregate-level microbial responses were sensitive to large-scale shifts in plant community and management practices. Bacteria and fungi exhibited similar patterns of community structure and diversity among soil aggregates, regardless of land management. Microaggregates supported more diverse microbial communities, both taxonomically and functionally. Calculation of a weighted proportional wholemore » soil diversity, which accounted for microbes found in aggregate fractions, resulted in 65% greater bacterial richness and 100% greater fungal richness over independently sampled whole soil. Our results show microaggregates support a previously unrecognized diverse microbial community that likely effects microbial access and metabolism of soil substrates.« less
NASA Astrophysics Data System (ADS)
Gunina, Anna; Smith, Andrew; Jones, Davey; Kuzyakov, Yakov
2017-04-01
Removal of low molecular weight organic substances (LMWOS), originating from plants and microorganisms, from soil solution is regulated by microbial uptake. In addition to the concentration of LMWOS in soil solution, the chemical properties of each substance (e.g. C oxidation state, number of C atoms, number of -COOH groups) can affect their uptake and subsequent partitioning of C within the soil microbial community. The aim of this study was to trace the initial fate of three dominant classes of LMWOS in soil (sugars, carboxylic and amino acids), including their removal from solution and utilization by microorganisms, and to reveal the effect of substance chemical properties on these processes. Soil solution, spiked at natural abundance levels with 14C-labelled glucose, fructose, malate, succinate, formate, alanine or glycine, was added to the soil and 14C was traced in the dissolved organic carbon (DOC), CO2, cytosol and soil organic carbon (SOC) over 24 hours. The half-life time of all LMWOS in the DOC (T1 /2-solution) varied between 0.6-5.0 min showing extremely fast initial uptake of LMWOS. The T1 /2-solution of substances was dependent on C oxidation state, indicating that less oxidized organic substances (with C oxidation state "0") were retained longer in soil solution than oxidized substances. The LMWOS-C T1 /2-fast, characterizing the half-life time of 14C in the fast mineralization pool, ranged between 30 and 80 min, with the T1 /2-fast of carboxylic acids (malic acid) being the fastest and the T1 /2-fast of amino acids (glycine) being the slowest. An absence of correlation between T1 /2-fast and either C oxidation state, number of C atoms, or number of -COOH groups suggests that intercellular metabolic pathways are more important for LMWOS transformation in soil than their basic chemical properties. The CO2 release during LMWOS mineralization accounted for 20-90% of 14C applied. Mineralization of LMWOS was the least for sugars and the greatest for carboxylic (formic) acids, whereas the 14C incorporations into cytosol and SOC were opposite. The portion of LMWOS mineralized to CO2 increased with their C oxidation state corresponding to the decrease of C incorporated into the cytosol and SOC pools. The ratio of 14C incorporated into cytosol to 14C incorporated into CO2 pool ranged between 0.03 and 1.19, being the lowest for carboxylic acids and highest for sugars, and decreased with substances C oxidation state. Thus, the C oxidation state is one of the crucial parameter of LMWOS determining their partitioning between two main C fluxes: mineralization and microbial stabilization/immobilization. Our data suggests that the uptake of common LMWOS from soil solution by microorganisms and final LMWOS-C partitioning within microbial biomass may be possible to predict from the physicochemical properties of the substance.
Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house.
Hao, Xiaoxia; Cao, Wei; Li, Baoming; Zhang, Qiang; Wang, Chaoyuan; Ge, Liangpeng
2014-04-01
Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29-6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 x 10(5) and 2.82 x 10(3) colony-forming units (CFU) m(-3) after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying. There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing the bird housing environment and engineers in designing poultry houses.
NASA Astrophysics Data System (ADS)
Huang, Jen-How
2014-05-01
Mobilisation of solid phase arsenic under reducing conditions involves a combination of microbial arsenate and iron reduction and is affected by secondary reactions of released products. A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions at pH 7. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. Thus, the mobilisation of adsorbed As(V) can be regarded as the rate determining step of microbial reduction of As(V) sorbed to ferrihydrite. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. Reductive dissolution of ferrihydrite may cause additional releases of adsorbed As(V) into solution, which is especially effective at high As(V) to ferrihydrite ratios. In comparison, formation of Fe(II) secondary minerals during microbial Fe(III) reduction were responsible for trapping solution As(V) in the systems with high ferrihydrite but low As(V) concentrations. In summary, the interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔGrxn, but instead was governed by geochemical and microbial parameters, which may substantially influence the mobility of arsenic.
Safarabadi, Mehdi; Ghaznavi-Rad, Ehsanollah; Pakniyat, Abdolghader; Rezaie, Korosh; Jadidi, Ali
2017-01-01
Providing intubated patients admitted to the intensive care units with oral healthcare is one of the main tasks of nurses in order to prevent Ventilator-Associated Pneumonia (VAP). This study aimed at comparing the effects of two mouthwash solutions (echinacea and chlorhexidine) on the oral microbial flora of patients hospitalized in the intensive care units. In this clinical trial, 70 patients aged between18 and 65 years undergoing tracheal intubation through the mouth in three hospitals in Arak, were selected using simple random sampling and were randomly divided into two groups: the intervention group and the control group. The oral health checklist was used to collect the data (before and after the intervention). The samples were obtained from the orally intubated patients and were then cultured in selective media. Afterwards, the aerobic microbial growth was investigated in all culture media. The data were analyzed using SPSS software. The microbial flora in the echinacea group significantly decreased after the intervention ( p < 0.0001) and it was also the case withmicrobial flora of the patients in the chlorhexidine group ( p < 0.001). After 4 days, the oral microbial flora of the patients in the intervention group was lower than that of the patients in the control group ( p < 0.001). The results showed that the echinacea solution was more effective in decreasing the oral microbial flora of patients in the intensive care unit. Given the benefits of the components of the herb Echinacea, it can be suggested as a viable alternative to chlorhexidine.
Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E
2012-11-20
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.
2012-01-01
The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources. PMID:23168231
Genetics and attribution issues that confront the microbial forensics field.
Budowle, Bruce
2004-12-02
The commission of an act of bioterrorism or biocrime is a real concern for law enforcement and society. Efforts are underway to develop a strong microbial forensic program to assist in identifying perpetrators of acts of bioterrorism and biocrimes, as well as serve as a deterrent for those who might commit such illicit acts. Genetic analyses of microbial organisms will likely be a powerful tool for attribution of criminal acts. There are some similarities to forensic human DNA analysis practices, such as: molecular biology technology, use of population databases, qualitative conclusions of test results, and the application of QA/QC practices. Differences include: database size and composition, statistical interpretation methods, and confidence/uncertainty in the outcome of an interpretation.
Formulation and Stability of Solutions.
Akers, Michael J
2016-01-01
Ready-to-use solutions are the most preferable and most common dosage forms for injectable and topical ophthalmic products. Drugs formulated as solution almost always have chemical and physical stability challenges as well as solubility limitations and the need to prevent inadvertent microbial contamination issues. This article, which takes us through a discussion of optimizing the physical stability of solutions, represents the first of a series of articles discussing how these challenges and issues are addressed.
Impact of diverse soil microbial communities on crop residues decomposition
NASA Astrophysics Data System (ADS)
Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard
2017-04-01
Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N mineralization, and chemical measures. Physicochemical composition of crop residues was assessed by Fourier transform infrared spectroscopy FTIR technique at 0 and 83 days. The experiment was conducted in microcosms over 83 days for the biological measurements and 175 days for the C mineralization. The first results showed variations in the C & N rates, and the microbial abundances and functions over time, with a peak at 5 days and a decrease at 83 days for most of the measurements. The soil microbial communities' composition (different management practices) highly impacted the crop residues decomposition. The biochemical composition of crop residues influenced less the microbial communities of each soil. Further studies on the valorization of these residues into agro materials will be carried out. References: Andrews SS., Karlen DL., and Cambardella CA. (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America, 68: 1945-1962
Microbial Indicators of Soil Quality under Different Land Use Systems in Subtropical Soils
NASA Astrophysics Data System (ADS)
Maharjan, M.
2016-12-01
Land-use change from native forest to intensive agricultural systems can negatively impact numerous soil parameters. Understanding the effects of forest ecosystem transformations on markers of long-term soil health is particularly important in rapidly developing regions such as Nepal, where unprecedented levels of agriculturally-driven deforestation have occurred in recent decades. However, the effects of widespread land use changes on soil quality in this region have yet to be properly characterized. Microbial indicators (soil microbial biomass, metabolic quotient and enzymes activities) are particularly suited to assessing the consequences of such ecosystem disturbances, as microbial communities are especially sensitive to environmental change. Thus, the aim of this study was to assess the effect of land use system; i.e. forest, organic and conventional farming, on soil quality in Chitwan, Nepal using markers of microbial community size and activity. Total organic C and N contents were higher in organic farming compared with conventional farming and forest, suggesting higher nutrient retention and soil preservation with organic farming practices compared to conventional. These differences in soil composition were reflected in the health of the soil microbial communities: Organic farm soil exhibited higher microbial biomass C, elevated β-glucosidase and chitinase activities, and a lower metabolic quotient relative to other soils, indicating a larger, more active, and less stressed microbial community, respectively. These results collectively demonstrate that application of organic fertilizers and organic residues positively influence nutrient availability, with subsequent improvements in soil quality and productivity. Furthermore, the sensitivity of microbial indicators to different management practices demonstrated in this study supports their use as effective markers of ecosystem disturbance in subtropical soils.
Soil microbial communities and metabolic function of a Northern Alabama forest ecosystem
USDA-ARS?s Scientific Manuscript database
Thinning, prescribed burning, and their combinations, are common forest management practices to restore degraded forest communities and to prevent uncontrollable wildfires. However, their impacts on soil microbial communities, which are vital to global element cycling, are traditionally overlooked. ...
Endophytic actinobacteria of medicinal plants: diversity and bioactivity.
Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra
2015-08-01
Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.
Zhang, Qing; Zhu, Liang; Feng, Hanhua; Ang, Simon; Chau, Fook Siong; Liu, Wen-Tso
2006-01-18
This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap=1-2 microm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 microL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.
Perspectives and Challenges of Microbial Application for Crop Improvement
Timmusk, Salme; Behers, Lawrence; Muthoni, Julia; Muraya, Anthony; Aronsson, Anne-Charlotte
2017-01-01
Global population increases and climate change pose a challenge to worldwide crop production. There is a need to intensify agricultural production in a sustainable manner and to find solutions to combat abiotic stress, pathogens, and pests. Plants are associated with complex microbiomes, which have an ability to promote plant growth and stress tolerance, support plant nutrition, and antagonize plant pathogens. The integration of beneficial plant-microbe and microbiome interactions may represent a promising sustainable solution to improve agricultural production. The widespread commercial use of the plant beneficial microorganisms will require a number of issues addressed. Systems approach using microscale information technology for microbiome metabolic reconstruction has potential to advance the microbial reproducible application under natural conditions. PMID:28232839
Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián
2005-02-23
Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.
2012-01-01
The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes. PMID:22963386
Sauer, Michael; Marx, Hans; Mattanovich, Diethard
2012-09-10
The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes.
Microbial viability in preparations packaged for single use.
Obayashi, Akiko; Oie, Shigeharu; Kamiya, Akira
2003-05-01
We evaluated microbial viability in preparations packaged for single use only which mandate that residual solution be discarded such as albumin and globulin preparations as blood products, preparations containing albumin (such as urokinase and interferon), fat emulsions, and a preparation containing fat emulsions (propofol). In most preparations, Serratia marcescens and Burkholderia cepacia proliferated rapidly at 30 degrees C. However, in globulin preparations containing 1-2.25% glycine to prevent protein degradation (Gamma-Venin P, Venilon-I, Globulin Injection, and Ahlbulin), no growth of S. marcescens and B. cepacia was detected over 24 h at 30 degrees C. For globulin preparations containing 1-2.25% glycine, the injunction to "Discard residual solution after the package has been used" in the package inserts can be revised to "It is possible to use residual solution within 24 h after the package has been used with storage in a cool place."
USDA-ARS?s Scientific Manuscript database
Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...
USDA-ARS?s Scientific Manuscript database
Veterinary antibiotics (VAs) administered to livestock are introduced to agroecosystems via land application of manure, posing a potential human and environmental health risk. These Antibiotics may adversely affect soil microbial communities. The objectives of this research were to investigate poten...
Solar energy powered microbial fuel cell with a reversible bioelectrode.
Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N
2010-01-01
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Lana, Moukhamedieva; Georgy, Osipov; Aleksey, Batov; Zoya, Soloviova; Robert, Mardanov; Yana, Panina; Anna, Gegenava
2011-05-01
Current control of human microflora is a great problem not only for the space medicine but also for practical health care. Due to many reasons its realization by classical bacteriological method is difficult in practical application or cannot be done. To evaluate non-cultural methods of microbial control of crews in a confined habitat we evaluated two different methods. The first method is based on digital treatment of microbial visual images, appearing after gram staining of microbial material from natural sample. This way the rate between gram-positive and gram-negative microbe could be gained as well as differentiation of rods and cocci could be attained, which is necessary for primary evaluation of human microbial cenosis in remote confined habitats. The other non-culture method of human microflora evaluation is gas chromatomass spectrometry (gcms) analysis of swabs gathered from different body sites. Gc-ms testing of swabs allows one to validate quantitative and special microflora based on specific lipid markers analysis.
Impact of lens case hygiene guidelines on contact lens case contamination.
Wu, Yvonne T; Teng, Yuu Juan; Nicholas, Mary; Harmis, Najat; Zhu, Hua; Willcox, Mark D P; Stapleton, Fiona
2011-10-01
Lens case contamination is a risk factor for microbial keratitis. The effectiveness of manufacturers' lens case cleaning guidelines in limiting microbial contamination has not been evaluated in vivo. This study compared the effectiveness of manufacturers' guidelines and an alternative cleaning regimen. A randomized cross-over clinical trial with two phases (n = 40) was performed. Participants used the lens types of their choice in conjunction with the provided multipurpose solution (containing polyhexamethylene biguanide) for daily wear. In the manufacturers' guideline phase, cases were rinsed with multipurpose solution and air dried. In the alternative regimen phase, cases were rubbed, rinsed with solution, tissue wiped, and air-dried face down. The duration of each phase was 1 month. Lens cases were collected at the end of each phase for microbiological investigation. The levels of microbial contamination were compared, and compliance to both regimens was assessed. The case contamination rate was 82% (32/39) in the manufacturers' guideline group, compared with 72% (28/39) in the alternative regimen group. There were significantly fewer (p = 0.004) colony forming units (CFU) of bacteria from cases used by following the alternative regimen (CFU range of 0 to 10, and median of 12 CFU per well) compared with that of the manufacturer's guidelines (CFU range of 0 to 10, and median of 28 CFU per well). The compliance level between both guidelines was not significantly different (p > 0.05). The alternative guidelines are more effective in eliminating microbial contamination from lens cases than that of the current manufacturer's guideline. Simply incorporating rubbing and tissue-wiping steps in daily case hygiene reduces viable organism contamination.
Human and Environmental Impacts on River Sediment Microbial Communities
Gibbons, Sean M.; Jones, Edwin; Bearquiver, Angelita; ...
2014-05-19
Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (~65,000 microbial ‘species’ identified) and most novel (93% of OTUsmore » do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.« less
Mandal, Priyanka; Khan, Mohammad A; Shah, Sunil
2017-12-01
Natural products have been in use long before the introduction of modern drug therapies and are still used in various communities worldwide for the treatment of anterior eye disease. The aim of this review is to look at the current non-pharmaceutical modalities that have been tried and assess the body of existing evidence behind them. This includes alternative medicine, existing non-pharmaceutical therapy and more recent low and high tech solutions. A detailed search of all available databases including MEDLINE, Pubmed and Google was made to look for English-language studies for complementary and alternative treatment modalities (CAM), natural therapies and new modalities for anterior eye disease such as blepharitis, dry eye and microbial keratitis. We have included a broad discussion ranging from traditional treatments like honey and aloe vera which have been used for centuries, to the more recent technological advances like Intense Pulsed Light (IPL), LipiFlow and photoactivated chromophore for corneal cross linking in infectious keratitis (PACK-CXL). Alternative management strategies may have a role in anterior eye diseases and have a potential in changing the way we currently approach them. Some of the available CAM could play a role if incorporated in to current management practices of not only chronic diseases like blepharitis and dry eye, but also acute conditions with significant morbidity like microbial keratitis. Further large-scale randomized control trials stratified by disease severity are required to improve our understanding and to evaluate the use of non-pharmaceutical therapy against current practice. Copyright © 2017. Published by Elsevier Ltd.
Microbial mutualism at a distance: The role of geometry in diffusive exchanges
NASA Astrophysics Data System (ADS)
Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.
2018-02-01
The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.
Proceedings of the NASA Microbiology Workshop
NASA Technical Reports Server (NTRS)
Roman, M. C.; Jan, D. L.
2012-01-01
Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions.
Defining Disturbance for Microbial Ecology.
Plante, Craig J
2017-08-01
Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.
Evaluating the effects of variable water chemistry on bacterial transport during infiltration.
Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S
2013-07-01
Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant solution chemistry (AGW only). The model matched observed bacterial breakthrough curves well. Although limitations exist in the application of a semi-reactive microbial transport model, this method represents one step towards a more realistic model of bacterial transport in complex microbial-water-soil systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Lowman, Warren; Venter, Laurissa; Scribante, Juan
2013-02-19
Hospital-acquired infections (HAIs) are largely preventable through risk analysis and modification of practice. Anaesthetic practice plays a limited role in the prevention of HAIs, although laryngoscope use and decontamination is an area of concern. We aimed to assess the level of microbial contamination of re-usable laryngoscope blades at a public hospital in South Africa. The theatre complex of a secondary-level public hospital in Johannesburg. Blades from two different theatres were sampled twice daily, using a standardised technique, over a 2-week period. Samples were quantitatively assessed for microbial contamination, and stratified by area on blade, theatre and time using Fisher's exact test. A contamination rate of 57.3% (63/110) was found, with high-level contamination accounting for 22.2% of these. Common commensals were the most frequently isolated micro-organisms (79.1%), but important hospital pathogens such as Enterobacter species and Acinetobacter baumannii were isolated from blades with high-level contamination. No significant difference in the level of microbial contamination by area on blade, theatre or time was found (p<0.05). A combination of sub-optimal decontamination and improper handling of laryngoscopes after decontamination results in significant microbial contamination of re-usable laryngoscope blades. There is an urgent need to review protocols and policies surrounding the use of these blades.
Taxonomic concepts and practice with complex microbial communities
USDA-ARS?s Scientific Manuscript database
This brief review discusses the main points of the Keynote Lecture to be given at the 3rd International Conference on Microbial Diversity, October 27-29, 2015, Perugia, Italy. Key points include the necessity of molecular identification of microorganisms in order to understand their ecology. DNA-bas...
A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport
NASA Astrophysics Data System (ADS)
Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.
2017-12-01
The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2014-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.
Toporski, Jan K W; Steele, Andrew; Westall, Frances; Thomas-Keprta, Kathie L; McKay, David S
2002-01-01
Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.
Environmental Biotechnology: Moving from the Flask to the Field
1991-09-30
biosorption , Biosorption of metal ions is a phenome- non exhibited by both alive and dead microbial cells. The detailed investigation of the mechanism of... biosorption has revealed that biosorption is a physical-chemical process whereby selected areas of the microbial cell exhibit high selectivity and...dead cells than by the same cells alive. The use of proper chemical solutions (eluants) is capable of reversing the equilibrium of biosorption
Water system microbial check valve development
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Greenley, D. R.; Putnam, D. F.
1978-01-01
A residual iodine microbial check valve (RIMCV) assembly was developed and tested. The assembly is designed to be used in the space shuttle potable water system. The RIMCV is based on an anion exchange resin that is supersaturated with an iodine solution. This system causes a residual to be present in the effluent water which provides continuing bactericidal action. A flight prototype design was finalized and five units were manufactured and delivered.
Competing for phosphors under changing redox conditions: biological versus geochemical sinks
NASA Astrophysics Data System (ADS)
Gross, A.; Pett-Ridge, J.; Silver, W. L.
2016-12-01
Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed by the mineral phase was inversely correlated to the amount of P assimilated by the microbial biomass. In addition, we discovered the iron redox state did not affect the microbial or mineral P pool sizes. Overall, our results indicate the partition of the added P between the biological and mineral pools is regulated by the microbial biomass demands for P.
[Characterization of microbial activities in marine mudflat sediment using FDA hydrolase analysis].
Liu, Ye; Zou, Li; Liu, Lu; Gao, Dong-Mei
2013-10-01
A method based on fluorescence spectrometry was developed to detect the microbial activities in marine mudflat sediment, where is characterized by high salinity, complex organic compounds and low microbial biomass. This paper optimized the sample extracts, the detection equipment for reaction products, the pretreatment methods, and the experimental conditions. The optimal procedure is described as following. Fresh sediment was first extracted with sterilized and aged seawater, followed by the addition of Tween-80 solution, then uniformly dispersed by thorough oscillating, and kept steady for precipitation. After filtration through a sterilized membrane (1. 2 microm, sterilized in boiling water repeatedly) , the supernatant was supplemented with an appropriate amount of FDA solution and allowed to react in dark for 180 min at temperature ranged 25-30 degrees C . The reaction was terminated by the addition of acetone, and the fluorescence intensity of the reaction mixture was measured within 25 min using a molecular fluorescence photometer at an excitation wavelength of 488 nm and an emission wavelength of 530 nm, and the detection range of this method (dry weight) was 3.0 x10(3)-1. 1 x 10(5) ind.g-1. The microbial activity was reported as fluorescence content in per unit sediment mass (microg.g-1, dry weight).
The Microbial Resource Research Infrastructure MIRRI: Strength through Coordination
Stackebrandt, Erko; Schüngel, Manuela; Martin, Dunja; Smith, David
2015-01-01
Microbial resources have been recognized as essential raw materials for the advancement of health and later for biotechnology, agriculture, food technology and for research in the life sciences, as their enormous abundance and diversity offer an unparalleled source of unexplored solutions. Microbial domain biological resource centres (mBRC) provide live cultures and associated data to foster and support the development of basic and applied science in countries worldwide and especially in Europe, where the density of highly advanced mBRCs is high. The not-for-profit and distributed project MIRRI (Microbial Resource Research Infrastructure) aims to coordinate access to hitherto individually managed resources by developing a pan-European platform which takes the interoperability and accessibility of resources and data to a higher level. Providing a wealth of additional information and linking to datasets such as literature, environmental data, sequences and chemistry will enable researchers to select organisms suitable for their research and enable innovative solutions to be developed. The current independent policies and managed processes will be adapted by partner mBRCs to harmonize holdings, services, training, and accession policy and to share expertise. The infrastructure will improve access to enhanced quality microorganisms in an appropriate legal framework and to resource-associated data in a more interoperable way. PMID:27682123
The Microbial Resource Research Infrastructure MIRRI: Strength through Coordination.
Stackebrandt, Erko; Schüngel, Manuela; Martin, Dunja; Smith, David
2015-11-18
Microbial resources have been recognized as essential raw materials for the advancement of health and later for biotechnology, agriculture, food technology and for research in the life sciences, as their enormous abundance and diversity offer an unparalleled source of unexplored solutions. Microbial domain biological resource centres (mBRC) provide live cultures and associated data to foster and support the development of basic and applied science in countries worldwide and especially in Europe, where the density of highly advanced mBRCs is high. The not-for-profit and distributed project MIRRI (Microbial Resource Research Infrastructure) aims to coordinate access to hitherto individually managed resources by developing a pan-European platform which takes the interoperability and accessibility of resources and data to a higher level. Providing a wealth of additional information and linking to datasets such as literature, environmental data, sequences and chemistry will enable researchers to select organisms suitable for their research and enable innovative solutions to be developed. The current independent policies and managed processes will be adapted by partner mBRCs to harmonize holdings, services, training, and accession policy and to share expertise. The infrastructure will improve access to enhanced quality microorganisms in an appropriate legal framework and to resource-associated data in a more interoperable way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, Jim E.; Fruchter, Jonathan S.; Burns, Carolyn A.
This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO4 solution in order to precipitate apatite [Ca6(PO4)10(OH)2] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO4 solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitution into apatite was shown to havemore » a half-life of 5.5 to 16 months. 1-D and 2-D laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth.« less
Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.
Tiensing, T; Preston, S; Strachan, N; Paton, G I
2001-02-01
The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.
Microbial utilization of low molecular weight organics in soil depends on the substances properties
NASA Astrophysics Data System (ADS)
Gunina, Anna
2016-04-01
Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between LMWOS T1 /2 in SOM with C oxidation state, number of C atoms or number of -COOH groups in LMWOS demonstrates that intercellular metabolic pathways are more important. Mineralization of LMWOS amounted for 20-90% of total applied amount. Maximum mineralization was found for carboxylic acids and minimum for sugars, whereas 14C incorporation into cytosol and SOM pools followed the opposite trend. There were close positive correlation between the portion of mineralized C and substance oxidation state, but negative with the amount of C incorporated into the cytosol and SOM pools. This shows that substance properties affect the final partitioning of LMWOS-C between mineralized and utilized pools. Thus, initial uptake of LMWOS from soil solution and final partitioning of LMWOS-C between the mineralized and microbially utilized pools are related to their chemical properties. In contrast, LMWOS mineralization dynamics is regulated by intercellular metabolization pathways.
From Metchnikoff to Monsanto and beyond: the path of microbial control.
Lord, Jeffrey C
2005-05-01
In 125 years since Metchnikoff proposed the use of Metarhizium anisopliae to control the wheat cockchafer and brought about the first field trials, microbial control has progressed from the application of naturalists' observations to biotechnology and precision delivery. This review highlights major milestones in its evolution and presents a perspective on its current direction. Fungal pathogens, the most eye-catching agents, dominated the early period, but major mycological control efforts for chinch bugs and citrus pests in the US had questionable success, and interest waned. The discoveries of Bacillus popilliae and Bacillus thuringiensis began the era of practical and commercially viable microbial control. A program to control the Japanese beetle in the US led to the discovery of both B. popilliae and Steinernema glaseri, the first nematode used as a microbial control agent. Viral insect control became practical in the latter half of the 20th century, and the first registration was obtained with the Heliothis nuclear polyhedrosis virus in 1975. Now strategies are shifting for microbial control. While Bt transgenic crops are now planted on millions of hectares, the successes of more narrowly defined microbial control are mainly in small niches. Commercial enthusiasm for traditional microbial control agents has been unsteady in recent years. The prospects of microbial insecticide use on vast areas of major crops are now viewed more realistically. Regulatory constraints, activist resistance, benign and efficacious chemicals, and limited research funding all drive changes in focus. Emphasis is shifting to monitoring, conservation, integration with chemical pesticides, and selection of favorable venues such as organic agriculture and countries that have low costs, mild regulatory climates, modest chemical inputs, and small scale farming.
Microbial enhanced oil recovery and compositions therefor
Bryant, Rebecca S.
1990-01-01
A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.
Microbial precipitation of dolomite in methanogenic groundwater
Roberts, Jennifer A.; Bennett, Philip C.; Gonzalez, Luis A.; Macpherson, G.L.; Milliken, Kitty L.
2004-01-01
We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.
Design and stability study of a paediatric oral solution of methotrexate 2 mg/ml.
Vrignaud, Sandy; Briot, Thomas; Launay, Aurélie; Kempf, Marie; Lagarce, Frédéric
2015-06-20
Oral paediatric forms development by pharmaceutical industry is still insufficient. The present study was performed to propose an adapted and pleasant formulation of liquid oral formulation of MTX. The solution is composed of injectable methotrexate, water, Ora Sweet(®) and sodium bicarbonate. After 120 days storage, pH remained stable at about 8 in all formulations, insuring no risk of MTX precipitation. MTX content in solution formulation, determined by high performance liquid chromatography measurements, remained in the specifications of >90% of the initial concentration when stored at 4 and 25°C. Forced degradation of MTX by heat and acidic conditions allowed formation and detection of degradation products by the analytical method. Microbial study of the preparation shows that the solution remains in the specifications during all the storage, or after one sample each week during one month, eventually indicating the microbial properties are not affected by patient use. To conclude, we here propose a new MTX liquid formulation stable for at least 120 days. Copyright © 2015 Elsevier B.V. All rights reserved.
Potential sources of microbial contamination in unpasteurized apple cider.
Garcia, Luis; Henderson, John; Fabri, Martha; Oke, Moustapha
2006-01-01
A study was conducted to identify possible sources of microbial contamination and to assess the effect of good cleaning and sanitation practices on the microbial quality and safety of unpasteurized apple cider. Raw unwashed apples, washed apples, cleaning water, fresh cider, and finished cider samples were collected from five Ontario producers over 4 months and microbiologically tested. Total coliforms were found in 31, 71 and 38% of the unwashed apple, water, and washed apple samples, respectively. Escherichia coli was found in 40% of the water samples from one producer alone. The washing step was identified as a potential source of contamination, possibly due to water in the dump tanks seldom being refreshed, and because scrubbers, spray nozzles, and conveyors were not properly cleaned and sanitized. Higher total coliform counts (P < 0.0001) and prevalence (P < 0.0001) in fresh cider compared with those in unwashed apples and washed apples indicated considerable microbial buildup along the process, possibly explained by the lack of appropriate equipment sanitation procedures. Results showed that producers who had better sanitary practices in place had lower (P < 0.001) total coliform prevalence than the rest of the producers. Overall results show that good sanitation procedures are associated with improved microbial quality of fresh cider in terms of total coliforms and that operators who pasteurize and/or UV treat their product should still be required to have a sound good manufacturing practices program in place to prevent recontamination. Cryptosporidium parvum, an important pathogen for this industry, was found in different sample types, including washed apples, water, and fresh and finished cider.
Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis
2016-01-01
More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484
Waldrop, M.P.; Zak, D.R.
2006-01-01
Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.
Modeling biogechemical reactive transport in a fracture zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang
2005-01-14
A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes inmore » biochemical parameters.« less
Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics.
Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2016-07-01
The Cosmetic Ingredient Review Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity-increasing agent, and skin-conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety. © The Author(s) 2016.
A Simplified Extemporaneously Prepared Potassium Chloride Oral Solution.
Tannous, Elias; Tal, Yana; Amarny, Kamal
2016-01-01
Although commercial preparations of oral potassium supplements are usually available, there are times when our Medical Center is faced with situations in which the oral solution of potassium chloride is not available. This solution is necessary for our pediatric outpatients who cannot swallow tablets and need an oral solution. Moreover, there are no studies available which describe an extemporaneously prepared potassium chloride oral solution on which we can rely for assigning a beyond-use date. The aim of this study was to formulate an extemporaneous pediatric oral solution of potassium chloride and to determine the physical and chemical stability of this preparation. We prepared 1 mMoL/mL by withdrawing 25 mL of potassium chloride 14.9%. Ora-Sweet SF was added to 50 mL in a metered flask. The solution was kept refrigerated (2°C to 8°C). Samples were withdrawn to measure potassium concentration, pH, and microbial overgrowth. The test was performed by our biochemical laboratory. The oral solution of potassium chloride 1 mMoL/mL stored at 2°C to 8°C maintained at least 91% of the initial concentration for 28 days. There were no notable changes in pH, and the solution remained physically stable with no visual microbial growth. The oral solution of potassium chloride 1 mMoL/mL prepared in Ora-Sweet and stored at 2°C to 8°C in amber glass bottles is expected to remain stable for 28 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Risk factors for microbial bioburden during daily wear of silicone hydrogel contact lenses.
Jiang, Ying; Jacobs, Michael; Bajaksouzian, Saralee; Foster, Altreisha N; Debanne, Sara M; Bielefeld, Roger; Garvey, Matt; Raghupathy, Sangeetha; Kern, Jami; Szczotka-Flynn, Loretta B
2014-05-01
To assess risk factors associated with substantial microbial bioburden of lids, conjunctivae, contact lenses, and storage cases during daily wear of silicone hydrogel contact lenses. Two hundred eighteen patients were fit to lotrafilcon A lenses, randomized to use either a multipurpose solution or a hydrogen peroxide care system, and followed up for 1 year. Lenses, lens transport saline, lids, conjunctivae, and storage cases were cultured and considered to have substantial microbial bioburden when they harbored high levels of commensal or pathogenic organisms. Univariate and multivariate logistic regression analyses were conducted to examine which demographic covariates were associated with significant bioburden at each location while controlling for solution use. In multivariate analyses, smoking trended toward an association with lens bioburden (odds ratio [OR]=2.15, 95% confidence interval [CI]: 0.95-4.88). Clerical occupations were found to be associated with more frequent overall storage case contamination (OR=3.51, 95% CI: 1.15-10.70) and, specifically, higher gram-positive storage case contamination (OR=5.57, 95% CI: 1.82-17.06). The peroxide system was associated with more frequent storage case contamination (OR=7.6, 95% CI: 3.79-15.19). Coagulase-negative staphylococci (CNS) were the most frequently cultured organisms within storage cases, and in multivariate analyses, CNS were more frequently found in storage cases of peroxide users (OR=6.12, 95% CI: 2.91-13.09). Clerical occupations were associated with increased microbial bioburden of storage cases during daily wear of silicone hydrogel lenses. Smoking may increase the risk of lens contamination. Storage cases are most frequently contaminated with normal skin flora, and peroxide cases were associated with more frequent contamination. However, the solution type was not associated with lid or lens contamination nor with corneal infiltrative events in this study.
Diabetic glucose meter for the determination of glucose in microbial cultures.
Flavigny, Raphael
2014-05-01
In wastewater, biological phosphate removal can fail because of the presence of glycogen accumulating organism (GAO), therefore measuring glycogen stored in microbial cultures provides information on the bacterial population type. Once glycogen is hydrolysed to glucose it was accurately measured using a human glucose meter. The standard curves demonstrate linearity regardless of the pre-treatment of the glucose solution at neutral pH. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...
Best practices for population genetic analyses
USDA-ARS?s Scientific Manuscript database
This review will attempt to address many of these practical questions that are often not readily answered from reading books or reviews on the topic, but emerge from discussions with colleagues and from practical experience. A further complication for microbial or pathogen populations is the frequen...
A decade of metaproteomics: Where we stand and what the future holds
Heintz‐Buschart, Anna; Bond, Philip L.
2015-01-01
We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ. PMID:26315987
NASA Astrophysics Data System (ADS)
Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama
2015-12-01
The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.
NASA Astrophysics Data System (ADS)
Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela
2016-04-01
Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the basic microbial metabolism of C3 molecules in glycolysis. Reconstruction of microbial transformation pathways showed that the C-2 position of Alanine was lost as CO2 faster than its C-3 position regardless of whether the molecule was used ana- or catabolically. The highest incorporations of all positions in PLFA were accomplished by Gram negatives. Free Alanine was preferentially used by highly competitive prokaryotes, while sorbed Alanine was preferred by filamentous microorganisms. In detail, the free living osmotrophic Gram negative bacteria utilize more easily accessible dissolved substances. The utilization of sorbed substances are achieved by less mobile microorganisms, e.g. eukaryotic fungi and Actinomycetes, which form biofilms. None of these findings could have been achieved without the position-specific labeling approach, therefore this method will strongly improve our understanding of stabilization processes and soil C fluxes.
USDA-ARS?s Scientific Manuscript database
Soil microorganisms play an important role in soil health. However, little is known about the relationship between soil microbial community composition and diversity and commercially significant aspects of soil health. The purpose of this study is to: (1) assess the impact of management practices on...
Filter Backwash Recycling Rule Documents
The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François
2015-05-01
Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.
Hartman, Kyle; van der Heijden, Marcel G A; Wittwer, Raphaël A; Banerjee, Samiran; Walser, Jean-Claude; Schlaeppi, Klaus
2018-01-16
Harnessing beneficial microbes presents a promising strategy to optimize plant growth and agricultural sustainability. Little is known to which extent and how specifically soil and plant microbiomes can be manipulated through different cropping practices. Here, we investigated soil and wheat root microbial communities in a cropping system experiment consisting of conventional and organic managements, both with different tillage intensities. While microbial richness was marginally affected, we found pronounced cropping effects on community composition, which were specific for the respective microbiomes. Soil bacterial communities were primarily structured by tillage, whereas soil fungal communities responded mainly to management type with additional effects by tillage. In roots, management type was also the driving factor for bacteria but not for fungi, which were generally determined by changes in tillage intensity. To quantify an "effect size" for microbiota manipulation, we found that about 10% of variation in microbial communities was explained by the tested cropping practices. Cropping sensitive microbes were taxonomically diverse, and they responded in guilds of taxa to the specific practices. These microbes also included frequent community members or members co-occurring with many other microbes in the community, suggesting that cropping practices may allow manipulation of influential community members. Understanding the abundance patterns of cropping sensitive microbes presents the basis towards developing microbiota management strategies for smart farming. For future targeted microbiota management-e.g., to foster certain microbes with specific agricultural practices-a next step will be to identify the functional traits of the cropping sensitive microbes.
Zhang, Huixin; Ulrich, Ania C; Liu, Yang
2015-06-01
The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
In situ detection of microbial respiration in soils and salt flats. [Nevada desert
NASA Technical Reports Server (NTRS)
Tew, R. W.
1973-01-01
Increase in CO2 partial pressures over a desert soil treated with casamino-acids glucose solution correlated with bacterial growth. Few or no increases in numbers of bacteria or CO2 concentrations were noted in similar plots treated with water only or receiving no treatment. Growth in the soil appeared to be severely nutrient limited during the 10 day experiment. Especially rapid growth took place between the third and fifth day, when temperatures ranged from 0 deg. (night) to a maximum of 17.4 deg. (day). Under the conditions of the experiment, intermittent CO2 assay was an insensitive indicator of growth, possibly because of restiction of gas escape by the desert pavement or solution, exchange, or precipitation of carbonate, but more likely because of inefficient sealing of hoods to and below the soil surface. CO2 assay was unable to detect microbial successions. The unpredictable course of these successions, plus unpredictable relative retentions mitigates against assay of organic gases as reliable in situ detection of microbial activity, except perhaps in very alkaline environments such as Owens Lake salts.
Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A
2015-01-01
Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments. DOI: http://dx.doi.org/10.7554/eLife.04634.001 PMID:25756611
Integrating ecological and engineering concepts of resilience in microbial communities
Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; ...
2015-12-01
We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less
Control of microbial contamination.
NASA Technical Reports Server (NTRS)
Mcdade, J. J.
1971-01-01
Two specific applications are discussed of microbial contamination control in planetary quarantine. Under the first concept, using the clean room to control environmental microorganisms, the objective is to reduce the microbial species and keep the numbers of microorganisms within an enclosure at a low level. The clean room concept is aimed at obtaining a product that has a controlled and reduced level of microbial contamination. Under the second concept, using the microbiological barrier to control microbial contamination of a specific product, the barrier techniques are designed to prevent the entry of any microorganisms into a sterile work area. Thus the assembly of space flight hardware within the confines of a microbiological barrier is aimed at obtaining a sterile product. In theory and practice, both approaches are shown to be applicable to the planetary quarantine program.
Pinheiro, S L; Martoni, S C; Ogera, R R
2012-05-01
Aim of the present study was to assess microbial contamination of radiology procedures. Patients who needed radiographic exams were selected and the bisecting technique was used: G1 - (control): absence of plastic barrier and overgloving or disinfectant solutions; G2 - alcohol spraying; G3 - protection of the film with a plastic barrier and alcohol spray; G4 - protection of film with plastic barrier, use of overgloving and alcohol spray. The following regions were assessed: trigger switch, X-ray tube, sleeve of the portable dark chamber, water, developer and fixer. The areas for microbiological sample collection were standardized with a label cut internally so that the hollow area was 5 cm long and 2 cm wide. One mL of the developer, water and fixer were also collected before and after developing the films. The samples were incubated under anaerobiosis and aerobiosis. The results were submitted to the Cochran's Q and Mann-Whitney tests. The sleeve of the developing chamber showed greater anaerobic contamination followed by the X-ray tube and only the use of alcohol associated with mechanical barriers was efficient to control this microbiota. The trigger showed higher aerobic microbial contamination and the use of alcohol or alcohol associated with mechanical barriers was efficient to control this microbiota. The developing solutions presented no significant growth of anaerobic and aerobic bacteria. The characteristic of an aerobic or anaerobic microbial strain influences microbial contamination while radiographic projections are being taken and the use of alcohol associated with a plastic barrier and overgloving is indicated to reduce this microbiota.
Mitchell, Jeffrey; Scow, Kate
2018-01-01
Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change. PMID:29447262
Lacroix, Rémy; Da Silva, Serge; Gaig, Monica Viaplana; Rousseau, Raphael; Délia, Marie-Line; Bergel, Alain
2014-11-07
The theoretical bases for modelling the distribution of the electrostatic potential in microbial electrochemical systems are described. The secondary potential distribution (i.e. without mass transport limitation of the substrate) is shown to be sufficient to validly address microbial electrolysis cells (MECs). MECs are modelled with two different ionic conductivities of the solution (1 and 5.3 S m(-1)) and two bioanode kinetics (jmax = 5.8 or 34 A m(-2)). A conventional reactor configuration, with the anode and the cathode face to face, is compared with a configuration where the bioanode perpendicular to the cathode implements the electrochemical reaction on its two sides. The low solution conductivity is shown to have a crucial impact, which cancels out the advantages obtained by setting the bioanode perpendicular to the cathode. For the same reason, when the surface area of the anode is increased by multiplying the number of plates, care must be taken not to create too dense anode architecture. Actually, the advantages of increasing the surface area by multiplying the number of plates can be lost through worsening of the electrochemical conditions in the multi-layered anode, because of the increase of the electrostatic potential of the solution inside the anode structure. The model gives the first theoretical bases for scaling up MECs in a rather simple but rigorous way.
Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans
NASA Astrophysics Data System (ADS)
Lata, Suman; Sharma, Chhaya; Singh, Ajay K.
2013-04-01
This article reports about the tests carried to investigate microbial-induced corrosion on stainless steels due to sulfate-reducing bacteria sp. Desulfotomaculum nigrificans in different host media. Stainless steel 304L, 316L, and 2205 were selected for the test. Modified Baar's media (BM), sodium chloride solution, and artificial sea water (SW) were used as test solutions in anaerobic conditions. Electrochemical polarization and immersion test were performed to estimate the extent of corrosion rate and pitting on stainless steels. SEM/EDS were used to study the details inside/outside pits formed on the corroded samples. Biofilm formed on corroded coupons was analyzed for its components by UV/Visible spectroscopy. Corrosion attack on the test samples was observed maximum in case of exposure to SW followed by NaCl solution, both having sulfide and chloride whereas stainless steel exposed to BM, having sulfide, showed minimum attack. Tendency of extracellular polymeric substances to bind metal ions is observed to be responsible for governing the extent of corrosion attack.
Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins
Zhu, Yan; Hassan, Yousef I.; Lepp, Dion; Shao, Suqin; Zhou, Ting
2017-01-01
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification. PMID:28387743
Kackar, Siddharth; Suman, Ethel; Kotian, M Shashidhar
2017-01-01
Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD). Statistical analysis was done by SPSS 11.5, Kruskal-Wallis test and Chi-square test. Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020) on biofilm formation on soft lenses and also lens cases (P < 0.001). Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001). There was no significant inhibitory effect by bacteriophages. This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.
NASA Astrophysics Data System (ADS)
Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov
2017-04-01
Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.
Formulation and Stability of Solutions.
Akers, Michael J
2016-01-01
Ready-to-use solutions are the most preferable and most common dosage forms for injectable and topical ophthalmic products. Drugs formulated as solution almost always have chemical and physical stability challenges as well as solubility limitations and the need to prevent inadvertent microbial contamination issues. The first in this series of articles took us through a discussion of optimizing the physical stability of solutions. This article concludes this series of articles with a discussion on foreign particles, protein aggregation, and immunogenicity; optimizing microbiological activity; and osmolality (tonicity) agents, and discusses how these challenges and issues are addressed.
Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan
2015-01-01
Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952
Pretreatment of lignocellulosic biomass using Fenton chemistry.
Kato, Dawn M; Elía, Noelia; Flythe, Michael; Lynn, Bert C
2014-06-01
In an attempt to mimic white-rot fungi lignin degradation via in vivo Fenton chemistry, solution phase Fenton chemistry (10 g biomass, 176 mmol hydrogen peroxide and 1.25 mmol Fe(2+) in 200 mL of water) was applied to four different biomass feedstocks. An enzymatic saccharification of Fenton pretreated biomass showed an average 212% increase relative to untreated control across all four feedstocks (P<0.05, statistically significant). A microbial fermentation of the same Fenton pretreated biomass showed a threefold increase in gas production upon a sequential co-culture with Clostridium thermocellum and Clostridium beijerinckii. These results demonstrate the use of solution phase Fenton chemistry as a viable pretreatment method to make cellulose more bioavailable for microbial biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial mobilization of plutonium and other actinides from contaminated soil
Francis, A. J.; Dodge, C. J.
2015-12-01
Here we examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to themore » soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.« less
Microbial mobilization of plutonium and other actinides from contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, A. J.; Dodge, C. J.
Here we examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to themore » soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.« less
He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei
2015-01-01
Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182
Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang
2018-08-05
N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.
Schram-Bijkerk, D; Doekes, G; Boeve, M; Douwes, J; Riedler, J; Ublagger, E; von Mutius, E; Benz, M; Pershagen, G; Wickman, M; Alfvén, T; Braun-Fahrländer, C; Waser, M; Brunekreef, B
2006-12-01
Dust collection by study participants instead of fieldworkers would be a practical and cost-effective alternative in large-scale population studies estimating exposure to indoor allergens and microbial agents. We aimed to compare dust weights and biological agent levels in house dust samples taken by study participants with nylon socks, with those in samples taken by fieldworkers using the sampling nozzle of the Allergology Laboratory Copenhagen (ALK). In homes of 216 children, parents and fieldworkers collected house dust within the same year. Dust samples were analyzed for levels of allergens, endotoxin, (1-->3)-beta-D-glucans and fungal extracellular polysaccharides (EPS). Socks appeared to yield less dust from mattresses at relatively low dust amounts and more dust at high dust amounts than ALK samples. Correlations between the methods ranged from 0.47-0.64 for microbial agents and 0.64-0.87 for mite and pet allergens. Cat allergen levels were two-fold lower and endotoxin levels three-fold higher in socks than in ALK samples. Levels of allergens and microbial agents in sock samples taken by study participants are moderately to highly correlated to levels in ALK samples taken by fieldworkers. Absolute levels may differ, probably because of differences in the method rather than in the person who performed the sampling. Practical Implications Dust collection by participants is a reliable and practical option for allergen and microbial agent exposure assessment. Absolute levels of biological agents are not (always) comparable between studies using different dust collection methods, even when expressed per gram dust, because of potential differences in particle-size constitution of the collected dust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capodaglio, Andrea G., E-mail: capo@unipv.it; Molognoni, Daniele; Pons, Anna Vilajeliu
Microbial Fuel Cells (MFCs) represent a still novel technology for the recovery of energy and resources through wastewater treatment. Although the technology is quite appealing, due its potential benefits, its practical application is still hampered by several drawbacks, such as systems instability (especially when attempting to scale-up reactors from laboratory prototype), internally competing microbial reactions, and limited power generation. This paper is an attempt to address several of the operational issues related to MFCs application to wastewater treatment, in particular when dealing with simultaneous organic matter and nitrogen pollution control. Reactor configuration, operational schemes, electrochemical and microbiological characterization, optimization methodsmore » and modelling strategies are reviewed and discussed with a multidisciplinary, multi-perspective approach. The conclusions drawn herein can be of practical interest for all MFC researchers dealing with domestic or industrial wastewater treatment..« less
Shoff, Megan E; Lucas, Anne D; Brown, Jennifer N; Hitchins, Victoria M; Eydelman, Malvina B
2012-11-01
To determine the effect of 8 different lens materials on polyhexamethylene biguanide (PHMB) concentration in multipurpose solution (MPS) levels over time and to determine the effect of lenses on lens solution microbial efficacy over time. Silicone hydrogel lenses and conventional hydrogel lenses were soaked in polypropylene lens cases filled with contact lens MPS containing 1 ppm PHMB for 6, 12, 24, 72, and 168 hours. Cases filled with the same solution without lenses were controls. After each time period, solutions from cases with the 8 types of lenses and controls were assayed for activity against Staphylococcus aureus according to International Organization for Standardization-14729 with modifications. Solutions were analyzed for PHMB concentration at each time point. Some of the different lens materials significantly affected the PHMB concentration (P<0.0001) and the biocidal efficacy. Etafilcon A lenses significantly decreased PHMB levels after only 6 hours of lens soak time. The product lot of MPS used was also significant (P<0.0001). Enfilcon A, senofilcon A, and lotrafilcon B lenses did not significantly decrease PHMB levels. The efficacy of MPS was affected by some lens materials and PHMB concentration. Lens materials differ in their effect on PHMB concentration and the subsequent efficacy of the MPS. Over time, some lens materials can significantly reduce the PHMB concentration and the MPS's microbial activity against S. aureus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, J.E.; Fruchter, J.S.; Burns, C.A.
This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO{sub 4} solution in order to precipitate apatite [Ca{sub 6}(PO{sub 4}){sub 10}(OH){sub 2}] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO{sub 4} solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitutionmore » into apatite was shown to have an incorporation half-life of 5.5 to 16 months. One and two dimensional (1-D and 2-D) laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth. (authors)« less
A microbial trigger for gelled polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, S.; Bryant, R.; Zhu, T.
1995-12-31
A process using a microbially gelled biopolymer was developed and used to modify permeability in coreflood experiments. Alkaline-soluble curdlan biopolymer was mixed with microbial nutrients and acid-producing alkaliphilic bacteria, and injected into Berea sandstone cores. Concurrent bottle tests with the polymer solution were incubated beside the core. Polymer in the bottle tests formed rigid gel in 2-5 days at 27{degree}C. After 7 days incubation, 25-35 psi fluid pressure was required to begin flow through the cores. Permeability of the cores was decreased from 852 md to 2.99 md and from 904 md to 4.86 md, respectively, giving residual resistance factorsmore » of 334 and 186.« less
USDA-ARS?s Scientific Manuscript database
Conservation soil management practices may influence the soil acidity. Surface application of lime may be required in no-till systems to ameliorate soil acidity and to improve crop yields. The application of lime may also increase microbial activity on soil. Specifically, the microbial activity of s...
USDA-ARS?s Scientific Manuscript database
Microbial contamination of waters is the critical public health issue. The watershed-scale process-based modeling of bacteria fate and transport (F&T) has been proven to serve as the useful tool for predicting microbial water quality and evaluating management practices. The objective of this work is...
USDA-ARS?s Scientific Manuscript database
Organic production in Puerto Rico is at an early stage and research is needed to validate the sustainability of different management practices. This research initiated evaluation of selected soil properties including the microbial communities to evaluate the effects of Tropic sunn (Crotalaria juncea...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply for preventing microbial contamination from sick or infected personnel and for hygienic practices? 111.10 Section 111.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...
USDA-ARS?s Scientific Manuscript database
The effect of naturally-occurring salts, boron (B), and selenium (Se) on soil microbial community composition associated with plants during different growing seasons used in bioremediation strategies is not known. This information is needed for developing sustainable remediation practices as soil mi...
The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.
NASA Astrophysics Data System (ADS)
Jilling, A.; Grandy, S.; Keiluweit, M.
2017-12-01
Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids on soil solution chemistry. We predict that oxalic acid additions will result in the release of metals and formerly clay-bound organic compounds into solution. Results from these incubations will be discussed in the context of our conceptual framework on the N-supplying capacity of MAOM.
Ocean Microbial Fuel Cell: Power Source and Research Tool for Studying Marine Biogeochemistry
NASA Astrophysics Data System (ADS)
Reimers, C. E.; Girguis, P.; Westall, J. C.; Nielsen, M. E.
2007-05-01
Ocean microbial fuel cells (OMFCs) are devices capable of producing modest levels of electrical power. The cells are ultimately driven by the oxidation of marine organic matter at the anode and reduction of dissolved oxygen at the cathode, but microbial transformations and electrochemically active intermediates play important roles in the overall process of electricity generation. By separating the factors that affect the performance of OMFCs into components of an equivalent circuit and manipulating these factors in laboratory and field experiments, we are gaining new insight into how specific redox reactions, sources of organic matter, and mass transport at small and intermediate scales may enrich environments with certain groups of microorganisms that in turn regulate anaerobic organic matter degradation. This talk will illustrate these relationships with the results from at least four experiments in which either fresh plankton, or substrates within continental margin sediments, fuelled the OMFCs. In each example, reduced sulfur compounds were found to be major electron carriers to the fuel cell anode. These intermediates came from a variety of sources including sulfide generated from sulfate reduction in mixed solutions surrounding the electrode, sulfide generated distally but transported by pore-water diffusion and advection, iron monosulfides and pyrite present is a sediment matrix centimeters from the electrode, and sulfide or polysulfide produced within an electrode biofilm. To illustrate a practical application of an OMFC, we are currently constructing a benthic cell that will power a sonic receiver in a network of underwater sensors. The form of this OMFC resembles a benthic chamber with a footprint of one square meter. It should be capable of supplying electrical power and regulating its output for years to decades.
Evolution across the Curriculum: Microbiology
Burmeister, Alita R.; Smith, James J.
2016-01-01
An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306
Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids
NASA Technical Reports Server (NTRS)
Cutbirth, J. Michael
2012-01-01
A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.
Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E
2014-04-08
Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J D; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-10-04
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S 0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S 0 and Fe 2+ , which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.
NASA Astrophysics Data System (ADS)
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-10-01
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.
Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; Van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun
2016-01-01
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system. PMID:27698381
Gudakova, Irina; Kim, JinYoung; Meredith, Jennifer F; Webb, Ginny
2017-12-01
Healthcare-associated infections are a significant public health burden resulting in approximately 1.7 million infections each year. Much work is done to study the contributing factors in inpatient settings; however, little has been done to study outpatient facilities and their roles in healthcare-associated infections. While many pediatric outpatient offices utilize separated waiting areas for sick and well children to decrease the spread of disease, research has not been done to determine whether this practice is of benefit. In this study, we aimed to determine whether there is a difference in microbial burden between sick- and well-child waiting areas and to identify surfaces with the highest levels of contamination. Touch surfaces in waiting rooms were swabbed and surveyed for total microbial growth, staphylococcal growth and Gram-negative enteric bacterial growth. Selected bacteria were identified to screen for pathogenic organisms. Surfaces sampled included seats, tables, children's tables, children's seats, magazines and books. We found seats, children's seats and children's books to have the highest microbial burden. No conclusions can be made on the differences in microbial contamination in sick- and well-child waiting areas because of high variation. Streptococcus pyogenes was isolated as were several opportunistic pathogens. This study suggests the need for better cleaning practices by pediatric outpatient facilities, to include the disinfection of additional surfaces as well as more frequent and thorough cleaning.
Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning
NASA Astrophysics Data System (ADS)
Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.
2007-12-01
The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.
Prescreening of microbial populations for the assessment of sequencing potential.
Hanning, Irene B; Ricke, Steven C
2011-01-01
Next-generation sequencing (NGS) is a powerful tool that can be utilized to profile and compare microbial populations. By amplifying a target gene present in all bacteria and subsequently sequencing amplicons, the bacteria genera present in the populations can be identified and compared. In some scenarios, little to no difference may exist among microbial populations being compared in which case a prescreening method would be practical to determine which microbial populations would be suitable for further analysis by NGS. Denaturing density-gradient electrophoresis (DGGE) is relatively cheaper than NGS and the data comparing microbial populations are ready to be viewed immediately after electrophoresis. DGGE follows essentially the same initial methodology as NGS by targeting and amplifying the 16S rRNA gene. However, as opposed to sequencing amplicons, DGGE amplicons are analyzed by electrophoresis. By prescreening microbial populations with DGGE, more efficient use of NGS methods can be accomplished. In this chapter, we outline the protocol for DGGE targeting the same gene (16S rRNA) that would be targeted for NGS to compare and determine differences in microbial populations from a wide range of ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.A.; Derr, R.M.; Pope, D.H.
1995-12-31
Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI)more » in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.« less
NASA Astrophysics Data System (ADS)
Taran, Nataliya; Batsmanova, Ludmila; Kosyk, Oksana; Smirnov, Oleksandr; Kovalenko, Mariia; Honchar, Liubov; Okanenko, Alexander
2016-10-01
The use of colloidal solutions of metals as micronutrients enhances plant resistance to unfavorable environmental conditions and ensures high yields of food crops. The purpose of the study was a comparative evaluation of presowing treatment with nanomolybdenum and microbiological preparation impact upon the development of adaptive responses in chickpea plants. Oxidative processes did not develop in all variants of the experiment but in variants treated with microbial preparation, and joint action of microbial and nanopreparations even declined, as evidenced by the reduction of thiobarbituric acid reactive substances in photosynthetic tissues by 15 %. The activity of superoxide dismutase increased (by 15 %) in variant "nanomolybdenum" and joint action "microbial + nanomolybdenum," but it decreased by 20 % in variants with microbial preparation treatment. The same dependence was observed in changes of catalase activity. Antioxidant status factor, which takes into account the ratio of antioxidant to pro-oxidant, was the highest in variants with joint action of microbial preparation and nanomolybdenum (0.7), the lowest in variants with microbial treatment only (0.1). Thus, the results show that the action of nanoparticles of molybdenum activated antioxidant enzymes and decreased oxidative processes, thus promoting adaptation of plants.
Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils
NASA Astrophysics Data System (ADS)
Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.
2002-12-01
The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Hall, Wendy C E; Jolly, Donald T; Hrazdil, Jiri; Galbraith, John C; Greacen, Maria; Clanachan, Alexander S
2003-01-01
To evaluate the ability of the EmulSiv filter (EF) to remove extrinsic microbial contaminants from propofol. Aliquots of Staphylococcus aureus (S. aureus), Candida albicans (C. albicans), Klebsiella pneumoniae (K. pneumoniae), Moraxella osloensis (M. osloensis), Enterobacter agglomerans (E. agglomerans), Escherichia coli (E. coli), Serratia marcescens (S. marcescens), Moraxella catarrhalis (M. catarrhalis), Haemophilus influenzae (H. influenzae) and Campylobacter jejuni (C. jejuni) were inoculated into vials containing 20 mL of sterile propofol. The unfiltered inoculated propofol solutions served as controls. Ten millilitres and 20 mL samples of the inoculated propofol were filtered through the EF. All solutions were then subplated onto three culture plates using a precision 1 micro L calibrated platinum loop and incubated. The number of colony forming units (CFU) were counted. Data were analyzed using a one-sample t test, and a P value of less than 0.05 was selected as the level of statistical significance. The EF was able to completely remove CFU of S. aureus, C. albicans, K. pneumoniae, M. osloensis, E. agglomerans, E. coli, S. marcescens, and M. catarrhalis (P < 0.05). A small number of H. influenzae CFU were able to evade filtration in both the 10 mL and 20 mL samples. C. jejuni CFU were able to evade filtration in only the 10 mL sample. The EF removes the majority of microbial contaminates from propofol with the exception of H. influenzae and C. jejuni. Although the EF is capable of removing most of the microbial contamination produced by H. influenzae and C. jejuni, a few CFU are capable of evading filtration. Consequently, even the use of a filter capable of removing microbial contaminants is not a substitute for meticulous aseptic technique and prompt administration when propofol is used.
Chen, Xi; Hung, Yen-Con
2018-06-01
The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.
Biophysical processes supporting the diversity of microbial life in soil
Tecon, Robin
2017-01-01
Abstract Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure—the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning. PMID:28961933
Microbial ecology-based engineering of Microbial Electrochemical Technologies.
Koch, Christin; Korth, Benjamin; Harnisch, Falk
2018-01-01
Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio
2016-04-01
Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.
USDA-ARS?s Scientific Manuscript database
Amendment with aluminum sulfate (alum) is considered a best management practice for its benefits in poultry production and increased retention of nutrients in the litter. However, little is known about how long-term applications of alum-treated litter to soil will affect the microbial community and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.
We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less
Microbial symbionts: a resource for the management of insect‐related problems
Crotti, Elena; Balloi, Annalisa; Hamdi, Chadlia; Sansonno, Luigi; Marzorati, Massimo; Gonella, Elena; Favia, Guido; Cherif, Ameur; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele
2012-01-01
Summary Microorganisms establish with their animal hosts close interactions. They are involved in many aspects of the host life, physiology and evolution, including nutrition, reproduction, immune homeostasis, defence and speciation. Thus, the manipulation and the exploitation the microbiota could result in important practical applications for the development of strategies for the management of insect‐related problems. This approach, defined as ‘Microbial Resource Management’ (MRM), has been applied successfully in various environments and ecosystems, as wastewater treatments, prebiotics in humans, anaerobic digestion and so on. MRM foresees the proper management of the microbial resource present in a given ecosystem in order to solve practical problems through the use of microorganisms. In this review we present an interesting field for application for MRM concept, i.e. the microbial communities associated with arthropods and nematodes. Several examples related to this field of applications are presented. Insect microbiota can be manipulated: (i) to control insect pests for agriculture; (ii) to control pathogens transmitted by insects to humans, animals and plants; (iii) to protect beneficial insects from diseases and stresses. Besides, we prospect further studies aimed to verify, improve and apply MRM by using the insect–symbiont ecosystem as a model. PMID:22103294
Gopal, Srila; Sarkar, Rajiv; Banda, Kalyan; Govindarajan, Jeyanthi; Harijan, B B; Jeyakumar, M B; Mitta, Philip; Sadanala, M E; Selwyn, Tryphena; Suresh, C R; Thomas, V A; Devadason, Pethuru; Kumar, Ranjit; Selvapandian, David; Kang, Gagandeep; Balraj, Vinohar
2009-03-01
Availability of clean water and adequate sanitation facilities are of prime importance for limiting diarrhoeal diseases. We examined the water and sanitation facilities of a village in southern India using geographic information system (GIS) tools. Places of residence, water storage and distribution, sewage and places where people in the village defaecated were mapped and drinking water sources were tested for microbial contamination in Nelvoy village, Vellore district, Tamil Nadu. Water in the village was found to be microbiologically unfit for consumption. Analysis using direct observations supplemented by GIS maps revealed poor planning, poor engineering design and lack of policing of the water distribution system causing possible contamination of drinking water from sewage at multiple sites. Until appropriate engineering designs for water supply and sewage disposal to suit individual village needs are made available, point-of-use water disinfection methods could serve as an interim solution.
Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash
2017-01-01
Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629
Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand
2017-01-01
Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.
Effects of drying on nitrification activity in zeoponic medium used for long-term space missions
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.
2004-01-01
One component of a proposed life support system is the use of zeoponic substrates, which slowly release NH4+ into "soil" solution, for the production of plants. Nitrifying bacteria that convert NH4+ to NO3- are among the important microbial components of these systems. Survival of nitrifying bacteria in dry zeoponic substrates is needed, because the substrate would likely be stored in an air-dry state between croppings. Substrate was enriched for nitrifying bacteria and allowed to air-dry in a laminar flow hood. Stored substrate was analyzed for nitrifier survivability by measuring nitrifier activity at the beginning, 3 days, 1, 2, and 3 weeks. After rewetting, activity was approximately 9 micrograms N g-1 h-1 regardless of storage time. Nitrification rates did not decrease during storage. It seems unlikely that drying between plantings would result in practical reductions in nitrification, and reinoculation with nitrifying bacteria would not be necessary.
Microbial fuel cells for biosensor applications.
Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue
2015-12-01
Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.
Fester, Thomas; Giebler, Julia; Wick, Lukas Y; Schlosser, Dietmar; Kästner, Matthias
2014-06-01
The plant organism and associated microbial communities can be seen as a sunlight driven hotspot for the turnover of organic chemicals. In such environments the fate of a chemical will not only depend on its intrinsic structural stability toward (bio-)chemical reactions and its bioavailability but also on the functional effectiveness and stability of natural microbial communities as main drivers of natural attenuation of chemicals. Recent research demonstrates that interactions between plants and microorganisms are crucial for the biotransformation of organic chemicals, for various processes affecting the bioavailability of such compounds, and for the stability of the affected ecosystem. Practical bioremediation approaches, therefore, should encompass integrated measures targeting functional vegetation as well as functional microbial communities. Good examples for a successful practical approach are constructed wetlands, where an artificial, simplified ecosystem is used for the detoxification of organic contaminants. While such systems have considerable practical success, they are often treated as a black box and a sound mechanistic understanding of functional resilience and of the 'reactive power' of such plant-microbe ecosystems is poor. This situation has to change, if progress in the application of bioremediation is to be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biotechnological Approach To Preserve Fresh Pasta Quality.
Angiolillo, L; Conte, A; Del Nobile, M A
2017-12-01
Fresh pasta is highly susceptible to microbial contamination because of its high water activity and nutrient content. In this study, a new biopreservation system was examined that consists of an active sodium alginate solution containing Lactobacillus reuteri and glycerol, which was added during the production process of pasta. Our aim was to extend the fresh pasta shelf life by the in situ production of reuterin, thereby avoiding the use of thermal treatments that generally compromise food sensory characteristics. Two experimental studies were carried out with the product packaged under either ordinary or modified atmospheric conditions. Microbiological and sensory quality indices were monitored to determine the effectiveness of biopreservation on product quality during storage. The use of the active solution with L. reuteri and glycerol during the production process of pasta improved both microbial and sensory quality, particularly when combined with modified atmosphere.
In Situ Rates of Sulfate Reduction in Response to Geochemical Perturbations
Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.
2011-01-01
Rates of in situ microbial sulfate reduction in response to geochemical perturbations were determined using Native Organism Geochemical Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to geochemical perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.
Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen
2014-11-01
Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guan, Wenqiang; Fan, Xuetong
2010-03-01
Tissue browning and microbial growth are the main concerns associated with fresh-cut apples. In this study, effects of sodium chlorite (SC) and calcium propionate (CP), individually and combined, on quality and microbial population of apple slices were investigated. "Granny Smith" apple slices, dipped for 5 min in CP solutions at 0%, 0.5%, 1%, and 2% (w/v) either alone or in combination with 0.05% (w/v) SC, were stored at 3 and 10 degrees C for up to 14 d. Color, firmness, and microflora population were measured at 1, 7, and 14 d of storage. Results showed that CP alone had no significant effect on the browning of cut apples. Even though SC significantly inhibited tissue browning initially, the apple slices turned brown during storage at 10 degrees C. The combination of CP and SC was able to inhibit apple browning during storage. Samples treated with the combination of SC with CP did not show any detectable yeast and mold growth during the entire storage period at 3 degrees C. At 10 degrees C, yeast and mold count increased on apple slices during storage while CP reduced the increase. However, high concentrations of CP reduced the efficacy of SC in inactivating E. coli inoculated on apples. Overall, our results suggested that combination of SC with 0.5% and 1% CP could be used to inhibit tissue browning and maintain firmness while reducing microbial population. Practical Application: Apple slices, which contain antioxidants and other nutrient components, have emerged as popular snacks in food service establishments, school lunch programs, and for family consumption. However, the further growth of the industry is limited by product quality deterioration caused by tissue browning, short shelf-life due to microbial growth, and possible contamination with human pathogens during processing. Therefore, this study was conducted to develop treatments to reduce microbial population and tissue browning of "Granny Smith" apple slices. Results showed that an antimicrobial compound, sodium chlorite, is effective in not only eliminating microbes but also inhibiting tissue browning of apple slices. However, the compound caused tissue softening and its antibrowning effect was short-lived, lasting only for a few days. Combination of the compound with a calcium-containing food additive was able to improve firmness and freshness of apple slices while reducing population of Escherichia coli artificially inoculated on samples and inhibiting the growth of yeast and mold during storage.
The Bio-Community Perl toolkit for microbial ecology.
Angly, Florent E; Fields, Christopher J; Tyson, Gene W
2014-07-01
The development of bioinformatic solutions for microbial ecology in Perl is limited by the lack of modules to represent and manipulate microbial community profiles from amplicon and meta-omics studies. Here we introduce Bio-Community, an open-source, collaborative toolkit that extends BioPerl. Bio-Community interfaces with commonly used programs using various file formats, including BIOM, and provides operations such as rarefaction and taxonomic summaries. Bio-Community will help bioinformaticians to quickly piece together custom analysis pipelines and develop novel software. Availability an implementation: Bio-Community is cross-platform Perl code available from http://search.cpan.org/dist/Bio-Community under the Perl license. A readme file describes software installation and how to contribute. © The Author 2014. Published by Oxford University Press.
Formation of higher plant component microbial community in closed ecological system
NASA Astrophysics Data System (ADS)
Tirranen, L. S.
2001-07-01
Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.
Solutions for care of silicone hydrogel lenses.
Willcox, Mark D P
2013-01-01
During wear of contact lenses on a daily wear basis, it is necessary to disinfect the lens overnight before reinserting the lens the next day. The ability of the solutions used for this to disinfect lenses and lens cases is important for safe lens wear. The literature on the disinfecting ability of multipurpose disinfecting solutions (MPDS) commonly used with silicone hydrogel lenses reported during the period 2000 to 2012 is reviewed, as this is the period of time during which these lenses have been commercially available. Particular emphasis is placed on the ability of disinfecting solutions to control colonization of lens cases by microbes and changes in composition and use of the solutions. In addition, the literature is reviewed on ways of minimizing lens case microbial contamination. Maintaining the hygiene of contact lenses and lens cases is important in minimizing various forms of corneal infiltrative events that occur during lens wear. Although lens case contamination is not associated with different lenses, it is determined by use of different MPDS. MPDS that allow more frequent or heavy contamination of cases by Gram-negative bacteria are associated with a higher incidence of corneal infiltrative events. MPDS are now available that contain dual disinfectants. Wiping lens cases with tissues or using lens cases that incorporate silver are associated with reductions in contamination in clinical trials. Similarly, using MPDS to rub and rinse lenses before disinfection may reduce levels of microbes on lenses. The MPDS also contain surfactants that help reduce deposition and denaturation of proteins on lenses. Improvements in MPDS formulations and hygiene practices may help to reduce the incidence of adverse events that are seen during use with silicone hydrogel lenses.
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions
Allende, Ana; Monaghan, James
2015-01-01
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.
Allende, Ana; Monaghan, James
2015-07-03
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.
The antimicrobial potential of stevia in an in vitro microbial caries model.
Kishta-; Derani, Maryam; Neiva, Gisele F; Boynton, James R; Kim, Youngjoo E; Fontana, Margherita
2016-04-01
To determine the effect of stevia on caries development when incorporated into a cariogenic diet in a controlled microbial caries model. 56 bovine tooth specimens (4 x 4 mm) were divided into four groups, each secured in a caries-forming vessel. All vessels were placed on an electric stirrer inside a 37°C incubator. The specimens were inoculated with Streptococcus mutans, and exposed for 4 days to circulating cycles of tryptic soy broth supplemented with 5% sucrose-TSBS (three x/day), and a mineral wash solution. Between TSBS cycles (three x/day), each group received one of four experimental solutions: phosphate buffer (PBS-negative control), 0.5% stevia solution, 5% stevia solution, or 5% xylitol solution. Development of caries lesions was analyzed using enamel surface hardness. Difference in Vickers Hardness between pre and post-treatment was calculated to determine caries development. Plaque was dislodged from six specimens per group, and the CFU/ml calculated. Data were analyzed using ANOVA at 95% confidence level, and individual group differences calculated using Tukey's test. 5% xylitol resulted in significantly less plaque at the end of the study compared to PBS and 5% stevia, but not significantly different than 0.5% stevia. 5% stevia had significantly softer lesions than the other groups, while there was no significant difference in hardness scores between 5% xylitol, 0.5% stevia and PBS.
NASA Astrophysics Data System (ADS)
Eldridge, D. L.; Farquhar, J.; Guo, W.
2015-12-01
Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate reduction models and other sulfur-redox processes in nature.
Swan, J S; Deasy, E C; Boyle, M A; Russell, R J; O'Donnell, M J; Coleman, D C
2016-10-01
Washbasin U-bends are reservoirs of microbial contamination in healthcare environments. U-Bends are constantly full of water and harbour microbial biofilm. To develop an effective automated cleaning and disinfection system for U-bends using two solutions generated by electrochemical activation of brine including the disinfectant anolyte (predominantly hypochlorous acid) and catholyte (predominantly sodium hydroxide) with detergent properties. Initially three washbasin U-bends were manually filled with catholyte followed by anolyte for 5min each once weekly for five weeks. A programmable system was then developed with one washbasin that automated this process. This U-bend had three cycles of 5min catholyte followed by 5min anolyte treatment per week for three months. Quantitative bacterial counts from treated and control U-bends were determined on blood agar (CBA), R2A, PAS, and PA agars following automated treatment and on CBA and R2A following manual treatment. The average bacterial density from untreated U-bends throughout the study was >1×10(5) cfu/swab on all media with Pseudomonas aeruginosa accounting for ∼50% of counts. Manual U-bend electrochemically activated (ECA) solution treatment reduced counts significantly (<100cfu/swab) (P<0.01 for CBA; P<0.005 for R2A). Similarly, counts from the automated ECA-treatment U-bend were significantly reduced with average counts for 35 cycles on CBA, R2A, PAS, and PA of 2.1±4.5 (P<0.0001), 13.1±30.1 (P<0.05), 0.7±2.8 (P<0.001), and 0 (P<0.05) cfu/swab, respectively. P. aeruginosa was eliminated from all treated U-bends. Automated ECA treatment of washbasin U-bends consistently minimizes microbial contamination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil.
Araújo, A S F; Magalhaes, L B; Santos, V M; Nunes, L A P L; Dias, C T S
2017-03-01
The aim of this study was to measure soil microbial biomass and soil surface fauna in undisturbed and disturbed Cerrado sensu stricto (Css) from Sete Cidades National Park, Northeast Brazil. The following sites were sampled under Cerrado sensu stricto (Css) at the park: undisturbed and disturbed Css (slash-and-burn agricultural practices). Total organic and microbial biomass C were higher in undisturbed than in disturbed sites in both seasons. However, microbial biomass C was higher in the wet than in the dry season. Soil respiration did not vary among sites but was higher in the wet than in the dry season. The densities of Araneae, Coleoptera, and Orthoptera were higher in the undisturbed site, whereas the densities of Formicidae were higher in the disturbed site. Non-metric multidimensional scaling analysis separated undisturbed from disturbed sites according to soil biological properties. Disturbance by agricultural practices, such as slash-and-burn, probably resulted in the deterioration of the biological properties of soil under native Cerrado sensu stricto in the Sete Cidades National Park.
Cleaning frequency and the microbial load in ice-cream.
Holm, Sonya; Toma, Ramses B; Reiboldt, Wendy; Newcomer, Chris; Calicchia, Melissa
2002-07-01
This study investigates the efficacy of a 62 h cleaning frequency in the manufacturing of ice-cream. Various product and product contact surfaces were sampled progressively throughout the time period between cleaning cycles, and analyzed for microbial growth. The coliform and standard plate counts (SPC) of these samples did not vary significantly over time after 0, 24, 48, or 62 h from Cleaning in Place (CiP). Data for product contact surfaces were significant for the SPC representing sample locations. Some of the variables in cleaning practices had significant influence on microbial loads. An increase in the number of flavors manufactured caused a decrease in SPC within the 24 h interval, but by the 48 h interval the SPC increased. More washouts within the first 24 h interval were favorable, as indicated by decreased SPC. The more frequently the liquefier was sanitized within the 62 h interval, the lower the SPC. This study indicates that food safety was not compromised and safety practices were effectively implemented throughout the process.
Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain
NASA Astrophysics Data System (ADS)
Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.
2015-01-01
Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.
Ducey, Thomas F; Hunt, Patrick G
2013-06-01
Anaerobic lagoons are a standard practice for the treatment of swine wastewater. This practice relies heavily on microbiological processes to reduce concentrated organic material and nutrients. Despite this reliance on microbiological processes, research has only recently begun to identify and enumerate the myriad and complex interactions that occur in this microbial ecosystem. To further this line of study, we utilized a next-generation sequencing (NGS) technology to gain a deeper insight into the microbial communities along the water column of four anaerobic swine wastewater lagoons. Analysis of roughly one million 16S rDNA sequences revealed a predominance of operational taxonomic units (OTUs) classified as belonging to the phyla Firmicutes (54.1%) and Proteobacteria (15.8%). At the family level, 33 bacterial families were found in all 12 lagoon sites and accounted for between 30% and 50% of each lagoon's OTUs. Analysis by nonmetric multidimensional scaling (NMS) revealed that TKN, COD, ORP, TSS, and DO were the major environmental variables in affecting microbial community structure. Overall, 839 individual genera were classified, with 223 found in all four lagoons. An additional 321 genera were identified in sole lagoons. The top 25 genera accounted for approximately 20% of the OTUs identified in the study, and the low abundances of most of the genera suggests that most OTUs are present at low levels. Overall, these results demonstrate that anaerobic lagoons have distinct microbial communities which are strongly controlled by the environmental conditions present in each individual lagoon. Published by Elsevier Ltd.
Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.
Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan
2016-01-01
Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Schütz, Kirsten; Kandeler, Ellen; Nagel, Peter; Scheu, Stefan; Ruess, Liliane
2010-06-01
Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.
NASA Astrophysics Data System (ADS)
Kavvadias, Victor; Papadopoulou, Maria; Vavoulidou, Evangelia; Theocharopoulos, Sideris; Repas, Spiros; Koubouris, Georgos; Psaras, Georgios
2017-04-01
Intensive cultivation practices are associated to soil degradation mainly due to low soil organic matter content. The application of organic materials to land is a common practice in sustainable agriculture in the last years. However, its implementation in olive groves under different irrigation regimes has not been systematically tested under the prevailing Mediterranean conditions. The aim of this work was to study the effect of alternative carbon input techniques (i.e. wood shredded, pruning residues, returning of olive mill wastes the field with compost) and irrigation conditions (irrigated and rainfed olive orchards) on spatial distribution of soil chemical (pH, EC, total organic carbon, total nitrogen, inorganic nitrogen, humic and fulvic acids, available P, and exchangeable K) and microbial properties (soil basal microbial respiration and microbial biomass carbon) in two soil depths (0-10 cm and 10-40 cm). The study took place in the region of Messinia, South western Peloponnese, Greece during three year soil campaigns. Forty soil plots of olive groves were selected (20 rainfed and 20 irrigated) and carbon input practices were applied on the half of the irrigated and rainfed soil parcels (10 rainfed and 10 irrigated), while the remaining ones were used as controls. The results showed significant changes of chemical and biological properties of soil in olive orchards due to carbon treatments. However, these changes were depended on irrigation conditions. Microbial parameters appeared to be reliable indicators of changes in soil management. Proper management of alternative soil carbon inputs in olive orchards can positively affect soil fertility.
Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke
2012-04-01
This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.
Millstone: software for multiplex microbial genome analysis and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering.
Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Millstone: software for multiplex microbial genome analysis and engineering
Goodman, Daniel B.; Kuznetsov, Gleb; Lajoie, Marc J.; ...
2017-05-25
Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. Here, we describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.
Integrated Artificial Intelligence Approaches for Disease Diagnostics.
Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh
2018-06-01
Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.
Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.
2016-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644
Effectiveness of microbe application to petroleum spills at crash sites.
DOT National Transportation Integrated Search
2012-03-01
"Each year vehicular accidents cause gasoline and diesel spills on Arizona roadways. ADOT currently uses : Micro-Blaze, a commercially available microbial solution, as a supplement to natural degradation of vehicular : petroleum spills in soils. Wi...
Garcés-Vega, Francisco; Marks, Bradley P
2014-08-01
In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.
Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric
2017-03-01
One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kombucha might be promising probiotics for consumption on the Moon
NASA Astrophysics Data System (ADS)
Kozyrovska, Natalia; Foing, Bernard H.
The sanitization at permanently manned lunar bases and consuming germ-free food in a concert with effect of lunar stressors may result in crews disorders, including inflammatory and atopic states and decrease of resistance to indigenous pathogens which present in human organism in suppressed state. The administration of live microbial supplements with presumptive health benefits on human physiology might be reasonable solution to prevent disbacteriosis. Many of microbial species are associated with the fermentation of dairy products, however, they have a short self-life and so far unpractical to be used at lunar habitation. The popular "Tea mushroom" or "Kombucha Tea" is a probiotics proven by FDA that many people are now taking in health promoting diets to detoxify and revitalize the organism (Danielian, 1993; Sreeramulu et al., 2001). Kombucha is composed by symbiotic bacteria and yeasts, surrounded by a permeable membrane. The Kombucha culture is a tiny biochemical factory, producing organic acids, amino acids, enzymes, polyphenols, antibiotic substances, vitamins, enzymes as well as some other products beneficial for human health. Within the ages the Kombucha Tea has been consumed by practically all nations in Far East and now in Eastern Europe and America due to probiotic properties, and within this period the Kombucha microbial ecosystem has been selected to be remarkably adaptive to culturing conditions and resistant to adverse factors. Metagenomic approaches in a study of microbial ecosystems will allow to reconstruct the Kombucha microbiome and to elucidate unknown species and genes on the base of bioinformatics programs. Compared with Kombucha wild type, metabolically engineered strains, expected to exhibit broader substrate specificity, utilizing sugars from waste material which will be used for Kombucha fermentation. References 1. Danielian L.T. (1993) Tea fungus. Publ. House "Armenia", 112 pp. 2. Palmer C., Bik E.M., DiGiulio D.B., Relman D.A., Brown P.O. (2007) Development of the Human Infant Intestinal Microbiota. PLoS Biol 5(7): e177. 3. Sreeramulu G., Zhu Y., Knol W. (2001) Characterization of antimicrobial activity in Kom-bucha fermentation. Acta Biotechnol. 21:49-56. 4. Versalovic J., Relman R. (2006) How bacterial communities expand functional repertoires. PLoS Biol 4(12): e430.
Mnif, Ines; Ellouze-Chaabouni, Semia; Ayedi, Younes; Ghribi, Dhouha
2014-08-01
This study investigated the efficiency of hydrocarbon utilization by B. subtilis SPB1, a biosurfactant-producing strain. Microbial growth, biosurfactant production, and hydrocarbon biodegradation were studied in a liquid mineral medium, supplemented with 2% hydrocarbons in both the absence and in the presence of 0.1% yeast extract. Preliminary studies showed that maximum growth was registered with a 2% hydrocarbon solution. Results showed that the addition of yeast extract greatly stimulated microbial growth and thus induced biosurfactant production. Furthermore, biodegradation efficiencies were higher in the presence of yeast extract. Kerosene fuel was more recalcitrant to biodegradation than diesel oil. This study's findings suggest that the addition of an organic nitrogen source stimulates tension-active agents' production, which emulsifies hydrophobic compounds and enhances their biodegradation and microbial growth.
Microbial methods of reducing technetium
Wildung, Raymond E [Richland, WA; Garland, Thomas R [Greybull, WY; Gorby, Yuri A [Richland, WA; Hess, Nancy J [Benton City, WA; Li, Shu-Mei W [Richland, WA; Plymale, Andrew E [Richland, WA
2001-01-01
The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.
Assessment and management of soil microbial community structure for disease suppression.
Mazzola, Mark
2004-01-01
Identification of the biological properties contributing to the function of suppressive soils is a necessary first step to the management of such systems for use in the control of soilborne diseases. The development and application of molecular methods for the characterization and monitoring of soil microbial properties will enable a more rapid and detailed assessment of the biological nature of soil suppressiveness. Although suppressive soils have provided a wealth of microbial resources that have subsequently been applied for the biological control of soilborne plant pathogens, the full functional capabilities of the phenomena have not been realized in production agricultural ecosystems. Cultural practices, such as the application of soil amendments, have the capacity to enhance disease suppression, though the biological modes of action may vary from that initially resident to the soil. Plants have a distinct impact on characteristics and activity of resident soil microbial communities, and therefore play an important role in determining the development of the disease-suppressive state. Likewise, plant genotype will modulate these same biological communities, and should be considered when developing strategies to exploit the potential of such a natural disease control system. Implementation of consistently effective practices to manage this resource in an economically and environmentally feasible manner will require more detailed investigation of these biologically complex systems and refinement of currently available methodologies.
Hakkaart, Xavier D V; Pronk, Jack T; van Maris, Antonius J A
2017-01-01
Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.
Jiang, Yan; Fan, Guifang; Du, Ran; Li, Peipei; Jiang, Li
2015-08-01
A high performance liquid chromatographic method was established for the determination of metabolites (sugars, organic acids and alcohols) in microbial consortium fermentation broth from cellulose. Sulfate was first added in the samples to precipitate calcium ions in microbial consortium culture medium and lower the pH of the solution to avoid the dissociation of organic acids, then the filtrates were effectively separated using high performance liquid chromatography. Cellobiose, glucose, ethanol, butanol, glycerol, acetic acid and butyric acid were quantitatively analyzed. The detection limits were in the range of 0.10-2.00 mg/L. The linear correlation coefficients were greater than 0.999 6 in the range of 0.020 to 1.000 g/L. The recoveries were in the range of 85.41%-115.60% with the relative standard deviations of 0.22% -4.62% (n = 6). This method is accurate for the quantitative analysis of the alcohols, organic acids and saccharides in microbial consortium fermentation broth from cellulose.
Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico
2017-01-01
Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.
Microbiota of radish plants, cultivated in closed and open ecological systems
NASA Astrophysics Data System (ADS)
Tirranen, L. S.
It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61 species of bacteria), than in an even-aged monoculture (32 species). Long-term use (120 days) of the solution for cultivation of multiple-aged vegetable polyculture from different radish parts in the experiment without system closing revealed 50 species, while in the experiment with the closed ecosystem only 39 species of bacteria were detected. It was found out that plant cultivation in a polyculture consisting of nine vegetable cultures is more preferable than in a monoculture, because the microbial complex is more stable, the functioning of elements is more accurate and the crop is higher.
Theron, Jacques; Eugene Cloete, Thomas; de Kwaadsteniet, Michele
2010-11-01
Waterborne microbial diseases are escalating worldwide increasing the need for powerful and sensitive diagnostics tools. Molecular methodologies, including immunological and nucleic acid-based methods, have only recently been applied in the water sector. Advances in nanotechnology and nanomaterials have opened the door for the development of new diagnostic tools with increased sensitivity and speed, and reduced cost and labor. Quantum dots, flo dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, nanowires, and nanocantilevers, with their unique optical and physical properties, have already been applied in nanodiagnostics. Nanobiotechnology, once remaining technical and practical problems has been addressed, will play an important role in the detection of microbial pathogens.
NASA Astrophysics Data System (ADS)
Cooper, Sarah; Agnew, Linda; Pereg, Lily
2015-04-01
Control of soilborne fungal root pathogens that severely compromise cotton production and other crops worldwide has historically been through the use of synthetic fungicides and fertilizers, these often have hazardous implications for environmental and soil health. The search for sustainable alternatives has lead to heightened interest in biocontrol, using soil microorganisms that suppress the growth of phytopathogens directly and biofertilization, the use of microorganisms to increasing the nutrient availability in soils, increasing seedling vigour. Soil properties and consequently soil microbial properties are strongly impacted by agricultural practices, therefore we are isolating indigenous microorganisms from soils collected from ten different geographical locations within the Australian cotton-growing region. These differ vastly in soil type and management practices. Soils are being analysed to compare the abundance of phosphate solubilising, auxin producing and nitrogen cycling bacteria. Rhizospheric bacteria capable of plant growth promoting through a multiple actions are being isolated. In addition, a method for isolating soilborne fungal suppressive microbes directly from soil samples has been designed and is currently being used. Comparisons between agricultural practices and the plant growth promoting microbial component of soil microbiome will be reported on. We will discuss the microbial isolates identified, their modes of action and their potential use as biocontrol agents and/or biofertilizers in Australian cotton growing soils.
Too clean, or not too clean: the Hygiene Hypothesis and home hygiene
Bloomfield, SF; Stanwell-Smith, R; Crevel, RWR; Pickup, J
2006-01-01
Summary The ‘hygiene hypothesis’ as originally formulated by Strachan, proposes that a cause of the recent rapid rise in atopic disorders could be a lower incidence of infection in early childhood, transmitted by unhygienic contact with older siblings. Use of the term ‘hygiene hypothesis’ has led to several interpretations, some of which are not supported by a broader survey of the evidence. The increase in allergic disorders does not correlate with the decrease in infection with pathogenic organisms, nor can it be explained by changes in domestic hygiene. A consensus is beginning to develop round the view that more fundamental changes in lifestyle have led to decreased exposure to certain microbial or other species, such as helminths, that are important for the development of immunoregulatory mechanisms. Although this review concludes that the relationship of the hypothesis to hygiene practice is not proven, it lends strong support to initiatives seeking to improve hygiene practice. It would however be helpful if the hypothesis were renamed, e.g. as the ‘microbial exposure’ hypothesis, or ‘microbial deprivation’ hypothesis, as proposed for instance by Bjorksten. Avoiding the term ‘hygiene’ would help focus attention on determining the true impact of microbes on atopic diseases, while minimizing risks of discouraging good hygiene practice. PMID:16630145
Molecular diagnostics for the detection and characterization of microbial pathogens.
Procop, Gary W
2007-09-01
New and advanced methods of molecular diagnostics are changing the way we practice clinical microbiology, which affects the practice of medicine. Signal amplification and real-time nucleic acid amplification technologies offer a sensitive and specific result with a more rapid turnaround time than has ever before been possible. Numerous methods of postamplification analysis afford the simultaneous detection and differentiation of numerous microbial pathogens, their mechanisms of resistance, and the construction of disease-specific assays. The technical feasibility of these assays has already been demonstrated. How these new, often more expensive tests will be incorporated into routine practice and the impact they will have on patient care remain to be determined. One of the most attractive uses for such techniques is to achieve a more rapid characterization of the infectious agent so that a narrower-spectrum antimicrobial agent may be used, which should have an impact on resistance patterns.
Minimizing Sources of Airborne, Aerosolized, and Contact Contaminants in the OR Environment.
Armellino, Donna
2017-12-01
Surgical site infections are unintended consequences of surgery that can cause harm to patients and place financial burdens on health care organizations. Extrinsic factors in the OR-including health care providers' behavior and practices that modify air movement, the physical environment, equipment, or surgical instruments-can increase microbial contamination. Microbes can be transported into the surgical incision by airborne or contact routes and contribute to a surgical site infection. Simple practices to prevent infection-such as minimizing airborne particles and contaminants, maintaining equipment according to the manufacturer's recommendations, cleaning and disinfecting the environment and surgical instruments, and performing proper hand hygiene-can reduce the degree of microbial contamination. Perioperative leaders and health care providers can help decrease the patient's risk of surgical site infection with proactive preventive practices that break the chain of infection. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Luján-Facundo, M J; Fernández-Navarro, J; Alonso-Molina, J L; Amorós-Muñoz, I; Moreno, Y; Mendoza-Roca, J A; Pastor-Alcañiz, L
2018-05-25
Tannery wastewaters are difficult to treat biologically due to the high salinity and organic matter concentration. Conventional treatments, like sequential batch reactors (SBR) and membrane bioreactors (MBR), have showed settling problems, in the case of SBR, and ultrafiltration (UF) membrane fouling in the case of MBR, slowing their industrial application. In this work, the treatment of tannery wastewater with an osmotic membrane bioreactor (OMBR) is assessed. Forward osmosis (FO) membranes are characterized by a much lower fouling degree than UF membranes. The permeate passes through the membrane pores (practically only water by the high membrane rejection) from the feed solution to the draw solution, which is also an industrial wastewater (ammonia absorption effluent) in this work. Experiments were carried out at laboratory scale with a FO CTA-NW membrane from Hydration Technology Innovations (HTI). Tannery wastewater was treated by means of an OMBR using as DS an actual industrial wastewater mainly consisting of ammonium sulphate. The monitoring of the biological process was carried out with biological indicators like microbial hydrolytic enzymatic activities, dissolved and total adenosine triphosphate (ATP) in the mixed liquor and microbial population. Results indicated a limiting conductivity in the reactor of 35 mS cm -1 (on the 43th operation day), from which process was deteriorated. This process performance diminution was associated by a high decrease of the dehydrogenase activity and a sudden increase of the protease and lipase activities. The increase of the bacterial stress index also described appropriately the process performance. Regarding the relative abundance of bacterial phylotypes, 37 phyla were identified in the biomass. Proteobacteria were the most abundant (varying the relative abundance between 50.29% and 34.78%) during the first 34 days of operation. From this day on, Bacteroidetes were detected in a greater extent varying the relative abundance of this phylum between 27.20% and 40.45%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Survey of safety practices among hospital laboratories in Oromia Regional State, Ethiopia.
Sewunet, Tsegaye; Kebede, Wakjira; Wondafrash, Beyene; Workalemau, Bereket; Abebe, Gemeda
2014-10-01
Unsafe working practices, working environments, disposable waste products, and chemicals in clinical laboratories contribute to infectious and non-infectious hazards. Staffs, the community, and patients are less safe. Furthermore, such practices compromise the quality of laboratory services. We conducted a study to describe safety practices in public hospital laboratories of Oromia Regional State, Ethiopia. Randomly selected ten public hospital laboratories in Oromia Regional State were studied from Oct 2011- Feb 2012. Self-administered structured questionnaire and observation checklists were used for data collection. The respondents were heads of the laboratories, senior technicians, and safety officers. The questionnaire addressed biosafety label, microbial hazards, chemical hazards, physical/mechanical hazards, personal protective equipment, first aid kits and waste disposal system. The data was analyzed using descriptive analysis with SPSS version16 statistical software. All of the respondents reported none of the hospital laboratories were labeled with the appropriate safety label and safety symbols. These respondents also reported they may contain organisms grouped under risk group IV in the absence of microbiological safety cabinets. Overall, the respondents reported that there were poor safety regulations or standards in their laboratories. There were higher risks of microbial, chemical and physical/mechanical hazards. Laboratory safety in public hospitals of Oromia Regional State is below the standard. The laboratory workers are at high risk of combined physical, chemical and microbial hazards. Prompt recognition of the problem and immediate action is mandatory to ensure safe working environment in health laboratories.
Chandwani, Manisha; Mittal, Rakesh; Chandak, Shweta; Pimpale, Jitesh
2017-01-01
Background: The purpose of this study was to evaluate the microbial reduction in deciduous molars using Morinda citrifolia juice (MCJ) as irrigating solution. Materials and Methods: This was a randomized comparative study including 60 deciduous molars chosen among the patients belonging to the age group of 6–9 years based on the inclusion or exclusion criteria. The selected teeth were divided randomly into two groups based on irrigation solution used, that was, Group I (1% NaOCl) and Group II (MCJ). The microbial samples were collected both pre- and post-irrigation and were transferred for microbial assay. Paired t-test was used for intragroup analysis of pre- and post-operative mean reduction of bacterial colony forming unit (CFU)/ml, whereas Independent t-test was used to assess the intergroup, pre- and post-operative mean reduction of bacterial CFU/ml. Results: In the intragroup comparison, both of the groups showed statistically significant (P < 0.001) reduction in the mean CFU/ml; however, it did not show statistically significant reduction when intergroup comparison was carried out between the two groups. Both the study materials had clinically revealed decrease in the microbial count postirrigation. Conclusion: Both the irrigants, 1% NaOCl and MCJ, were significantly effective in the reduction of mean CFUs/ml postoperatively. The results of this study have confirmed the antibacterial effectiveness of MCJ in the root canals of deciduous teeth. Considering the low toxicity and antibacterial effectiveness of MCJ, it can be advocated as a root canal irrigant in endodontic treatment of primary teeth. PMID:28928778
Muhammad, Omid H; Chevalier, Marlene; Rocca, Jean-Paul; Brulat-Bouchard, Nathalie; Medioni, Etienne
2014-06-01
Photodynamic therapy was introduced as an adjuvant to conventional chemo-mechanical debridement during endodontic treatment to overcome the persistence of biofilms. The aim of this study was to evaluate the ability of photodynamic therapy (PDT) to disrupt an experimental microbial biofilm inside the root canal in a clinically applicable working time. Thirty extracted teeth were prepared and then divided in three groups. All samples were infected with an artificially formed biofilm made of Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. First group was treated with Aseptim Plus® photo-activated (LED) disinfection system, second group by a 650 nm Diode Laser and Toluidine blue as photosensitizer, and the third group, as control group, by ultrasonic irrigation (PUI) using EDTA 17% and NaOCl 2.6% solutions. The working time for all three groups was fixed at 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures. There was no statistically significant difference between results obtained from groups treated by Aseptim Plus® and Diode Laser (P<0.6267). In cultures of both groups there was a maximal bacterial growth. The group that was treated by ultrasonic irrigation and NaOCl and EDTA solutions had the best results (P<0.0001): there was a statistically significant reduction of bacterial load and destruction of microbial biofilm. Under the condition of this study, Photodynamic therapy could not disrupt endodontic artificial microbial biofilm and could not inhibit bacterial growth in a clinically favorable working time. Copyright © 2014 Elsevier B.V. All rights reserved.
Shenep, L.E.; Shenep, M.A.; Cheatham, W.; Hoffman, J.M.; Hale, A.; Williams, B.F.; Perkins, R.; Hewitt, C.B.; Hayden, R.T.; Shenep, J. L.
2016-01-01
SUMMARY There is little published evidence regarding whether heparin lock solutions containing preservatives prevent catheter-related infections. However, adverse effects from preservative-containing flushes have been documented in neonates, leading many hospitals to avoid their use altogether. Infection control records from 1982 to 2008 at St. Jude Children’s Research Hospital (SJCRH) were reviewed regarding the incidence of CRIs and the use of preservative-containing intravenous locks. In addition, the antimicrobial activities of heparin lock solution containing the preservatives parabens (0.165%) or benzyl alcohol (0.9%), and 70% ethanol were examined against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa and Candida albicans, and compared with preservative-free saline with and without heparin. Growth was assessed after exposure to test solutions for 0, 2, 4 and 24 h at 35°C. The activities of preservatives were assessed against both planktonic (free-floating) and sessile (biofilm-embedded) micro-organisms using the MBEC Assay. Infection control records revealed two periods of increased catheter-related infections, corresponding with two intervals when preservative-free heparin was used at SJCRH. Heparin solution containing preservatives demonstrated significant antimicrobial activity against both planktonic and sessile forms of all six microbial species. Ethanol demonstrated the greatest antimicrobial activity, especially following short incubation periods. Heparin lock solutions containing the preservatives parabens or benzyl alcohol, and 70% ethanol demonstrated significant antimicrobial activity against both planktonic and sessile micro-organisms commonly responsible for CRIs. These findings, together with the authors’ historical infection control experience, support the use of preservatives in intravenous lock solutions to reduce catheter related infections in patients beyond the neonatal period. PMID:21945067
Shenep, L E; Shenep, M A; Cheatham, W; Hoffman, J M; Hale, A; Williams, B F; Perkins, R; Hewitt, C B; Hayden, R T; Shenep, J L
2011-12-01
There is little published evidence regarding whether heparin lock solutions containing preservatives prevent catheter-related infections. However, adverse effects from preservative-containing flushes have been documented in neonates, leading many hospitals to avoid their use altogether. Infection control records from 1982 to 2008 at St. Jude Children's Research Hospital (SJCRH) were reviewed regarding the incidence of catheter-related infections and the use of preservative-containing intravenous locks. In addition, the antimicrobial activities of heparin lock solution containing the preservatives parabens (0.165%) or benzyl alcohol (0.9%), and 70% ethanol were examined against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa and Candida albicans, and compared with preservative-free saline with and without heparin. Growth was assessed after exposure to test solutions for 0, 2, 4 and 24h at 35 °C. The activities of preservatives were assessed against both planktonic (free-floating) and sessile (biofilm-embedded) micro-organisms using the MBEC Assay. Infection control records revealed two periods of increased catheter-related infections, corresponding with two intervals when preservative-free heparin was used at SJCRH. Heparin solution containing preservatives demonstrated significant antimicrobial activity against both planktonic and sessile forms of all six microbial species. Ethanol demonstrated the greatest antimicrobial activity, especially following short incubation periods. Heparin lock solutions containing the preservatives parabens or benzyl alcohol, and 70% ethanol demonstrated significant antimicrobial activity against both planktonic and sessile micro-organisms commonly responsible for catheter-related infections. These findings, together with the authors' historical infection control experience, support the use of preservatives in intravenous lock solutions to reduce catheter related infections in patients beyond the neonatal period. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Xiao, Yunhua; Liu, Xueduan; Ma, Liyuan; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Zhang, Xian; Hao, Xiaodong; Dong, Weiling; She, Siyuan; Yin, Huaqun
2016-08-01
The microbial communities are important for minerals decomposition in biological heap leaching system. However, the differentiation and relationship of composition and function of microbial communities between leaching heap (LH) and leaching solution (LS) are still unclear. In this study, 16S rRNA gene sequencing was used to assess the microbial communities from the two subsystems in ZiJinShan copper mine (Fujian province, China). Results of PCoA and dissimilarity test showed that microbial communities in LH samples were significantly different from those in LS samples. The dominant genera of LH was Acidithiobacillus (57.2 ∼ 87.9 %), while Leptospirillum (48.6 ∼ 73.7 %) was predominant in LS. Environmental parameters (especially pH) were the major factors to influence the composition and structure of microbial community by analysis of Mantel tests. Results of functional test showed that microbial communities in LH utilized sodium thiosulfate more quickly and utilized ferrous sulfate more slowly than those in LS, which further indicated that the most sulfur-oxidizing processes of bioleaching took place in LH and the most iron-oxidizing processes were in LS. Further study found that microbial communities in LH had stronger pyrite leaching ability, and iron extraction efficiency was significantly positively correlated with Acidithiobacillus (dominated in LH), which suggested that higher abundance ratio of sulfur-oxidizing microbes might in favor of minerals decomposition. Finally, a conceptual model was designed through the above results to better exhibit the sulfur and iron metabolism in bioleaching systems.
Twing, Katrina I.; Brazelton, William J.; Kubo, Michael D. Y.; Hyer, Alex J.; Cardace, Dawn; Hoehler, Tori M.; McCollom, Tom M.; Schrenk, Matthew O.
2017-01-01
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H2 and CH4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments. PMID:28298908
Microbiology of sugar-rich environments: diversity, ecology and system constraints.
Lievens, Bart; Hallsworth, John E; Pozo, Maria I; Belgacem, Zouhaier Ben; Stevenson, Andrew; Willems, Kris A; Jacquemyn, Hans
2015-02-01
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Rousk, Johannes; Rousk, Kathrin
2018-05-07
Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.
Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O
2017-01-01
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.
Quantitative proteomics in the field of microbiology.
Otto, Andreas; Becher, Dörte; Schmidt, Frank
2014-03-01
Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Construction Biotechnology: a new area of biotechnological research and applications.
Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian
2015-09-01
A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.
Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, L.M.; Pfaender, F.K.
1994-12-31
The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less
Root Zone Respiration on Hydroponically Grown Wheat Plant Systems
NASA Technical Reports Server (NTRS)
Soler-Crespo, R. A.; Monje, O. A.
2010-01-01
Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.
Tayel, Ahmed A; El-Tras, Wael F; Elguindy, Nihal M
2016-07-01
Water contamination, with heavy metals and microbial pathogens, is among the most dangerous challenges that confront human health worldwide. Chitosan is a bioactive biopolymer that could be produced from fungal mycelia to be utilized in various applied fields. An attempt to apply fungal chitosan for heavy metals chelation and microbial pathogens inhibition, in contaminated water, was performed in current study. Chitosan was produced from the mycelia of Aspergillus niger, Cunninghamella elegans, Mucor rouxii and from shrimp shells, using unified production conditions. The FT-IR spectra of produced chitosans were closely comparable. M. rouxii chitosan had the highest deacetylation degree (91.3%) and the lowest molecular weight (33.2kDa). All chitosan types had potent antibacterial activities against Escherichia coli and Staphylococcus aureus; the most forceful type was C. elegans chitosan. Chitosan beads were cross-linked with glutaraldehyde (GLA) and ethylene-glycol-diglycidyl ether (EGDE); linked beads became insoluble in water, acidic and alkaline solutions and could effectively adsorb heavy metals ions, e.g. copper, lead and zinc, in aqueous solution. The bioactive filter, loaded with EGDE- A. niger chitosan beads, was able to reduce heavy metals' concentration with >68%, and microbial load with >81%, after 6h of continuous water flow in the experimentally designed filter. Copyright © 2016 Elsevier B.V. All rights reserved.
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
Fernández-Luqueño, F; Valenzuela-Encinas, C; Marsch, R; Martínez-Suárez, C; Vázquez-Núñez, E; Dendooven, L
2011-01-01
Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism-microorganism, microorganism-plant, microorganism-soil, and microorganisms-PAHs. Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remedy PAHs-contaminated soil.
Increase in agricultural practices in the Cerrado (tropical savannah) and Amazon regions in Brazil is causing drastic changes in the nutrient and carbon cycling of native areas. Because microorganisms play a key role in biogeochemical cycling, monitoring the shifts in the microb...
USDA-ARS?s Scientific Manuscript database
Organic amendments may suppress soilborne pathogens by stimulating soil microbes. However, little information is available about the effects of organic amendments and cultural practices on suppressing large patch caused by Rhizoctonia solani Kühn on zoysiagrass (Zoysia japonica Steud.) associated wi...
NASA Astrophysics Data System (ADS)
Drake, J. E.; Darby, B. A.; Giasson, M.-A.; Kramer, M. A.; Phillips, R. P.; Finzi, A. C.
2012-06-01
Healthy plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exo-enzymes they synthesize, leading to accelerated rates of carbon (C) mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The causal role of exudation, however, is difficult to isolate with in-situ observations, given the complex nature of the rhizosphere environment. We investigated the potential effects of root exudation on microbial and exo-enzyme activity using a theoretical model of decomposition and a field experiment, with a specific focus on the stoichiometric constraint of nitrogen (N) availability. The field experiment isolated the effect of exudation by pumping solutions of exudate mimics through microlysimeter "root simulators" into intact forest soils over two 50-day periods. Using a combined model-experiment approach, we tested two hypotheses: (1) exudation alone is sufficient to stimulate microbial and exo-enzyme activity in rhizosphere soils, and (2) microbial response to C-exudates (carbohydrates and organic acids) is constrained by N-limitation. Experimental delivery of exudate mimics containing C and N significantly increased microbial respiration, microbial biomass, and the activity of exo-enzymes that decompose labile components of soil organic matter (SOM, e.g., cellulose, amino sugars), while decreasing the activity of exo-enzymes that degrade recalcitrant SOM (e.g., polyphenols, lignin). However, delivery of C-only exudates had no effect on microbial biomass or overall exo-enzyme activity, and only increased microbial respiration. The theoretical decomposition model produced complementary results; the modeled microbial response to C-only exudates was constrained by limited N supply to support the synthesis of N-rich microbial biomass and exo-enzymes, while exuding C and N together elicited an increase in modeled microbial biomass, exo-enzyme activity, and decomposition. Thus, hypothesis (2) was supported, while hypothesis (1) was only supported when C and N compounds were exuded together. This study supports a cause-and-effect relationship between root exudation and enhanced microbial activity, and suggests that exudate stoichiometry is an important and underappreciated driver of microbial activity in rhizosphere soils.
Microbial communities associated with wet flue gas desulfurization systems
Brown, Bryan P.; Brown, Shannon R.; Senko, John M.
2012-01-01
Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147
Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A
2016-04-01
The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (pH approximately 3) of the partially oxidized solution inhibited the general soil microbial activity during the washing cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kirk, Matthew F.; Wilson, Brien H.; Marquart, Kyle A.; ...
2015-11-18
In this study, microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4–1.1 m) coalbeds with marginal thermal maturities (0.5–0.7% R o) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na–Clmore » type with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L –1. Gas dryness values [C 1/(C 2 + C 3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location than solute content, possibly as a result of spatial variation in the thermal maturity of the coalbeds.« less
The Grapevine and Wine Microbiome: Insights from High-Throughput Amplicon Sequencing
Morgan, Horatio H.; du Toit, Maret; Setati, Mathabatha E.
2017-01-01
From the time when microbial activity in wine fermentation was first demonstrated, the microbial ecology of the vineyard, grape, and wine has been extensively investigated using culture-based methods. However, the last 2 decades have been characterized by an important change in the approaches used for microbial examination, due to the introduction of DNA-based community fingerprinting methods such as DGGE, SSCP, T-RFLP, and ARISA. These approaches allowed for the exploration of microbial community structures without the need to cultivate, and have been extensively applied to decipher the microbial populations associated with the grapevine as well as the microbial dynamics throughout grape berry ripening and wine fermentation. These techniques are well-established for the rapid more sensitive profiling of microbial communities; however, they often do not provide direct taxonomic information and possess limited ability to detect the presence of rare taxa and taxa with low abundance. Consequently, the past 5 years have seen an upsurge in the application of high-throughput sequencing methods for the in-depth assessment of the grapevine and wine microbiome. Although a relatively new approach in wine sciences, these methods reveal a considerably greater diversity than previously reported, and identified several species that had not yet been reported. The aim of the current review is to highlight the contribution of high-throughput next generation sequencing and metagenomics approaches to vineyard microbial ecology especially unraveling the influence of vineyard management practices on microbial diversity. PMID:28553266
The Grapevine and Wine Microbiome: Insights from High-Throughput Amplicon Sequencing.
Morgan, Horatio H; du Toit, Maret; Setati, Mathabatha E
2017-01-01
From the time when microbial activity in wine fermentation was first demonstrated, the microbial ecology of the vineyard, grape, and wine has been extensively investigated using culture-based methods. However, the last 2 decades have been characterized by an important change in the approaches used for microbial examination, due to the introduction of DNA-based community fingerprinting methods such as DGGE, SSCP, T-RFLP, and ARISA. These approaches allowed for the exploration of microbial community structures without the need to cultivate, and have been extensively applied to decipher the microbial populations associated with the grapevine as well as the microbial dynamics throughout grape berry ripening and wine fermentation. These techniques are well-established for the rapid more sensitive profiling of microbial communities; however, they often do not provide direct taxonomic information and possess limited ability to detect the presence of rare taxa and taxa with low abundance. Consequently, the past 5 years have seen an upsurge in the application of high-throughput sequencing methods for the in-depth assessment of the grapevine and wine microbiome. Although a relatively new approach in wine sciences, these methods reveal a considerably greater diversity than previously reported, and identified several species that had not yet been reported. The aim of the current review is to highlight the contribution of high-throughput next generation sequencing and metagenomics approaches to vineyard microbial ecology especially unraveling the influence of vineyard management practices on microbial diversity.
Wardrip, Nathaniel C; Arnusch, Christopher J
2016-02-13
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.
Wardrip, Nathaniel C.; Arnusch, Christopher J.
2016-01-01
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes. PMID:26968008
NASA Astrophysics Data System (ADS)
MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike
An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient conditions. Techniques used to investigate the interactions between radish and these microbes under hypobaric and hypoxic conditions will be discussed.
Qian, Chen; Hettich, Robert L
2017-07-07
The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling. Liquid chromatography coupled to high-performance mass spectrometry provides a powerful approach to characterize soil microbiomes; however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to proteome extraction and subsequent MS measurement. To this end, we have designed an experimental method to improve microbial proteome measurement by removing the soil-borne humic substances coextraction from soils. Our approach employs an in situ detergent-based microbial lysis/TCA precipitation coupled to an additional cleanup step involving acidified precipitation and filtering at the peptide level to remove most of the humic acid interferences prior to proteolytic peptide measurement. The novelty of this approach is an integration to exploit two different characteristics of humic acids: (1) Humic acids are insoluble in acidic solution but should not be removed at the protein level, as undesirable protein removal may also occur. Rather it is better to leave the humics acids in the samples until the peptide level, at which point the significant differential solubility of humic acids versus peptides at low pH can be exploited very efficiently. (2) Most of the humic acids have larger molecule weights than the peptides. Therefore, filtering a pH 2 to 3 peptide solution with a 10 kDa filter will remove most of the humic acids. This method is easily interfaced with normal proteolytic processing approaches and provides a reliable and straightforward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or biasing protein identification in mass spectrometry. In general, this humic acid removal step is universal and can be adopted by any workflow to effectively remove humic acids to avoid them negatively competing with peptides for binding with reversed-phase resin or ionization in the electrospray.
Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C
2010-04-01
The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.
Design features of offshore oil production platforms influence their susceptibility to biocorrosion.
Duncan, Kathleen E; Davidova, Irene A; Nunn, Heather S; Stamps, Blake W; Stevenson, Bradley S; Souquet, Pierre J; Suflita, Joseph M
2017-08-01
Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35 S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L -1 ) levels of hydrogen sulfide and high numbers (10 7 mL -1 ) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.
Zhang, Yi; Wang, Liangju; Yuan, Yongge; Xu, Jing; Tu, Cong; Fisk, Connie; Zhang, Weijian; Chen, Xin; Ritchie, David; Hu, Shuijin
2018-02-15
Orchard management practices such as weed control and irrigation are primarily aimed at maximizing fruit yields and economic profits. However, the impact of these practices on soil fertility and soil microbiology is often overlooked. We conducted a two-factor experimental manipulation of weed control by herbicide and trickle irrigation in a nutrient-poor peach (Prunus persica L. cv. Contender) orchard near Jackson Springs, North Carolina. After three and eight years of treatments, an array of soil fertility parameters were examined, including soil pH, soil N, P and cation nutrients, microbial biomass and respiration, N mineralization, and presence of arbuscular mycorrhizal fungi (AMF). Three general trends emerged: 1) irrigation significantly increased soil microbial biomass and activity, 2) infection rate of mycorrhizal fungi within roots were significantly higher under irrigation than non-irrigation treatments, but no significant difference in the AMF community composition was detected among treatments, 3) weed control through herbicides reduced soil organic matter, microbial biomass and activity, and mineral nutrients, but had no significant impacts on root mycorrhizal infection and AMF communities. Weed-control treatments directly decreased availability of soil nutrients in year 8, especially soil extractable inorganic N. Weed control also appears to have altered the soil nutrients via changes in soil microbes and altered net N mineralization via changes in soil microbial biomass and activity. These results indicate that long-term weed control using herbicides reduces soil fertility through reducing organic C inputs, nutrient retention and soil microbes. Together, these findings highlight the need for alternative practices such as winter legume cover cropping that maintain and/or enhance organic inputs to sustain the soil fertility. Copyright © 2017 Elsevier B.V. All rights reserved.
Moody, Colleen A.; Eckel, Stephen F.; Amerine, Lindsey B.
2015-01-01
Background: Microbial contamination of compounded medications is a serious concern within hospital pharmacies as it can lead to severe patient injury. The United States Pharmacopeia <797> mandates that pharmacy personnel responsible for preparing compounded sterile preparations must annually demonstrate competency in aseptic technique by performing a media-fill challenge test. Objective: The purpose of this study is to evaluate the sensitivity of a commonly used media-fill test through proper and improper compounding techniques. Methods: Two aseptically trained pharmacy technicians performed media-fill challenge testing by carrying out 5 separate manipulations 5 times each for a total of 25 trials. Sterile vials, syringes, and intravenous bags were prepared. The first manipulation followed best-practice aseptic technique and sterile compounding procedures. Each of the following 4 manipulations removed one aspect of best-practice aseptic technique. The prepared products were incubated at 20°C to 25°C. A positive result for microbial contamination is indicated by visible turbidity within the vials, syringes, and intravenous bags at the following check points: 24 hours, 72 hours, 7 days, 14 days, 21 days, and >30 days. Results: Twenty-five trials, each containing 10 distinct admixtures, resulted in a total of 250 compounded preparations. No single preparation showed signs of turbidity, sedimentation, or visible microbial growth at any of the 6 checkpoints yielding a 0% contamination rate. However, the positive controls inoculated with bacteria did have positive microbial growth results. Conclusion: A more sensitive test needs to be developed to provide assurances that all poor aseptic practices are detected in compounding personnel.
Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2016-06-15
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.
Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M
2009-08-31
A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).
Lack of latex allergen contamination of solutions withdrawn from vials with natural rubber stoppers.
Thomsen, D J; Burke, T G
2000-01-01
The effect on latex allergen contamination and microbial growth of a latex-allergy precaution technique for preparing injectable products was studied. The study consisted of three parts: (1) preparation of 20 samples from vials with latex-containing stoppers in accordance with conventional guidelines, (2) preparation of 20 samples in accordance with latex-allergy precaution guidelines, and (3) preparation of 5 latex-free samples and 1 latex-contaminated sample as negative and positive controls, respectively. The conventional method involved swabbing a vial top with an alcohol prep pad, puncturing the dry natural rubber stopper with an 18-gauge needle attached to a latex-free syringe, and withdrawing the contents of the vial into the syringe. The latex-allergy precaution preparation technique was similar, except that the stopper was removed before the vial contents were withdrawn. There was essentially no difference in latex allergen concentrations between the two drug preparation methods. None of the samples prepared with the standard method supported any microbial growth. One sample prepared with the latex-allergy precaution method grew bacteria. Removal of the dry rubber stopper from vials did not yield solutions with less latex allergen than solutions prepared according to conventional guidelines.
Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2013-01-01
Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984
Extracellular Microbial Metabolomics: The State of the Art
Villas-Boas, Silas G.
2017-01-01
Microorganisms produce and secrete many primary and secondary metabolites to the surrounding environment during their growth. Therefore, extracellular metabolites provide important information about the changes in microbial metabolism due to different environmental cues. The determination of these metabolites is also comparatively easier than the extraction and analysis of intracellular metabolites as there is no need for cell rupture. Many analytical methods are already available and have been used for the analysis of extracellular metabolites from microorganisms over the last two decades. Here, we review the applications and benefits of extracellular metabolite analysis. We also discuss different sample preparation protocols available in the literature for both types (e.g., metabolites in solution and in gas) of extracellular microbial metabolites. Lastly, we evaluate the authenticity of using extracellular metabolomics data in the metabolic modelling of different industrially important microorganisms. PMID:28829385
Extracellular Microbial Metabolomics: The State of the Art.
Pinu, Farhana R; Villas-Boas, Silas G
2017-08-22
Microorganisms produce and secrete many primary and secondary metabolites to the surrounding environment during their growth. Therefore, extracellular metabolites provide important information about the changes in microbial metabolism due to different environmental cues. The determination of these metabolites is also comparatively easier than the extraction and analysis of intracellular metabolites as there is no need for cell rupture. Many analytical methods are already available and have been used for the analysis of extracellular metabolites from microorganisms over the last two decades. Here, we review the applications and benefits of extracellular metabolite analysis. We also discuss different sample preparation protocols available in the literature for both types (e.g., metabolites in solution and in gas) of extracellular microbial metabolites. Lastly, we evaluate the authenticity of using extracellular metabolomics data in the metabolic modelling of different industrially important microorganisms.
NASA Astrophysics Data System (ADS)
Lazar, Boaz; Erez, Jonathan
1990-12-01
Extreme depletions in the 13C content of the total dissolved inorganic carbon (CT) were found in brines overlying microbial mat communities. Total alkalinity (AT) and CT in the brines suggest that intense photosynthetic activity of the microbial mat communities depletes the CT from the brine. We suggest that this depletion drives a large, kinetic, negative fractionation of carbon isotopes similar to that observed in highly alkaline solutions. In brines of extreme salinity where microbial mat communities no longer exist, the 13C content of the CT increases, probably because photosynthesis no longer dominates the gas-exchange processes. This mechanism explains light carbon-isotope compositions of carbonate rocks from evaporitic sections and bears on the interpretation of δ13C values in bedded stromatolitic limestones that are ca. 3.5 b.y. old.
Biomineralization of metal-containing ores and concentrates.
Rawlings, Douglas E; Dew, David; du Plessis, Chris
2003-01-01
Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.
Grattieri, Matteo; Minteer, Shelley D
2018-04-01
This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E
2014-11-15
Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monitoring of Microbial Loads During Long Duration Missions as a Risk Reduction Tool
NASA Technical Reports Server (NTRS)
Roman, Monsi C.
2011-01-01
Humans have been exploring space for more than 40 years. For all those years microorganisms have accompanied, first un-manned spacecraft/cargo and later manned vessels. Microorganisms are everywhere on Earth, could easily adapt to new environments and/or can rapidly mutate to survive in very harsh conditions. Their presence in spacecraft and cargo have caused a few inconveniences over the years of humans spaceflight, ranging from crew health, life support systems challenges and material degradation. The sterilization of spacecraft that will host humans in long duration mission would be a costly operation that will not provide a long-term solution to the microbial colonization of the vessels. As soon as a human is exposed to the spacecraft, during the mission, microorganisms will start to populate the new environment. As the hum an presence in space increases in length, the risk from the microbial load, to hardware and crew will also increase. Mitigation of this risk includes several different strategies that will include minimizing the microbial load (in numbers and diversity) and monitoring. This presentation will provide a list of the risk mitigation strategies that should be implemented during ground processing, and during the mission. It will also discuss the areas that should be discussed before an effective in-flight microbial monitoring regimen is implemented. Microbial monitoring technologies will also be presented.
Microbial diversity and their roles in the vinegar fermentation process.
Li, Sha; Li, Pan; Feng, Feng; Luo, Li-Xin
2015-06-01
Vinegar is one of the oldest acetic acid-diluted solution products in the world. It is produced from any fermentable sugary substrate by various fermentation methods. The final vinegar products possess unique functions, which are endowed with many kinds of compounds formed in the fermentation process. The quality of vinegar is determined by many factors, especially by the raw materials and microbial diversity involved in vinegar fermentation. Given that metabolic products from the fermenting strains are directly related to the quality of the final products of vinegar, the microbial diversity and features of the dominant strains involved in different fermentation stages should be analyzed to improve the strains and stabilize fermentation. Moreover, although numerous microbiological studies have been conducted to examine the process of vinegar fermentation, knowledge about microbial diversity and their roles involved in fermentation is still fragmentary and not systematic enough. Therefore, in this review, the dominant microorganism species involved in the stages of alcoholic fermentation and acetic acid fermentation of dissimilar vinegars were summarized. We also summarized various physicochemical properties and crucial compounds in disparate types of vinegar. Furthermore, the merits and drawbacks of vital fermentation methods were generalized. Finally, we described in detail the relationships among microbial diversity, raw materials, fermentation methods, physicochemical properties, compounds, functionality, and final quality of vinegar. The integration of this information can provide us a detailed map about the microbial diversity and function involved in vinegar fermentation.
Microbial fuel cell treatment of fuel process wastewater
Borole, Abhijeet P; Tsouris, Constantino
2013-12-03
The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.
Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
David N. Thompson; Erik R. Coats; William A. Smith
2006-04-01
Polyhydroxyalkanoates (PHAs) represent an environmentally-effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Employing denaturing gradient gel electrophoresis of 16S-rDNA from PCR-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.
Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources
NASA Astrophysics Data System (ADS)
Coats, Erik R.; Loge, Frank J.; Smith, William A.; Thompson, David N.; Wolcott, Michael P.
Polyhydroxyalkanoates (PHAs) represent an environmentally effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85, 53, and 10% of the cell dry weight from methanol-enriched pulp and paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Using denaturing gradient gel electrophoresis of 16S-rDNA from polymerase chain reaction-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.
Rodríguez-Liébana, José Antonio; ElGouzi, Siham; Peña, Aránzazu
2017-08-01
Reutilization of treated wastewater (TWW) in agriculture has continued to grow, especially in areas prone to frequent drought periods. One of the major aspects derived from this practice is the addition of important amounts of organic carbon (OC) that could interfere with the fate of organic contaminants in soils. This study has evaluated the impact of irrigation with a secondary TWW and dissolved OC (DOC) solutions from sewage sludge in the dissipation of thiacloprid (THC), pendimethalin (PDM) and fenarimol (FEN) in an OC-poor agricultural soil under laboratory conditions. The effect on soil microbial activity was also assessed through the measurement of dehydrogenase activity. Biotic processes were the main responsible for the degradation of the three compounds. Results showed that while THC was rapidly degraded (DT 50 ≤ 5.5 d), PDM and FEN were moderately persistent in soil (DT 50 ≥ 93 d). Incubation with TWW did not modify the decay rate of the three pesticides, but initially inhibited soil biota. Solutions of DOC did not alter the dissipation of FEN, but contrasting effects were observed for THC and PDM. Low DOC concentrations (30 mg L -1 ) accelerated THC disappearance, a fact explained by stimulation of endogenous biota rather than by the presence of exogenous microorganisms from the solution. On the other hand, high DOC concentrations (300 mg L -1 ) had more influence on the activity of microorganisms at longer times, and showed a trend to enhance the disappearance of the moderately persistent PDM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fungal nanoscale metal carbonates and production of electrochemical materials.
Li, Qianwei; Gadd, Geoffrey Michael
2017-09-01
Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Feasibility study for the treatment of municipal wastewater by using a hybrid bio-solar process.
Barwal, Anjali; Chaudhary, Rubina
2016-07-15
A moving bed biofilm reactor (MBBR) coupled with solar parabolic structured system has been designed and developed to get the maximum organic load removal and microbial disinfection from the wastewater. The effluent was first subjected to organic degradation in MBBR (with optimized carrier filling rate of 30%) followed by the bacterial degradation using solar energy in parabolic trough and the changes in values of parameters like pH, turbidity, chemical oxygen demand (COD), bio-chemical oxygen demand (BOD) and microbial count were monitored. The titanium dioxide (TiO2) was used as a photocatalyst for the removal of organic load from the wastewater but in optimized conditions. At optimum dose of 1.0 g/L of TiO2 and pH value of 7.6, maximum COD removal of 69% and 13% was achieved at sunny days (solar irradiation 400-700 W m(-2)) and cloudy days (solar irradiation 170-250 W m(-2)) respectively within 5-6 h solar irradiation time. The results obtained showed that it is possible to decrease in six logarithms (log) the concentration of TC and FC within only 240 min of solar exposure. Moreover, this process can offer economically reasonable, chemical free and practical solution to the processing of municipal wastewater where solar intensity is readily available and can be used for making zero liquid discharge (ZLD) an effective reality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shurtleff, Amy C; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S; Bavari, Sina
2012-12-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.
Shurtleff, Amy C.; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S.; Bavari, Sina
2012-01-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review. PMID:23342380
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen
2015-08-01
Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.
USDA-ARS?s Scientific Manuscript database
Vineyard management practices to enhance soil conservation principally focus on increasing carbon (C) input, whereas mitigating impacts of disturbance through reduced tillage has been rarely considered. Furthermore, information is lacking on the effects of soil management practices adopted in the un...
USDA-ARS?s Scientific Manuscript database
The responses of a selected soil microbial property to a single agricultural management practice are often inconsistent among field studies, possibly reflecting the site-specific nature of field studies. An equally compelling explanation is that in complex systems where outcomes are the result of n...
USDA-ARS?s Scientific Manuscript database
Agricultural activities throughout the Mississippi River Basin have been identified as a major source of nutrient pollution, particularly nitrogen from fertilizer application, to downstream waters including the Gulf of Mexico. Utilizing best management practices, such as low-grade weirs have been id...
Berg, Gabriele; Raaijmakers, Jos M
2018-05-01
Plant seeds are home to diverse microbial communities whose composition is determined by plant genotype, environment, and management practices. Plant domestication is now recognized as an important driver of plant-associated microbial diversity. To what extent and how domestication affects seed microbiomes is less well studied. Here we propose a 'back-to-the-future' approach to harness seed microbiomes of wild relatives of crop cultivars to save and re-instate missing beneficial seed microbes for improved plant tolerance to biotic and abiotic stress.
Microbial electrolysis cells for high yield hydrogen gas production from organic matter.
Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A
2008-12-01
The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance.
Kumar, Mayur; Curtis, Anthony; Hoskins, Clare
2018-01-14
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance.
Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.
Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A
2009-01-01
This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.
Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles
NASA Astrophysics Data System (ADS)
Tadanier, C. J.; Roller, J.; Schreiber, M. E.
2004-12-01
Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure worldwide, improved understanding of the biologically-mediated mechanisms that partition arsenic between solid and solution phases is required for development of effective treatment and remediation strategies.
Vaslaki, L; Karátson, A; Vörös, P; Major, L; Pethö, F; Ladányi, E; Weber, C; Mitteregger, R; Falkenhagen, D
2000-01-01
Microbial contamination is characterized not only by the presence of bacteria, but also by high concentrations of biologically active by-products. They are potentially able to cross ultrafiltration and dialysis membranes and stimulate immunocompetent blood cells to synthesize cytokines. In turn, cytokine induction causes acute symptoms and has been incriminated in the long-term complications of haemodialysis patients. Infusion of large volumes of substitution fluids following ultrafiltration of microbially contaminated dialysis fluids may place patients on on-line therapies at particular risk. In this study we evaluated 30 machines with a two-stage ultrafiltration system in routine clinical haemodiafiltration settings in six centres for 6 months. Microbiological safety was assessed monthly and at the last use of the filters by determining microbial counts, endotoxin concentration and cytokine-inducing activity. No pyrogenic episodes were observed during the study period. Double-filtration of standard dialysis fluid (range, <1-895 cfu/ml, 0.0028-4.6822 IU/ml) resulted in sterile substitution fluids with endotoxin concentrations well below the Ph.Eur. standard for haemofiltration solutions (range, 0.0014-0.0281 vs 0.25 IU/ml). Moreover, they did not differ from commercial haemofiltration solutions and depyrogenated saline. Likewise, there was no difference in the cytokine-inducing activity between the solutions tested. The high microbiological quality of the ultrafiltered dialysis fluid, which was in the same range as substitution fluid, translates into both the absence of cytokine induction by dialyser back-transport and a redundant safety mode of the on-line system by a second filtration step. On-line HDF treatment can routinely be provided with ultra-pure dialysis fluids and sterile substitution fluids at pyrogen-free levels. The online preparation of substitution fluids thus can be considered microbiologically safe.
Microbial Abundances in Salt Marsh Soils: A Molecular Approach for Small Spatial Scales
NASA Astrophysics Data System (ADS)
Granse, Dirk; Mueller, Peter; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai
2016-04-01
The rate of biological decomposition greatly determines the carbon sequestration capacity of salt marshes. Microorganisms are involved in the decomposition of biomass and the rate of decomposition is supposed to be related to microbial abundance. Recent studies quantified microbial abundance by means of quantitative polymerase chain reaction (QPCR), a method that also allows determining the microbial community structure by applying specific primers. The main microbial community structure can be determined by using primers specific for 16S rRNA (Bacteria) and 18S rRNA (Fungi) of the microbial DNA. However, the investigation of microbial abundance pattern at small spatial scales, such as locally varying abiotic conditions within a salt-marsh system, requires high accuracy in DNA extraction and QPCR methods. Furthermore, there is evidence that a single extraction may not be sufficient to reliably quantify rRNA gene copies. The aim of this study was to establish a suitable DNA extraction method and stable QPCR conditions for the measurement of microbial abundances in semi-terrestrial environments. DNA was extracted from two soil samples (top WE{5}{cm}) by using the PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) and applying a modified extraction protocol. The DNA extraction was conducted in four consecutive DNA extraction loops from three biological replicates per soil sample by reusing the PowerSoil bead tube. The number of Fungi and Bacteria rRNA gene copies of each DNA extraction loop and a pooled DNA solution (extraction loop 1 - 4) was measured by using the QPCR method with taxa specific primer pairs (Bacteria: B341F, B805R; Fungi: FR1, FF390). The DNA yield of the replicates varied at DNA extraction loop 1 between WE{25 and 85}{ng
Using Galaxy to Perform Large-Scale Interactive Data Analyses
Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton
2014-01-01
Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312
Understanding soil health by capitalizing on long-term field studies
NASA Astrophysics Data System (ADS)
Tavakkoli, Ehsan; Wang, Zhe; VanZweieten, Lukas; Rose, Michael
2017-04-01
Microbial biodiversity in Australian agricultural soils is of paramount importance as it plays a critical role in regulating soil health, plant productivity, and the cycling of carbon, nitrogen, and other nutrients. Agricultural practices strongly affect soil microbial communities by changing the physical and chemical characteristics of the soil in which microorganisms live, thereby affecting their abundance, diversity, and activity. Despite its importance, the specific responses of various microbial groups to changing environmental conditions (e.g. increased/decreased carbon in response to land management) in agricultural soils are not well understood. This knowledge gap is largely due to previous methodological limitations that, until recently, did not allow microbial diversity and functioning to be meaningfully investigated on large numbers of samples. We sampled soils from a field trial on the effect of strategic tillage in no-till systems to examine the potential impact of tillage and stubble management on soil microbial composition. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used bar-coded high-throughput sequencing. Bioinformatics of the sequencing generated data was performed using a previously scripted and tested pipeline, and involved allocation of the relevant sequences to their samples of origin according to the bar-code. In parallel, changes in soil quality and microbial functionality were determined using multi-enzyme activity assay and multiple substrate-induced respiration. The extracellular enzyme activities that were measured include: β-1,4-glucosidase, β-D-cellobiohydrolase, β-Xylosidase, and α-1,4-glucosidase which are all relevant to the C cycle; β-1,4-N-acetylglucosaminidase and L-leucine aminopeptidase which are both relevant to the N cycle associated and associated with protein catabolism. In this presentation, analyses of soil health and functionality in relation to its response to various agronomic practices and implications for C sequestration and nutrient cycling will be discussed.
Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan
2017-08-01
Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial diversity and carbon cycling in San Francisco Bay wetlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroux, Susanna; Hartman, Wyatt; He, Shaomei
Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled themore » diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.« less
Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.
Vaxevanidou, K; Giannikou, S; Papassiopi, N
2012-11-30
Indigenous soil microorganisms often affect the mobility of heavy metals and metalloids by altering their oxidation state. Under anaerobic conditions, the microbial transformation is usually reduction and may cause the mobilization of contaminants, as happens in the case of arsenic, which is much more stable in the pentavalent state compared to the reduced trivalent form. The aim of this work was to investigate the occurrence of such a microbial activity in representative Greek soils. Five soil samples, with As levels varying between 14 and 259 mg/kg, were examined. The samples were artificially contaminated, by adding 750 mg of As(V) per kg of soil. Initial sorption of As(V) ranged between 70 and 85%. Microbial reduction of arsenic was observed in three of the examined soils, without any obvious correlation with pre-existing levels of contamination. Reduction reached high percentages, i.e. up to 99%, and was accompanied by the corresponding release of reduced As in the aqueous solution. A simultaneous iron reducing activity was also observed in four of the five soil samples. Copyright © 2012 Elsevier B.V. All rights reserved.
A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals
NASA Astrophysics Data System (ADS)
Berean, Kyle J.; Adetutu, Eric M.; Zhen Ou, Jian; Nour, Majid; Nguyen, Emily P.; Paull, David; McLeod, Jess; Ramanathan, Rajesh; Bansal, Vipul; Latham, Kay; Bishop-Hurley, Greg J.; McSweeney, Chris; Ball, Andrew S.; Kalantar-Zadeh, Kourosh
2015-06-01
Unique in vivo tests were conducted through the use of a fistulated ruminant, providing an ideal environment with a diverse and vibrant microbial community. Utilizing such a procedure can be especially invaluable for investigating the performance of antimicrobial materials related to human and animal related infections. In this pilot study, it is shown that the rumen of a fistulated animal provides an excellent live laboratory for assessing the properties of antimicrobial materials. We investigate microbial colonization onto model nanocomposites based on silver (Ag) nanoparticles at different concentrations into polydimethylsiloxane (PDMS). With implantable devices posing a major risk for hospital-acquired infections, the present study provides a viable solution to understand microbial colonization with the potential to reduce the incidence of infection through the introduction of Ag nanoparticles at the optimum concentrations. In vitro measurements were also conducted to show the validity of the approach. An optimal loading of 0.25 wt% Ag is found to show the greatest antimicrobial activity and observed through the in vivo tests to reduce the microbial diversity colonizing the surface.
Evaluation of the factors governing metal biosorption and metal toxicity in acidic soil isolates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, A.A.
1992-06-09
This research project was designed to determine the feasibility of microbial biosorption processes for removing metal ions from aqueous systems. A culture of acidic soil actinomycetes, grown in an aerobic environment in a completely mixed, semibatch culture reactor, was used for the study. The experiments were based on removal of copper and lead from test solutions. The anionic systems tested were nitrate, sulfate, and chloride. To determine the factors influencing biosorption and to characterize metal uptake by cellular and extracellular components of the microbial system, a dialysis testing procedure was developed. The effectiveness of biosorption was influenced by pH, initialmore » concentration of metals, type of anionic system, and organic content of the system. respirometric runs were carried out to identify potential inhibitory effects of metal accumulation on microbial activities. In general, metal accumulation resulted in a decrease in the microbial oxygen uptake rate. Also, a lag phase was observed before the onset of the respiratory activity particularly at concentrations of copper and lead greater than 100 ppM.« less
Szczotka-Flynn, Loretta B; Pearlman, Eric; Ghannoum, Mahmoud
2010-03-01
A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.
Siani, Harsha; Wesgate, Rebecca; Maillard, Jean-Yves
2018-05-11
Antimicrobial wipes are increasingly used in health care settings. This study evaluates, in a clinical setting, the efficacy of sporicidal wipes versus a cloth soaked in a 1,000 ppm chlorine solution. A double-crossover study was performed on 2 different surgical and cardiovascular wards in a 1,000-bed teaching hospital over 29 weeks. The intervention period that consisted of surface decontamination with the preimpregnated wipe or cloth soaked in chlorine followed a 5-week baseline assessment of microbial bioburden on surfaces. Environmental samples from 11 surfaces were analyzed weekly for their microbial content. A total of 1,566 environmental samples and 1,591 ATP swabs were analyzed during the trial. Overall, there were significant differences in the recovery of total aerobic bacteria (P < .001), total anaerobic bacteria (P < .001), and ATP measurement (P < .001) between wards and between the different parts of the crossover study. Generally, the use of wipes produced the largest reduction in the total aerobic and anaerobic counts when compared with the baseline data or the use of 1,000 ppm chlorine. Collectively, the introduction of training plus daily wipe disinfection significantly reduced multidrug-resistant organisms recovered from surfaces. Reversion to using 1,000 ppm chlorine resulted in the number of sites positive for multidrug-resistant organisms rising again. This double-crossover study is the first controlled field trial comparison of using preimpregnated wipes versus cotton cloth dipped into a bucket of hypochlorite to decrease surface microbial bioburden. The results demonstrate the superiority of the preimpregnated wipes in significantly decreasing microbial bioburden from high-touch surfaces. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Prenafeta-Boldú, Francesc X; Trillas, Isabel; Viñas, Marc; Guivernau, Miriam; Cáceres, Rafaela; Marfà, Oriol
2017-12-01
The microbial disinfestation efficiency of an innovative horizontal-flow slow sand filter (HSSF) for treating nutrient solution spent from an experimental closed-loop nursery was evaluated by means of a combination of culture-dependent and independent molecular techniques. A dense inoculum of the fungal plant pathogen Fusarium oxysporum f.sp. lycopersici was applied in the fertigation system (10 6 cells per mL). Indigenous and introduced populations of eubacteria and fungi were assessed in the nutrient solution, the HSSF influent/effluent, and a sand bed transect by isolation on selective media, as well as by quantitative qPCR and next-generation sequencing (NGS) on target ribosomal genes. The HSSF effectively reduced viable Fusarium propagules and fungal gene content with an efficiency consistently above 99.9% (5 orders of magnitude down). On the other hand, Fusarium cells accumulated in the sand bed, indicating that physical entrapment was the main removal mechanism. The viability of retained Fusarium cells tended to decrease in time, so that treatment efficiency might be enhanced by antagonistic species from the genera Bacillus, Pseudomonas, and Trichoderma, also identified in the sand bed. Indigenous bacterial populations from the HSSF effluent were reduced by 87.2% and 99.9% in terms of colony forming units and gene counts, respectively, when compared to the influent. Furthermore, microbial populations from the HSSF effluent were different from those observed in the sand bed and the influent. In summary, the HSSF microbial disinfestation efficiency is comparable to that reported for other more intensive and costly methodologies, while allowing a significant recovery of water and nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS.
Sánchez-Patán, Fernando; Monagas, María; Moreno-Arribas, M Victoria; Bartolomé, Begoña
2011-03-23
The aim of the present work was to develop a reproducible, sensitive, and rapid UPLC-ESI-TQ MS analytical method for determination of microbial phenolic acids and other related compounds in faeces. A total of 47 phenolic compounds including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxymandelic acids and simple phenols were considered. To prepare an optimum pool standard solution, analytes were classified in 5 different groups with different starting concentrations according to their MS response. The developed UPLC method allowed a high resolution of the pool standard solution within an 18 min injection run time. The LOD of phenolic compounds ranged from 0.001 to 0.107 μg/mL and LOQ from 0.003 to 0.233 μg/mL. The method precision met acceptance criteria (<15% RSD) for all analytes, and accuracy was >80%. The method was applied to faecal samples collected before and after the intake of a flavan-3-ol supplement by a healthy volunteer. Both external and internal calibration methods were considered for quantification purposes, using 4-hydroxybenzoic-2,3,4,5-d4 acid as internal standard. For most analytes and samples, the level of microbial phenolic acids did not differ by using one or another calibration method. The results revealed an increase in protocatechuic, syringic, benzoic, p-coumaric, phenylpropionic, 3-hydroxyphenylacetic, and 3-hydroxyphenylpropionic acids, although differences due to the intake were only significant for the latter compound. In conclusion, the UPLC-DAD-ESI-TQ MS method developed is suitable for targeted analysis of microbial-derived phenolic metabolites in faecal samples from human intervention or in vitro fermentation studies, which requires high sensitivity and throughput.
Microbial flora analysis for the degradation of beta-cypermethrin.
Qi, Zhang; Wei, Zhang
2017-03-01
In the Xinjiang region of Eurasia, sustained long-term and continuous cropping of cotton over a wide expanse of land is practiced, which requires application of high levels of pyrethroid and other classes of pesticides-resulting in high levels of pesticide residues in the soil. In this study, soil samples were collected from areas of long-term continuous cotton crops with the aim of obtaining microbial resources applicable for remediation of pyrethroid pesticide contamination suitable for the soil type and climate of that area. Soil samples were first used to culture microbial flora capable of degrading beta-cypermethrin using an enrichment culture method. Structural changes and ultimate microbial floral composition during enrichment were analyzed by high-throughput sequencing. Four strains capable of degrading beta-cypermethrin were isolated and preliminarily classified. Finally, comparative rates and speeds of degradation of beta-cypermethrin between relevant microbial flora and single strains were determined. After continuous subculture for 3 weeks, soil sample microbial flora formed a new type of microbial flora by rapid succession, which showed stable growth by utilizing beta-cypermethrin as the sole carbon source (GXzq). This microbial flora mainly consisted of Pseudomonas, Hyphomicrobium, Dokdonella, and Methyloversatilis. Analysis of the microbial flora also permitted separation of four additional strains; i.e., GXZQ4, GXZQ6, GXZQ7, and GXZQ13 that, respectively, belonged to Streptomyces, Enterobacter, Streptomyces, and Pseudomonas. Under culture conditions of 37 °C and 180 rpm, the degradation rate of beta-cypermethrin by GXzq was as high as 89.84% within 96 h, which exceeded that achieved by the single strains GXZQ4, GXZQ6, GXZQ7, and GXZQ13 and their derived microbial flora GXh.
Ebrahimi, Ali; Or, Dani
2016-09-01
Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.
Aqueous extracts from a calcareous spodosol were used as the primary substrate to study the reductive dechlorination of tetrachloroethene (PCE). A comparison was made between extracts obtained using pure water and water saturated with trichloroethene (TCE). The latter solutions w...
The inherent coupling among geochemical and microbial reactions may have significant effects on the environmental fate of a containinant. For example, sorption processes may decrease the concentration of an organic compound in solution, thereby reducing the biodegradation rate of...
Mirza, Mohd Aamir; Ahmad, Sayeed; Mallick, Md Nasar; Manzoor, Nikhat; Talegaonkar, Sushama; Iqbal, Zeenat
2013-03-01
The singular aim of the proposed work is the development of a synergistic thermosensitive gel for vaginal application in subjects prone to recurrent vaginal candidiasis and other microbial infections. The dual loading of Itraconazole and tea tree oil in a single formulation seems promising as it would elaborate the microbial coverage. Despite being low solubility of Itraconazole in tea tree oil, a homogeneous, transparent and stable solution of both was created by co-solvency using chloroform. Complete removal of chloroform was authenticated by GC-MS and the oil solution was used in the development of nanoemulsion which was further translated into a gel bearing thermosensitive properties. In vitro analyses (MTT assay, viscosity measurement, mucoadhesion, ex vivo permeation, etc.) and in vivo studies (bioadhesion, irritation potential and fungal clearance kinetics in rat model) of final formulation were carried out to establish its potential for further clinical evaluation. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ensink, J.; Scott, C. A.; Cairncross, S.
2006-05-01
Wastewater discharge from expanding urban centers deteriorates the quality of receiving waters, a trend that has management and investment implications for cities around the world. This paper presents the results of a 14-month water quality evaluation over a 40-km longitudinal profile downstream of the city of Hyderabad, India (population 7 million) on the Musi River, a tributary to the Krishna River. Upstream to downstream improvements in Musi water quality for microbial constituents (nematode egg, faecal coliform), dissolved oxygen, and nitrate are attributed to natural attenuation processes (dilution, die-off, sedimentation and biological processes) coupled with the effects of in-stream hydraulic infrastructure (weirs and reservoirs). Conversely, upstream to downstream increases in total dissolved solids concentrations are caused by off- stream infrastructure and agricultural water use resulting in crop evapotranspiration and increased solute concentration in the return flow of irrigation diverted upstream in the wastewater system. Future water quality management challenges resulting from rampant urban growth, particularly in developing countries, are discussed.
Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells.
Alkotaini, Bassam; Tinucci, Samantha L; Robertson, Stuart J; Hasan, Kamrul; Minteer, Shelley D; Grattieri, Matteo
2018-04-27
A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L -1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.
Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne
2012-11-01
We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia
2018-04-01
Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of <1% was required to obtain the recovered fertilizer and the purified water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.
Calcium lactate effect on the shelf life of osmotically dehydrated guavas.
Pereira, Leila M; Carmello-Guerreiro, Sandra M; Junqueira, Valéria C A; Ferrari, Cristhiane C; Hubinger, Miriam D
2010-01-01
The effect of calcium lactate on osmodehydrated guavas in sucrose and maltose solutions was monitored during storage under passive modified atmosphere for 24 d at 5 °C. Sample texture and color characteristics, microbial spoilage, sensory acceptance, structural changes, and gas composition inside the packages were periodically evaluated. Calcium lactate inhibited microbial growth on guavas, with yeast and mold counts in the order of 10(2) CFU/g throughout storage. The calcium salt reduced respiration rate of guava products, showing O(2) and CO(2) concentrations around 18% and 3% inside the packages. A firming effect on fruit texture, with up to 5 and 2 times higher stress and strain at failure values and tissue structure preservation could also be attributed to calcium lactate use. However, fruits treated with calcium lactate, osmodehydrated in maltose and sucrose solutions, showed sensory acceptance scores below the acceptability limit (4.5) after 13 and 17 d of storage, respectively. © 2010 Institute of Food Technologists®
Potential microbial risk factors related to soil amendments and irrigation water of potato crops.
Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I
2007-12-01
This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.
Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong
2018-01-01
Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P < 0.05) increased root and microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P < 0.05) changed by clipping. Clipping significantly (P < 0.05) increased the abundances of labile carbon (C) degrading genes. More importantly, the abundances of recalcitrant C degrading genes were consistently and significantly (P < 0.05) increased by clipping in the last 2 years, which could accelerate recalcitrant C degradation and weaken long-term soil carbon stability. Furthermore, genes involved in nutrient-cycling processes including nitrogen cycling and phosphorus utilization were also significantly increased by clipping. The shifts of microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372
Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping
2016-04-01
Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.
Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji
2015-04-01
Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Impacts of waste from concentrated animal feeding operations on water quality
Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.
Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality
Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael
2007-01-01
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784
Effects of remediation amendments on vadose zone microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Hannah M.; Tilton, Fred A.
2012-08-10
Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less
Wang, Wei; Bai, Ruiguang; Cai, Xiaoyu; Lin, Ping; Ma, Lihong
2017-11-01
A method using high-speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis. Two peptides, l-carnosine and l-alanyl-l-glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home-made spontaneous injection device was applied to perform high-speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10 -5 M. The results demonstrated that Bacillus licheniformis could convert l-carnosine and l-alanyl-l-glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian
2010-03-01
A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jia, Yan; Sun, He-yun; Tan, Qiao-yi; Gao, Hong-shan; Feng, Xing-liang; Ruan, Ren-man
2018-03-01
The effects of temperature on chalcocite/pyrite oxidation and the microbial population in the bioleaching columns of a low-grade chalcocite ore were investigated in this study. Raffinate from the industrial bioleaching heap was used as an irrigation solution for columns operated at 20, 30, 45, and 60°C. The dissolution of copper and iron were investigated during the bioleaching processes, and the microbial community was revealed by using a high-throughput sequencing method. The genera of Ferroplasma, Acidithiobacillus, Leptospirillum, Acidiplasma, and Sulfobacillus dominated the microbial community, and the column at a higher temperature favored the growth of moderate thermophiles. Even though microbial abundance and activity were highest at 30°C, the column at a higher temperature achieved a much higher Cu leaching efficiency and recovery, which suggested that the promotion of chemical oxidation by elevated temperature dominated the dissolution of Cu. The highest pyrite oxidation percentage was detected at 45°C. Higher temperature resulted in precipitation of jarosite in columns, especially at 60°C. The results gave implications to the optimization of heap bioleaching of secondary copper sulfide in both enhanced chalcocite leaching and acid/iron balance, from the perspective of leaching temperature and affected microbial community and activity.
Kuippers, Gina; Boothman, Christopher; Bagshaw, Heath; Ward, Michael; Beard, Rebecca; Bryan, Nicholas; Lloyd, Jonathan R
2018-06-08
Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.
The role of microbial biofilms in deterioration of space station candidate materials.
Gu, J D; Roman, M; Esselman, T; Mitchell, R
1998-01-01
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.
Chao, Shiou-Huei; Huang, Hui-Yu; Chang, Chuan-Hsiung; Yang, Chih-Hsien; Cheng, Wei-Shen; Kang, Ya-Huei; Watanabe, Koichi; Tsai, Ying-Chieh
2013-01-01
In Taiwanese alternative medicine Lu-doh-huang (also called Pracparatum mungo), mung beans are mixed with various herbal medicines and undergo a 4-stage process of anaerobic fermentation. Here we used high-throughput sequencing of the 16S rRNA gene to profile the bacterial community structure of Lu-doh-huang samples. Pyrosequencing of samples obtained at 7 points during fermentation revealed 9 phyla, 264 genera, and 586 species of bacteria. While mung beans were inside bamboo sections (stages 1 and 2 of the fermentation process), family Lactobacillaceae and genus Lactobacillus emerged in highest abundance; Lactobacillus plantarum was broadly distributed among these samples. During stage 3, the bacterial distribution shifted to family Porphyromonadaceae, and Butyricimonas virosa became the predominant microbial component. Thereafter, bacterial counts decreased dramatically, and organisms were too few to be detected during stage 4. In addition, the microbial compositions of the liquids used for soaking bamboo sections were dramatically different: Exiguobacterium mexicanum predominated in the fermented soybean solution whereas B. virosa was predominant in running spring water. Furthermore, our results from pyrosequencing paralleled those we obtained by using the traditional culture method, which targets lactic acid bacteria. In conclusion, the microbial communities during Lu-doh-huang fermentation were markedly diverse, and pyrosequencing revealed a complete picture of the microbial consortium. PMID:23700436
Monitoring of Microbial Loads During Long Duration Missions as a Risk Reduction Tool
NASA Astrophysics Data System (ADS)
Roman, M. C.; Mena, K. D.
2012-01-01
Humans have been exploring space for more than 40 years. For all those years, microorganisms have accompanied both un-manned spacecraft/cargo and manned vessels. Microorganisms are everywhere on Earth, could easily adapt to new environments, and/or can rapidly mutate to survive in very harsh conditions. Their presence in spacecraft and cargo have caused a few inconveniences over the years of human spaceflight, ranging from crew health, life support systems challenges, and material degradation. The sterilization of spacecraft that will host humans in long duration mission would be a costly operation that will not provide a long-term solution to the microbial colonization of the vessels. As soon as a human is exposed to the spacecraft, microorganisms start populating the new environment during the mission. As the human presence in space increases in length, the risk from the microbial load to hardware and crew will also increase. Mitigation of this risk involves several different strategies that will include minimizing the microbial load (in numbers and diversity) and monitoring. This paper will provide a list of the risk mitigation strategies that should be implemented during ground processing, and during the mission. It will also discuss the areas that should be reviewed before an effective in-flight microbial monitoring regimen is implemented.
Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.
A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.
Ni, Shou-Qing; Cui, Qingjie; Zheng, Zhen
2014-01-01
As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4′-dibromodiphenyl ether happened with the production of lower BDE congeners. PMID:25009812
Microbial bio-fuels: a solution to carbon emissions and energy crisis.
Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar
2018-06-01
Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.
Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J
2013-05-01
Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.
Griffin, Nicholas W; Ahern, Philip P; Cheng, Jiye; Heath, Andrew C; Ilkayeva, Olga; Newgard, Christopher B; Fontana, Luigi; Gordon, Jeffrey I
2017-01-11
Ensuring that gut microbiota respond consistently to prescribed dietary interventions, irrespective of prior dietary practices (DPs), is critical for effective nutritional therapy. To address this, we identified DP-associated gut bacterial taxa in individuals either practicing chronic calorie restriction with adequate nutrition (CRON) or without dietary restrictions (AMER). When transplanted into gnotobiotic mice, AMER and CRON microbiota responded predictably to CRON and AMER diets but with variable response strengths. An individual's microbiota is connected to other individuals' communities ("metacommunity") by microbial exchange. Sequentially cohousing AMER-colonized mice with two different groups of CRON-colonized mice simulated metacommunity effects, resulting in enhanced responses to a CRON diet intervention and changes in several metabolic features in AMER animals. This response was driven by an influx of CRON DP-associated taxa. Certain DPs may impair responses to dietary interventions, necessitating the introduction of diet-responsive bacterial lineages present in other individuals and identified using the strategies described. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil
NASA Astrophysics Data System (ADS)
Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas
2017-04-01
There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and ammonium in the soil solution at higher species richness. A possible explanation for increased organic nitrogen transformation rates is the increased microbial biomass, which has previously been related to higher quantity and variety of plant derived compounds that are available to the microbial communities at higher plant diversity. Given that this explanation is right, it is interesting to note that the additional (plant-derived) microbial biomass at higher species richness, did not translate in higher soil P mineralization rates or phosphate availability.
Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying
2016-03-01
Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.
Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa
2015-10-15
The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Gertler, Christoph; Näther, Daniela J; Cappello, Simone; Gerdts, Gunnar; Quilliam, Richard S; Yakimov, Michail M; Golyshin, Peter N
2012-09-01
Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Estimating phosphorus availability for microbial growth in an emerging landscape
Schmidt, S.K.; Cleveland, C.C.; Nemergut, D.R.; Reed, S.C.; King, A.J.; Sowell, P.
2011-01-01
Estimating phosphorus (P) availability is difficult—particularly in infertile soils such as those exposed after glacial recession—because standard P extraction methods may not mimic biological acquisition pathways. We developed an approach, based on microbial CO2 production kinetics and conserved carbon:phosphorus (C:P) ratios, to estimate the amount of P available for microbial growth in soils and compared this method to traditional, operationally-defined indicators of P availability. Along a primary succession gradient in the High Andes of Perú, P additions stimulated the growth-related (logistic) kinetics of glutamate mineralization in soils that had been deglaciated from 0 to 5 years suggesting that microbial growth was limited by soil P availability. We then used a logistic model to estimate the amount of C incorporated into biomass in P-limited soils, allowing us to estimate total microbial P uptake based on a conservative C:P ratio of 28:1 (mass:mass). Using this approach, we estimated that there was < 1 μg/g of microbial-available P in recently de-glaciated soils in both years of this study. These estimates fell well below estimates of available soil P obtained using traditional extraction procedures. Our results give both theoretical and practical insights into the kinetics of C and P utilization in young soils, as well as show changes in microbial P availability during early stages of soil development.
NASA Astrophysics Data System (ADS)
Puddu, Rita; Corrias, Roberto; Dessena, Maria Antonietta; Ferralis, Marcella; Marras, Gabriele; Pin, Paola; Spanu, Paola
2010-05-01
This work is part of a multidisciplinary research properly planned by the ENAS (Cagliari-Sardinia-Italy) to verify the consequences of urban wastewater reuse in irrigation practices on chemical, biological and hydrological behavior of agricultural soils of the Had as Soualem area (Morocco). The area consists of Fluventic Haploxerept soils, according to USDA Soil Taxonomy. Undisturbed large soil columns, 70 cm height and 20 cm diameter, were collected from plots, the locations of which were preliminarily individuated through a prior pedological study. The soils are characterized by an apparent structure, suggesting that preferential flow processes may occur in the study area, which may impact usable groundwater at depth. Wastewater reuse for irrigation simultaneously solves water shortage and wastewater disposal problems. Unfortunately, wastewaters generally contain high concentrations of suspended and dissolved solids, both organic and inorganic, and microbial contaminants (virus and bacteria) added to wastewater during domestic and industrial usage. Most of these contaminants are only partially removed during conventional sewage treatment so they remain in the irrigation water. Although adsorbing ions and microbes are relatively immobile within porous media, preferential flow and adsorption to mobile colloids can enhance their transport. There is limited knowledge regarding the role of preferential flow and colloidal transport on adsorbing contaminants. The main aim of this research is to determine the influence of preferential flow and colloids on wastewater contaminant transport. Leaching rates and arrival time of wastewater contaminants will be determined using field and laboratory measurements at the study sites in combination with preferential flow numerical modeling. To achieve these objectives the soil columns were analyzed for physical, chemical, and microbial characterization. At the laboratory, an experimental facility was set up and sensors for monitoring soil water and contaminants concentrations during infiltration experiments were inserted horizontally in each column at different depths. To measure initial distribution of water content in soil columns, as well as water content changes during infiltration, TDR probes were inserted horizontally at 10 cm intervals from the soil surface starting from a depth of 5 cm. Pressure heads were measured by tensiometer cups at the same depths of TDR probes. For monitoring solute and microbial composition of soil water, soil solution extractors were also installed at the same depths on a different vertical line. This work details the initial data collection and analysis during the 1st year of this project and outlines the ongoing modeling and other analysis steps.
Response of a salt marsh microbial community to metal contamination
NASA Astrophysics Data System (ADS)
Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.
2013-09-01
Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.
Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates
Roger, Jennifer Roberts; Bennett, Philip C.
2004-01-01
Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.
The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...
Improving Pathogen Reduction by Chlorine Wash Prior to Cutting in Fresh-Cut Processing
USDA-ARS?s Scientific Manuscript database
Introduction: Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine...
Algae inhibition experiment and load characteristics of the algae solution
NASA Astrophysics Data System (ADS)
Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.
2016-08-01
It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.
Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments
NASA Astrophysics Data System (ADS)
Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.
2012-04-01
Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an intermediate product of the tricarboxylic acid cycle. Our results demonstrate, for the first time, that the formation of a specific clay mineral (proto-kaolinite) occurs in the presence of a specific organic compound (succinic acid). This implies that microbial species capable of excreting succinate among their EPS may promote authigenic kaolinite formation at low temperature and neutral pH. This biological degradation process might play a crucial role for the formation of authigenic kaolinite, which is a widespread clay mineral in sedimentary environments. Fiore, S., Dumontet, S., Huertas, F.J., and Pasquale, V., 2011. Bacteria-induced crystallization of kaolinite. Applied Clay Science, 53:566-571. Linares, J., and Huertas, F., 1971. Kaolinite: Synthesis at room temperature. Science 171: 896-897.
Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Henderson, Keith
2000-01-01
Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, D F; Thompson, D N; Noah, K S
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
Wen, Junlin; He, Daigui; Yu, Zhen; Zhou, Shungui
2018-08-15
C-type cytochromes (c-cyts) facilitate microbial extracellular electron transfer and play critical roles in biogeochemical cycling, bioelectricity generation and bioremediation. In this study, a simple and effective method has been developed to detect microbial c-cyts by means of peroxidase mimetic reaction on screen-printed carbon electrode (SPCE). To this end, bacteria cells were immobilized onto the working electrode surface of SPCE by a simple drop casting. After introducing 3,3',5,5'-tetramethylbenzidine (TMB) solution, microbial c-cyts with peroxidase-like activity catalyze the oxidation of TMB in the presence of hydrogen peroxide. The oxidized TMB was electrochemically determined and the current signal was employed to calculate the c-cyts content. This electrochemical method is highly sensitive for microbial c-cyts with a low detection limit of 40.78 fmol and a wide detection range between 51.70 fmol and 6.64 pmol. Moreover, the proposed technique can be universally expanded to detect c-cyts in other bacteria species such as Fontibacter ferrireducens, Pseudomonas aeruginosa, Comamonas guangdongensis and Escherichia coli. Furthermore, the proposed method confers an in situ facile and quantitative c-cyts detection without any destructive sample preparations, complex electrode modifications and expensive enzyme- or metal particle- based signal amplification. The suggested method advances an intelligent strategy for in situ quantification of microbial c-cyts and consequently holds promising application potential in microbiology and environmental science. Copyright © 2018 Elsevier B.V. All rights reserved.
Mungara, J; Dilna, N C; Joseph, E; Reddy, N
2013-01-01
The quality of water in a dental unit used for cooling and flushing the high and low speed handpiece, air/water syringes and the scalers is of considerable importance. The present study was carried out to enumerate and identify the microorganisms present in water samples collected from dental unit waterlines of different dental specialty clinics and to find out the efficacy of two treating agents in disinfecting dental unit waterlines. Sample included 70 dental unit waterlines from different speciality dental clinics which were checked for microbial contamination. From these dental units 40 units were randomly selected and divided into two groups of 20 each. Group A, treatment was done in 20 dental units with 0.2% Chlorhexidine gluconate solution and Group B, treatment was done in 20 dental units with 10% Povidone iodine solution and the reduction in the microbial levels were assessed. Five dental units were randomly selected and checked the microbial contamination using mineral water sterile distilled water fresh tap water as a water source in the dental unit reservoir bottles. Also from the test group, five from each group were checked for the duration of efficacy of treating agent for one week by analyzing the water samples collected on 3,5 and 7 day intervals. Most of the identified microorganisms are Gram negative and pseudomonas predominating up to 98.59% of the total isolates. Usage of disinfectants 0.2% Chlorhexidine and 10% Povidone Iodine were found to be very effective in reducing the microbial contamination and 10% Povidone iodine was found to be more efficient (97.13%) and active for a period of 3 days and gradually loosing its efficacy by 7th day. No significant difference were found in microbial contamination of water samples collected from different water outlets such as handpiece outlets, air water syringe outlets, scaler lines. To continue maintaining the sterility of the Dental unit waterlines and to complete the infection control measures adopted in the dental clinics, suitable disinfectants like 0.2% Chlorhexidine on daily basis or 10% Povidone iodine on every 3rd day basis intermittently maintain the sterility of dental unit waterlines it is essential to have a good water source and an effective disinfectant.
NASA Astrophysics Data System (ADS)
Williams, A. J.; Sumner, D. Y.; Zierenberg, R. A.
2010-12-01
The surface of modern Mars is rich in S and Fe minerals. Variations in water activity and the weathering reactions of these minerals have been integral to developing Martian surface conditions during the last 2 Ga. Terrestrial gossans, especially those formed from acid-saline solutions at low water-rock ratio, provide an important analog for understanding how S and Fe minerals may have weathered on Mars. Acidophiles and chemolithotrophs have been identified in these environments on Earth, so they also comprise a model system for putative biosignature formation and preservation that is relevant to conditions on early Mars. The Iron Mountain massive sulfide deposit is capped by a gossan, parts of which were exposed at the surface prior to mining, and parts of which have been exposed for several decades. The deposit is located in seasonally dry northern CA with high late spring to early fall evaporation rates. Samples of pyrite, iron-oxide-rich, and sulfate-rich gossan were collected during the dry season in late spring 2010. Mineral species identified with SEM-EDS, XRD, and optical microscopy include: pyrite, goethite, lepitocrocite, hematite, schwartmanite, gypsum, quartz, and acanthite. As yet unidentified soluble sulfate minerals formed by evaporative concentration are also present. Distilled water added to a pyrite-sulfate sample yielded a pH of ~2.5 once the evaporites dissolved. The spatial variability of minerals and the extent of alteration provide the opportunity to study weathering gradients and solution/reprecipitation in this system. Putative microbial communities containing filaments have been observed in small patches on sample surfaces and in fractures with FEG-SEM and optical microscopy. Although present, textural features interpreted to have formed microbially are sparse. The relative paucity of microbial morphologies in this analog acid-saline system combined with their heterogeneous spatial distribution presents a challenge for remote detection by a rover. In addition, long-term preservation of organics in the oxidizing environments indicated by the presence of iron oxides is difficult. Thus, poor preservation of organic biomarkers might be expected even if microbial colonization of the Fe-rich substrate was present on Mars. However, if microbial activity influences local mineralogy or mineral morphology, this may provide evidence for microbial activity even in the absence of chemical biosignatures.
Kasbawati; Gunawan, Agus Yodi; Sidarto, Kuntjoro Adjie
2017-07-01
An unstructured model for the growth of yeast cell on glucose due to growth inhibitions by substrate, products, and cell density is discussed. The proposed model describes the dynamical behavior of fermentation system that shows multiple steady states for a certain regime of operating parameters such as inlet glucose and dilution rate. Two types of steady state solutions are found, namely washout and non-washout solutions. Furthermore, different numerical impositions to the two parameters put in evidence three results regarding non-washout solution: a unique locally stable non-washout solution, a unique locally stable non-washout solution towards which other nearby solutions exhibit damped oscillations, and multiple non-washout solutions where one is locally stable while the other is unstable. It is also found an optimal inlet glucose which produces the highest cell and ethanol concentration. Copyright © 2017 Elsevier Inc. All rights reserved.
Suja, E; Nancharaiah, Y V; Venugopalan, V P
2014-11-15
Microbial granules cultivated in an aerobic bubble column sequencing batch reactor were used for reduction of Pd(II) and formation of biomass associated Pd(0) nanoparticles (Bio-Pd) for reductive transformation of organic and inorganic contaminants. Addition of Pd(II) to microbial granules incubated under fermentative conditions resulted in rapid formation of Bio-Pd. The reduction of soluble Pd(II) to biomass associated Pd(0) was predominantly mediated by H2 produced through fermentation. X-ray diffraction and scanning electron microscope analysis revealed that the produced Pd nanoparticles were associated with the microbial granules. The catalytic activity of Bio-Pd was determined using p-nitrophenol and Cr(VI) as model compounds. Reductive transformation of p-nitrophenol by Bio-Pd was ∼20 times higher in comparison to microbial granules without Pd. Complete reduction of up to 0.25 mM of Cr(VI) by Bio-Pd was achieved in 24 h. Bio-Pd synthesis using self-immobilized microbial granules is advantageous and obviates the need for nanoparticle encapsulation or use of barrier membranes for retaining Bio-Pd in practical applications. In short, microbial granules offer a dual purpose system for Bio-Pd production and retention, wherein in situ generated H2 serves as electron donor powering biotransformations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Therapeutic Potential of Plants as Anti-microbials for Drug Discovery
Perumal Samy, Ramar
2010-01-01
The uses of traditional medicinal plants for primary health care have steadily increased worldwide in recent years. Scientists are in search of new phytochemicals that could be developed as useful anti-microbials for treatment of infectious diseases. Currently, out of 80% of pharmaceuticals derived from plants, very few are now being used as anti-microbials. Plants are rich in a wide variety of secondary metabolites that have found anti-microbial properties. This review highlights the current status of traditional medicine, its contribution to modern medicine, recent trends in the evaluation of anti-microbials with a special emphasis upon some tribal medicine, in vitro and in vivo experimental design for screening, and therapeutic efficacy in safety and human clinical trails for commercial outlet. Many of these commercially available compounds are crude preparations administered without performing human clinical trials. Recent methods are useful to standardize the extraction for scientific investigation of new phytochemicals and anti-microbials of traditionally used plants. It is concluded that once the local ethnomedical preparations of traditional sources are scientifically evaluated before dispensing they should replace existing drugs commonly used for the therapeutic treatment of infection. This method should be put into practice for future investigations in the field of ethnopharmacology, phytochemistry, ethnobotany and other biological fields for drug discovery. PMID:18955349
Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-05-01
The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.
Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health.
Bitas, Vasileios; Kim, Hye-Seon; Bennett, Joan W; Kang, Seogchan
2013-08-01
Secreted proteins and metabolites play diverse and critical roles in organismal and organism-environment interactions. Volatile organic compounds (VOC) can travel far from the point of production through the atmosphere, porous soils, and liquid, making them ideal info-chemicals for mediating both short- and long-distance intercellular and organismal interactions. Critical ecological roles for animal- and plant-derived VOC in directing animal behaviors and for VOC as a language for plant-to-plant communication and regulators of various physiological processes have been well documented. Similarly, microbial VOC appear to be involved in antagonism, mutualism, intra- and interspecies regulation of cellular and developmental processes, and modification of their surrounding environments. However, the available knowledge of how microbial VOC affect other organisms is very limited. Evidence supporting diverse roles of microbial VOC with the focus on their impact on plant health is reviewed here. Given the vast diversity of microbes in nature and the critical importance of microbial communities associated with plants for their ecology and fitness, systematic exploration of microbial VOC and characterization of their biological functions and ecological roles will likely uncover novel mechanisms for controlling diverse biological processes critical to plant health and will also offer tangible practical benefits in addressing agricultural and environmental problems.
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.
Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali
2014-03-28
Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.
Li, Guangyu; Wu, Cifang
2017-08-14
Set-aside farmland can effectively improve the self-rehabilitation of arable soil. Long-term set-asides however cannot satisfy provisionment, therefore the use of short-term set-asides to restore cultivated soil is a better option. Few studies have compared short-term set-aside patterns, and the effects of set-asides on soil microbial community and enzyme enzymes. We analyzed the bacterial structure, microbial biomass carbon/nitrogen and enzyme activity of farmland soil under different set-aside regimes in the Yellow River Delta of China. Bacterial alpha diversity was relatively lower under only irrigation, and farmyard manure applications showed clear advantages. Set-asides should consider their influence on soil organic carbon and nitrogen, which were correlated with microbial community structure. Nitrospira (0.47-1.67%), Acidobacteria Gp6 (8.26-15.91%) and unclassified Burkholderiales (1.50-2.81%) were significantly altered ( p < 0.01). Based on functions of these genera, some set-aside patterns led to a relative balance in nitrogen and carbon turnover. Partial treatments showed a deficiency in organic matter. In addition, farmyard manure may lead to the increased consumption of organic matter, with the exception of native plants set-asides. Conventional farming (control group) displayed a significant enzyme activity advantage. Set-aside management practices guided soil microbial communities to different states. Integrated soil microbiota and the content of carbon and nitrogen, native plants with farmyard manure showed an equilibrium state relatively, which would be helpful to improve land quality in the short-term.
Control of Biogenic Amines in Food—Existing and Emerging Approaches
Naila, Aishath; Flint, Steve; Fletcher, Graham; Bremer, Phil; Meerdink, Gerrit
2010-01-01
Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations. PMID:21535566
Andeta, A F; Vandeweyer, D; Woldesenbet, F; Eshetu, F; Hailemicael, A; Woldeyes, F; Crauwels, S; Lievens, B; Ceusters, J; Vancampenhout, K; Van Campenhout, L
2018-08-01
Enset (Ensete ventricosum) provides staple food for 15 million people in Ethiopia after fermentation into kocho. The fermentation process has hardly been investigated and is prone to optimization. The aim of this study was to investigate the physicochemical and microbial dynamics of fermentation practices in the Gamo highlands. These practices show local variation, but two steps were omnipresent: scraping of the pseudostem and fermenting it in a pit or a bamboo basket. Enset plants were fragmented and fermented for two months in order to investigate the physicochemical (temperature, moisture content, pH and titratable acidity) and microbial dynamics (total viable aerobic counts, counts of Enterobacteriaceae, lactic acid bacteria, yeasts and moulds and Clostridium spores counts, and Illumina Miseq sequencing). Samples were taken on days 1, 7, 15, 17, 31 and 60. The pH decreased, whereas the titratable acidity increased during fermentation. Of all counts those of lactic acid bacteria and Clostridium spores increased during fermentation. Leuconostoc mesenteroides initiated the fermentation. Later on, Prevotella paludivivens, Lactobacillus sp. and Bifidobacterium minimum dominated. These three species are potential candidates for the development of a starter culture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S
2016-08-01
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
Safety of refrigerated storage of admixed parenteral fluids.
Weil, D C; Arnow, P M
1988-01-01
Many hospital pharmacies are reluctant to store admixed parenteral fluids longer than 24 to 48 h because of concern about possible microbial contamination. We evaluated the safety of prolonged refrigerated storage of admixtures by culturing mixtures in 471 bags prepared routinely in a hospital pharmacy and stored at 4 degrees C for up to 15 days. Low-level contamination (1 CFU per bag) was found in 3 of 253 solutions of saline and/or glucose into which nonantibiotic additives had been injected. None of 171 saline and/or glucose solutions with antibiotic additives or 47 parenteral nutrition fluids was culture positive. The risk of contamination did not increase with duration of storage, and none of 107 bags stored greater than or equal to 5 days was culture positive. Laboratory studies to measure growth of bacteria and fungi in glucose infusate and parenteral nutrition solutions confirmed that storage at 4 degrees C suppresses growth. Eight of twelve bacterial isolates grew in glucose solutions at 25 degrees C, while none grew at 4 degrees C. Of 13 species of bacteria and fungi inoculated in parenteral nutrition fluids, 8 proliferated at 25 degrees C and none proliferated at 4 degrees C. We conclude that refrigerated storage of parenteral fluids for up to 1 week following admixture, as permitted by Centers for Disease Control guidelines, does not appear to increase the risk of microbial contamination when standard aseptic procedures for admixing and storage are followed. PMID:3183025
IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN FECAL POLLUTION IN WATER
We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human a...
Evaluation of novel pre-slaughter cattle wash formulations for meat and byproduct safety and quality
USDA-ARS?s Scientific Manuscript database
To ensure safety and quality of meat and leather innovative new carcass washing formulations need to be developed and tested. This study investigated six novel spray wash solutions for their effectiveness on reducing microbial concentrations from fresh hide while concurrently examining their effects...
Influence of management practices on microbial nitrogen cyclers in agricultural soils
NASA Astrophysics Data System (ADS)
García-Orenes, Fuensanta; Morugán-Coronado, Alicia; McMillan, Mary; Pereg, Lily
2016-04-01
Agricultural land management has great influences on soil properties, in particular on microbial communities, due to their sensitivity to the perturbations of the soils. This is even more relevant in Mediterranean agricultural areas under semi-arid conditions. The Mediterranean belt is suffering from an intense degradation of its soils due to the millennia of intense land use and due to unsustainable management practices. As a consequence this area is suffering from a depletion of N content. In this work we investigated the effect of several traditional agricultural management practices on specific functional groups related to the nitrogen cycle in the soil. A field experiment was performed with orchard orange trees (citrus sinesis) in Eastern Spain to assess the long-term effects of ploughing with inorganic fertilization (PI) and ecological practices (EP) (chipped pruned branches and weeds as well as manure from sheep and goats) on microbes that can undertake nitrogen fixation and denitrification. Nine samples of soil were taken from every treatment, near the drip irrigation point and in a zone without the influence of drip irrigation (between trees row), and total DNA extracted. DNA samples were stored at minus-20°C to be analysed by qPCR. Microbial populations involved in the N biochemical cycle were analysed by targeted amplification of key functional biomarker genes: the abundance of nifH (nitrogen fixation), nirS, nirK and nosZ (denitrification) detected by quantitative PCR (qPCR) has shown significant differences between treatments with higher abundance of all four genes in soils from ecological agricultural treatments. This may indicate that the ecological treatment created conditions that are more suitable for N cyclers in the soil and a better fertility and quality status of these soils.
Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.
2005-01-01
The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.
Romero, Tamara; Beltrán, María Carmen; Althaus, Rafael Lisandro; Molina, María Pilar
2014-08-01
The aim of the study was to evaluate the interference of acid and alkaline detergents employed in the cleaning of milking equipment of caprine dairy farms on the performance of microbial tests used in antibiotic control (BRT MRL, Delvotest MCS, and Eclipse 100). Eight concentrations of commercial detergents, five acid (0-0.25%) and five alkaline (0-1%) were add to antimicrobial-free goat's milk to evaluate the detergent effect on the response of microbial inhibitor tests. To evaluate the effect of detergents on the detection capability of microbial tests two detergents at 0.5 ml/l (one acid and one basic) and eight concentrations of four β-lactam antibiotics (ampicillin, amoxicillin, cloxacillin and benzylpenicillin) were used. Milk without detergents was used as control. The spiked samples were analysed twelve times by three microbial tests. The results showed that the presence of acid detergents did not affect the response of microbial tests for any of the concentrations tested. However, at concentrations equal to or greater than 2 ml/l alkaline detergents positive results were found in microbial tests (16.7-100%). The detection limits of the screening tests for penicillins were not modified substantially by the presence of detergents. In general, the presence of acid and alkaline detergents in goat's milk did not produce a great interference in the microbial tests, only high concentrations of detergents could cause non-compliant results, but these concentrations are difficult to find in practice if proper cleaning procedures are applied in goat dairy farms.
Biogeochemistry of Produced Water from Unconventional Wells in the Powder River Basin, Wyoming
NASA Astrophysics Data System (ADS)
Drogos, D. L.; Nye, C.; Quillinan, S.; Urynowicz, M. A.; Wawrousek, K.
2017-12-01
Microbial activity in waters associated with unconventional oil and gas reservoirs is poorly described but can profoundly affect management strategies for produced water (PW), frac fluids, and biocides. Improved identification of microbial communities is required to develop targeted solutions for detrimental microbial activity such as biofouling and to exploit favorable activity such as microbial induced gas production. We quantified the microbial communities and inorganic chemistry in PW samples from cretaceous formations in six unconventional oil and gas wells in the Powder River Basin in northeast Wyoming. The wells are horizontal completions in the Frontier, Niobrara, Shannon, and Turner formations at depths of 10,000 to 12,000 feet, with PW temperatures ranging from 93oF to 130oF. Biocides utilized in frac fluids primarily included glutaraldehyde and Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC), with first production occurring in 2013. Geochemical results for PW are: pH 6.5 to 6.9; alkalinity (as CaCO3) 219 to 519 ppm; salinity 13,200 to 22,300 ppm; and TDS 39,364 to 62,725 ppm. Illumina MiSeq 16S rRNA sequencing identified the majority of communities in PW are related to anaerobic, thermophilic, halophilic, chemoheterotrophic, and chemoorganotrophic bacteria, including Thermotoga, Clostridiaceae, Thermoanaerobacter, Petrotoga, Anaerobaculum, Clostridiales, Desulfomicrobium, and Halanaerobiaceae. These findings are important for identification of biogeochemical reactions that affect the organic-inorganic-microbial interactions among reservoir rocks, formation waters, and frac fluids. Better understanding of these biogeochemical reactions would allow producers to formulate frac fluids and biocides to encourage beneficial microbial phenomena such as biogenic gas production while discouraging detrimental effects such as biofouling.
Effects of agricultural practices on organic matter degradation in ditches
NASA Astrophysics Data System (ADS)
Hunting, Ellard R.; Vonk, J. Arie; Musters, C. J. M.; Kraak, Michiel H. S.; Vijver, Martina G.
2016-02-01
Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems.
Scaling up microbial fuel cells and other bioelectrochemical systems.
Logan, Bruce E
2010-02-01
Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.
Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In
2015-08-01
The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the impact on radionuclides release from LLRW repository. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sulfur and Methylmercury in the Florida Everglades - the Biogeochemical Connection
NASA Astrophysics Data System (ADS)
Orem, W. H.; Gilmour, C. C.; Krabbenhoft, D. P.; Aiken, G.
2011-12-01
Methylmercury (MeHg) is a serious environmental problem in aquatic ecosystems worldwide because of its toxicity and tendency to bioaccumulate. The Everglades receives some of the highest levels of atmospheric mercury deposition and has some of the highest levels of MeHg in fish in the USA, posing a threat to pisciverous wildlife and people through fish consumption. USGS studies show that a combination of biogeochemical factors make the Everglades especially susceptible to MeHg production and bioaccumulation: (1) vast wetland area with anoxic soils supporting anaerobic microbial activity, (2) high rates of atmospheric mercury deposition, (3) high levels of dissolved organic carbon (DOC) that complexes and stabilizes mercury in solution for transport to sites of methylation, and (4) high sulfate loading in surface water that drives microbial sulfate reduction and mercury methylation. The high levels of sulfate in the Everglades represent an unnatural condition. Background sulfate levels are estimated to be <1 mg/L, but about 60% of the Everglades has surface water sulfate concentrations exceeding background. Highly sulfate-enriched marshes in the northern Everglades have average sulfate levels of 60 mg/L. Sulfate loading to the Everglades is principally a result of land and water management in south Florida. The highest concentrations of sulfate, averaging 60-70 mg/L, are in canal water in the Everglades Agricultural Area (EAA). Geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur currently used in agriculture, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment to the canals and ecosystem. Sulfate loading increases microbial sulfate reduction and MeHg production in soils. The relationship between sulfate loading and MeHg production, however, is complex. Sulfate levels up to about 20-30 mg/L increase mercury methylation, but buildup of sulfide from microbial sulfate reduction begins to inhibit mercury methylation above this range. Sulfate from the EAA canals has primarily impacted the northern Everglades nearest the EAA, but recent evidence shows sulfate loading extending about 80 km further south into Everglades National Park. Current restoration plans to restore to deliver more water south to Everglades National Park may increase overall sulfur loads to the southern part of the ecosystem. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near-term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention, could help reduce sulfate loads to the Everglades, with resulting benefits.
Chen, Zhuo; Yu, Tong; Ngo, Huu Hao; Lu, Yun; Li, Guoqiang; Wu, Qianyuan; Li, Kuixiao; Bai, Yu; Liu, Shuming; Hu, Hong-Ying
2018-04-01
This review highlights the importance of conducting biological stability evaluation due to water reuse progression. Specifically, assimilable organic carbon (AOC) has been identified as a practical indicator for microbial occurrence and regrowth which ultimately influence biological stability. Newly modified AOC bioassays aimed for reclaimed water are introduced. Since elevated AOC levels are often detected after tertiary treatment, the review emphasizes that actions can be taken to either limit AOC levels prior to disinfection or conduct post-treatment (e.g. biological filtration) as a supplement to chemical oxidation based approaches (e.g. ozonation and chlorine disinfection). During subsequent distribution and storage, microbial community and possible microbial regrowth caused by complex interactions are discussed. It is suggested that microbial surveillance, AOC threshold values, real-time field applications and surrogate parameters could provide additional information. This review can be used to formulate regulatory plans and strategies, and to aid in deriving relevant control, management and operational guidance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
Kumar, Mayur; Curtis, Anthony
2018-01-01
Anti-microbial resistance is a growing problem that has impacted the world and brought about the beginning of the end for the old generation of antibiotics. Increasingly, more antibiotics are being prescribed unnecessarily and this reckless practice has resulted in increased resistance towards these drugs, rendering them useless against infection. Nanotechnology presents a potential answer to anti-microbial resistance, which could stimulate innovation and create a new generation of antibiotic treatments for future medicines. Preserving existing antibiotic activity through novel formulation into or onto nanotechnologies can increase clinical longevity of action against infection. Additionally, the unique physiochemical properties of nanoparticles can provide new anti-bacterial modes of action which can also be explored. Simply concentrating on antibiotic prescribing habits will not resolve the issue but rather mitigate it. Thus, new scientific approaches through the development of novel antibiotics and formulations is required in order to employ a new generation of therapies to combat anti-microbial resistance. PMID:29342903
Integrating Environmental Genomics and Biogeochemical Models: a Gene-centric Approach
NASA Astrophysics Data System (ADS)
Reed, D. C.; Algar, C. K.; Huber, J. A.; Dick, G.
2013-12-01
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models that uses genomics data and provides predictions that are readily testable using cutting-edge molecular tools. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modelled to examine key questions about cryptic sulphur cycling and dinitrogen production pathways in OMZs. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Yu, Zhen; Tang, Jia; Liao, Hanpeng; Liu, Xiaoming; Zhou, Puxiong; Chen, Zhi; Rensing, Christopher; Zhou, Shungui
2018-06-07
The application of conventional thermophilic composting (TC) is limited by poor efficiency. Newly-developed hyperthermophilic composting (HTC) is expected to overcome this shortcoming. However, the characterization of microbial communities associated with HTC remains unclear. Here, we compared the performance of HTC and TC in a full-scale sludge composting plant, and found that HTC running at the hyperthermophilic and thermophilic phases for 21 days, led to higher composting efficiency and techno-economic advantages over TC. Results of high-throughput sequencing showed drastic changes in the microbial community during HTC. Thermaceae (35.5-41.7%) was the predominant family in the hyperthermophilic phase, while the thermophilic phase was dominated by both Thermaceae (28.0-53.3%) and Thermoactinomycetaceae (29.9-36.1%). The change of microbial community could be the cause of continuous high temperature in HTC, and thus improve composting efficiency by accelerating the maturation process. This work has provided theoretical and practical guidance for managing sewage sludge by HTC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Acquisition and maturation of oral microbiome throughout childhood: An update
Sampaio-Maia, Benedita; Monteiro-Silva, Filipa
2014-01-01
Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637
Quantification of Microbial Osmolytes in a Drought Impacted California Grassland
NASA Astrophysics Data System (ADS)
Boot, C. M.; Schaeffer, S. M.; Doyle, A. P.; Schimel, J. P.
2008-12-01
With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to balance cell membrane water potential as the soil dries. However, when seasonal rains arrive, internal solutes are released and rapidly mineralized. We have been studying these processes in a California grassland. Beginning in summer 2007, we made monthly measurements of soil moisture, individual amino acid concentration in total soil and in microbial biomass, total dissolved organic carbon and nitrogen (DOC and DON), and microbial biomass carbon and nitrogen (MBC and MBN). We expected microbial concentrations of the known amino acid osmolytes glutamate (glu) and proline (pro) to fluctuate inversely with soil moisture. However, pro was only recovered in Mar 2008 (0.30 μg C g-1 dry soil) and the glu concentration varied proportionally with soil moisture: lowest during summer (0.06 g H2O g-1 dry soil, 2.22 μg glutamate-C g-1 dry soil) and highest in winter (0.27 g H2O g-1 dry soil, 4.43 μg glutamate-C g-1 dry soil). The trend from DOC, MBC, and DON measurements was opposite, however, with all concentrations decreasing as soil moisture shifted from dry to wet, (DOC: 64.61 to 32.49 μg C g-1 dry soil respectively). MBN was the exception to this trend, with concentrations staying nearly constant across seasons. These patterns suggest that the expected amino acids glu and pro are not being used for microbial osmoregulation in the CA grassland, and given the summer to winter decrease in MBC, the primary osmolyte source is likely to be either polyol-type compounds such as mannitol or betaines. The implications for terrestrial carbon cycle are considerable because as the frequency of drought increases, the accumulation and release of osmolytes in response to drought has potential to pump carbon out of the grassland ecosystem.
NASA Astrophysics Data System (ADS)
Tenesch, A. C.; Hinman, N. W.; Blank, C. E.
2006-12-01
In this investigation, we aim to constrain the geochemical conditions that favor siliceous microfossil formation. This work will provide a framework for assessing the biogenic origin of putative microfossils in siliceous hydrothermal deposits on early Earth, and potentially, on Mars. Previous work on silicification of microbial cells has been done under unnatural conditions or when cells were physiological stressed. Here, we attempt to reduce the amount reduce the amount of physiological stress on the organisms and to better emulate the natural environment. Silicification experiments involving the gram-positive bacterium, Bacillus subtilis, have been conducted under different experimental conditions to provide insight into the processes that affect silicification of microorganisms. Experiments were conducted with silica stock solution at an initial pH of 8, and with and without added Al and Fe, in two different experimental designs. The first experimental design represented a silica-limited environment in which the ratio of exponentially growing culture (O.D.600 = 0.2) to silica-rich stock solution was very high (1:1 v/v). Silica concentrations declined likely due to nucleation and precipitation mediated by microbial surfaces, and the pH dropped from 8.0 to 6.5. The presence of Fe and Al resulted in lower dissolved silica concentrations, suggesting additional effects of these ions on nucleation and precipitation. The second experimental design used a lower ratio of exponentially growing culture (O.D.600 = .2) to silica-rich stock solution (0.004:1 v/v) resulting in a stable concentration of silica, which was also accompanied by a slight decline in pH. This latter design is more similar to the cell:silica ratios found in natural environments. B. subtilis cells were examined using scanning electron microscopy (SEM) accompanied by energy dispersive spectrometry (EDS). Cells exhibited silica crystallites under SEM and yet continued to undergo cell division in an environment of limited resources. Silicification in the low-ratio experiments appeared to be more efficient as cells were more encrusted with Si than cells in the high-ratio experiments. Further, sporulation was more efficient in the low-ratio experiments.
Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.
2014-01-01
Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific sorption by biochar is variable by element and the toxic element concentration and acidity of the initial mine material.
Shenge, Kenneth C; Whong, Clement M Z; Yakubu, Lydia L; Omolehin, Raphael A; Erbaugh, J Mark; Miller, Sally A; LeJeune, Jeffrey T
2015-01-01
Although recent reports indicated that produce contamination with foodborne pathogens is widespread in Nigeria, the sources and magnitude of microbial contamination of fruits and vegetables on farms and in markets have not been thoroughly identified. To ascertain possible pathways of contamination, the frequency and magnitude of coliform and Escherichia coli contamination of tomatoes produced in northwest Nigeria was assessed on farms and in markets. Eight hundred twenty-six tomato fruit samples and 36 irrigation water samples were collected and assessed for fecal indicator organisms. In addition, the awareness and use of food safety practices by tomato farmers and marketers were determined. Median concentration of coliforms on all field- and market-sourced tomato fruit samples, as well as in irrigation water sources, in Kaduna, Kano, and Katsina states exceeded 1,000 most probable number (MPN) per g. Median E. coli counts from 73 (17%) of 420 field samples and 231 (57%) of 406 market tomato fruit samples exceeded 100 MPN/g. Median E. coli concentrations on tomato fruits were higher (P < 0.01) in the rainy season (2.45 Log MPN/g), when irrigation was not practiced than in the dry (1.10 Log MPN/g) and early dry (0.92 Log MPN/g) seasons. Eighteen (50%) of 36 irrigation water samples had E. coli counts higher than 126 MPN/100 ml. Median E. coli contamination on market tomato fruit samples (2.66 Log MPN/g) were higher (P < 0.001) than those from tomatoes collected on farms (0.92 Log MPN/g). Farmers and marketers were generally unaware of the relationship between food safety practices and microbial contamination on fresh produce. Good agricultural practices pertaining to food safety on farms and in local markets were seldom used. Adoption of food safety practices on-farm, during transport, and during marketing could improve the microbial quality of tomatoes available to the public in this region of the world.
Patient Compliance During Contact Lens Wear: Perceptions, Awareness, and Behavior
Bui, Thai H.; Cavanagh, H. Dwight; Robertson, Danielle M.
2011-01-01
Objectives Patient noncompliance with recommended hygienic practices in contact lens wear is often considered a significant risk factor for microbial keratitis and adverse contact lens–related events. Despite advancements in lens materials and care solutions, noncompliant behavior continues to hinder efforts to maximize contact lens safety. The objective of this pilot study was to assess the relationship between perceived and actual compliance with awareness of risk and behavior. Methods One hundred sixty-two established contact lens wearers were sequentially evaluated after their routine contact lens examination at the Optometry Clinic at the University of Texas Southwestern Medical Center at Dallas, TX. Each patient was questioned by a single trained interviewer regarding his or her lens care practices and knowledge of risk factors associated with lens wear. Results Eighty-six percent of patients believed they were compliant with lens wear and care practices; 14% identified themselves as noncompliant. Using a scoring model, 32% demonstrated good compliance, 44% exhibited average compliance, and 24% were noncompliant; age was a significant factor (P = 0.020). Only 34% of patients who perceived themselves as compliant exhibited a good level of compliance (P<0.001). Eighty percent of patients reported an awareness of risk factors, but awareness did not influence negative behavior. Replacing the lens case was the only behavior associated with a positive history for having experienced a prior contact lens–related complication (P = 0.002). Conclusions Perceived compliance is not an indicator for appropriate patient behavior. A large proportion of patients remain noncompliant despite awareness of risk. Education alone is not a sufficient strategy to improve behavior; newer approaches aimed at improving compliance with lens care practices are urgently needed. PMID:20935569
Evaluation of instant cup noodle, irradiated for immuno-compromised patients
NASA Astrophysics Data System (ADS)
Lee, Ji-Hye; Kim, Jae-Kyung; Park, Jae-Nam; Yoon, Young-Min; Sung, Nak-Yun; Kim, Jae-Hun; Song, Beom-Seok; Yook, Hong-Sun; Kim, Byeong-Keun; Lee, Ju-Woon
2012-08-01
In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach 'practical sterility' of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward DeLong
2011-10-07
Our overarching goals in this project were to: Develop and improve high-throughput sequencing methods and analytical approaches for quantitative analyses of microbial gene expression at the Hawaii Ocean Time Series Station and the Bermuda Atlantic Time Series Station; Conduct field analyses following gene expression patterns in picoplankton microbial communities in general, and Prochlorococcus flow sorted from that community, as they respond to different environmental variables (light, macronutrients, dissolved organic carbon), that are predicted to influence activity, productivity, and carbon cycling; Use the expression analyses of flow sorted Prochlorococcus to identify horizontally transferred genes and gene products, in particular those thatmore » are located in genomic islands and likely to confer habitat-specific fitness advantages; Use the microbial community gene expression data that we generate to gain insights, and test hypotheses, about the variability, genomic context, activity and function of as yet uncharacterized gene products, that appear highly expressed in the environment. We achieved the above goals, and even more over the course of the project. This includes a number of novel methodological developments, as well as the standardization of microbial community gene expression analyses in both field surveys, and experimental modalities. The availability of these methods, tools and approaches is changing current practice in microbial community analyses.« less
Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki
2012-12-01
Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanzhola, G.; Tribidasari, A. I.; Endang, S.
2018-01-01
The dependency of fossil energy in Indonesia caused the crude oil production to be drastically decreased since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environmental problems. Therefore, we need an alternative environment-friendly energy as solution for these problems. A microbial fuel cell is one of the prospective alternative source of an environment-friendly energy source to be developed. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartment (pH 6.5-7.5) and mediator concentration (10-100 μM) was used to produce an optimal electricity. MFC was operated for 3 hours. During operation, the current and voltage density was measured with potensiostat. The maximum power and current density are 425,82 mW/m2 and 440 mA/m2, respectively, for MFC using pH 7.5 at anode compartment without addition of methylene blue. The addition of redox mediator is lowering the produced electricity because of its anti microbial properties that can kill the microbe.
Almatouq, Abdullah; Babatunde, Akintunde O.
2016-01-01
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584
Almatouq, Abdullah; Babatunde, Akintunde O
2016-03-29
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.
The dual role of microbes in corrosion
Kip, Nardy; van Veen, Johannes A
2015-01-01
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571
The dual role of microbes in corrosion.
Kip, Nardy; van Veen, Johannes A
2015-03-01
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.
Something new from something old? Fracking stimulated microbial processes
NASA Astrophysics Data System (ADS)
Wrighton, K. C.; Daly, R. A.; Hoyt, D.; Trexler, R.; McRae, J.; Wilkins, M.; Mouser, P. J.
2015-12-01
Hydraulic fracturing, colloquially known as "fracking", is employed for effective gas and oil recovery in deep shales. This process injects organisms and liquids from the surface into the deep subsurface (~2500 m), exposing microorganisms to high pressures, elevated temperatures, chemical additives, and brine-level salinities. Here we use assembly-based metagenomics to create a metabolic blueprint from an energy-producing Marcellus shale well over a 328-day period. Using this approach we ask the question: What abiotic and biotic factors drive microbial metabolism and thus biogeochemical cycling during natural gas extraction? We found that after 49 days, increased salinity in produced waters corresponded to a shift in the microbial community, with only organisms that encode salinity adaptations detected. We posit that organic compatible solutes, produced by organisms adapting to increased salinity, fuels a methylamine-driven ecosystem in fractured shale. This metabolic network ultimately results in biogenic methane production from members of Methanohalophilus and Methanolobus. Proton NMR validated these genomic hypotheses, with mono-methylamine being highest in the input material, but detected throughout the sampling. Beyond abiotic constraints, our genomic investigations revealed that viruses can be linked to key members of the microbial community, potentially releasing methylamine osmoprotectants and impacting bacterial strain variation. Collectively our results indicate that adaptation to high salinity, metabolism in the absence of oxidized electron acceptors, and viral predation are controlling factors mediating microbial community metabolism during hydraulic fracturing of the deep subsurface.
Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong
2018-01-01
Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals for long-term soil C stabilization. PMID:29668702
Li, Jing; Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong
2018-01-01
Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0-10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals for long-term soil C stabilization.
Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas
2017-01-01
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609
NASA Technical Reports Server (NTRS)
Silverman, M. P.; Munoz, E. F.
1974-01-01
Experiments are reported which show that measuring metabolic activity in soil solutions by means of dynamic changes in electrical conductivity, water-soluble Ca, or water-soluble Mg is a feasible life detection method. The addition of 0.5% glucose solutions to 12 different air-dried soils always resulted in increases in all three of these parameters. The kinetics and magnitude of these changes for at least two and usually all three of the parameters over a 14-day period were clearly distinguishable from the changes in heat-sterilized controls or unsterilized controls without added glucose. In general, maximal values were achieved more rapidly under aerobic than under anaerobic incubation.
Harper, April D; Stalnaker, Stephanie H; Wells, Lance; Darvill, Alan; Thornburg, Robert; York, William S
2010-12-01
Understanding the biochemical mechanisms by which plants respond to microbial infection is a fundamental goal of plant science. Extracellular dermal glycoproteins (EDGPs) are widely expressed in plant tissues and have been implicated in plant defense responses. Although EDGPs are known to interact with fungal proteins, the downstream effects of these interactions are poorly understood. To gain insight into these phenomena, we used tobacco floral nectar as a model system to identify a mechanism by which the EDGP known as Nectarin IV (NEC4) functions as pathogen surveillance molecule. Our data demonstrates that the interaction of NEC4 with a fungal endoglucanase (XEG) promotes the catalytic activity of Nectarin V (NEC5), which catalyzes the conversion of glucose and molecular oxygen to gluconic acid and H(2)O(2). Significantly enhanced NEC5 activity was observed when XEG was added to nectar or nectarin solutions that contain NEC4. This response was also observed when the purified NEC4:XEG complex was added to NEC4-depleted nectarin solutions, which did not respond to XEG alone. These results indicate that formation of the NEC4:XEG complex is a key step leading to induction of NEC5 activity in floral nectar, resulting in an increase in concentrations of reactive oxygen species (ROS), which are known to inhibit microbial growth directly and activate signal transduction pathways that induce innate immunity responses in the plant. Copyright © 2010. Published by Elsevier Ltd.
Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, Nicholas B; Pan, Chongle; Mueller, Ryan
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (pH 1.0,38 C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms,more » nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected 2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.« less
Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès
2015-01-01
Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.
A new strategy of glucose supply in a microbial fermentation model
NASA Astrophysics Data System (ADS)
Kasbawati, Gunawan, A. Y.; Sidarto, K. A.; Hertadi, R.
2015-09-01
Strategy of glucose supply to achieve an optimal productivity of ethanol production of a yeast cell is one of the main features in a microbial fermentation process. Beside a known continuous glucose supply, in this study we consider a new supply strategy so called the on-off supply. An optimal control theory is applied to the fermentation system to find the optimal rate of glucose supply and time of supply. The optimization problem is solved numerically using Differential Evolutionary algorithm. We find two alternative solutions that we can choose to get the similar result: either long period process with low supply or short period process with high glucose supply.
Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis
2013-04-09
A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.
The potential of plant microbiota in reducing postharvest food loss.
Buchholz, Franziska; Kostić, Tanja; Sessitsch, Angela; Mitter, Birgit
2018-03-26
The role of the plant microbiota in plant establishment, growth and health is well studied, but the dynamics of postharvest crop microbiota and its role in postharvest crop quality are largely unexplored, although food loss is an enormous issue worldwide. The microbiota might be especially important during crop storage by either preventing or favouring rots, or quality loss due to, for example, sprouting, saccharification, water loss or spoilage. We need more research on plant-microbe interactions in postharvest crops to be in future able to provide microbial solutions for plant production along the whole food chain from field to fork. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Microbial reduction of iron ore
Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.
1989-11-14
A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.
Microbial reduction of iron ore
Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory
1989-01-01
A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.
Coating-type three-dimensional acetate-driven microbial fuel cells.
Yu, Jin; Tang, Yulan
2015-08-01
This study uses sodium acetate as fuel to construct bioelectricity in coating-type three-dimensional microbial fuel cells anode. The coating-type three-dimensional anode was constructed using iron net as structural support, adhering a layer of carbon felt as primary coating and using carbon powder and 30% PTFE solution mixture as coating. The efficiency of electricity production and wastewater treatment were analyzed for the three-dimensional acetate-fed (C2H3NaO2) microbial fuel cells with the various ratio of the coating mixture. The results showed that the efficiency of electricity production was significantly improved when using the homemade coating-type microbial fuel cells anode compared with the one without coating on the iron net, which the apparent internal resistance was decreased by 59.4% and the maximum power density was increased by 1.5 times. It was found the electricity production was greatly influenced by the ratio of the carbon powder and PTFE in the coating. The electricity production was the highest with apparent internal resistance of 190 Ω, and maximum power density of 5189.4 mW m(-3) when 750 mg of carbon powder and 10 ml of PTFE (i.e., ratio 75:1) was used in the coating. With the efficiency of electricity production, wide distribution and low cost of the raw materials, the homemade acetate-fed microbial fuel cells provides a valuable reference to the development of the composition microbial fuel cell anode production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott
1999-06-01
Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. Aftermore » acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.« less
[Mitigating the repress of cinnamic acid to cucumber growth by microbial strain].
Yu, Guo-hui; Xie, Yin-hua; Chen, Yan-hong; Chen, Yuan-feng; Cheng, Ping
2006-12-01
Cucumber is one of the most important vegetable species. Its continuous planting has become a common practice demand in many areas of China, but an obstacle from continuous planting made sustainable production of this crop to be prohibited. The self-toxic effect was considered as an important negative factor to continuous cropping cucumber. And cinnamic acid was found to be the main substance to cause self-toxic. Strain Ha8, which isolated from waste water estuary in Zhuhai city and has been authenticated as Cellulosimicrobium cellulans, was found to be able to degrade cinnamic acid, benzoic acid, paraaminobenzoic acid and phenol. Its biologic degrading rate to cinnamic acid was 64.1% and its total degrading rate to cinnamic acid was 79.32% . Therefore, strain Ha8 was used to mitigate the growth stress of cucumber caused by cinnamic acid in the research. In the experiment by hydroponic culturing method, it was found that the stem length, root length, stem weight, leaf weight, root weight, numbers of flower and harvest weight of cucumbers were lower than those untreated ones when added 2micromol/L or 10micromol/L cinnamic acid in culturing solution. But when added 10(7)cfu/L of strain Ha8 and 2micromol/L or 10micromol/L cinnamic acid in same culturing solution, these parameters were higher than those treated only by 2mircomol/L or 10micromol/L cinnamic acid. The result shown that strain Ha8 could mitigate the self-toxic effect caused by cinnamic acid. In edaphic culturing experiments, it was found that organic fertilizer mixed with strain Ha8 could mitigate the growth stress of cucumber caused by 100mg/kg cinnamic acid. When added 3mg/kg sterilized organic fertilizer with strain Ha8 (> or = 10(6)cfu/g dry organic fertilizer) in the culturing soil, the result was satisfied. This treatment could not only improve the growth of cucumber, enhance their root dehydrogenase activity and output, promote their nutrition absorption rate, but also adjust the microbial groups in nonrhizospheric soil of cucumber, increase the number of beneficial bacteria and actinomycete, decrease the number of fungi.
USDA-ARS?s Scientific Manuscript database
Field tests were conducted in Miami, Florida to evaluate attraction of Anastrepha suspensa (Loew), and Zaprionus indianus Gupta, to traps baited with aqueous grape juice solution (10%) with and without preservative. Microbial activity, which occurred in baits without preservative that were aged in t...
USDA-ARS?s Scientific Manuscript database
A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungal spores in nutrient solution or bacteria in liquefied agar), allowing time for the microbes to gr...
MICROBIAL SOLUTION: APPLICATION OF MICROORGANISMS FOR BIOFUEL PRODUCTION AND CO2 MITIGATION
A 100 L photobioreactor for biodiesel generation from microalga Chlorella vulgaris was constructed from two parallel clear PVC 10 feet tubes (6’ diameter) with a small slope (10%). The gas mixture (5% CO2 and air) flowed up the top of the PVC tubes from the bottom as...
USDA-ARS?s Scientific Manuscript database
To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...
NASA Astrophysics Data System (ADS)
Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.
2011-12-01
The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from <104 to 105 cells/mL), both HRC and lactate injections stimulated anaerobic microbial activity, which led to an increase in biomass to >107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production of acetate and propionate, the evolution of 13C in bicarbonate, and the rate of sulfate reduction. In contrast to the slow-release HRC injections, no long-term effects of biostimulation and Cr bioreduction were observed in groundwater after the lactate injections. The presentation will address these patterns of the geochemical, δ13C of DIC, and biomass changes in groundwater before and after the polylactate and lactate injections.
Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods
NASA Astrophysics Data System (ADS)
Ouattara, B.; Sabato, S. F.; Lacroix, M.
2002-03-01
This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant ( p⩽0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant ( p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.
Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media
Ma, Yingqun; Lin, Chuxia
2013-01-01
At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258
Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media
NASA Astrophysics Data System (ADS)
Ma, Yingqun; Lin, Chuxia
2013-06-01
At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.
Microbial oxidation of Fe²⁺ and pyrite exposed to flux of micromolar H₂O₂ in acidic media.
Ma, Yingqun; Lin, Chuxia
2013-01-01
At an initial pH of 2, while abiotic oxidation of aqueous Fe(2+) was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe(2+) could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe(2+) to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe(2+)-Fe(3+) conversion rate in the solution (due to reduced microbial activity) weakened the Fe(3+)-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.
Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells
NASA Astrophysics Data System (ADS)
Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex
2017-09-01
Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.
NASA Astrophysics Data System (ADS)
Behera, S. S.; Jha, S.; Arakha, M.; Panigrahi, T. K.
2012-03-01
TRACT Nanoparticles synthesis by biological methods using various microorganisms, plants, and plant extracts and enzymes have attracted a great attention as these are cost effective, nontoxic, eco-friendly and an alternative to physical and chemical methods. In this research, Silver nanoparticles (Ag-NPs) were synthesized from AgNO3 solution by green synthesis process with the assistance of microbial source only. The detailed characterization of the Ag NPs were carried out using UV-visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDS), Dynamic light scattering (DLS) analysis, and their antimicrobial evaluation was done against Escherichia coli. The UV-visible spectroscopy analysis showed the surface plasmon resonance property of nanoparticles. The DLS analysis showed the particle distribution of synthesized silver nanoparticles in solution, and SEM analysis showed the morphology of nanoparticles. The elemental composition of synthesized sample was confirmed by EDS analysis. Antibacterial assay of synthesized Ag NP was carried out in solid (Nutrient Agar) growth medium against E.coli. The presence of zone of inhibition clearly indicated the antibacterial activity of silver nanoparticles.
Application of Reactive Transport Modeling to Heap Bioleaching of Copper
NASA Astrophysics Data System (ADS)
Liu, W.
2017-12-01
Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.
The Effect of the 2015 Earthquake on the Bacterial Community Compositions in Water in Nepal
Uprety, Sital; Hong, Pei-Ying; Sadik, Nora; Dangol, Bipin; Adhikari, Rameswor; Jutla, Antarpreet; Shisler, Joanna L.; Degnan, Patrick; Nguyen, Thanh H.
2017-01-01
We conducted a study to examine the effect of seasonal variations and the disruptive effects of the 2015 Nepal earthquake on microbial communities associated with drinking water sources. We first characterized the microbial communities of water samples in two Nepali regions (Kathmandu and Jhapa) to understand the stability of microbial communities in water samples collected in 2014. We analyzed additional water samples from the same sources collected from May to August 2015, allowing the comparison of samples from dry-to-dry season and from dry-to-monsoon seasons. Emphasis was placed on microbes responsible for maintaining the geobiochemical characteristics of water (e.g., ammonia-oxidizing and nitrite-oxidizing bacteria and archaea and sulfate-reducing bacteria) and opportunistic pathogens often found in water (Acinetobacter). When examining samples from Jhapa, we identified that most geobiochemical microbe populations remained similar. When examining samples from Kathmandu, the abundance of microbial genera responsible for maintaining the geobiochemical characteristics of water increased immediately after the earthquake and decreased 8 months later (December 2015). In addition, microbial source tracking was used to monitor human fecal contamination and revealed deteriorated water quality in some specific sampling sites in Kathmandu post-earthquake. This study highlights a disruption of the environmental microbiome after an earthquake and the restoration of these microbial communities as a function of time and sanitation practices. PMID:29270153
Long-term application of winery wastewater - Effect on soil microbial populations and soil chemistry
NASA Astrophysics Data System (ADS)
Mosse, Kim; Patti, Antonio; Smernik, Ron; Cavagnaro, Timothy
2010-05-01
The ability to reuse winery wastewater (WWW) has potential benefits both with respect to treatment of a waste stream, as well as providing a beneficial water resource in water limited regions such as south-eastern Australia, California and South Africa. Over an extended time period, this practice leads to changes in soil chemistry, and potentially, also to soil microbial populations. In this study, we compared the short term effects of WWW (both treated and untreated) application on soil biology and chemistry in two adjacent paired sites with the same soil type, one of which had received WWW for approximately 30 years, and the other which had not. The paired sites were treated with an industrially relevant quantity of WWW, and the soil microbial activity (measured as soil CO2 efflux) and common soil physicochemical properties were monitored over a 16-day period. In addition, Solid State 13C NMR was employed on whole soil samples from the two sites, to measure and compare the chemical nature of the soil organic matter at the paired sites. The acclimatised soil showed a high level of organic matter and a greater spike in microbial activity following WWW addition, in comparison with the non-acclimatised soil, suggesting differences in soil chemistry and soil microbial communities between the two sites. Soil nitrate and phosphorus levels showed significant differences between WWW treatments; these differences likely to be microbially mediated.
Environmental Sources of Bacteria Differentially Influence Host-Associated Microbial Dynamics.
Cardona, Cesar; Lax, Simon; Larsen, Peter; Stephens, Brent; Hampton-Marcell, Jarrad; Edwardson, Christian F; Henry, Chris; Van Bonn, Bill; Gilbert, Jack A
2018-01-01
Host-associated microbial dynamics are influenced by dietary and immune factors, but how exogenous microbial exposure shapes host-microbe dynamics remains poorly characterized. To investigate this phenomenon, we characterized the skin, rectum, and respiratory tract-associated microbiota in four aquarium-housed dolphins daily over a period of 6 weeks, including administration of a probiotic during weeks 4 to 6. The environmental bacterial sources were also characterized, including the animals' human handlers, the aquarium air and water, and the dolphins' food supply. Continuous microbial exposure occurred between all sites, yet each environment maintained a characteristic microbiota, suggesting that the majority of exposure events do not result in colonization. Small changes in water physicochemistry had a significant but weak correlation with change in dolphin-associated bacterial richness but had no influence on phylogenetic diversity. Food and air microbiota were the richest and had the largest conditional influence on other microbiota in the absence of probiotics, but during probiotic administration, food alone had the largest influence on the stability of the dolphin microbiota. Our results suggest that respiratory tract and gastrointestinal epithelium interactions with air- and food-associated microbes had the biggest influence on host-microbiota dynamics, while other interactions, such as skin transmission, played only a minor role. Finally, direct oral stimulation with a foreign exogenous microbial source can have a profound effect on microbial stability. IMPORTANCE These results provide valuable insights into the ecological influence of exogenous microbial exposure, as well as laying the foundation for improving aquarium management practices. By comparing data for dolphins from aquaria that use natural versus artificial seawater, we demonstrate the potential influence of aquarium water disinfection procedures on dolphin microbial dynamics.
A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites
Chodkowski, John L.
2017-01-01
ABSTRACT Though most microorganisms live within a community, we have modest knowledge about microbial interactions and their implications for community properties and ecosystem functions. To advance understanding of microbial interactions, we describe a straightforward synthetic community system that can be used to interrogate exometabolite interactions among microorganisms. The filter plate system (also known as the Transwell system) physically separates microbial populations, but allows for chemical interactions via a shared medium reservoir. Exometabolites, including small molecules, extracellular enzymes, and antibiotics, are assayed from the reservoir using sensitive mass spectrometry. Community member outcomes, such as growth, productivity, and gene regulation, can be determined using flow cytometry, biomass measurements, and transcript analyses, respectively. The synthetic community design allows for determination of the consequences of microbiome diversity for emergent community properties and for functional changes over time or after perturbation. Because it is versatile, scalable, and accessible, this synthetic community system has the potential to practically advance knowledge of microbial interactions that occur within both natural and artificial communities. IMPORTANCE Understanding microbial interactions is a fundamental objective in microbiology and ecology. The synthetic community system described here can set into motion a range of research to investigate how the diversity of a microbiome and interactions among its members impact its function, where function can be measured as exometabolites. The system allows for community exometabolite profiling to be coupled with genome mining, transcript analysis, and measurements of member productivity and population size. It can also facilitate discovery of natural products that are only produced within microbial consortia. Thus, this synthetic community system has utility to address fundamental questions about a diversity of possible microbial interactions that occur in both natural and engineered ecosystems. Author Video: An author video summary of this article is available. PMID:29152587
Shehab, Noura A; Ortiz-Medina, Juan F; Katuri, Krishna P; Hari, Ananda Rao; Amy, Gary; Logan, Bruce E; Saikaly, Pascal E
2017-09-01
Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m 2 -anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kogure, H; Kawasaki, S; Nakajima, K; Sakai, N; Futase, K; Inatsu, Y; Bari, M L; Isshiki, K; Kawamoto, S
2005-01-01
A novel microbial sensor containing a commercial baker's yeast with a high freeze tolerance was developed for visibly detecting inappropriate temperature control of food. When the yeast cells fermented glucose, the resulting gas production triggered the microbial sensor. The biosensor was a simple, small bag containing a solution of yeast cells, yeast extract, glucose, and glycerol sealed up with multilayer transparent film with barriers against oxygen and humidity. Fine adjustment of gas productivity in the biosensor at low temperatures was achieved by changing either or both concentrations of glucose and yeast cells. Moreover, the amount of time that food was exposed to inappropriate temperatures could be deduced by the amount of gas produced in the biosensor. The biosensor was stable without any functional loss for up to 1 week in frozen storage. The biosensor could offer a useful tool for securing food safety by maintaining low-temperature control in every stage from farm to fork, including during transportation, in the store, and at home.
Santos, Lívia; Rodrigues, Diana; Lira, Madalena; Oliveira, Rosario; Real Oliveira, M Elisabete C D; Vilar, Eva Yebra-Pimentel; Azeredo, Joana
2007-05-01
In this study, the effect of the natural surfactants octylglucoside and sodium cholate in inhibiting Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to conventional and silicone-hydrogel contact lenses (CL) was assessed. Hydrophobicity was also evaluated to conditioned and nonconditioned CL. The inhibiting effect of the tested surfactants was determined through "in vitro" adhesion studies to conditioned and nonconditioned CL followed by image acquisition and cell enumeration. Hydrophobicity was evaluated through contact angle measurements using the advancing type technique on air. Sodium cholate exhibits a very low capability to inhibit microbial adhesion. Conversely, octylglucoside effectively inhibited microbial adhesion in both types of lenses. This surfactant exhibited an even greater performance than a multipurpose lens care solution used as control. Octylglucoside was the only tested surfactant able to lower the hydrophobicity of all CL, which can explain its high performance. The results obtained in this study point out the potential of octylglucoside as a conditioning agent to prevent microbial colonization.
[Effect of temperature on performance of microbial fuel cell using beer wastewater].
Wang, Xin; Feng, Yu-Jie; Qu, You-Peng; Li, Dong-Mei; Li, He; Ren, Nan-Qi
2008-11-01
The effects of temperature on performance and biological community structure were investigated in air-cathode microbial fuel cells (MFCs) using beer wastewater amended with 50 mmol/L phosphate buffer solution (PBS). The maximum power density decreased from 483 mW/m2 to 435 mW/m2 when the temperature varied from 30 degrees C to 20 degrees C, meanwhile just a little decreasing on coulombic efficiency and the COD removal rate were observed. Decreasing of temperature resulted in effects both on cathode potential and anode potential, but cathode potential behaved much more sensitive to temperature. The half-saturation constants (Ks) obtained from the fit of Monod-type equation were 228 mg/L (30 degrees C) and 293 mg/L (20 degrees C) respectively. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that operating temperature not only affected the predominant population of the anodic bacterial community, but also had a great impact on the diversity of the cathodic microbial population.
Evaluation of actinide biosorption by microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happel, A.M.
1996-06-01
Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams maymore » preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.« less